JP5986010B2 - Powder magnetic core and magnetic core powder used therefor - Google Patents

Powder magnetic core and magnetic core powder used therefor Download PDF

Info

Publication number
JP5986010B2
JP5986010B2 JP2013026088A JP2013026088A JP5986010B2 JP 5986010 B2 JP5986010 B2 JP 5986010B2 JP 2013026088 A JP2013026088 A JP 2013026088A JP 2013026088 A JP2013026088 A JP 2013026088A JP 5986010 B2 JP5986010 B2 JP 5986010B2
Authority
JP
Japan
Prior art keywords
magnetic
powder
ferrite
core
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013026088A
Other languages
Japanese (ja)
Other versions
JP2013191839A (en
Inventor
ジョンハン ファン
ジョンハン ファン
毅 服部
毅 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2013026088A priority Critical patent/JP5986010B2/en
Publication of JP2013191839A publication Critical patent/JP2013191839A/en
Application granted granted Critical
Publication of JP5986010B2 publication Critical patent/JP5986010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、体積比抵抗値(以下単に「比抵抗」という。)および磁束密度が大きな圧粉磁心およびそれに用いる磁心用粉末に関する。   The present invention relates to a dust core having a large volume resistivity value (hereinafter simply referred to as “resistivity”) and a high magnetic flux density, and a powder for a magnetic core used therefor.

変圧器(トランス)、電動機(モータ)、発電機、スピーカ、誘導加熱器、各種アクチュエータ等、我々の周囲には電磁気を利用した製品が多々ある。これらの製品は交番磁界を利用したものが多く、局所的に大きな交番磁界を効率的に得るために、通常、磁心(軟磁石)をその交番磁界中に設けている。   There are many products that use electromagnetism around us, such as transformers, motors, generators, speakers, induction heaters, and various actuators. Many of these products use an alternating magnetic field. In order to efficiently obtain a large alternating magnetic field locally, a magnetic core (soft magnet) is usually provided in the alternating magnetic field.

この磁心には、交番磁界中における高磁気的特性のみならず、交番磁界中で使用したときの高周波損失(以下、磁心の材質に拘らず単に「鉄損」という。)が少ないことが求められる。この鉄損には、渦電流損失、ヒステリシス損失および残留損失があり、中でも交番磁界の周波数の2乗に比例して高くなる渦電流損失の低減が重要である。   This magnetic core is required not only to have high magnetic characteristics in an alternating magnetic field but also to have low high-frequency loss (hereinafter simply referred to as “iron loss” regardless of the material of the magnetic core) when used in an alternating magnetic field. . This iron loss includes eddy current loss, hysteresis loss, and residual loss. In particular, it is important to reduce eddy current loss that increases in proportion to the square of the frequency of the alternating magnetic field.

このような磁心として、絶縁性膜で被覆された軟磁性粒子(磁心用粉末の各粒子)を加圧成形した圧粉磁心がある。この圧粉磁心は、渦電流損失が小さくて形状自由度が高いため、モータコア等をはじめ種々の電磁機器に利用されている。もっとも、その絶縁性膜を非磁性なシリコン系樹脂やリン酸塩等で形成すると、圧粉磁心の(飽和)磁束密度等が低下し得る。そこで絶縁性膜としてフェライト被膜を用いることが提案されており、例えば下記のような特許文献に関連する記載がある。   As such a magnetic core, there is a powder magnetic core obtained by press-molding soft magnetic particles (each particle of magnetic core powder) covered with an insulating film. Since this dust core has a small eddy current loss and a high degree of freedom in shape, it is used in various electromagnetic devices such as motor cores. However, if the insulating film is formed of nonmagnetic silicon-based resin, phosphate, or the like, the (saturated) magnetic flux density of the dust core can be reduced. Accordingly, it has been proposed to use a ferrite coating as the insulating film, and there is a description related to the following patent document, for example.

WO2003/015109号公報WO2003 / 015109 特開2006−97097号公報JP 2006-97097 A 特開2005−64396号公報JP 2005-64396 A

特許文献1では、例えば、平均粒径が4μm程度の非常に微細な粒子(カルボニル鉄粉粒子)の表面に、平均厚さ0.5μm(500nm)のNiZnフェライト被膜を設けた粒子からなる粉末およびその成形体を提案している。特許文献2では、例えば、平均粒径が8μm程度の微粒子(センダスト粉粒子)の表面に、マグネタイト(Fe)からなるフェライト被膜を設けた粒子からなる粉末およびその成形体を提案している。 In Patent Document 1, for example, a powder comprising particles having a NiZn ferrite coating having an average thickness of 0.5 μm (500 nm) on the surface of very fine particles (carbonyl iron powder particles) having an average particle diameter of about 4 μm and The molded body is proposed. Patent Document 2 proposes, for example, a powder made of particles in which a ferrite film made of magnetite (Fe 3 O 4 ) is provided on the surface of fine particles (Sendust powder particles) having an average particle diameter of about 8 μm and a molded body thereof. Yes.

これらの磁心用粒子は、コアとなる軟磁性粒子の粒径が非常に微細である一方、その表面に形成されるフェライト被膜が非常に厚い。このため特許文献1や特許文献2に記載の成形体である圧粉磁心では、比抵抗が高くても、(飽和)磁束密度や透磁率が非常に低くなってしまう。   In these magnetic core particles, the particle diameter of the soft magnetic particles as the core is very fine, while the ferrite film formed on the surface thereof is very thick. For this reason, in the powder magnetic core which is a molded object described in Patent Document 1 or Patent Document 2, even if the specific resistance is high, the (saturated) magnetic flux density and the magnetic permeability are very low.

特許文献3では、例えば、平均粒径が100μm程度の粒子(ガスアトマイズ純鉄粉粒子)の表面に、膜厚50〜150nmのNiZnフェライト被膜またはFeフェライト被膜を設けた粒子およびその粒子からなる成形体を提案している。詳細は後述するが、本発明者が調査研究したところ、特許文献3のようなフェライト被膜を有する圧粉磁心では、比抵抗と磁束密度を高次元で両立させることはできないことがわかった。 In Patent Document 3, for example, particles having an average particle diameter of about 100 μm (gas atomized pure iron powder particles) on a surface provided with a NiZn ferrite coating or Fe 3 O 4 ferrite coating with a film thickness of 50 to 150 nm and the particles are used. Has been proposed. Although the details will be described later, the present inventor conducted research and research, and found that a powder magnetic core having a ferrite coating as in Patent Document 3 cannot achieve both high specific resistance and high magnetic flux density.

