WO2018179993A1 - Titanium sponge, method for manufacturing titanium sponge, and method for manufacturing titanium ingot or titanium alloy ingot - Google Patents

Titanium sponge, method for manufacturing titanium sponge, and method for manufacturing titanium ingot or titanium alloy ingot Download PDF

Info

Publication number
WO2018179993A1
WO2018179993A1 PCT/JP2018/005738 JP2018005738W WO2018179993A1 WO 2018179993 A1 WO2018179993 A1 WO 2018179993A1 JP 2018005738 W JP2018005738 W JP 2018005738W WO 2018179993 A1 WO2018179993 A1 WO 2018179993A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
sponge
mass
ingot
sponge titanium
Prior art date
Application number
PCT/JP2018/005738
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 井上
雅憲 山口
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to US16/498,790 priority Critical patent/US20210108287A1/en
Priority to JP2018566330A priority patent/JP6621550B2/en
Priority to CN201880019507.8A priority patent/CN110462072B/en
Publication of WO2018179993A1 publication Critical patent/WO2018179993A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon

Definitions

  • the present invention relates to sponge titanium by a crawl method for producing sponge titanium by reducing titanium tetrachloride with metallic magnesium, a method for producing the same, and a method for producing a titanium ingot or a titanium alloy ingot.
  • Sponge titanium is industrially manufactured by the crawl method. Processes in the industrial production of sponge titanium by the crawl method are roughly divided into four steps, a chlorinated distillation step, a reduction separation step, a crushing step, and an electrolysis step.
  • the reduction separation process which is one of these processes, consists of a reduction process and a vacuum separation process.
  • titanium tetrachloride is dropped on the molten metal magnesium in a stainless or steel reaction vessel to cause a reduction reaction to produce titanium sponge and by-product magnesium chloride.
  • the sponge titanium produced in the reduction step is evacuated at a high temperature and under reduced pressure to produce a sponge titanium lump from which the remaining magnesium chloride and magnesium metal are removed (Non-patent Document 1). ).
  • the sponge titanium mass produced in this manner is cut and crushed step by step in the subsequent crushing process, and finally becomes sponge titanium of millimeter to centimeter order.
  • Sponge titanium is melt
  • the auxiliary material here refers to, for example, titanium scrap such as chips, plates and blocks of processed titanium products, and additives such as grains of other alloy elements, plates and blocks.
  • consumable electrode type arc melting method As a method for melting titanium, consumable electrode type arc melting method, electron beam melting method, plasma melting method, vacuum induction melting method, and inert induction melting method are generally used. It is known that the chlorine content of is an important factor that affects dissolution stability and productivity.
  • Non-Patent Document 2 For example, in the electron beam melting method, melting is performed under vacuum, but in the case of sponge titanium having a large chlorine content, a lot of splash is generated due to the volatilization of chloride, and thus the dissolution yield deteriorates (Non-Patent Document 2) In some cases, the splash may adhere to or accumulate on the raw material supply port, which may make it impossible to insert the raw material (Patent Document 1). In addition, problems such as generation of an electron beam being inhibited by the volatilized chloride (Non-patent Document 3) and problems such as the generated chloride gas corroding the melting equipment also occur. Therefore, the lower the chlorine content, the better the dissolution stability. In the plasma melting method, the vacuum induction melting method, and the inert induction melting method, the same problems associated with the volatilization of chlorides occur, so the smaller the chlorine content of titanium sponge, the better.
  • the chlorine content of a general sponge titanium is about 700 ppm, and the magnesium content is about 250 ppm. It was low, and the chlorine content was 230 ppm and the magnesium content was 140 ppm (Non-patent Document 2).
  • Non-Patent Document 4 has a detailed description of the chlorine content of sponge titanium and its residual mechanism, and the distribution within the sponge titanium lump is about 1000 to 1500 ppm at the top of the lump and about 400 to 600 ppm at the bottom of the lump.
  • the titanium primary particles referred to here are titanium particles of the order of several tens ⁇ m constituting the sponge titanium, and the sponge titanium is a porous body in which the primary particles are sintered.
  • Type 1 magnesium chloride is present in a very finely dispersed manner within the primary titanium particles.
  • Type 2 magnesium chloride is present in the gaps between the titanium primary particles.
  • Type 3 the surface of the titanium primary particles is present. Titanium dichloride is present on the top.
  • Non-Patent Document 4 as an important factor governing the chlorine content, the supply rate of titanium tetrachloride and the amount of magnesium present in the reduction step are listed, the supply rate of titanium tetrachloride is small, and the amount of magnesium present is large. It is reported that the chlorine content is lower, and the supply rate of titanium tetrachloride is as small as 1.4 (L / m 2 / min) (2.4 (kg / m 2 / min)), and magnesium In the lower part of the sponge titanium lump produced in a state where there is abundantly present, it has succeeded in setting the chlorine content to less than 400 ppm.
  • the quality of the titanium ingot is an important factor in ingot melting, and the casting surface and components of the ingot are particularly important.
  • non-patent document 2 As for the casting surface, there is a report example (non-patent document 2) on the relationship between the beam output and the pulling speed during melting of the electron beam and the casting surface.
  • Non-patent Document 5 discloses a report example (Non-patent Document 5) in which the component distribution of the ingot melted by the electron beam melting method is investigated. Particularly important in component control are oxygen concentration and iron concentration. In industrial pure titanium, it is required to control components within a narrow range of about 250 ppm.
  • the chlorine content in the sponge titanium of Non-Patent Document 5 is slightly less than 400 ppm because it is not a sufficient chlorine reduction amount to solve the problem caused by the chloride content in the dissolution process, and therefore still contains the chloride content. There was a problem due to.
  • the method of Non-Patent Document 5 has a problem that the productivity of titanium sponge is too low for industrialization because the supply rate of titanium tetrachloride is extremely slow.
  • Non-Patent Document 2 Although the casting surface can be improved at a small production level, when a large ingot of several tons or more is melted, even if the beam output and the pulling-down speed are appropriately controlled, the casting Skin defects often occur and improvements are sought.
  • the present invention provides a sponge titanium for manufacturing a large ingot that is difficult to cause problems due to the inclusion of chlorides and can be easily controlled when melting a large ingot by a melting method that does not involve compression molding. It aims at providing the method of manufacturing the said sponge titanium efficiently.
  • the present invention (1) is a sponge titanium produced by a crawl method, the total of chlorine content and magnesium content is 350 mass ppm or less, and the packing density is 1.65 to 1.95 g / cm.
  • the present invention provides a titanium sponge characterized by being 3 .
  • the present invention (2) provides the sponge titanium according to (1), wherein the average particle diameter is 1.7 to 19.1 mm.
  • the ratio of fine sponge titanium particles having a particle diameter of 0.84 mm or less is 0.8% by mass or less, wherein the sponge titanium is either (1) or (2) It is to provide.
  • the present invention (4) is a method for producing titanium sponge by a crawl method,
  • the reaction bath surface area is 2.5 m 2 or more, and (i) titanium sponge is produced from the start of the supply of titanium tetrachloride to the metal magnesium to the position corresponding to the upper limit position of the sample to be collected in the crushing process.
  • A average feed rate of titanium tetrachloride per minute (kg / min) / area of reaction bath surface (m 2 ) (1)
  • the average supply rate A of titanium tetrachloride per unit area of the reaction bath calculated in step 2.8 is 2.8 to 4.0 kg / (min ⁇ m 2 ), and (ii) the total supply amount of titanium tetrachloride is
  • B mass of titanium sponge lump (t) / area of disk or pedestal with which the lower side of the titanium sponge lump contacts (m 2 )
  • the upper limit position of the collection target is a position within the range of 40 to 50% on the mass basis from the bottom of the sponge titanium lump, and the sponge titanium lump below the upper limit position of the collection target is cut, crushed and Crushing to obtain sponge titanium, Having A method for producing titanium sponge by the crawl method is provided.
  • the present invention (5) provides a method for producing a titanium ingot or a titanium alloy ingot characterized by using any of titanium sponges (1) to (3) as a melting raw material.
  • the present invention (6) provides a method for producing a titanium ingot or a titanium alloy ingot characterized by using sponge titanium obtained by carrying out the method for producing sponge titanium of (4) as a melting raw material.
  • the sponge titanium of the present invention is a sponge titanium produced by a crawl method, wherein the total of the chlorine content and the magnesium content is 350 mass ppm or less, and the packing density is 1.65 to 1.95 g / cm 3 . It is a sponge titanium characterized by being.
  • the process mainly comprises a chlorodistillation process, a reduction separation process, a crushing process, and an electrolysis process.
  • the titanium sponge of the present invention is a titanium sponge produced by the crawl method, i.e., titanium tetrachloride is dropped on the molten magnesium, to reduce the titanium tetrachloride, to produce a titanium sponge lump, Vacuum separation separates by-product magnesium chloride and residual magnesium from the titanium sponge lump, and the sponge titanium lump obtained by performing the reductive separation step is cut, crushed and sieved to obtain desired particles. And a crushing step for obtaining a sponge titanium having a diameter.
  • the titanium sponge mass obtained by reducing titanium tetrachloride is also simply referred to as a titanium sponge mass.
  • the total of chlorine content and magnesium content in terms of atoms in the sponge titanium of the present invention is 350 mass ppm or less, preferably 300 mass ppm or less.
  • the total amount of chlorine and magnesium in terms of sponge titanium is in the above range, a large titanium ingot or a large titanium alloy ingot is melted by a melting method without compression molding. Problems caused by chloride are unlikely to occur, and an ingot having no defective casting surface can be produced efficiently.
  • large titanium ingots and large titanium alloy ingots are collectively referred to as large titanium ingots.
  • the chlorine content and magnesium content in sponge titanium are calculated
  • JIS H 1610-2008 titanium and titanium alloy-sampling method a large sample is sampled from each sponge titanium lot, and then the large sample is reduced to obtain four test samples having a mass of 250 g.
  • the chlorine content of the four test samples is measured by the silver nitrate titration method described in JIS H 1615-1997, and the average value of the four is the chlorine content of the sponge titanium lot.
  • the magnesium content of the four test samples is measured by the atomic absorption method described in JIS H 1616-1995, and the average value of the four is set as the magnesium content of the sponge titanium lot.
  • the packing density of the sponge titanium of the present invention is 1.65 to 1.95 g / cm 3 , preferably 1.70 to 1.95 g / cm 3 . Due to the packing density of sponge titanium being in the above range, when a large titanium ingot is melted by a melting method that does not involve compression molding, component deregulation occurs due to local concentration of components in the large titanium ingot. It can be made difficult, that is, component control can be facilitated. In the component standard for titanium ingots and titanium alloy ingots, the iron and oxygen content is required to be 250 ppm by mass or less. However, a large titanium ingot having a scale of several tons or more satisfies the standard over the entire length.
  • the degree of difficulty is high, and only one bottom measurement value exceeds the upper limit value, or only one top measurement value exceeds the upper limit value. Often occurs.
  • One factor contributing to the local concentration of the component is the presence of titanium sponge fine particles having a particle size of 0.84 mm or less.
  • the titanium sponge fine particles present in the sponge titanium have an iron content higher than 10 times and an oxygen content higher than 2 times compared to the sponge titanium.
  • Such sponge titanium fine particles are not a problem in the melting method that compresses and molds titanium raw materials like the consumable electrode arc melting method, but the melting method that does not involve compression molding of raw materials like the electron beam melting method
  • the raw material is supplied from the raw material supply facility, a phenomenon occurs in which the titanium sponge fine particles are supplied unevenly or the titanium sponge fine particles are locally deposited in the water-cooled copper hearth.