本発明はこのような事情に鑑みて為されたものであり、比抵抗等の電気的特性と磁束密度や透磁率等の磁気的特性とを高次元で両立させた圧粉磁心と、その製造に適した磁心用粉末を提供することを目的とする。   The present invention has been made in view of such circumstances, and a dust core in which electrical characteristics such as specific resistance and magnetic characteristics such as magnetic flux density and permeability are compatible at a high level, and its manufacture An object of the present invention is to provide a magnetic core powder suitable for the above.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、Mnを含むスピネル型フェライトからなる薄膜で被覆された特定サイズの軟磁性粒子からなる磁心用粉末を用いることにより、一般的には背反関係にある比抵抗と磁束密度を高次元で両立させた圧粉磁心を得ることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of intensive studies to solve this problem and repeated trial and error, the present inventor uses a magnetic core powder made of soft magnetic particles of a specific size coated with a thin film made of spinel ferrite containing Mn. In general, we have succeeded in obtaining a dust core that has a high-level balance between specific resistance and magnetic flux density, which are in a contradictory relationship. By developing this result, the present invention described below has been completed.

《磁心用粉末》
(1)本発明の磁心用粉末は、軟磁性粒子と、2価の陽イオンとなる金属元素(M)と鉄(Fe)と酸素(O)によりMFeで表される化合物であるスピネル型フェライトからなり該軟磁性粒子の表面を被覆するフェライト被膜と、を有する磁心用粒子からなる磁心用粉末であって、前記軟磁性粒子は、粒度が50〜250μmであり、前記フェライト被膜は、平均膜厚が10〜100nmであり、前記スピネル型フェライトは、前記Mがマンガン(Mn)および亜鉛(Zn)であるMnZnフェライトであることを特徴とする。
<Magnetic core powder>
(1) The magnetic core powder of the present invention is a compound represented by MFe 2 O 4 by soft magnetic particles, a metal element (M) that becomes a divalent cation, iron (Fe), and oxygen (O). A magnetic core powder comprising spinel ferrite and a ferrite film covering the surface of the soft magnetic particles, wherein the soft magnetic particles have a particle size of 50 to 250 μm, , Ri average thickness. 10 to 100 nm der, the spinel ferrite is characterized in that said M is a MnZn ferrite is manganese (Mn) and zinc (Zn).

(2)本発明の磁心用粉末は、そのコアとなる軟磁性粒子が比較的大きな粒径からなるため、圧粉磁心の高磁束密度化や高透磁率化を図り易い。しかも、その軟磁性粒子の表面は磁性材であるスピネル型フェライトからなる薄膜(フェライト被膜)で被覆されているため、圧粉磁心の磁束密度の低下や軟磁性粒子の表面に生じる反磁場による透磁率の低下等も大幅に抑制される。 (2) In the magnetic core powder of the present invention, since the soft magnetic particles serving as the core have a relatively large particle size, it is easy to increase the magnetic flux density and the magnetic permeability of the powder magnetic core. In addition, since the surface of the soft magnetic particles is coated with a thin film (ferrite coating) made of a spinel ferrite, which is a magnetic material, the magnetic flux density of the dust core is reduced and the permeability due to the demagnetizing field generated on the surface of the soft magnetic particles. Decrease in magnetic susceptibility is greatly suppressed.

勿論、その被膜は酸化鉄(Fe)を主成分とするセラミックスであるため、非常に薄くても優れた絶縁性を発揮する。従って、本発明に係るフェライト被膜で被覆された軟磁性粒子からなる磁心用粉末を用いると、磁束密度や透磁率等の磁気的特性のみならず、比抵抗等の電気的特性にも優れた圧粉磁心を容易に得ることができる。 Of course, since the coating film is made of a ceramic mainly composed of iron oxide (Fe 2 O 3 ), it exhibits excellent insulation even if it is very thin. Therefore, when the magnetic core powder comprising soft magnetic particles coated with the ferrite coating according to the present invention is used, not only the magnetic characteristics such as magnetic flux density and magnetic permeability but also the electrical characteristics such as specific resistance are excellent. A powder magnetic core can be obtained easily.

(3)ここで本発明に係るフェライト被膜を構成するスピネル型フェライトは、MFeで表される立方晶系のソフトフェライトであり、MはFe、Mn、Ni、Zn、Cu、Mg、Sr等の2価の陽イオンとなる金属元素である。 (3) Here, the spinel type ferrite constituting the ferrite film according to the present invention is a cubic soft ferrite represented by MFe 2 O 4 , where M is Fe, Mn, Ni, Zn, Cu, Mg, It is a metal element that becomes a divalent cation such as Sr.

但し、本発明に係るMは少なくともMnを含んでいる。Mnを含むフェライト被膜を有する圧粉磁心は、他の圧粉磁心よりも、比抵抗等の電気的特性と磁束密度等の磁気的特性の両方において優れる。このような特性が発現される詳細なメカニズムは必ずしも定かではない。現状では次のように考えられる。正スピネルと逆スピネルの固溶体の場合、スピネルの結晶構造中のAサイトまたはBサイトへの、M元素の入り易さは、M元素の種類により異なる。これに伴い各結晶構造に生じる磁気モーメントも変化する。ここでMn(さらにはZn)が固溶した結晶構造の場合、他のM元素が固溶した場合よりも大きな磁気モーメントを生じ、飽和磁化も大きい。特にMnFeは、各種の単元フェライト中でも飽和磁化が最大であり、比抵抗も大きい。このような理由により、Mnを含むフェライト被膜を有する圧粉磁心は、上述したような優れた特性を発揮したと考えられる。 However, M according to the present invention contains at least Mn. A dust core having a ferrite coating containing Mn is superior to other dust cores in both electrical characteristics such as specific resistance and magnetic characteristics such as magnetic flux density. The detailed mechanism by which such characteristics are expressed is not necessarily clear. The current situation is considered as follows. In the case of a solid solution of normal spinel and reverse spinel, the ease of entry of M element into the A site or B site in the spinel crystal structure varies depending on the type of M element. Along with this, the magnetic moment generated in each crystal structure also changes. Here, in the case of a crystal structure in which Mn (and Zn) is in solid solution, a larger magnetic moment is generated and saturation magnetization is larger than in the case where other M elements are in solution. In particular, MnFe 2 O 4 has the largest saturation magnetization and high specific resistance among various unit ferrites. For these reasons, it is considered that the powder magnetic core having the ferrite film containing Mn exhibited excellent characteristics as described above.

《圧粉磁心》
本発明は、上述した磁心用粉末としてのみならず、それを加圧成形した圧粉磁心としても把握し得る。なお、本発明に係るフェライト被膜は、その加圧成形時に割れたり、軟磁性粒子の表面から剥離等することは殆どない。
<Dust core>
The present invention can be grasped not only as the above-described powder for magnetic cores but also as a powder magnetic core obtained by pressure molding. In addition, the ferrite film according to the present invention hardly breaks or peels off from the surface of the soft magnetic particles during the pressure molding.

《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
<Others>
Unless otherwise specified, “x to y” in this specification includes a lower limit value x and an upper limit value y. A range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

磁心用粒子(試料No.A1)の表面を観察したSEM像(写真)である。It is a SEM image (photograph) which observed the surface of particles for magnetic cores (sample No. A1). その一部(図1Aの□部分)を拡大したSEM像である。It is the SEM image which expanded a part (□ section of Drawing 1A). その磁心用粒子の断面を拡大したSEM像である。It is the SEM image which expanded the cross section of the particle for magnetic cores. その一部(図1Cの□部分)を拡大したTEM像である。It is the TEM image which expanded a part (□ section of Drawing 1C). 磁心用粒子を被覆するフェライト被膜の膜厚とその磁心用粒子からなる圧粉磁心の比抵抗との関係を示す分散図である。It is a dispersion | distribution figure which shows the relationship between the film thickness of the ferrite film which coat | covers the particle for magnetic cores, and the specific resistance of the powder magnetic core which consists of the particles for magnetic cores. そのフェライト被膜の膜厚とその圧粉磁心の磁束密度B5kとの関係を示す分散図である。It is a dispersion | distribution figure which shows the relationship between the film thickness of the ferrite film, and the magnetic flux density B5k of the dust core. そのフェライト被膜の膜厚とその圧粉磁心の透磁率との関係を示す分散図である。It is a dispersion | distribution figure which shows the relationship between the film thickness of the ferrite film, and the magnetic permeability of the dust core. 圧粉磁心の比抵抗と磁束密度B5kの関係を示す分散図である。It is a dispersion | distribution figure which shows the relationship between the specific resistance of a powder magnetic core, and magnetic flux density B5k .

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の磁心用粉末のみならず、それを用いて製作した圧粉磁心にも適宜該当し得る。製造方法に関する内容は、プロダクトバイプロセスとして理解すれば物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. The contents described in this specification can be appropriately applied not only to the magnetic core powder of the present invention but also to a dust core produced using the same. The content related to the manufacturing method can be a component related to an object if understood as a product-by-process. Which embodiment is the best depends on the target, required performance, and the like.

《磁心用粉末》
(1)軟磁性粒子(軟磁性粉末)
軟磁性粉末を構成する軟磁性粒子は、8属遷移元素(Fe、Co、Ni等)などの強磁性元素を主成分とすれば足るが、特性、入手性、コスト等から純鉄または鉄合金からなると好ましい。特に純鉄粉は、高い飽和磁束密度が得られ、圧粉磁心の磁気的特性の向上を図る上で好ましい。また鉄合金粉として例えば、Si含有鉄合金(Fe−Si合金)粉を用いると、Siによりその電気抵抗率が高められるため、圧粉磁心の比抵抗の向上ひいては渦電流損失の低減を図れる。
<Magnetic core powder>
(1) Soft magnetic particles (soft magnetic powder)
The soft magnetic particles constituting the soft magnetic powder may be composed mainly of a ferromagnetic element such as a group 8 transition element (Fe, Co, Ni, etc.), but pure iron or an iron alloy from the viewpoint of characteristics, availability, cost, etc. Preferably it consists of. In particular, pure iron powder is preferable in terms of obtaining a high saturation magnetic flux density and improving the magnetic properties of the dust core. Further, for example, when Si-containing iron alloy (Fe—Si alloy) powder is used as the iron alloy powder, the electrical resistivity is increased by Si, so that the specific resistance of the powder magnetic core can be improved and eddy current loss can be reduced.

この他、軟磁性粉末は、Fe−49Co−2V(パーメンジュール)粉、センダスト(Fe−9Si−6Al)粉等でも良い。また軟磁性粉末は、二種以上の粉末を混合したものでもよく、例えば、純鉄粉とFe−Si合金粉の混合粉末などでもよい。   In addition, the soft magnetic powder may be Fe-49Co-2V (permendur) powder, Sendust (Fe-9Si-6Al) powder, or the like. The soft magnetic powder may be a mixture of two or more kinds of powders, for example, a mixed powder of pure iron powder and Fe—Si alloy powder.

軟磁性粒子の粒径は、圧粉磁心の仕様に応じて変化させ得るが、本発明に係る軟磁性粉末の粒度は50〜250μmさらには106〜212μmであると好適である。粒度が過大では圧粉磁心の高密度化や渦電流損失の低減化が図り難く、粒度が過小では圧粉磁心の磁束密度の向上やヒステリシス損失の低減が図り難い。   The particle size of the soft magnetic particles can be changed according to the specifications of the dust core, but the particle size of the soft magnetic powder according to the present invention is preferably 50 to 250 μm, more preferably 106 to 212 μm. If the particle size is too large, it is difficult to increase the density of the dust core and reduce the eddy current loss. If the particle size is too small, it is difficult to improve the magnetic flux density of the dust core and reduce the hysteresis loss.

なお、本明細書でいう「粒度」とは、軟磁性粒子の直径を指標する値であり、篩い分けにより特定される。具体的には、篩い分けに用いたメッシュサイズの上限値(d1)と下限値(d2)の中央値[(d1+d2)/2]を、粒度(D)とした。なお、μm単位で表示して、小数点以下は四捨五入して表示する。   The “particle size” in the present specification is a value indicating the diameter of the soft magnetic particles, and is specified by sieving. Specifically, the median [(d1 + d2) / 2] of the upper limit (d1) and lower limit (d2) of the mesh size used for sieving was defined as the particle size (D). Displayed in μm units, rounding off after the decimal point.

軟磁性粉末の製造方法は問わず、例えば、アトマイズ法、機械的粉砕法、還元法等がある。アトマイズ粉を用いると、軟磁性粒子の形状が略球状で粒子相互間の攻撃性が低いため、圧粉磁心の成形時にフェライト被膜の破壊等が抑制されて、圧粉磁心の高比抵抗が安定し易い。アトマイズ粉は、水アトマイズ粉、ガスアトマイズ粉、ガス水アトマイズ粉のいずれでもよい。   The method for producing the soft magnetic powder is not limited, and examples thereof include an atomizing method, a mechanical pulverization method, and a reduction method. When atomized powder is used, the shape of soft magnetic particles is almost spherical and the aggression between particles is low, so the destruction of the ferrite coating is suppressed during molding of the dust core, and the high specific resistance of the dust core is stable. Easy to do. The atomized powder may be any of water atomized powder, gas atomized powder, and gas water atomized powder.

(2)フェライト被膜
本発明に係るフェライト被膜は、スピネル型フェライト(MFe)からなり、その金属元素(M)としてMnを含む。このMは、Mnが含まれる限り、それ以外の2価の陽イオンとなる金属元素を一種または二種以上含んでもよい。また、フェライト被膜は、スピネル型フェライトを構成する元素以外に、改質元素または不可避不純物を含み得る。
(2) Ferrite coating The ferrite coating according to the present invention is made of spinel ferrite (MFe 2 O 4 ) and contains Mn as its metal element (M). As long as Mn is contained, M may contain one or more metal elements that are other divalent cations. Further, the ferrite film may contain a modifying element or an inevitable impurity in addition to the elements constituting the spinel type ferrite.