  • the grains are supplied unevenly or when the local deposits of titanium sponge fine particles are melted, the iron content and oxygen content in the large titanium ingot are locally increased, which is not within the component specifications of the titanium ingot. Connected.
  • the sponge titanium is crushed in the mixing process after sieving. As a result, about 1.5 to 2.5% by mass of sponge is obtained. Titanium fine particles accompany sponge titanium.
  • the sponge titanium fine particles produced by the crushing have a higher iron content and oxygen content than the sponge titanium as described above.
  • Sponge titanium locally has a portion with a high iron or oxygen content, and a portion with a high iron or oxygen content is more easily crushed than a low portion. Sponge titanium granules having a high content and high oxygen content were likely to occur.
  • the titanium sponge of the present invention has a high packing density of 1.65 to 1.95 g / cm 3 , preferably 1.70 to 1.95 g / cm 3, and therefore has a high bulk density. Even if a portion having a high iron or oxygen content is present locally in the sponge titanium of the present invention, the portion is difficult to break. Therefore, in the sponge titanium of the present invention, it is difficult to produce sponge titanium fine particles having a high iron content and oxygen content. Therefore, the local titanium in the large titanium ingot caused by the sponge titanium fine particles having a high iron content and oxygen content is used. The problem of general component concentration is less likely to occur, and the problem of local component deviation of the large titanium ingot is less likely to occur.
  • the packing density of sponge titanium is an index representing the bulk density of sponge titanium.
  • the filling density refers to a density when titanium sponge is filled in a 200 L drum.
  • the packing density of the titanium sponge is determined as follows. A steel open drum type D / M class described in JIS Z 1600-2006 is used as a measuring container. First, the inner diameter D (cm) of the drum can and the inner height H (cm) (the distance from the upper surface of the drum bottom plate to the upper end of the drum can) are measured. Next, 100 kg or more of the titanium sponge to be measured is put into a drum can so that the upper surface of the sponge titanium becomes flat.
  • the distance from the upper end of the drum can to the upper surface of the sponge titanium is measured with a ruler. This measurement is performed at four points (0 °, 90 °, 180 °, 270 °) different in the radial direction in the drum, and the average value is defined as the distance C (cm) between the drum upper end and the sponge.
  • V (cm 3 ) is a filling volume of sponge titanium.
  • Sponge titanium has a mean particle size in the range of 1.7 to 19.1 mm.
  • the proportion of fine sponge titanium particles having a particle size of 0.84 mm or less is 0.8 mass% or less, preferably 0.7 mass% or less, more preferably 0.4 mass% or less.
  • the ratio of the fine titanium sponge particles having a particle size of 0.84 mm or less in the titanium sponge is in the above range, so that the local content in the large titanium ingot caused by the fine titanium sponge particles having a high iron content and oxygen content is obtained. Therefore, it is difficult to cause a problem of component concentration, and a problem of local component deviation of a large titanium ingot hardly occurs.
  • it is a method for measuring the proportion of sponge titanium fine particles having a particle size of 0.84 mm or less.
  • the target particle size distribution is according to JIS H 2151: 2015 for sponge titanium sampled according to JIS H 1610: 2008. Measure and determine the proportion of titanium sponge fine particles having a particle size of 0.84 mm or less.
  • sponge titanium having a particle size of 0.84 mm or less is defined as sponge titanium fine particles.
  • the average particle diameter of the sponge titanium of the present invention is 1.7 to 19.1 mm.
  • it is a method for measuring the average particle diameter of titanium sponge, but the titanium sponge passed through a sieve having an opening of 19.1 mm or less and did not pass through a sieve having an opening of 1.7 mm or more. If it is, it is clear that the average particle diameter is in the range of 1.7 to 19.1 mm, so that the measurement can be omitted.
  • it is as follows. Measured by passing a plurality of sieves having different openings in accordance with JIS H 2151: 2015, targeting sponge titanium sampled according to JIS H 1610: 2008.
  • sieves having an opening of 1.7, 4.75, 12.7, 19.1, and 25.4 mm are used, and the mass percentage of the sponge titanium group that has passed through each sieve is measured. Thereafter, the particle size of the group of 1.7 mm or less is 0.85 mm, the group of 1.7 to 4.75 mm is 3.25 mm, the group of 4.75 to 12.7 mm is 8.73 mm, 12.7 to 19.
  • the particle size of the 1 mm group is 15.9 mm, the particle size of the 19.1 to 25.4 mm group is 22.3 mm, and the weighted average value is the average particle size.
  • the porosity ⁇ before pulverization of the sponge titanium of the present invention is 20 to 50%, preferably 20 to 40%. Due to the porosity of the sponge titanium being in the above range, the problem of local component concentration in the large titanium ingot caused by the sponge titanium fine particles having a high iron content and oxygen content hardly occurs, and the large titanium ingot. It becomes difficult to cause a problem of delocalization. In the present invention, it is determined as follows that the porosity ⁇ before pulverization is in the above range.
  • the vicinity of the axis A1, the vicinity of the outer periphery B1, and the vicinity of the outer periphery B1 are the vicinity of the outer periphery C1 at a position shifted by 180 degrees about the axis.
  • the vicinity of the axis A2, the vicinity of the outer periphery B2, and the vicinity of the outer periphery B2 are the vicinity of the outer periphery C2 at a position shifted by 180 degrees about the axis.
  • Titanium sponge samples each having a mass of 100 to 300 g are collected from a total of three locations, and the porosity of each sample is measured by the measurement method described later, and the average value is taken as the porosity at the lower limit position.
  • both the porosity ⁇ at the upper limit position of the sampling target and the porosity ⁇ at the lower limit position of the sampling target are in the range of 20 to 50%, the porosity ⁇ before pulverization of the sampling target is 20 to 50%. It is determined that it is in the range.
  • the range of the porosity ⁇ ′ after pulverization of the sponge titanium of the present invention is wider than the range of the porosity ⁇ before pulverization, and becomes 5% to 50%. This is because, during the pulverization process, grains that have been extremely compressed to reduce the porosity and grains that have not been compressed and have not changed in porosity are mixed in the same lot.
  • determining the porosity ⁇ ′ after pulverization collect five or more sponge titanium particles larger than the average particle diameter, measure the porosity of each sample by the measurement method described later, and pulverize the average value.
  • the porosity ⁇ ′ collect five or more sponge titanium particles larger than the average particle diameter, measure the porosity of each sample by the measurement method described later, and pulverize the average value.
  • the porosity ⁇ ′ The reason why sponge titanium particles larger than the average particle diameter are targeted is that it is difficult to accurately measure the porosity of a sample having an extremely small particle diameter by the measurement method described later.
  • the method for measuring the porosity is explained.
  • the mass W (g) of the sponge titanium sample is measured.
  • paraffin tissue-Tech paraffin wax
  • the sponge titanium sample is hung with a thread-like material and immersed in a paraffin solution.
  • the sponge titanium sample is gently lifted and cooled while being suspended in the air.
  • a container filled with water is prepared and placed on a weighing machine. The cooled sponge titanium sample is gently dipped in water while being hung with a thread so as not to touch the container, and the amount of mass change (g) before and after dipping is recorded with a weigher.
  • Chlorine that exists as an impurity in sponge titanium exists as the following three types.
  • Type 1 is chlorine existing as magnesium chloride in the fine pores in the titanium primary particles
  • Type 2 is chlorine existing as magnesium chloride remaining in the gap between the titanium primary particles
  • Type 3 is on the surface of the titanium primary particles. Chlorine is present as adhering titanium dichloride.
  • Type 2 is the main existence form.
  • Type 1 magnesium chloride 1 is scattered in the portion surrounded by the upper dotted line.
  • a portion surrounded by a solid line on the lower side in FIG. 1 is Type 2 magnesium chloride 2, and there are voids around the magnesium chloride.
  • the portion surrounded by the solid line on the lower side in FIG. 2 is Type 2 magnesium chloride 2, and this magnesium chloride is confined in the densely sintered titanium primary particles.
  • the cross-sectional observation photograph of the sponge titanium sample shown in FIG.1 and FIG.2 is a schematic diagram.
  • the present inventors have found the following.
  • the sponge titanium sample to be measured was filled with resin, polished with # 1000 emery paper, and then the cross section was analyzed with an electron beam microanalyzer (SUPERPROBE XXA-8100, Japan This was done by observing with an electronic company).
  • an electron beam microanalyzer SUPERPROBE XXA-8100, Japan This was done by observing with an electronic company.
  • the work was performed quickly without touching water from cutting to polishing to observation.
  • the presence form of chlorine observed in the sponge titanium at the upper part of the sponge titanium lump obtained by performing the reduction and separation step is mostly Type 1, and chloride is encapsulated in the titanium particles. It was confirmed that it could not be volatilized and removed by vacuum separation because it was dispersed widely and finely. Therefore, it was found that the chlorine content in the upper part of the sponge titanium lump is as high as 1000-1500 mass ppm.
  • the amount of Type 1 is estimated to increase when the metal magnesium supply rate is insufficient with respect to the titanium tetrachloride supply rate at the reaction site.
  • the metal magnesium supply rate here means that magnesium chloride by-produced on the reaction bath surface settles into the bath due to the difference in specific gravity, and instead the magnesium in the bath floats and is supplied to the reaction bath surface. Refers to speed. For this reason, in order to reduce Type 1 chlorine, it was estimated that it is important to appropriately control the ratio of the supply rate of titanium tetrachloride to the reaction site and the supply rate of magnesium metal.
  • Type 2 magnesium chloride (hereinafter referred to as closed type 2) that was completely confined between the titanium primary particles by dense sintering of the titanium primary particles. “When the porosity of titanium is reduced to some extent, the occurrence frequency of closed type 2 increases.” “Even in the lower part of the sponge titanium lump, the closed type 2 generates a high chlorine content site with a chlorine content exceeding 1000 ppm by mass. I found something to do. And it turned out that the porosity (epsilon) is mainly controlled by the sintering of the titanium primary particles at the time of the vacuum separation of a reduction separation process.
  • the present inventors have conceived the following method for producing sponge titanium according to the present invention.
  • the method for producing sponge titanium of the present invention is a method for producing sponge titanium by a crawl method,
  • the reaction bath surface area is 2.5 m 2 or more, and (i) titanium sponge is produced from the start of the supply of titanium tetrachloride to the metal magnesium to the position corresponding to the upper limit position of the sample to be collected in the crushing process.
  • A average feed rate of titanium tetrachloride per minute (kg / min) / area of reaction bath surface (m 2 ) (1)
  • the average supply rate A of titanium tetrachloride per unit area of the reaction bath calculated in step 2.8 is 2.8 to 4.0 kg / (min ⁇ m 2 ), and (ii) the total supply amount of titanium tetrachloride is
  • B mass of titanium sponge lump (t) / area of disk or pedestal with which the lower side of the titanium sponge lump contacts (m 2 )
  • the upper limit position of the collection target is a position within the range of 40 to 50% on the mass basis from the bottom of the sponge titanium lump, and the sponge titanium lump below the upper limit position of the collection target is cut, crushed and Crushing to obtain sponge titanium, Having It is the manufacturing method of sponge titanium by the crawl method
  • the method for producing sponge titanium according to the present invention is a method for producing titanium sponge by a crawl method. Titanium tetrachloride is dropped on molten metal magnesium, titanium tetrachloride is reduced to form a titanium sponge lump, The reduction separation process of removing magnesium chloride and residual magnesium as by-products from the sponge titanium lump by vacuum separation, and the sponge titanium lump is cut, crushed and sieved to obtain sponge titanium having a desired particle size. Crushing step.
  • titanium tetrachloride is supplied onto the metal magnesium bath in the reaction vessel, and the metal magnesium and titanium tetrachloride are reacted to reduce titanium tetrachloride. To do. At this time, the main reaction takes place on the reaction bath surface in the reaction vessel and the space above it, primary particles of titanium are generated, magnesium metal in the vicinity of the reaction bath surface is consumed, and magnesium chloride is a secondary agent. To be born. The produced titanium primary particles settle to the bottom of the reaction vessel and deposit on a disk or pedestal provided at the bottom of the reaction vessel.
  • the remaining magnesium chloride and unreacted metallic magnesium are then removed from the sponge titanium lump by vacuum separation.
  • a reaction vessel containing the generated sponge titanium lump and an empty reaction vessel are disposed adjacent to each other, and the upper portions of both are connected by piping.
  • the inside of the latter reaction vessel is evacuated, so that the metallic magnesium and magnesium chloride contained in the sponge titanium mass in the former reaction vessel are exchanged between the upper portions of the reaction vessel. It is moved into an empty reaction vessel in a gas state through the connected piping. Note that the magnesium metal moved into the empty reaction vessel is used again for the reduction step.
  • the area of the reaction bath surface is set to 2.5 m 2 or more, and titanium titanium chloride is generated up to the position corresponding to the upper limit position of the collection target in the crushing process after the supply of titanium tetrachloride to the metal magnesium is started.
  • the average feed rate A of titanium tetrachloride per unit area of the reaction bath is 2.8 to 4.0 kg / (min ⁇ m 2 ), preferably 2.8 to 3.6 kg / (min.
  • the total of the chlorine content and the magnesium content of the sponge titanium can be 350 mass ppm or less, preferably 300 ppm or less.
  • the upper limit position of the sample to be collected in the crushing step is set to a position on the mass basis from the bottom of the sponge titanium lump.
  • the time point (mass basis) at which the sponge titanium is produced up to the upper limit position is grasped.
  • the supply in the crushing process is started after the supply of titanium tetrachloride to the metal magnesium is started.
  • the supply of titanium tetrachloride to the molten metal magnesium is started, and then the titanium tetrachloride supplied to the reaction vessel The time until the supply of 50% by mass of titanium tetrachloride is completed.
  • the supply of titanium tetrachloride to the metal magnesium is started, and then the crushing process.
  • the supply of titanium tetrachloride to the molten metal magnesium is started, and then all the titanium tetrachloride supplied to the reaction vessel The time until the supply of 40% by mass of titanium tetrachloride is completed.
  • the feed rate of titanium tetrachloride per unit area of the reaction bath surface during the generation of sponge titanium at a position corresponding to the upper limit position of the sample to be collected in the crushing process is appropriately selected according to the production efficiency of the titanium sponge. However, it is generally selected in the range of 1.0 to 5.5 kg / (min ⁇ m 2 ). Since the metal magnesium in the reaction vessel decreases as the reaction ends, the titanium tetrachloride supply rate is preferably set to a smaller value at the end of the reaction.
  • the area of the reaction bath surface is the area of the upper surface of the metallic magnesium in a molten state in the reaction vessel, and corresponds to the area of the horizontal cross section of the reaction vessel at the position of the upper surface of the metallic magnesium.
  • the bottom load index B of the titanium sponge lump calculated in (5) is 3.5 to 5.5 t / m 2 , preferably 4.0 to 5.5 t / m 2 .
  • the total supply amount of titanium tetrachloride is adjusted so that the bottom load index B of the sponge titanium block is 3.5 to 5.5 t / m 2 , preferably 4.0 to 5.5 t / m 2. Since the porosity ⁇ of the sponge titanium can be 20 to 50%, preferably 20 to 40%, the packing density of the sponge titanium is 1.65 to 1.95 g / cm 3 , preferably 1.70. Up to 1.95 g / cm 3 . When the bottom load index B of the titanium sponge mass obtained by performing the reduction separation process exceeds the above range, the compression load applied to the titanium sponge during vacuum separation increases, so the porosity decreases and the bulk density increases.
  • the packing density becomes high, the compressive load applied to the sponge titanium is too large, so the porosity of the sponge titanium becomes too small, and the magnesium chloride of the closed type 2 increases, so the chlorine content of the sponge titanium becomes higher.
  • the bottom load index B of the sponge titanium mass obtained by performing the reduction separation process is less than the above range, the compression load applied to the sponge titanium is too small at the time of vacuum separation, so the porosity becomes too large.
  • the bulk density is less than the above range, and the packing density is less than the above range.
  • the area of the disc or pedestal with which the lower side of the sponge titanium mass contacts is the area of the disc when the pedestal and the disc placed on the pedestal are installed under the sponge titanium mass. It refers to the area of the upper surface, and when no pedestal is placed under the sponge titanium mass and only the pedestal is installed, it refers to the area of the upper surface of the pedestal.
  • the mass of the titanium sponge lump when calculating the B value is a theoretical value calculated as if all of the titanium tetrachloride supplied into the reaction vessel was converted to titanium metal, This is a value calculated by multiplying the total number of moles of titanium tetrachloride supplied by the atomic weight of titanium.
  • Conditions other than those described above in the reduction reaction of the reduction separation process for example, the temperature outside the reaction vessel during the reduction reaction may be any conditions that are usually used in the production of sponge titanium by the crawl method. 950 ° C.
  • the vacuum heating temperature in the vacuum separation in the reduction separation step is not particularly limited, but is preferably 900 to 1080 ° C.
  • the vacuum heating time in the vacuum separation in the reduction separation step is not particularly limited, and a time for removing magnesium chloride and metal magnesium capable of volatile separation is appropriately selected. Note that, as described above, Type 1 and closed Type 2 chlorine exists so as to be confined in the sponge titanium, and thus is not removed even if the vacuum heating time is increased. For this reason, if the vacuum heating time is unnecessarily prolonged, time and energy are wasted. Therefore, the vacuum heating time may be any time for removing magnesium chloride and metal magnesium capable of volatile separation.
  • the vacuum heating time in the vacuum separation in the reduction separation step is p (hour) as the vacuum heating time, and r (mm) as the radius of the disk or pedestal with which the lower part of the sponge titanium lump contacts (where r is 600 mm or more). )),
  • r mm
  • a range satisfying “112 ⁇ 0.26 ⁇ rp ⁇ 125” is preferable in that vacuum separation can be performed without wasting time and power.
  • the disk or pedestal upper surface is a perfect circle, the radius is r, and when it is an ellipse, the average value of the maximum diameter and the minimum diameter is r.
  • the upper limit position of the collection target is set to a position within the range of 40 to 50% on the mass basis from the bottom of the sponge titanium lump, and the lower position from the upper limit position of the collection target.
  • the sponge titanium lump is cut, crushed and sieved as a sample to be collected to obtain sponge titanium.
  • the upper limit position of the collection target in the crushing process is a position determined as the upper limit position of the collection target in the crushing process before supplying titanium tetrachloride to the reaction vessel.
  • the position of X% on the mass basis from the bottom of the sponge titanium lump means that when the titanium at the same height is accumulated vertically from the bottom of the sponge titanium lump, the accumulated mass is the total mass of the sponge titanium lump. Is a position where X%.
  • the collection target site in the present invention may be a part within the range, for example, 5% to 30%, 20 to 35%, as long as it is within the range below the upper limit position.
  • the titanium sponge block obtained by performing the reduction and separation step is taken out from the reaction vessel by a known punching device, cut and crushed into a round shape with a known large press, and divided into parts. Furthermore, the coarsely crushed small-sized sponge titanium is pulverized to 100 mm or less with a known shear or the like to obtain sponge titanium. At this time, the sponge titanium lump existing below the position determined as the upper limit position of the collection target is cut, pulverized, and sieved as the collection target. Then, the upper limit position of the collection target is set within a range of 40 to 50% based on the mass from the bottom of the titanium sponge lump, and the sponge titanium lump existing below the upper limit position of the collection target is cut, crushed and sieved.
  • sponge titanium having a packing density of 1.65 to 1.95 g / cm 3 , preferably 1.70 to 1.95 g / cm 3 can be obtained, and the Type 1 chlorine content is large. Therefore, avoiding the upper side of the sponge titanium lump that tends to increase the chlorine content, the lower side of the sponge titanium lump with a small content of Type 1 and a low chlorine content is targeted for collection. The chlorine content of can be reduced.
  • the vicinity of the lower end of the sponge titanium mass obtained by performing the reduction and separation process is sponge titanium produced in the initial stage of the reaction, and iron, nitrogen, aluminum, nickel in the metal magnesium used as a raw material is concentrated, and the general sponge titanium
  • the titanium sponge in the vicinity of the lower end of the sponge titanium mass obtained by performing the reduction and separation process is not taken as a sampling target.
  • the percentage of the position below the sponge titanium lump that is the lower limit position of the sponge titanium collection target is appropriately selected depending on the chlorine content and the magnesium content in the sponge titanium.
  • the position of 2 to 8% on the basis of mass from the bottom of the lump is the lower limit position of the collection target of sponge titanium, and the position of 2 to 5% on the basis of mass from the bottom of the sponge titanium lump is set to sponge titanium. It is particularly preferable to set the lower limit position of the sampling target.
  • the sponge titanium obtained by carrying out the method for producing the sponge titanium of the present invention and the sponge titanium of the present invention has a very low chloride content. Therefore, in the dissolution method not involving compression molding, the splash accompanying the volatilization of chloride is not present. It occurs frequently, the dissolution yield deteriorates, the splash adheres to or deposits on the raw material supply port, the raw material cannot be inserted, and the generation of the electron beam is inhibited by the volatile chloride. Occurrence of problems caused by the inclusion of chloride such as corrosion of the dissolved chloride gas by the melting equipment can be prevented.
  • the sponge titanium obtained by carrying out the method for producing the sponge titanium according to the present invention and the sponge titanium according to the present invention has a very low chloride content, in the melting method not involving compression molding, there is a problem of poor casting surface. Occurrence can be prevented.
  • the sponge titanium of the present invention and the sponge titanium obtained by carrying out the method for producing the sponge titanium of the present invention have a packing density of 1.65 to 1.95 g / cm 3 , preferably 1.70 to 1.95 g / cm 3. So, it can prevent the problem of local component concentration in large titanium ingots caused by sponge titanium fine particles with high iron content and oxygen content, which are generated by breaking parts with high iron content and oxygen content. It is possible to prevent the problem of local component deviation of the large titanium ingot.
  • the range of the collection target of titanium sponge in the crushing step is 40% to 50% lower than the bottom of the titanium sponge lump, and the reduction reaction.
  • the supply rate of titanium tetrachloride when producing sponge titanium in the range to be collected is 2.8 to 4.0 kg / (min ⁇ m 2 ), preferably 2.8 to 3.6 kg.
  • the area of the reaction bath surface is 2.5 m 2 or more, adjusting the total supply amount of titanium tetrachloride during the reduction reaction, 3.5 to 5.5 t / m 2 , preferably 4.0 to 5.5 t / m 2 , and the porosity of the portion to be collected of the sponge titanium mass is set to 20 to 50%, preferably 20 to 40%.
  • chlorine content and magnesium content Total 350 mass ppm or less, preferably 300 ppm by mass or less, and the packing density is 1.65 ⁇ 1.95g / cm 3, preferably it is possible to obtain a titanium sponge 1.70 ⁇ 1.95g / cm 3 .
  • the method for producing a titanium ingot or titanium alloy ingot according to the first aspect of the present invention is a method for producing a titanium ingot or titanium alloy ingot characterized by using the sponge titanium of the present invention as a melting raw material.
  • the titanium ingot or titanium alloy ingot according to the second aspect of the present invention is a titanium ingot or titanium alloy characterized by using sponge titanium obtained by performing the method for producing sponge titanium according to the present invention as a melting raw material. It is a manufacturing method of an ingot.