既述したようにスピネル型フェライトを構成するMとして、Mn以外にFeやCu等もあるが、本発明者が鋭意研究したところ、MはMnに加えて、Znを含むと好ましい。特にフェライト被膜は、MがMnとZnであるMnZnフェライトからなると好ましい。このようなスピネル型フェライト被膜で被覆された軟磁性粒子からなる圧粉磁心は、高比抵抗であると共に高磁束密度となり、背反関係にある比抵抗等の電気的特性と磁束密度等の磁気的特性が非常に高次元で両立され得る As described above, M constituting the spinel type ferrite includes Fe, Cu and the like in addition to Mn. However, when the present inventors have intensively studied, it is preferable that M contains Zn in addition to Mn. In particular, the ferrite coating is preferably made of MnZn ferrite in which M is Mn and Zn. A dust core made of soft magnetic particles coated with such a spinel ferrite coating has a high specific resistance and a high magnetic flux density. The properties can be balanced in a very high dimension .

本発明に係るフェライト被膜は、非常に薄くても、従来のフェライト被膜以上に圧粉磁心の比抵抗を十分に確保でき、その磁束密度の向上も図れる。具体的にいうと本発明に係るフェライト被膜は、平均膜厚が10〜200nmさらには30〜100nmでも、安定した高比抵抗を発揮する。この範囲内であれば、フェライト被膜が圧粉磁心の磁束密度や密度等へ及ぼす影響も非常に少ない。   Even if the ferrite coating according to the present invention is very thin, the specific resistance of the powder magnetic core can be sufficiently secured more than the conventional ferrite coating, and the magnetic flux density can be improved. Specifically, the ferrite film according to the present invention exhibits a stable high specific resistance even when the average film thickness is 10 to 200 nm, or even 30 to 100 nm. Within this range, the effect of the ferrite coating on the magnetic flux density and density of the dust core is very small.

なお、本明細書でいう「平均膜厚」は、軟磁性粒子の表面に生成されたフェライト被膜の厚さを指標する値であり、次のようにして求めた。先ず、フェライトが酸化物であることを利用して、オージェ電子分光分析法(AES)により、被覆された粒子表面の酸素量の分布を測定する。そして、その酸素量の最大値と最小値を確定し、その中央値となる位置における深さを、その測定位置におけるフェライト被膜の膜厚とする。この測定を、1つの粒子につき、任意に抽出した2つの測定位置(90°回転した位置)で行う。次に、同様の操作を、粉末中から任意に抽出した合計3つの粒子についても行う。こうして得られた合計6つの膜厚の相加平均値を求め、これを本明細書でいう「平均膜厚」とした。   The “average film thickness” referred to in the present specification is a value indicating the thickness of the ferrite coating formed on the surface of the soft magnetic particles, and was determined as follows. First, utilizing the fact that ferrite is an oxide, the distribution of oxygen content on the surface of the coated particles is measured by Auger electron spectroscopy (AES). Then, the maximum value and the minimum value of the oxygen amount are determined, and the depth at the position that becomes the median value is defined as the film thickness of the ferrite coating at the measurement position. This measurement is performed at two arbitrarily selected measurement positions (positions rotated by 90 °) for each particle. Next, the same operation is performed on a total of three particles arbitrarily extracted from the powder. An arithmetic average value of a total of six film thicknesses obtained in this manner was obtained, and this was defined as “average film thickness” in the present specification.

《圧粉磁心》
本発明の圧粉磁心は、上述した磁心用粉末を加圧成形した成形体からなり、適宜、ヒステリシスの要因となる加工歪み等を除去する熱処理(焼鈍等)が施される。
<Dust core>
The dust core of the present invention is formed of a molded body obtained by pressure-molding the above-described magnetic core powder, and is appropriately subjected to heat treatment (annealing or the like) for removing processing strain or the like that causes hysteresis.

(1)磁気的特性
こうして得られた本発明の圧粉磁心は飽和磁束密度が高く、例えば、5kA/mの磁界中で生じる磁束密度(B5k)が1.5T以上、1.55T以上さらには1.58T以上という高磁束密度を発揮し得る。また、20kA/mの磁界中で生じる磁束密度(B20k)は、1.9T以上、1.93T以上さらには1.96T以上ともなり得る。
(1) Magnetic characteristics The dust core of the present invention thus obtained has a high saturation magnetic flux density. For example, the magnetic flux density (B 5k ) generated in a magnetic field of 5 kA / m is 1.5 T or more, 1.55 T or more. Can exhibit a high magnetic flux density of 1.58 T or more. Further, the magnetic flux density (B 20k ) generated in a magnetic field of 20 kA / m can be 1.9 T or more, 1.93 T or more, or 1.96 T or more.

また本発明の圧粉磁心は、例えば、透磁率が500以上、600以上さらには700以上という高透磁率でもある。   The dust core of the present invention has a high magnetic permeability of, for example, 500 or more, 600 or more, and 700 or more.

(2)電気的特性
本発明の圧粉磁心は、例えば、50μΩm以上、100μΩm以上さらには300μΩm以上という高比抵抗であり、高周波の交番磁界中で使用しても渦電流損等を大幅に低減できる。
(2) Electrical characteristics The powder magnetic core of the present invention has a high specific resistance of, for example, 50 μΩm or more, 100 μΩm or more, further 300 μΩm or more, and greatly reduces eddy current loss and the like even when used in a high frequency alternating magnetic field. it can.

(3)密度
本発明の圧粉磁心は、例えば、軟磁性粒子の真密度(ρ0)に対する、圧粉磁心の嵩密度(ρ)の比である密度比(ρ/ρ0)が96%以上、98%以上さらに99%以上であると、磁気的特性が向上して好ましい。
(3) Density In the dust core of the present invention, for example, the density ratio (ρ / ρ0), which is the ratio of the bulk density (ρ) of the dust core to the true density (ρ0) of the soft magnetic particles, is 96% or more, If it is 98% or more, more preferably 99% or more, the magnetic properties are improved, which is preferable.

(4)用途
本発明の圧粉磁心は、例えば、モータ、アクチュエータ、トランス、誘導加熱器(IH)、スピーカ、リアクトル等の電磁機器に利用され得る。特に電動機または発電機の電機子(回転子または固定子)を構成する鉄心に用いられると好ましい。中でも、低損失で高出力(高磁束密度)が要求される駆動用モータ用の鉄心として本発明の圧粉磁心は好適である。具体的には、電気自動車やハイブリッド自動車の駆動用モータ用鉄心として本発明の圧粉磁心は好適である。
(4) Applications The dust core of the present invention can be used in electromagnetic devices such as motors, actuators, transformers, induction heaters (IH), speakers, and reactors. In particular, it is preferably used for an iron core constituting an armature (rotor or stator) of an electric motor or generator. Among these, the dust core of the present invention is suitable as an iron core for a drive motor that requires low loss and high output (high magnetic flux density). Specifically, the dust core of the present invention is suitable as an iron core for a drive motor of an electric vehicle or a hybrid vehicle.