  • Example 1 The standard production amount of titanium sponge per one time is 8.0 tons, the cross-sectional area of the reaction bath surface portion is 2.5 (m 2 ), and the radius r of the disk is 750 (mm).
  • Sponge titanium was manufactured using a manufacturing apparatus. First, 10 t of molten magnesium was put in the production apparatus, and titanium tetrachloride was supplied thereto to carry out a reduction reaction of titanium tetrachloride.
  • the obtained titanium sponge lump was sequentially cut from below.
  • 400 kg corresponding to 5% of 8.0 tons on mass basis with poor quality was excised from below the sponge titanium lump.
  • 3.6 tons corresponding to 5 to 50% of 8.0 tons on a mass basis were collected separately from other parts of the sponge titanium lump.
  • a sponge titanium sample having a mass of 100 to 300 g is placed in the vicinity of the upper limit position of the sponge titanium lump to be collected, and the vicinity of the axis A1, the vicinity of the outer periphery B1, and the vicinity of the outer periphery B1 are 180 around the axis.
  • the porosity ⁇ before pulverization at the lower limit position of the sample was 23%.
  • sponge titanium other than the sample for which the porosity was measured was pulverized with a shear or the like and sieved to a sieve having an opening of 19.1 mm or less and a sieve having an opening of 0.84 mm or more. Homogenization gave sponge titanium A.
  • the chlorine content, the magnesium content, and the packing density of the sponge titanium A were measured, the chlorine content was 200 ppm by mass, the magnesium content was 90 ppm by mass, and the packing density was 1.70 g / cm 3 . .
  • 0.2 mass% was contained for the fine granule of 0.84 mm or less.
  • 5 points larger than 1.27 mm were randomly sampled from sponge titanium A and the porosity was determined and averaged. As a result, the porosity ⁇ ′ after pulverization was 25%. Table 1 shows the results.
  • Example 2 Comparative Examples 1 and 2
  • Example 1 except that the section for managing the average supply rate of titanium tetrachloride per unit area to 3.3 (kg / (min ⁇ m 2 ) and the site to be collected for sponge titanium are within the ranges shown in Table 1. The results are shown in Table 1.
  • the site to be collected is lowered from the position of 50% on the basis of the mass from the bottom of the sponge titanium mass, so that the chloride content is 290 mass ppm or less and the packing density is 1.70 g / cm 3 or more.
  • Example 3 Comparative Example 3
  • Table 2 The average supply rate of titanium tetrachloride per unit area of the reaction bath surface in the first half 50% of the total supply amount of titanium tetrachloride 32 (t) in the first 50% interval is shown in Table 2.
  • the procedure was the same as in Example 1 except that. The results are shown in Table 2.
  • the average supply rate of titanium tetrachloride per unit area of the reaction bath surface is 4.0 (kg / (min ⁇ m 2 )) or less in the first 50% of the total supply amount of titanium tetrachloride.
  • chlorine content can be suppressed to 330 mass ppm or less.
  • Example 6 and Comparative Examples 5 and 6 In Example 6 and Comparative Example 5, the total supply amount of titanium tetrachloride was set to the value shown in Table 3, and the same procedure as in Example 1 was performed except that the bottom load index was changed.
  • Example 7 and Comparative Example 6 the standard amount of sponge titanium produced per one time was 12.0 tons, the vessel cross-sectional area of the reaction bath surface portion was 3.5 (m 2 ), and the radius of the disk The bottom load index was changed with the production of titanium sponge using an 8.0-ton batch production apparatus with r of 800 mm and the total supply of titanium tetrachloride as the values shown in Table 3. Except for this, the method was performed in the same manner as in Example 1.
  • the chlorine content is 290 mass ppm or less and the packing density is 1.65 to 1. 90 g / cm 3 can be achieved.
  • Comparative Example 6 in which the porosity is lower than 20%, although the packing density can achieve a very high value of 2.00 g / cm 3 , the chlorine content is extremely high at over 1400 mass ppm, which is not suitable. .
  • Example 8 and 9, Comparative Examples 7 and 8) Using Example 2, Example 5, Comparative Example 1 and Comparative Example 2 and sponge titanium produced by the same method as the raw material, four 10t JIS Class 1 titanium ingots were produced by the electron beam melting method. The amount of splash deposits, the number of times the electron gun was suspended, and the production rate of titanium ingots were investigated. As for the amount of splash deposited, the thickness of the splash deposited on the end of the water-cooled copper hearth was observed from the observation window of the melting furnace, and the case of Example 2 was set as 1. The production rate of the titanium ingot is calculated by dividing the mass of the titanium ingot by the time from the introduction of the titanium raw material into the melting furnace until the flow of the molten titanium into the mold is completed.
  • the casting surface is the number of casting surface defects with a depth of 5 mm or more on the surface of the ingot, and the component is the process of iron and oxygen concentration when the ingot is divided equally into 5 parts from the bottom end to the top end.
  • the ability index Cpk was compared. Cpk was calculated by the following formula (1).
  • USL is a standard upper limit value
  • LSL is a standard lower limit value
  • is an average value
  • is a standard deviation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Titanium sponge manufactured by the Kroll process, the titanium sponge characterized in that the total of the chlorine content and the magnesium content therein is 350 mass ppm and the bulk density thereof is 1.65-1.95 g/cm3. Through the present invention, it is possible to provide titanium sponge for manufacturing of a large-sized ingot in which the composition thereof can easily be controlled and problems due to chloride inclusion during smelting of a large-sized ingot by a melting method not involving compression molding do not readily occur, and a method for manufacturing the titanium sponge with high industrial efficiency.

Description

スポンジチタン及びスポンジチタンの製造方法並びにチタンインゴット又はチタン合金インゴットの製造方法Method for producing sponge titanium and sponge titanium, and method for producing titanium ingot or titanium alloy ingot
 本発明は、四塩化チタンを金属マグネシウムにより還元してスポンジチタンを製造するクロール法によるスポンジチタン及びその製造方法並びにチタンインゴット又はチタン合金インゴットの製造方法に関する。 The present invention relates to sponge titanium by a crawl method for producing sponge titanium by reducing titanium tetrachloride with metallic magnesium, a method for producing the same, and a method for producing a titanium ingot or a titanium alloy ingot.
 スポンジチタンは、工業的にはクロール法により製造される。クロール法による工業的なスポンジチタンの製造における工程は、塩化蒸留工程、還元分離工程、破砕工程及び電解工程の四工程に大別される。 Sponge titanium is industrially manufactured by the crawl method. Processes in the industrial production of sponge titanium by the crawl method are roughly divided into four steps, a chlorinated distillation step, a reduction separation step, a crushing step, and an electrolysis step.
 これらの工程の一つである還元分離工程は、還元工程と真空分離工程とからなる。還元工程では、ステンレス製又は鋼製の反応容器内の溶融状態の金属マグネシウム上に、四塩化チタンを滴下することにより還元反応が起こり、スポンジチタンと副生成物である塩化マグネシウムが生成する。次いで、真空分離工程において、還元工程で生成したスポンジチタンを、高温且つ減圧下で真空引きすることにより、残存した塩化マグネシウムや金属マグネシウムが取り除かれたスポンジチタン塊が製造される(非特許文献1)。 The reduction separation process, which is one of these processes, consists of a reduction process and a vacuum separation process. In the reduction step, titanium tetrachloride is dropped on the molten metal magnesium in a stainless or steel reaction vessel to cause a reduction reaction to produce titanium sponge and by-product magnesium chloride. Next, in the vacuum separation step, the sponge titanium produced in the reduction step is evacuated at a high temperature and under reduced pressure to produce a sponge titanium lump from which the remaining magnesium chloride and magnesium metal are removed (Non-patent Document 1). ).
 このようにして製造されたスポンジチタン塊は、後の破砕工程にて、段階的に、切断及び破砕され、最終的にミリメートルからセンチメートルオーダーのスポンジチタンとなる。スポンジチタンは、後の溶解工程の主原料として単独又は副原料とともに溶解され、チタンインゴット又はチタン合金インゴットとなる。ここでいう副原料とは、例えば、チタン加工品の切粉、板、ブロック等のチタンスクラップや、その他合金元素の粒、板、ブロック等の添加材のことである。 The sponge titanium mass produced in this manner is cut and crushed step by step in the subsequent crushing process, and finally becomes sponge titanium of millimeter to centimeter order. Sponge titanium is melt | dissolved as a main raw material of a subsequent melt | dissolution process individually or with an auxiliary material, and turns into a titanium ingot or a titanium alloy ingot. The auxiliary material here refers to, for example, titanium scrap such as chips, plates and blocks of processed titanium products, and additives such as grains of other alloy elements, plates and blocks.
 チタンの溶解方法には、消耗電極式アーク溶解法、電子ビーム溶解法、プラズマ溶解法、真空誘導溶解法、不活性誘導溶解法が一般的に使用されるが、いずれの溶解法でも、スポンジチタンの塩素含有量は、溶解安定性及び生産性を左右する重要な要素であることが知られている。 As a method for melting titanium, consumable electrode type arc melting method, electron beam melting method, plasma melting method, vacuum induction melting method, and inert induction melting method are generally used. It is known that the chlorine content of is an important factor that affects dissolution stability and productivity.
 例えば、電子ビーム溶解法では真空下で溶解を行なうが、塩素含有量が多いスポンジチタンでは、塩化物の揮発に伴うスプラッシュが多く発生するため、溶解歩留りが悪化する問題や(非特許文献2)、原料供給口にスプラッシュが付着又は堆積することで、原料挿入が不可能となる問題(特許文献1)が発生することがある。その他にも、揮発した塩化物によって電子ビームの発生が阻害される問題(非特許文献3)や、発生した塩化物ガスが溶解設備を腐食させる等の問題も発生する。そのため塩素含有量は、低い程、溶解安定性が増すため望ましい。プラズマ溶解法、真空誘導溶解法、不活性誘導溶解法においても、塩化物の揮発に伴う同様の諸問題が生じるため、スポンジチタンの塩素含有量は少ないほど好ましい。 For example, in the electron beam melting method, melting is performed under vacuum, but in the case of sponge titanium having a large chlorine content, a lot of splash is generated due to the volatilization of chloride, and thus the dissolution yield deteriorates (Non-Patent Document 2) In some cases, the splash may adhere to or accumulate on the raw material supply port, which may make it impossible to insert the raw material (Patent Document 1). In addition, problems such as generation of an electron beam being inhibited by the volatilized chloride (Non-patent Document 3) and problems such as the generated chloride gas corroding the melting equipment also occur. Therefore, the lower the chlorine content, the better the dissolution stability. In the plasma melting method, the vacuum induction melting method, and the inert induction melting method, the same problems associated with the volatilization of chlorides occur, so the smaller the chlorine content of titanium sponge, the better.
 ここで、一般的なスポンジチタンの塩素含有量について言及すると、塩素含有量は700ppm程度、マグネシウム含有量は250ppm程度というのが一般的な値であり、本発明者らが探索した中で、最も低いもので、塩素含有量が230ppm、マグネシウム含有量が140ppmであった(非特許文献2)。 Here, when referring to the chlorine content of a general sponge titanium, the chlorine content is about 700 ppm, and the magnesium content is about 250 ppm. It was low, and the chlorine content was 230 ppm and the magnesium content was 140 ppm (Non-patent Document 2).
 非特許文献4では、スポンジチタンの塩素含有量と、その残留機構について詳しい記載があり、スポンジチタン塊内の分布は、塊上部では1000~1500ppm程度、塊下部では400~600ppm程度であること、塩素の存在形態は、Type1:チタン一次粒子内の微細孔中の塩化マグネシウム、Type2:チタン一次粒子間に残存する塩化マグネシウム、Type3:チタン一次粒子表面に付着した二塩化チタンの三つであり、Type2が主な存在形態であることが報告されている。ここでいう、チタン一次粒子とは、スポンジチタンを構成する数十μmオーダーのチタンの粒子であり、スポンジチタンは一次粒子が焼結した多孔質体である。 Non-Patent Document 4 has a detailed description of the chlorine content of sponge titanium and its residual mechanism, and the distribution within the sponge titanium lump is about 1000 to 1500 ppm at the top of the lump and about 400 to 600 ppm at the bottom of the lump. There are three types of chlorine: Type 1: Magnesium chloride in fine pores in the titanium primary particles, Type 2: Magnesium chloride remaining between the titanium primary particles, Type 3: Titanium dichloride attached to the surface of the titanium primary particles, It has been reported that Type 2 is the main existence form. The titanium primary particles referred to here are titanium particles of the order of several tens μm constituting the sponge titanium, and the sponge titanium is a porous body in which the primary particles are sintered.
 Type1では、チタン一次粒子の粒内にごく微細に分散して塩化マグネシウムが存在しており、Type2では、チタン一次粒子同士の隙間に塩化マグネシウムが存在しており、Type3では、チタン一次粒子の表面上に二塩化チタンが存在している。 In Type 1, magnesium chloride is present in a very finely dispersed manner within the primary titanium particles. In Type 2, magnesium chloride is present in the gaps between the titanium primary particles. In Type 3, the surface of the titanium primary particles is present. Titanium dichloride is present on the top.
 非特許文献4では、塩素含有量を支配する重要な因子として、還元工程における四塩化チタンの供給速度、マグネシウム存在量が挙げられており、四塩化チタンの供給速度が小さく、マグネシウム存在量が多い方が、塩素含有量が低くなると報告されており、四塩化チタンの供給速度が、1.4(L/m/分)(2.4(kg/m/分))と小さく、マグネシウムが潤沢に存在している状態で生成したスポンジチタン塊の下部では、400ppm弱の塩素含有量とすることに成功している。 In Non-Patent Document 4, as an important factor governing the chlorine content, the supply rate of titanium tetrachloride and the amount of magnesium present in the reduction step are listed, the supply rate of titanium tetrachloride is small, and the amount of magnesium present is large. It is reported that the chlorine content is lower, and the supply rate of titanium tetrachloride is as small as 1.4 (L / m 2 / min) (2.4 (kg / m 2 / min)), and magnesium In the lower part of the sponge titanium lump produced in a state where there is abundantly present, it has succeeded in setting the chlorine content to less than 400 ppm.
 ところで、チタンインゴットの品質は、インゴット溶製における重要な要素であり、特に重要とされるのは、インゴットの鋳肌と成分である。 By the way, the quality of the titanium ingot is an important factor in ingot melting, and the casting surface and components of the ingot are particularly important.
 スポンジチタンの塩素含有量が多いと、溶解工程において、塩化物に起因して、電子ビームがずれる、あるいは電子銃が一時停止する等のトラブルがしばしば発生するため、設定通りに、チタン溶湯外周部への電子ビーム照射ができず、そのことが鋳肌不良の原因となる。 If the titanium content of the sponge titanium is high, troubles such as electron beam shifting or electron gun suspension may occur due to chloride during the melting process. The electron beam cannot be irradiated to the surface, which causes a defective casting surface.
 鋳肌については、電子ビーム溶解時のビーム出力及び引き下げ速度と、鋳肌の関係についての報告例(非特許文献2)がある。 As for the casting surface, there is a report example (non-patent document 2) on the relationship between the beam output and the pulling speed during melting of the electron beam and the casting surface.
 成分については、電子ビーム溶解法で溶製したインゴットの成分分布を調査した報告例(非特許文献5)がある。成分制御で特に重要となるのは、酸素濃度と鉄濃度で、工業用純チタンでは、250ppm程度の狭い範囲内に成分を制御することが求められる。 Regarding the component, there is a report example (Non-patent Document 5) in which the component distribution of the ingot melted by the electron beam melting method is investigated. Particularly important in component control are oxygen concentration and iron concentration. In industrial pure titanium, it is required to control components within a narrow range of about 250 ppm.
実公平6-23918Reality 6-23918
 ところが、非特許文献5のスポンジチタンにおける塩素含有量が400ppm弱というのは、溶解工程において、塩化物含有に起因する問題を解決するのに十分な塩素低減量ではないため、依然、塩化物含有に起因する問題があった。また、加えて、非特許文献5の方法では、四塩化チタンの供給速度が極端に遅いため、工業化するにはスポンジチタンの生産性も低過ぎるという問題点がある。 However, the chlorine content in the sponge titanium of Non-Patent Document 5 is slightly less than 400 ppm because it is not a sufficient chlorine reduction amount to solve the problem caused by the chloride content in the dissolution process, and therefore still contains the chloride content. There was a problem due to. In addition, the method of Non-Patent Document 5 has a problem that the productivity of titanium sponge is too low for industrialization because the supply rate of titanium tetrachloride is extremely slow.
 そのため、電子ビーム溶解法、プラズマ溶解法、真空誘導溶解法、不活性誘導溶解法等の、圧縮成型を伴わない溶解法において、塩化物含有に起因する問題が生じない、低塩素含有量のスポンジチタンが求められている。 Therefore, low chlorine content sponges that do not cause problems due to chloride content in melting methods that do not involve compression molding, such as electron beam melting, plasma melting, vacuum induction melting, and inert induction melting. There is a need for titanium.
 また、非特許文献2の方法では、小規模な製造レベルでは、鋳肌の改善はできるものの、数トン以上の大型インゴットの溶製時には、ビーム出力や引下げ速度を適切に制御したとしても、鋳肌不良が生じることがしばしばあり、改善が求められている。 Further, in the method of Non-Patent Document 2, although the casting surface can be improved at a small production level, when a large ingot of several tons or more is melted, even if the beam output and the pulling-down speed are appropriately controlled, the casting Skin defects often occur and improvements are sought.
 また、数トン以上の大型インゴットの溶製時には、成分を所定の範囲内に制御できないことがしばしばあり、改善が求められていた。 Also, when a large ingot of several tons or more is melted, the components often cannot be controlled within a predetermined range, and improvement has been demanded.
 従って、本発明は、圧縮成型を伴わない溶解法による大型インゴットの溶製時に、塩化物含有に起因する問題が生じ難く、且つ、成分制御が容易な大型インゴット製造用のスポンジチタン及び工業的に効率的に、当該スポンジチタンを製造する方法を提供することを目的とする。 Accordingly, the present invention provides a sponge titanium for manufacturing a large ingot that is difficult to cause problems due to the inclusion of chlorides and can be easily controlled when melting a large ingot by a melting method that does not involve compression molding. It aims at providing the method of manufacturing the said sponge titanium efficiently.
 上記課題は、以下の本発明により解決される。
 すなわち、本発明(1)は、クロール法により製造されたスポンジチタンであって、塩素含有量及びマグネシウム含有量の合計が350質量ppm以下であり、充填密度が1.65~1.95g/cmであることを特徴とするスポンジチタンを提供するものである。
The above problems are solved by the present invention described below.
That is, the present invention (1) is a sponge titanium produced by a crawl method, the total of chlorine content and magnesium content is 350 mass ppm or less, and the packing density is 1.65 to 1.95 g / cm. The present invention provides a titanium sponge characterized by being 3 .
 また、本発明(2)は、平均粒径が1.7~19.1mmであることを特徴とする(1)のスポンジチタンを提供するものである。 Also, the present invention (2) provides the sponge titanium according to (1), wherein the average particle diameter is 1.7 to 19.1 mm.
 また、本発明(3)は、粒径が0.84mm以下のスポンジチタン細粒の割合が0.8質量%以下であることを特徴とする(1)又は(2)いずれかのスポンジチタンを提供するものである。 In the present invention (3), the ratio of fine sponge titanium particles having a particle diameter of 0.84 mm or less is 0.8% by mass or less, wherein the sponge titanium is either (1) or (2) It is to provide.
 また、本発明(4)は、クロール法によるスポンジチタンの製造方法であって、
 反応浴面の面積が2.5m以上であり、(i)金属マグネシウムへの四塩化チタンの供給を開始してから、破砕工程における採取対象の上限位置に相当する位置までのスポンジチタンを生成させている間は、下記式(1):
   A=1分間当たりの四塩化チタンの平均供給速度(kg/分)/反応浴面の面積(m)   (1)
で算出される反応浴面単位面積当たりの四塩化チタンの平均供給速度Aを、2.8~4.0kg/(分・m)とし、且つ、(ii)四塩化チタンの総供給量を、下記式(2):
   B=スポンジチタン塊の質量(t)/スポンジチタン塊の下側が接する円板又は台座の面積(m)   (2)
で算出されるスポンジチタン塊の底部荷重指数Bが3.5~5.5t/mとなる量とする還元分離工程と、
 採取対象の上限位置を、スポンジチタン塊の下からの質量基準で40~50%の範囲内の位置とし、該採取対象の上限位置より下のスポンジチタン塊を、採取対象として、切断、粉砕及び篩別して、スポンジチタンを得る破砕工程と、
を有すること、
を特徴とするクロール法によるスポンジチタンの製造方法を提供するものである。
Further, the present invention (4) is a method for producing titanium sponge by a crawl method,
The reaction bath surface area is 2.5 m 2 or more, and (i) titanium sponge is produced from the start of the supply of titanium tetrachloride to the metal magnesium to the position corresponding to the upper limit position of the sample to be collected in the crushing process. During the time, the following formula (1):
A = average feed rate of titanium tetrachloride per minute (kg / min) / area of reaction bath surface (m 2 ) (1)
The average supply rate A of titanium tetrachloride per unit area of the reaction bath calculated in step 2.8 is 2.8 to 4.0 kg / (min · m 2 ), and (ii) the total supply amount of titanium tetrachloride is The following formula (2):
B = mass of titanium sponge lump (t) / area of disk or pedestal with which the lower side of the titanium sponge lump contacts (m 2 ) (2)
A reduction separation step in which the bottom load index B of the sponge titanium mass calculated in step 1 is 3.5 to 5.5 t / m 2 ;
The upper limit position of the collection target is a position within the range of 40 to 50% on the mass basis from the bottom of the sponge titanium lump, and the sponge titanium lump below the upper limit position of the collection target is cut, crushed and Crushing to obtain sponge titanium,
Having
A method for producing titanium sponge by the crawl method is provided.
 また、本発明(5)は、(1)~(3)いずれかのスポンジチタンを溶解原料とすることを特徴とするチタンインゴット又はチタン合金インゴットの製造方法を提供するものである。 Further, the present invention (5) provides a method for producing a titanium ingot or a titanium alloy ingot characterized by using any of titanium sponges (1) to (3) as a melting raw material.
 また、本発明(6)は、(4)のスポンジチタンの製造方法を行い得られるスポンジチタンを溶解原料とすることを特徴とするチタンインゴット又はチタン合金インゴットの製造方法を提供するものである。 Further, the present invention (6) provides a method for producing a titanium ingot or a titanium alloy ingot characterized by using sponge titanium obtained by carrying out the method for producing sponge titanium of (4) as a melting raw material.
 本発明によれば、圧縮成型を伴わない溶解法による大型インゴットの溶製時に、塩化物含有に起因する問題が生じ難く、且つ、成分制御が容易な大型インゴット製造用のスポンジチタン及び工業的に効率的に、当該スポンジチタンを製造する方法を提供することができる。 According to the present invention, when producing a large ingot by a melting method not involving compression molding, problems caused by the inclusion of chloride are unlikely to occur, and sponge titanium for producing a large ingot that is easy to control components and industrially A method for efficiently producing the titanium sponge can be provided.