本発明の圧粉磁心は、いずれの電磁機器中で使用されるにしても、100〜30000Hzさらには200〜20000Hz程度の交番磁界中で使用されると好ましい。本発明に係るフェライト被膜により、圧粉磁心の透磁率が向上し、同じ磁束密度を発現するために必要となる駆動電流が少なくなり、銅損の低減に有利だからである。   The powder magnetic core of the present invention is preferably used in an alternating magnetic field of about 100 to 30000 Hz, more preferably about 200 to 20000 Hz, regardless of which electromagnetic core is used. This is because the ferrite coating according to the present invention improves the permeability of the powder magnetic core, reduces the drive current required to develop the same magnetic flux density, and is advantageous for reducing copper loss.

実施例を挙げて本発明をより具体的に説明する。
《試料の製造》
(磁心用粉末の製造)
(1)軟磁性粒子
先ず軟磁性粉末として、純鉄からなるガス水アトマイズ粉を用意した。用いた各粉末の粒度は表1に示した。なお、表1に示した粒度は、前述した通り、電磁式ふるい振とう器(レッチェ製)により分級(篩い分け)したときに用いたメッシュサイズの上限値と下限値の中央値である。具体的には、上限値〜下限値→粒度の順で記載すると、250〜150μm→200μm、212〜106μm→159μm、150〜53μm→102μm、106〜20μm→63μm、75〜20μm→48μm、45〜20μm→33μmとした。いずれの粉末にも、30μm未満の軟磁性粒子が含まれていなかったことはSEMより確認している。
The present invention will be described more specifically with reference to examples.
<Production of sample>
(Manufacture of magnetic core powder)
(1) Soft magnetic particles First, gas water atomized powder made of pure iron was prepared as soft magnetic powder. The particle size of each powder used is shown in Table 1. In addition, the particle size shown in Table 1 is the median value of the upper limit value and the lower limit value of the mesh size used when classification (sieving) with an electromagnetic sieve shaker (manufactured by Lecce) as described above. Specifically, the upper limit value to the lower limit value are described in the order of particle size: 250-150 μm → 200 μm, 212-106 μm → 159 μm, 150-53 μm → 102 μm, 106-20 μm → 63 μm, 75-20 μm → 48 μm, 45-45 20 μm → 33 μm. It was confirmed by SEM that none of the powders contained soft magnetic particles of less than 30 μm.

(2)前処理
次に、上記の軟磁性粒子をイオン交換水に投入した。このイオン交換水中へ、表1に示す金属イオンを含む塩化水溶液(または硫化水溶液)を加えて、軟磁性粒子と接触させる処理液を調製した。この際、処理液をpH3〜6に調整し、それを80〜90℃にして撹拌した(前処理工程)。この前処理により、軟磁性粒子の表面へ後述する金属イオンが均一に付着し易くなり、ひいては均一な被膜の形成が可能となる。
(2) Pretreatment Next, the soft magnetic particles were put into ion-exchanged water. To this ion-exchanged water, a chlorinated aqueous solution (or a sulfidized aqueous solution) containing metal ions shown in Table 1 was added to prepare a treatment liquid that was brought into contact with soft magnetic particles. At this time, the treatment liquid was adjusted to pH 3 to 6, and the mixture was stirred at 80 to 90 ° C. (pretreatment step). This pretreatment makes it easy for metal ions, which will be described later, to adhere uniformly to the surface of the soft magnetic particles, and as a result, a uniform film can be formed.

(3)本処理
前処理工程後の処理液へアンモニア(NH3)または水酸化ナトリウム(NaOH)を加え、この処理液をpH8〜10に調整し、それを80〜90℃で撹拌した(本処理工程)。これを1時間行った。
(3) Main treatment Ammonia (NH3) or sodium hydroxide (NaOH) is added to the treatment solution after the pretreatment step, the treatment solution is adjusted to pH 8 to 10, and it is stirred at 80 to 90 ° C (this treatment). Process). This was done for 1 hour.

(4)後処理
さらに、被覆工程後に濾別した粉末を水洗した後、さらにエタノールで洗い、Cl等や残渣等を除去した(洗浄工程)。洗浄した粉末を大気雰囲気中で80〜200℃に加熱して乾燥させた(乾燥工程)。この乾燥工程により、粒子表面に付着・結合していた水酸基(−OH)が除去される。
(4) Post-treatment Further, the powder filtered off after the coating step was washed with water, and further washed with ethanol to remove Cl and the residue (washing step). The washed powder was dried by heating to 80 to 200 ° C. in an air atmosphere (drying step). By this drying step, the hydroxyl group (—OH) attached to and bonded to the particle surface is removed.

乾燥工程後の粉末を篩い(メッシュサイズ:−30μm)へ通して選別した(選別工程)。この選別工程により、洗浄後も粒子に付着していた微細な粒子(本処理工程で、軟磁性粒子の被覆に寄与せずに生成されたフェライト微粒子等)を除去した。こうして被覆処理した軟磁性粒子(適宜「被覆粒子」という。)からなる磁心用粉末を得た。   The powder after the drying step was screened through a sieve (mesh size: −30 μm) (screening step). By this sorting step, fine particles (ferrite fine particles and the like generated without contributing to the coating of the soft magnetic particles in this treatment step) that were adhered to the particles after washing were removed. In this way, a magnetic core powder composed of soft magnetic particles (hereinafter referred to as “coated particles”) coated was obtained.

(圧粉磁心の製造)
上記の各磁心用粉末を用いて金型潤滑温間高圧成形法により、リング状(外径:φ39mm×内径φ30mm×厚さ5mm)の成形体を製作した。この成形に際して、内部潤滑剤や樹脂バインダー等は一切使用しなかった。金型潤滑温間高圧成形法は、日本特許公報特許3309970号公報、日本特許4024705号公報などに詳細が記載されているが、具体的には次のようにして行った。
(Manufacture of dust core)
A ring-shaped molded body (outer diameter: φ39 mm × inner diameter φ30 mm × thickness 5 mm) was manufactured by using the above-described powders for magnetic cores by a mold lubrication warm high-pressure molding method. No internal lubricant or resin binder was used at the time of molding. Details of the mold lubrication warm high-pressure molding method are described in Japanese Patent Publication No. 3309970, Japanese Patent No. 4024705, and the like, and were specifically performed as follows.

所望形状に応じたキャビティを有する超硬製の金型を用意した。この金型をバンドヒータで予め130℃に加熱しておいた。また、この金型の内周面には、予めTiNコート処理を施し、その表面粗さを0.4Zとした。   A cemented carbide mold having a cavity corresponding to a desired shape was prepared. This mold was previously heated to 130 ° C. with a band heater. Further, the inner peripheral surface of this mold was previously subjected to TiN coating treatment, and the surface roughness was set to 0.4Z.