スポンジチタン中の塩素の存在形態を説明するための模式図である(空隙率40%)。It is a schematic diagram for demonstrating the presence form of chlorine in sponge titanium (porosity 40%). スポンジチタン中の塩素の存在形態を説明するための模式図である(空隙率20%)。It is a schematic diagram for demonstrating the presence form of chlorine in sponge titanium (porosity 20%).
 本発明のスポンジチタンは、クロール法により製造されたスポンジチタンであって、塩素含有量及びマグネシウム含有量の合計が350質量ppm以下であり、充填密度が1.65~1.95g/cmであることを特徴とするスポンジチタンである。 The sponge titanium of the present invention is a sponge titanium produced by a crawl method, wherein the total of the chlorine content and the magnesium content is 350 mass ppm or less, and the packing density is 1.65 to 1.95 g / cm 3 . It is a sponge titanium characterized by being.
 クロール法によるスポンジチタンの工業的な製造においては、工程は、主に、塩化蒸留工程、還元分離工程、破砕工程及び電解工程からなる。そして、本発明のスポンジチタンは、クロール法により製造されたスポンジチタン、すなわち、溶融状態のマグネシウム上に四塩化チタンを滴下して、四塩化チタンを還元し、スポンジチタン塊を生成させ、次いで、真空分離により、スポンジチタン塊から、副生成物である塩化マグネシウムと残存マグネシウムを除去する還元分離工程と、還元分離工程を行い得られるスポンジチタン塊を、切断、破砕及び篩分し、所望の粒径のスポンジチタンを得る破砕工程と、を行い得られるスポンジチタンである。なお、以下、四塩化チタンの還元を行い得られるスポンジチタン塊を、単に、スポンジチタン塊とも記載する。 In the industrial production of sponge titanium by the crawl method, the process mainly comprises a chlorodistillation process, a reduction separation process, a crushing process, and an electrolysis process. And the titanium sponge of the present invention is a titanium sponge produced by the crawl method, i.e., titanium tetrachloride is dropped on the molten magnesium, to reduce the titanium tetrachloride, to produce a titanium sponge lump, Vacuum separation separates by-product magnesium chloride and residual magnesium from the titanium sponge lump, and the sponge titanium lump obtained by performing the reductive separation step is cut, crushed and sieved to obtain desired particles. And a crushing step for obtaining a sponge titanium having a diameter. Hereinafter, the titanium sponge mass obtained by reducing titanium tetrachloride is also simply referred to as a titanium sponge mass.
 本発明のスポンジチタン中の、原子換算の塩素含有量及びマグネシウム含有量の合計は、350質量ppm以下、好ましくは300質量ppm以下である。スポンジチタン中の原子換算の塩素含有量及びマグネシウム含有量の合計が上記範囲にあることにより、大型のチタンインゴット又は大型のチタン合金インゴットを、圧縮成型を伴わない溶解法により溶製する際に、塩化物に起因する問題が起こり難く、鋳肌不良のないインゴットを、効率良く製造することができる。以下、大型のチタンインゴット及び大型のチタン合金インゴットを総称して、大型チタンインゴットとも記載する。なお、スポンジチタン中の塩素含有量及びマグネシウム含有量は、以下のようにして求められる。先ず、測定対象のスポンジチタンを粉砕し、スポンジチタンロットとする。次いで、JIS H 1610-2008チタン及びチタン合金-サンプリング方法に従って、各スポンジチタンロットから大口試料をサンプリングした後、大口試料を縮分して、質量250gの試験試料を4個得る。次いで、該4個の試験試料の塩素含有量を、JIS H 1615-1997に記載の硝酸銀滴定法にて測定し、4個の平均値を、スポンジチタンロットの塩素含有量とする。また、該4個の試験試料のマグネシウム含有量を、JIS H 1616-1995に記載の原子吸光法にて測定し、4個の平均値を、スポンジチタンロットのマグネシウム含有量とする。 The total of chlorine content and magnesium content in terms of atoms in the sponge titanium of the present invention is 350 mass ppm or less, preferably 300 mass ppm or less. When the total amount of chlorine and magnesium in terms of sponge titanium is in the above range, a large titanium ingot or a large titanium alloy ingot is melted by a melting method without compression molding. Problems caused by chloride are unlikely to occur, and an ingot having no defective casting surface can be produced efficiently. Hereinafter, large titanium ingots and large titanium alloy ingots are collectively referred to as large titanium ingots. In addition, the chlorine content and magnesium content in sponge titanium are calculated | required as follows. First, the sponge titanium to be measured is pulverized to form a sponge titanium lot. Next, according to JIS H 1610-2008 titanium and titanium alloy-sampling method, a large sample is sampled from each sponge titanium lot, and then the large sample is reduced to obtain four test samples having a mass of 250 g. Next, the chlorine content of the four test samples is measured by the silver nitrate titration method described in JIS H 1615-1997, and the average value of the four is the chlorine content of the sponge titanium lot. Further, the magnesium content of the four test samples is measured by the atomic absorption method described in JIS H 1616-1995, and the average value of the four is set as the magnesium content of the sponge titanium lot.
 本発明のスポンジチタンの充填密度は、1.65~1.95g/cm、好ましくは1.70~1.95g/cmである。スポンジチタンの充填密度が上記範囲にあることにより、大型チタンインゴットを、圧縮成型を伴わない溶解法により溶製する際に、大型チタンインゴット内での局所的な成分濃化による成分規格外れを起こり難くすることができる、すなわち、成分制御を容易にすることができる。チタンインゴット及びチタン合金インゴットの成分規格では、鉄及び酸素含有量を250質量ppm以下にすることが要求されるが、数t以上の規模の大型チタンインゴットにて、全長に亘って当該規格を満たすことが必要であり、具体的には、ボトム端部からトップ端部にかけて3か所又は5か所を分析した際に、全ての箇所で、所定の成分規格を満たす必要がある。しかし、その難易度は高く、ボトム測定値一点のみが上限値を超える、あるいはトップ測定値一点のみが上限値を超える等、大型チタンインゴット内での局所的な成分濃化による成分規格外れが、しばしば発生する。その局所的な成分濃化の一因となるのが、粒径が0.84mm以下のスポンジチタン細粒の存在である。スポンジチタン中に存在するスポンジチタン細粒は、スポンジチタンに比べて、鉄含有量が10倍超、酸素含有量が2倍超と高い。このようなスポンジチタン細粒は、消耗電極式アーク溶解法のように、チタン原料を圧縮成型する溶解法では問題とはならないが、電子ビーム溶解法のように原料の圧縮成型を伴わない溶解法では、原料供給設備内から原料を供給する際に、スポンジチタン細粒が偏って供給されたり、水冷銅ハース内に局所的にスポンジチタン細粒が堆積したりする現象が生じるため、スポンジチタン細粒が偏って供給された際や、スポンジチタン細粒の局所堆積物を溶かした際に、局所的に大型チタンインゴット中の鉄含有量や酸素含有量が高くなり、チタンインゴットの成分規格外れに繋がる。 The packing density of the sponge titanium of the present invention is 1.65 to 1.95 g / cm 3 , preferably 1.70 to 1.95 g / cm 3 . Due to the packing density of sponge titanium being in the above range, when a large titanium ingot is melted by a melting method that does not involve compression molding, component deregulation occurs due to local concentration of components in the large titanium ingot. It can be made difficult, that is, component control can be facilitated. In the component standard for titanium ingots and titanium alloy ingots, the iron and oxygen content is required to be 250 ppm by mass or less. However, a large titanium ingot having a scale of several tons or more satisfies the standard over the entire length. Specifically, when three or five locations are analyzed from the bottom end portion to the top end portion, it is necessary to satisfy a predetermined component standard at all locations. However, the degree of difficulty is high, and only one bottom measurement value exceeds the upper limit value, or only one top measurement value exceeds the upper limit value. Often occurs. One factor contributing to the local concentration of the component is the presence of titanium sponge fine particles having a particle size of 0.84 mm or less. The titanium sponge fine particles present in the sponge titanium have an iron content higher than 10 times and an oxygen content higher than 2 times compared to the sponge titanium. Such sponge titanium fine particles are not a problem in the melting method that compresses and molds titanium raw materials like the consumable electrode arc melting method, but the melting method that does not involve compression molding of raw materials like the electron beam melting method However, when the raw material is supplied from the raw material supply facility, a phenomenon occurs in which the titanium sponge fine particles are supplied unevenly or the titanium sponge fine particles are locally deposited in the water-cooled copper hearth. When the grains are supplied unevenly or when the local deposits of titanium sponge fine particles are melted, the iron content and oxygen content in the large titanium ingot are locally increased, which is not within the component specifications of the titanium ingot. Connected.
 従来のスポンジチタンでは、仮に0.84mm以上の篩でスポンジチタンを篩ったとしても、篩後の混合プロセスで、スポンジチタンが砕ける等する結果、1.5~2.5質量%程度のスポンジチタン細粒がスポンジチタンに随伴する。この砕けて生じたスポンジチタン細粒は、上記と同様、スポンジチタンに比べて、鉄含有量及び酸素含有量が高い。スポンジチタンには、局所的に、鉄又は酸素含有量が高い部分が存在し、そして、鉄又は酸素含有量が高い部分が、低い部分に比べて、砕け易いため、従来のスポンジチタンでは、鉄含有量及び酸素含有量が高いスポンジチタン細粒が、生じ易かった。そのため、例え、スポンジチタンを篩って、スポンジチタン細粒を除去したとしても、その後の工程で、鉄含有量及び酸素含有量が高いスポンジチタン細粒が発生してしまうので、従来のスポンジチタンには、鉄含有量及び酸素含有量が高いスポンジチタン細粒に起因する大型チタンインゴット内での局所的な成分濃化の問題があった。それに対して、本発明のスポンジチタンは、充填密度が、1.65~1.95g/cm、好ましくは1.70~1.95g/cmと高いので、嵩密度が高いため、例え、本発明のスポンジチタンに、局所的に鉄又は酸素含有量が高い部分が存在していたとしても、その部分が砕け難い。そのため、本発明のスポンジチタンでは、鉄含有量及び酸素含有量が高いスポンジチタン細粒が生じ難いので、鉄含有量及び酸素含有量が高いスポンジチタン細粒に起因する大型チタンインゴット内での局所的な成分濃化の問題が生じ難く、大型チタンインゴットの局所的な成分外れの問題が生じ難い。 In the conventional sponge titanium, even if the sponge titanium is sieved with a sieve of 0.84 mm or more, the sponge titanium is crushed in the mixing process after sieving. As a result, about 1.5 to 2.5% by mass of sponge is obtained. Titanium fine particles accompany sponge titanium. The sponge titanium fine particles produced by the crushing have a higher iron content and oxygen content than the sponge titanium as described above. Sponge titanium locally has a portion with a high iron or oxygen content, and a portion with a high iron or oxygen content is more easily crushed than a low portion. Sponge titanium granules having a high content and high oxygen content were likely to occur. Therefore, even if the sponge titanium fine particles are removed by sieving the sponge titanium, the titanium sponge fine particles having high iron content and oxygen content are generated in the subsequent process. Has a problem of local concentration of components in a large titanium ingot caused by sponge titanium fine particles having a high iron content and oxygen content. On the other hand, the titanium sponge of the present invention has a high packing density of 1.65 to 1.95 g / cm 3 , preferably 1.70 to 1.95 g / cm 3, and therefore has a high bulk density. Even if a portion having a high iron or oxygen content is present locally in the sponge titanium of the present invention, the portion is difficult to break. Therefore, in the sponge titanium of the present invention, it is difficult to produce sponge titanium fine particles having a high iron content and oxygen content. Therefore, the local titanium in the large titanium ingot caused by the sponge titanium fine particles having a high iron content and oxygen content is used. The problem of general component concentration is less likely to occur, and the problem of local component deviation of the large titanium ingot is less likely to occur.