加熱した金型の内周面に、水溶液に分散させたステアリン酸リチウム(1%)をスプレーガンにて10cm/分程度の割合で均一に塗布した。ここで用いた水溶液は、水に界面活性剤と消泡剤とを添加したものである。界面活性剤には、ポリオキシエチレンノニルフェニルエーテル(EO)6、(EO)10及びホウ酸エステルエマルボンT−80を用い、それぞれを水溶液全体(100体積%)に対して1体積%ずつ添加した。また、消泡剤には、FSアンチフォーム80を用い、水溶液全体(100体積%)に対して0.2体積%添加した。また、ステアリン酸リチウムには、融点が約225℃で、粒径が20μmのものを用いた。その分散量は、上記水溶液100cmに対して25gとした。そして、これをさらにボールミル式粉砕装置で微細化処理(テフロン(登録商標)コート鋼球:100時間)し、得られた原液を20倍に希釈して最終濃度1%の水溶液として、上記塗布工程に供した。 Lithium stearate (1%) dispersed in an aqueous solution was uniformly applied to the inner peripheral surface of the heated mold at a rate of about 10 cm 3 / min with a spray gun. The aqueous solution used here is obtained by adding a surfactant and an antifoaming agent to water. As the surfactant, polyoxyethylene nonylphenyl ether (EO) 6, (EO) 10 and borate ester Emulbon T-80 were used, and each was added by 1% by volume with respect to the entire aqueous solution (100% by volume). did. As the antifoaming agent, FS Antifoam 80 was used and 0.2% by volume was added to the entire aqueous solution (100% by volume). Further, lithium stearate having a melting point of about 225 ° C. and a particle size of 20 μm was used. The dispersion amount was 25 g with respect to 100 cm 3 of the aqueous solution. Then, this is further refined with a ball mill type pulverizer (Teflon (registered trademark) coated steel balls: 100 hours), and the obtained stock solution is diluted 20 times to obtain an aqueous solution having a final concentration of 1%. It was used for.

ステアリン酸リチウムが内面に塗布された金型へ、各磁心用粉末を充填した(充填工程)。   Each metal core powder was filled in a mold having lithium stearate coated on the inner surface (filling step).

金型を130℃に保持したまま、基本的に1568MPaの成形圧力で、その金型内に充填された磁心用粉末を温間加圧成形した(成形工程)。なお、この温間高圧成形に際して、いずれの磁心用粉末も金型とかじり等を生じることがなく低い抜圧で成形体をその金型から取出すことができた。   While maintaining the mold at 130 ° C., the core powder filled in the mold was warm-pressed under a molding pressure of 1568 MPa (molding process). In this warm high-pressure molding, none of the magnetic core powder was galling with the mold, and the molded body could be removed from the mold with a low pressure.

《観察》
(1)表1に示した試料No.A1の粉末粒子を、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)により観察した様子を図1A〜図1Dに示した。図1Aおよび図1Bは粒子表面のSEM像であり、図1Cはその粒子断面のSEM像であり、図1Dは粒子表面を被覆する膜のTEM像である。
<< Observation >>
(1) Sample No. shown in Table 1 A mode that the powder particle of A1 was observed with the scanning electron microscope (SEM) or the transmission electron microscope (TEM) was shown to FIG. 1A-FIG. 1D. 1A and 1B are SEM images of the particle surface, FIG. 1C is an SEM image of the particle cross section, and FIG. 1D is a TEM image of a film covering the particle surface.

(2)先ず図1A〜図1Cより、略球状の軟磁性粒子(純鉄粒子)の表面に、膜厚がほぼ均一で、比較的平滑な被膜が形成されていることが確認された。特に図1Cから、その膜厚(t)は100nm程度であり、軟磁性粒子の粒径(d)に対して非常に薄い(例えばt/d=100〜1000)ことがわかる。 (2) First, from FIGS. 1A to 1C, it was confirmed that a relatively smooth film having a substantially uniform thickness was formed on the surface of substantially spherical soft magnetic particles (pure iron particles). In particular, FIG. 1C shows that the film thickness (t) is about 100 nm, which is very thin (for example, t / d = 100 to 1000) with respect to the particle diameter (d) of the soft magnetic particles.

(3)次に図1Dからわかるように、軟磁性粒子の表面に形成されている被膜は結晶質であることが確認された。この被膜をX線回折法(XRD)、AESまたはX線光電子分光法(XPS)により分析したところ、その組成はMn:13〜15原子%、Fe:30原子%、O:55〜57原子%であった。この組成はほぼMFe(M=Mn、Zn)と表されるため、軟磁性粒子の表面に形成されていた被膜がスピネル型フェライトからなるフェライト被膜であることが確認された。 (3) Next, as can be seen from FIG. 1D, it was confirmed that the coating formed on the surface of the soft magnetic particles was crystalline. When this film was analyzed by X-ray diffraction (XRD), AES or X-ray photoelectron spectroscopy (XPS), the composition was Mn: 13-15 atomic%, Fe: 30 atomic%, O: 55-57 atomic%. Met. Since this composition is almost expressed as MFe 2 O 4 (M = Mn, Zn), it was confirmed that the coating formed on the surface of the soft magnetic particles was a ferrite coating made of spinel ferrite.

《測定》
上記の各試験片を用いて下記に示す種々の測定を行った。得られた測定結果を表1に併せて示した。
<Measurement>
Various measurements shown below were performed using each of the above test pieces. The obtained measurement results are also shown in Table 1.

(1)電気的特性(比抵抗)
電気的特性の一つである比抵抗は、デジタルマルチメータ(メーカ:(株)エーディーシー、型番:R6581)を用いて4端子法(JIS K7194)により測定した。
(1) Electrical characteristics (specific resistance)
Specific resistance, which is one of the electrical characteristics, was measured by a four-terminal method (JIS K7194) using a digital multimeter (manufacturer: ADC, Inc., model number: R6581).

(2)磁気的特性
磁気的特性の一つである磁束密度B5k、B20kを直流自記磁束計(メーカ:東英工業、型番:MODEL−TRF)により測定した。なお、磁束密度B5k、B20kは、磁界の強さを5kA/m、20kA/mとしたときに試験片に生じる磁束密度である。
(2) Magnetic characteristics Magnetic flux densities B 5k and B 20k , which are one of the magnetic characteristics, were measured by a direct current magnetic flux meter (manufacturer: Toei Kogyo, model number: MODEL-TRF). The magnetic flux densities B 5k and B 20k are magnetic flux densities generated in the test piece when the magnetic field strength is 5 kA / m and 20 kA / m.

また表中に示した透磁率μは、上記の直流自記磁束計で求めた磁化曲線から最大となる透磁率(μmax)を読み取って求めた値である。   Further, the magnetic permeability μ shown in the table is a value obtained by reading the maximum magnetic permeability (μmax) from the magnetization curve obtained by the DC self-recording magnetometer.

(3)密度
各試験片の嵩密度は、その質量と採寸により求まる体積に基づいて求めた。表1には、軟磁性粒子(純鉄粒子)の真密度(7.87g/cm)に対する嵩密度の割合(嵩密度/真密度)である相対密度(%)を示した。
(3) Density The bulk density of each test piece was determined based on the mass determined by its mass and measurement. Table 1 shows the relative density (%), which is the ratio (bulk density / true density) of the bulk density to the true density (7.87 g / cm 3 ) of the soft magnetic particles (pure iron particles).

(4)平均膜厚
圧縮成形前の磁心用粒子の表面に形成されたフェライト被膜の膜厚は、前述したように、オージェ電子分光分析装置(アルバック・ファイ株式会社製 PHI700)を用いてその表面を分析することにより求めた。こうして得られた膜厚に基づき、前述した方法で平均膜厚を算出した。その結果を表1に示した。
(4) Average film thickness As described above, the film thickness of the ferrite coating formed on the surface of the magnetic core particles before compression molding is the surface using an Auger electron spectrometer (PHI700 manufactured by ULVAC-PHI Co., Ltd.). It was obtained by analyzing. Based on the film thickness thus obtained, the average film thickness was calculated by the method described above. The results are shown in Table 1.

《評価》
(1)膜厚の影響
表1に示した試料No.A1〜A3、A7、B3、B4、C2およびC3に係る試験片について、フェライト被膜の平均膜厚(単に「膜厚」という。)と比抵抗(ρ)の関係を図2Aに、その膜厚(t)と磁束密度(B5k)の関係を図2Bに、その膜厚と透磁率(μ)の関係を図2Cにそれぞれ示した。
<Evaluation>
(1) Effect of film thickness Sample No. shown in Table 1 FIG. 2A shows the relationship between the average film thickness (simply referred to as “film thickness”) of the ferrite film and the specific resistance (ρ) of the test pieces according to A1 to A3, A7, B3, B4, C2, and C3. FIG. 2B shows the relationship between (t) and magnetic flux density (B 5k ), and FIG. 2C shows the relationship between the film thickness and magnetic permeability (μ).

先ず図2Aからわかるように、フェライト被膜の膜厚が大きくなると圧粉磁心の比抵抗も概して大きくなる傾向にあるが、その傾向は比例的ではない。つまり膜厚が10〜250nmのとき、圧粉磁心の比抵抗は100μΩm以上で安定していた。従って本発明に係るフェライト被膜によれば、その膜厚が数十nm程度と非常に薄くなっても、十分な比抵抗が得られることがわかった。   First, as can be seen from FIG. 2A, the specific resistance of the dust core generally tends to increase as the thickness of the ferrite coating increases, but this tendency is not proportional. That is, when the film thickness was 10 to 250 nm, the specific resistance of the dust core was stable at 100 μΩm or more. Therefore, according to the ferrite film of the present invention, it was found that a sufficient specific resistance can be obtained even when the film thickness is as thin as several tens of nm.

次に図2Bからわかるように、フェライト被膜の膜厚が大きくなると圧粉磁心の磁束密度は概して小さくなる傾向にあるが、その傾向も比例的ではない。つまり膜厚が10〜250nmのとき、圧粉磁心の磁束密度(B5k)は1.5〜1.6Tで安定していた。従って本発明に係るフェライト被膜によれば、その膜厚が200nm程度と多少厚くなっても、膜厚が数十nm程度の場合と同様に、十分な磁束密度が得られることがわかった。 Next, as can be seen from FIG. 2B, the magnetic flux density of the dust core generally tends to decrease as the thickness of the ferrite coating increases, but this tendency is not proportional. That is, when the film thickness was 10 to 250 nm, the magnetic flux density (B 5k ) of the dust core was stable at 1.5 to 1.6 T. Therefore, according to the ferrite coating according to the present invention, it was found that even when the film thickness was slightly increased to about 200 nm, a sufficient magnetic flux density was obtained as in the case where the film thickness was about several tens of nm.

さらに図2Cからわかるように、フェライト被膜の膜厚が10〜250nmのとき、透磁率はいずれも600以上あり、高透磁率が安定して得られることもわかった。   Further, as can be seen from FIG. 2C, it was also found that when the thickness of the ferrite coating was 10 to 250 nm, the magnetic permeability was 600 or more, and high magnetic permeability was obtained stably.

(2)比抵抗と磁束密度の関係
表1に示した全試料に係る試験片について、比抵抗と磁束密度(B5k)の関係を図3に示した。この図3からわかるように、概して比抵抗と磁束密度はトレードオフの関係にある。しかし、金属元素(M)がMnを含まない(M=Ni、Zn)スピネル型フェライト被膜を有する圧粉磁心の場合、いずれも比抵抗が100μΩm未満であり、磁束密度が低下しているにも拘わらず、比抵抗も低いままであった。
(2) Relationship between specific resistance and magnetic flux density FIG. 3 shows the relationship between specific resistance and magnetic flux density (B 5k ) for the test pieces according to all samples shown in Table 1. As can be seen from FIG. 3, the specific resistance and the magnetic flux density are generally in a trade-off relationship. However, in the case of a dust core having a spinel type ferrite film in which the metal element (M) does not contain Mn (M = Ni, Zn), the specific resistance is less than 100 μΩm, and the magnetic flux density is reduced. Nevertheless, the resistivity remained low.

これに対してMがMnを含むフェライト被膜を有する圧粉磁心の場合、いずれも、比抵抗と磁束密度の間に前述した相関関係がほぼ成立していた。しかも、MがMnを含む場合、MがMnを含まない場合よりも、比抵抗および磁束密度が全体的に高くなる方向(図3の右上方向)へ大きくシフトすることが明らかとなった。つまりMがMnを含むスピネル型フェライト被膜を有する圧粉磁心の場合、比抵抗および磁束密度がより高次元で両立することがわかった。   On the other hand, in the case of the dust core having a ferrite film in which M contains Mn, the above-described correlation is almost established between the specific resistance and the magnetic flux density. Moreover, it has been clarified that when M includes Mn, the specific resistance and magnetic flux density are largely shifted in the direction in which the specific resistance and the magnetic flux density increase as a whole (upper right direction in FIG. 3), compared with the case where M does not include Mn. That is, it was found that in the case of a dust core having a spinel-type ferrite film containing Mn, the specific resistance and the magnetic flux density are compatible at a higher level.

以上から、本発明に係るフェライト被膜で被覆された軟磁性粒子からなる磁心用粉末を用いると、比抵抗および磁束密度を従来よりも一層高次元で両立させた圧粉磁心が得られることがわかった。このような本発明の圧粉磁心を、例えば自動車用モータのコアまたはヨーク等に用いると、小体格化、軽量化等を図りつつ、高トルク・高効率なモータを得ることができる。   From the above, it can be seen that when a magnetic core powder composed of soft magnetic particles coated with the ferrite coating according to the present invention is used, a powder magnetic core having both higher specific resistance and higher magnetic flux density than conventional ones can be obtained. It was. When such a dust core of the present invention is used for, for example, a core or a yoke of an automobile motor, a motor with high torque and high efficiency can be obtained while reducing the size and weight.