 なお、スポンジチタンの充填密度は、スポンジチタンの嵩密度を表す指標となる。本発明において、充填密度とは、スポンジチタンを200Lドラム缶に充填した時の密度を指す。具体的には、スポンジチタンの充填密度は、以下にようにして求められる。JIS Z 1600-2006に記載の鋼製オープンドラム・タイプD・M級を測定容器として使用する。先ず、ドラム缶の内径D(cm)と、内高H(cm)(ドラム底板上面からドラム缶上端までの距離)を測定する。次いで、測定対象のスポンジチタンをドラム缶に100kg以上入れ、スポンジチタン上面が平らになるようにならす。次いで、ドラム缶上端からスポンジチタン上面までの距離を定規で測定する。この測定を、ドラム缶内の径方向に異なる4点(0°、90°、180°、270°)で行ない、その平均値を、ドラム上端-スポンジ間距離C(cm)とする。次いで、充填密度ρ(g/cm)を、下記式(3):
    1/ρ=V/M=(π/M)・(D/2)・(H-C)   (3)
にて、内径D(cm)、内高H(cm)、ドラム上端-スポンジ間距離C(cm)、スポンジチタン質量M(g)を使って、求めた。ここで、V(cm)は、スポンジチタンの充填体積である。また、スポンジチタンは、平均粒径が1.7~19.1mmの範囲にあるものを対象とする。
In addition, the packing density of sponge titanium is an index representing the bulk density of sponge titanium. In the present invention, the filling density refers to a density when titanium sponge is filled in a 200 L drum. Specifically, the packing density of the titanium sponge is determined as follows. A steel open drum type D / M class described in JIS Z 1600-2006 is used as a measuring container. First, the inner diameter D (cm) of the drum can and the inner height H (cm) (the distance from the upper surface of the drum bottom plate to the upper end of the drum can) are measured. Next, 100 kg or more of the titanium sponge to be measured is put into a drum can so that the upper surface of the sponge titanium becomes flat. Next, the distance from the upper end of the drum can to the upper surface of the sponge titanium is measured with a ruler. This measurement is performed at four points (0 °, 90 °, 180 °, 270 °) different in the radial direction in the drum, and the average value is defined as the distance C (cm) between the drum upper end and the sponge. Next, the packing density ρ (g / cm 3 ) is expressed by the following formula (3):
1 / ρ = V / M = (π / M) · (D / 2) 2 · (HC) (3)
The inner diameter D (cm), the inner height H (cm), the drum top-sponge distance C (cm), and the titanium sponge mass M (g). Here, V (cm 3 ) is a filling volume of sponge titanium. Sponge titanium has a mean particle size in the range of 1.7 to 19.1 mm.
 本発明のスポンジチタン中、粒径が0.84mm以下のスポンジチタン細粒の割合は、0.8質量%以下、好ましくは0.7質量%以下、より好ましくは0.4質量%以下である。スポンジチタン中の粒径が0.84mm以下のスポンジチタン細粒の割合が上記範囲にあることにより、鉄含有量及び酸素含有量が高いスポンジチタン細粒に起因する大型チタンインゴット内での局所的な成分濃化の問題が生じ難く、大型チタンインゴットの局所的な成分外れの問題が生じ難くなる。本発明において、粒径が0.84mm以下のスポンジチタン細粒の割合の測定方法であるが、JIS H 1610:2008に従ってサンプリングしたスポンジチタンを対象として、JIS H 2151:2015に従って、その粒度分布を測定し、粒径が0.84mm以下のスポンジチタン細粒の割合を求める。なお、本発明では、粒径が0.84mm以下のスポンジチタンを、スポンジチタン細粒と定義する。 In the sponge titanium of the present invention, the proportion of fine sponge titanium particles having a particle size of 0.84 mm or less is 0.8 mass% or less, preferably 0.7 mass% or less, more preferably 0.4 mass% or less. . The ratio of the fine titanium sponge particles having a particle size of 0.84 mm or less in the titanium sponge is in the above range, so that the local content in the large titanium ingot caused by the fine titanium sponge particles having a high iron content and oxygen content is obtained. Therefore, it is difficult to cause a problem of component concentration, and a problem of local component deviation of a large titanium ingot hardly occurs. In the present invention, it is a method for measuring the proportion of sponge titanium fine particles having a particle size of 0.84 mm or less. The target particle size distribution is according to JIS H 2151: 2015 for sponge titanium sampled according to JIS H 1610: 2008. Measure and determine the proportion of titanium sponge fine particles having a particle size of 0.84 mm or less. In the present invention, sponge titanium having a particle size of 0.84 mm or less is defined as sponge titanium fine particles.
 本発明のスポンジチタンの平均粒径は、1.7~19.1mmである。なお、本発明において、スポンジチタンの平均粒径の測定方法であるが、当該スポンジチタンが目開き19.1mm以下の篩を通過し、目開き1.7mm以上の篩を通過しなかったものであれば、その平均粒径が1.7~19.1mmの範囲にあることは明らかであるため測定は省略できる。より正確な測定が必要な場合は、以下の通りである。JIS H 1610:2008に従ってサンプリングしたスポンジチタンを対象として、JIS H 2151:2015に従って、異なる目開きを有する複数の篩を通すことで測定する。具体的には、目開きが1.7、4.75、12.7、19.1、25.4mmの篩を使用し、各篩を通過したスポンジチタン群の質量パーセントを測定する。その後、1.7mm以下の群の粒径は0.85mm、1.7~4.75mmの群は3.25mm、4.75~12.7mmの群は8.73mm、12.7~19.1mmの群の粒径は15.9mm、19.1~25.4mmの群の粒径は22.3mmとして、その加重平均値を平均粒径とする。 The average particle diameter of the sponge titanium of the present invention is 1.7 to 19.1 mm. In the present invention, it is a method for measuring the average particle diameter of titanium sponge, but the titanium sponge passed through a sieve having an opening of 19.1 mm or less and did not pass through a sieve having an opening of 1.7 mm or more. If it is, it is clear that the average particle diameter is in the range of 1.7 to 19.1 mm, so that the measurement can be omitted. When more accurate measurement is required, it is as follows. Measured by passing a plurality of sieves having different openings in accordance with JIS H 2151: 2015, targeting sponge titanium sampled according to JIS H 1610: 2008. Specifically, sieves having an opening of 1.7, 4.75, 12.7, 19.1, and 25.4 mm are used, and the mass percentage of the sponge titanium group that has passed through each sieve is measured. Thereafter, the particle size of the group of 1.7 mm or less is 0.85 mm, the group of 1.7 to 4.75 mm is 3.25 mm, the group of 4.75 to 12.7 mm is 8.73 mm, 12.7 to 19. The particle size of the 1 mm group is 15.9 mm, the particle size of the 19.1 to 25.4 mm group is 22.3 mm, and the weighted average value is the average particle size.
 本発明のスポンジチタンの粉砕前の空隙率εは、20~50%、好ましくは20~40%である。スポンジチタンの空隙率が上記範囲にあることにより、鉄含有量及び酸素含有量が高いスポンジチタン細粒に起因する大型チタンインゴット内での局所的な成分濃化の問題が生じ難く、大型チタンインゴットの局所的な成分外れの問題が生じ難くなる。なお、本発明において、粉砕前の空隙率εが上記範囲にあることは、以下のようにして判定する。先ず、スポンジチタン塊の採取対象の上限位置近傍であって、軸心近傍A1と、外周近傍B1と、該外周近傍B1とは軸心を中心として180度ずれた位置の外周近傍C1と、の合計3か所から、各質量が100~300g(径は凡そ50~150mm)のスポンジチタンサンプルを1点ずつ採取し、後述の測定方法にて各サンプルの空隙率を測定して、その平均値を上限位置近傍の空隙率とする。次いで、スポンジチタン塊の採取対象の下限位置近傍であって、軸心近傍A2と、外周近傍B2と、該外周近傍B2とは軸心を中心として180度ずれた位置の外周近傍C2と、の合計3か所から、各質量が100~300gのスポンジチタンサンプルを1点ずつ採取し、後述の測定方法で各サンプルの空隙率を測定して、その平均値を下限位置の空隙率とする。そして、採取対象の上限位置の空隙率εと採取対象の下限位置の空隙率εの両方が、20~50%の範囲にあれば、採取対象の粉砕前の空隙率εは、20~50%の範囲にあると判定する。 The porosity ε before pulverization of the sponge titanium of the present invention is 20 to 50%, preferably 20 to 40%. Due to the porosity of the sponge titanium being in the above range, the problem of local component concentration in the large titanium ingot caused by the sponge titanium fine particles having a high iron content and oxygen content hardly occurs, and the large titanium ingot. It becomes difficult to cause a problem of delocalization. In the present invention, it is determined as follows that the porosity ε before pulverization is in the above range. First, in the vicinity of the upper limit position of the collection target of the titanium sponge lump, the vicinity of the axis A1, the vicinity of the outer periphery B1, and the vicinity of the outer periphery B1 are the vicinity of the outer periphery C1 at a position shifted by 180 degrees about the axis. Take a sponge titanium sample with a mass of 100 to 300 g (diameter is about 50 to 150 mm) from a total of three locations, and measure the porosity of each sample by the measurement method described later. Is the porosity in the vicinity of the upper limit position. Next, in the vicinity of the lower limit position of the collection target of the titanium sponge lump, the vicinity of the axis A2, the vicinity of the outer periphery B2, and the vicinity of the outer periphery B2 are the vicinity of the outer periphery C2 at a position shifted by 180 degrees about the axis. Titanium sponge samples each having a mass of 100 to 300 g are collected from a total of three locations, and the porosity of each sample is measured by the measurement method described later, and the average value is taken as the porosity at the lower limit position. If both the porosity ε at the upper limit position of the sampling target and the porosity ε at the lower limit position of the sampling target are in the range of 20 to 50%, the porosity ε before pulverization of the sampling target is 20 to 50%. It is determined that it is in the range.
 また、本発明のスポンジチタンの粉砕後の空隙率ε´の範囲は、粉砕前の空隙率εの範囲より広くなり、5%~50%となる。これは、粉砕の過程で、極端に圧縮されて空隙率が小さくなった粒や、圧縮されず空隙率が変化しなかった粒が同一ロット中に混在するためである。粉砕後の空隙率ε´を求める際は、平均粒径よりも大きいスポンジチタン粒を5点以上採取し、後述の測定方法にて各サンプルの空隙率を測定して、その平均値を粉砕後の空隙率ε´とする。平均粒径よりも大きいスポンジチタン粒を対象とするのは、後述の測定方法では、粒径が極端に小さいサンプルの空隙率を正確に測定することが困難なためである。 Further, the range of the porosity ε ′ after pulverization of the sponge titanium of the present invention is wider than the range of the porosity ε before pulverization, and becomes 5% to 50%. This is because, during the pulverization process, grains that have been extremely compressed to reduce the porosity and grains that have not been compressed and have not changed in porosity are mixed in the same lot. When determining the porosity ε ′ after pulverization, collect five or more sponge titanium particles larger than the average particle diameter, measure the porosity of each sample by the measurement method described later, and pulverize the average value. The porosity ε ′. The reason why sponge titanium particles larger than the average particle diameter are targeted is that it is difficult to accurately measure the porosity of a sample having an extremely small particle diameter by the measurement method described later.