Claims (6)

軟磁性粒子と、2価の陽イオンとなる金属元素(M)と鉄(Fe)と酸素(O)によりMFeで表される化合物であるスピネル型フェライトからなり該軟磁性粒子の表面を被覆するフェライト被膜と、を有する磁心用粒子からなる磁心用粉末であって、
前記軟磁性粒子は、粒度が50〜250μmであり、
前記フェライト被膜は、平均膜厚が10〜100nmであり、
前記スピネル型フェライトは、前記Mがマンガン(Mn)および亜鉛(Zn)であるMnZnフェライトであることを特徴とする磁心用粉末。
The surface of the soft magnetic particle comprising a soft magnetic particle and spinel ferrite, which is a compound represented by MFe 2 O 4 by a metal element (M), iron (Fe), and oxygen (O) that are divalent cations A magnetic core powder comprising magnetic core particles having a ferrite coating film,
The soft magnetic particles have a particle size of 50 to 250 μm,
The ferrite coating is Ri average thickness. 10 to 100 nm der,
The spinel-type ferrite is a MnZn ferrite wherein M is manganese (Mn) and zinc (Zn) .
前記軟磁性粒子の粒度は、50〜212μmである請求項1に記載の磁心用粉末。The magnetic core powder according to claim 1, wherein the soft magnetic particles have a particle size of 50 to 212 μm. 前記フェライト被膜の平均膜厚は、30〜100nmである請求項1または2に記載の磁心用粉末。3. The magnetic core powder according to claim 1, wherein an average film thickness of the ferrite coating is 30 to 100 nm. 請求項1〜のいずれかに記載した磁心用粉末を加圧成形してなることを特徴とする圧粉磁心。 A powder magnetic core obtained by pressure-molding the magnetic core powder according to any one of claims 1 to 3 . 100〜30000Hzの交番磁界中で使用される請求項に記載の圧粉磁心。 The dust core according to claim 4 , which is used in an alternating magnetic field of 100 to 30,000 Hz. 5kA/mの磁界中で生じる磁束密度(B5k)が1.5T以上であり、
体積比抵抗値(ρ)が100μΩm以上であり、
かつ透磁率(μ)が500以上である請求項またはに記載の圧粉磁心。
Magnetic flux density (B 5k ) generated in a magnetic field of 5 kA / m is 1.5 T or more,
The volume resistivity value (ρ) is 100 μΩm or more,
And dust core according to claim 4 or 5 permeability (mu) is 500 or more.
JP2013026088A 2012-02-17 2013-02-13 Powder magnetic core and magnetic core powder used therefor Active JP5986010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013026088A JP5986010B2 (en) 2012-02-17 2013-02-13 Powder magnetic core and magnetic core powder used therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012032346 2012-02-17
JP2012032346 2012-02-17
JP2013026088A JP5986010B2 (en) 2012-02-17 2013-02-13 Powder magnetic core and magnetic core powder used therefor

Publications (2)

Publication Number Publication Date
JP2013191839A JP2013191839A (en) 2013-09-26
JP5986010B2 true JP5986010B2 (en) 2016-09-06

Family

ID=49391754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013026088A Active JP5986010B2 (en) 2012-02-17 2013-02-13 Powder magnetic core and magnetic core powder used therefor

Country Status (1)

Country Link
JP (1) JP5986010B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157442A (en) * 2014-08-15 2014-11-19 无锡斯贝尔磁性材料有限公司 Deburring technology for magnetic core
JP6107804B2 (en) * 2014-12-26 2017-04-05 株式会社豊田中央研究所 Coating liquid, dust core, powder for magnetic core and method for producing the same
JP6476989B2 (en) * 2015-02-24 2019-03-06 株式会社豊田中央研究所 Method of manufacturing dust core
JP6836846B2 (en) * 2015-12-24 2021-03-03 株式会社デンソー Manufacturing method of powder for dust core and manufacturing method of dust core
JP6926419B2 (en) * 2016-09-02 2021-08-25 Tdk株式会社 Powder magnetic core
JP6520972B2 (en) * 2017-03-08 2019-05-29 株式会社豊田中央研究所 Powder for magnetic core and method for producing the same, dust core and magnetic film
JP6556780B2 (en) 2017-04-03 2019-08-07 株式会社豊田中央研究所 Powder magnetic core, powder for magnetic core, and production method thereof
DE112018004572T8 (en) 2017-10-17 2020-07-30 Denso Corporation COMPRESSED POWDER MAGNETIC CORE, POWDER FOR MAGNETIC CORE, AND THEIR PRODUCTION PROCESS
JP7016713B2 (en) * 2018-02-05 2022-02-07 株式会社豊田中央研究所 Powder magnetic core and powder for magnetic core
JP7133381B2 (en) * 2018-07-27 2022-09-08 日本特殊陶業株式会社 dust core
WO2023190373A1 (en) * 2022-03-29 2023-10-05 住友ベークライト株式会社 Soft magnetic material, molded article, and production method for molded article

Also Published As

Publication number Publication date
JP2013191839A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5986010B2 (en) Powder magnetic core and magnetic core powder used therefor
JP6075605B2 (en) Soft magnetic material and manufacturing method thereof
JP6662436B2 (en) Manufacturing method of dust core
JP6071211B2 (en) Low magnetostrictive high magnetic flux density composite soft magnetic material and its manufacturing method
JP4325950B2 (en) Soft magnetic material and dust core
JP5050745B2 (en) Reactor core, manufacturing method thereof, and reactor
CN106663513B (en) Magnetic core, the manufacturing method of magnetic core and coil component
WO2006112197A1 (en) Soft magnetic material and dust core
JP6476989B2 (en) Method of manufacturing dust core
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
JP6107804B2 (en) Coating liquid, dust core, powder for magnetic core and method for producing the same
CN110997187B (en) Method for manufacturing dust core and method for manufacturing electromagnetic component
JP2015103719A (en) Powder-compact magnetic core, coil part, and method for manufacturing powder-compact magnetic core
WO2021103466A1 (en) Method for preparing soft magnetic composite material with high magnetic conductivity and low loss, and magnet ring thereof
JP5445801B2 (en) Reactor and booster circuit
JP5920261B2 (en) Powder for magnetic core and method for producing the same
JP2015026749A (en) Soft magnetic powder, powder-compact magnetic core, and soft magnetic alloy
JP2019075566A (en) Powder magnetic core, powder for magnetic core and method for manufacturing the same
JP2005213621A (en) Soft magnetic material and powder magnetic core
CN110853859B (en) Preparation method of high-performance soft magnetic composite material and magnetic ring thereof
JP2011216571A (en) High-strength low-loss composite soft magnetic material, method of manufacturing the same, and electromagnetic circuit part
WO2018186006A1 (en) Compressed powder magnetic core and magnetic core powder, and production method therefor
JP2005079511A (en) Soft magnetic material and its manufacturing method
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
US20200222986A1 (en) Method for manufacturing powder magnetic core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160804

R150 Certificate of patent or registration of utility model

Ref document number: 5986010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150