 ここで空隙率の測定方法について解説する。先ずスポンジチタンサンプルの質量W(g)を測定する。次いで、パラフィン(ティシュ―・テック パラフィンワックス)を耐熱容器中で80℃~120℃程度に加熱し溶解させる。次いで、スポンジチタンサンプルを糸状の物で吊って、パラフィン溶液中に浸漬させ、気泡が出なくなったことを確認した後、静かに引き上げて、空中に吊ったまま冷却する。次いで、水を張った容器を準備し秤量器の上に設置する。冷却したスポンジチタンサンプルを、容器に触れないよう、糸で吊ったまま静かに水中に浸漬させ、秤量器で浸漬前後での質量変化量(g)を記録する。質量変化量(g)を水の密度(g/cm)で除することで、スポンジチタンサンプルの見かけの体積V(cm)を求める。スポンジチタンサンプルの質量Wを体積Vで除することで、スポンジチタンの嵩密度ρ(g/cm)を求める(ρ=W/V)。この嵩密度ρから、下記式(4):
   空隙率(%)=(1-(ρ/4.51))×100   (4)
を用いて、空隙率(%)を求める。
Here, the method for measuring the porosity is explained. First, the mass W (g) of the sponge titanium sample is measured. Next, paraffin (Tissue-Tech paraffin wax) is heated to about 80 ° C. to 120 ° C. in a heat-resistant container and dissolved. Next, the sponge titanium sample is hung with a thread-like material and immersed in a paraffin solution. After confirming that bubbles are not generated, the sponge titanium sample is gently lifted and cooled while being suspended in the air. Next, a container filled with water is prepared and placed on a weighing machine. The cooled sponge titanium sample is gently dipped in water while being hung with a thread so as not to touch the container, and the amount of mass change (g) before and after dipping is recorded with a weigher. The apparent volume V (cm 3 ) of the titanium sponge sample is determined by dividing the mass change (g) by the density of water (g / cm 3 ). By dividing the mass W of the sponge titanium sample by the volume V, the bulk density ρ (g / cm 3 ) of the sponge titanium is obtained (ρ = W / V). From this bulk density ρ, the following formula (4):
Porosity (%) = (1− (ρ / 4.51)) × 100 (4)
Is used to determine the porosity (%).
 スポンジチタン中に不純物として存在する塩素は、以下の3つのTypeとして存在している。Type1が、チタン一次粒子内の微細孔中の塩化マグネシウムとして存在している塩素、Type2が、チタン一次粒子同士の隙間に残存する塩化マグネシウムとして存在している塩素、Type3が、チタン一次粒子表面に付着した二塩化チタンとして存在している塩素である。そのうち、Type2が主な存在形態である。図1に示すスポンジチタンサンプルの断面観察写真において、上側の点線で囲んだ部分に点在しているのが、Type1の塩化マグネシウム1である。また、図1中下側の実線で囲んだ部分が、Type2の塩化マグネシウム2であり、この塩化マグネシウムの周囲には空隙が存在している。また、図2中下側の実線で囲んだ部分が、Type2の塩化マグネシウム2であり、この塩化マグネシウムは密に焼結したチタン一次粒子に閉じ込められている。なお、図1及び図2に示すスポンジチタンサンプルの断面観察写真は、模式図である。 Chlorine that exists as an impurity in sponge titanium exists as the following three types. Type 1 is chlorine existing as magnesium chloride in the fine pores in the titanium primary particles, Type 2 is chlorine existing as magnesium chloride remaining in the gap between the titanium primary particles, and Type 3 is on the surface of the titanium primary particles. Chlorine is present as adhering titanium dichloride. Of these, Type 2 is the main existence form. In the cross-sectional observation photograph of the sponge titanium sample shown in FIG. 1, Type 1 magnesium chloride 1 is scattered in the portion surrounded by the upper dotted line. Further, a portion surrounded by a solid line on the lower side in FIG. 1 is Type 2 magnesium chloride 2, and there are voids around the magnesium chloride. Further, the portion surrounded by the solid line on the lower side in FIG. 2 is Type 2 magnesium chloride 2, and this magnesium chloride is confined in the densely sintered titanium primary particles. In addition, the cross-sectional observation photograph of the sponge titanium sample shown in FIG.1 and FIG.2 is a schematic diagram.
 本発明者らは、これらのTypeの塩素の残存量と、工程の条件や操作等との関係について、鋭意検討した結果、以下のことを見出した。なお、スポンジチタン中の塩素の存在形態の分析については、測定対象のスポンジチタンサンプルを樹脂埋めし、#1000のエメリー紙にて研磨した後、断面を電子線マイクロアナライザ(SUPERPROBE JXA-8100、日本電子株式会社製)で観察することにより行った。この際、塩化物の水への溶出や吸湿を防ぐため、切断~研磨~観察までは水に触れさせず、手早く作業を行なった。 As a result of intensive studies on the relationship between the residual amount of chlorine of these types and the process conditions and operations, the present inventors have found the following. As for the analysis of the presence of chlorine in the sponge titanium, the sponge titanium sample to be measured was filled with resin, polished with # 1000 emery paper, and then the cross section was analyzed with an electron beam microanalyzer (SUPERPROBE XXA-8100, Japan This was done by observing with an electronic company). At this time, in order to prevent the elution and moisture absorption of chloride in water, the work was performed quickly without touching water from cutting to polishing to observation.
 複数回の試験を行った結果、還元分離工程を行い得られるスポンジチタン塊の上部のスポンジチタンで観察された塩素の存在形態は、多くがType1であり、塩化物がチタン粒子内に内包されて、広範囲かつ微細に分散しているため、真空分離にて揮発除去できなかったということを確認した。そのため、スポンジチタン塊の上部の塩素含有量が、1000~1500質量ppmと高くなるということが分かった。 As a result of a plurality of tests, the presence form of chlorine observed in the sponge titanium at the upper part of the sponge titanium lump obtained by performing the reduction and separation step is mostly Type 1, and chloride is encapsulated in the titanium particles. It was confirmed that it could not be volatilized and removed by vacuum separation because it was dispersed widely and finely. Therefore, it was found that the chlorine content in the upper part of the sponge titanium lump is as high as 1000-1500 mass ppm.
 それに対して、スポンジチタン塊の下部のスポンジチタンで観察された存在形態は、多くがType2であり、チタン一次粒子同士の隙間に塩化マグネシウムが残存していた。そして、一部のType2は、チタン一次粒子の密な焼結によって、スポンジチタン内に完全に閉じ込められていた。また、Type1も少量観察された。スポンジチタン塊の下部の塩素含有量は、Type2及びType1を併せて、400~600質量ppm程度になるということが分かった。 In contrast, the existence form observed in the sponge titanium at the lower part of the sponge titanium lump was mostly Type 2, and magnesium chloride remained in the gaps between the titanium primary particles. A part of Type 2 was completely confined in the sponge titanium by the close sintering of the titanium primary particles. A small amount of Type 1 was also observed. It has been found that the chlorine content in the lower part of the sponge titanium lump is about 400 to 600 mass ppm in combination of Type 2 and Type 1.
 これらのことから、スポンジチタンの塩素含有量を低減するためには、Type1及びType2の塩素を、低減することが重要であるということが分かった。 From these facts, it was found that it is important to reduce chlorine of Type 1 and Type 2 in order to reduce the chlorine content of sponge titanium.
 Type1については、スポンジチタン塊の上部の観察結果からも分かるように、反応サイトにおける四塩化チタン供給速度に対し、金属マグネシウムの供給速度が不足した時に発生量が増大すると推定される。ここでいう金属マグネシウムの供給速度というのは、その比重差によって、反応浴面で副生した塩化マグネシウムが浴内へ沈降し、代わりに浴内のマグネシウムが浮上して反応浴面に供給される速度を指す。そのため、Type1の塩素を低減するためには、反応サイトへの四塩化チタンの供給速度と金属マグネシウムの供給速度の比を適切に制御することが重要であると推定した。 As can be seen from the observation result of the upper part of the titanium sponge block, the amount of Type 1 is estimated to increase when the metal magnesium supply rate is insufficient with respect to the titanium tetrachloride supply rate at the reaction site. The metal magnesium supply rate here means that magnesium chloride by-produced on the reaction bath surface settles into the bath due to the difference in specific gravity, and instead the magnesium in the bath floats and is supplied to the reaction bath surface. Refers to speed. For this reason, in order to reduce Type 1 chlorine, it was estimated that it is important to appropriately control the ratio of the supply rate of titanium tetrachloride to the reaction site and the supply rate of magnesium metal.
 また、Type2については、チタン一次粒子の密な焼結によって、チタン一次粒子間に完全に閉じ込められたType2の塩化マグネシウム(以下、閉塞型Type2)に着目し、さらに検討を続けた結果、「スポンジチタンの空隙率がある程度小さくなると閉塞型Type2の発生頻度が大きくなること」、「スポンジチタン塊の下部であっても閉塞型Type2によって、塩素含有量が1000質量ppmを超える高塩素含有部位が発生することがあること」を見出した。そして、空隙率εは、還元分離工程の真空分離時におけるチタン一次粒子同士の焼結によって主に支配されていることが分かった。そのため、塩素含有量を低減させるためには、スポンジチタンの空隙率を小さくし過ぎないことで、閉塞型Type2の発生頻度を減らすことが有効であると推測した。一方で、充填密度を高くして、局所的に鉄含有量及び酸素含有量が高い部分を砕け難くして、鉄含有量及び酸素含有量が高いスポンジチタン細粒に起因する大型チタンインゴット内での局所的な成分濃化の問題が生じ難くするためには、空隙率が小さい方が望ましいと推測した。 As for Type 2, attention was paid to Type 2 magnesium chloride (hereinafter referred to as closed type 2) that was completely confined between the titanium primary particles by dense sintering of the titanium primary particles. “When the porosity of titanium is reduced to some extent, the occurrence frequency of closed type 2 increases.” “Even in the lower part of the sponge titanium lump, the closed type 2 generates a high chlorine content site with a chlorine content exceeding 1000 ppm by mass. I found something to do. And it turned out that the porosity (epsilon) is mainly controlled by the sintering of the titanium primary particles at the time of the vacuum separation of a reduction separation process. Therefore, in order to reduce the chlorine content, it has been estimated that it is effective to reduce the occurrence frequency of closed type 2 by not reducing the porosity of sponge titanium too much. On the other hand, in the large titanium ingot caused by the sponge titanium fine particles with high iron content and oxygen content, making the packing density high, making it difficult to locally break the part with high iron content and oxygen content In order to make it difficult for the local component concentration problem to occur, it is presumed that a smaller porosity is desirable.
 これらのことから、Type2の低減には、スポンジチタンの焼結条件を適切に制御することにより、スポンジチタンの空隙率を適切な範囲に調節することが重要であることが分かった。そして、本発明者らは、圧縮荷重が大きくなり過ぎると、スポンジチタンの空隙率が小さくなり過ぎて、閉塞型Type2が発生し易くなるため、圧縮荷重を適切範囲にする必要があることを見出した。 From these facts, it was found that, for the reduction of Type 2, it is important to adjust the porosity of the sponge titanium to an appropriate range by appropriately controlling the sintering conditions of the titanium sponge. The inventors have found that if the compressive load becomes too large, the porosity of the sponge titanium becomes too small and the closed type 2 is likely to be generated, so that the compressive load needs to be in an appropriate range. It was.
 本発明者らは、これらの知見を基に、以下に示す本発明のスポンジチタンの製造方法に想到した。 Based on these findings, the present inventors have conceived the following method for producing sponge titanium according to the present invention.
 本発明のスポンジチタンの製造方法は、クロール法によるスポンジチタンの製造方法であって、
 反応浴面の面積が2.5m以上であり、(i)金属マグネシウムへの四塩化チタンの供給を開始してから、破砕工程における採取対象の上限位置に相当する位置までのスポンジチタンを生成させている間は、下記式(1):
   A=1分間当たりの四塩化チタンの平均供給速度(kg/分)/反応浴面の面積(m)   (1)
で算出される反応浴面単位面積当たりの四塩化チタンの平均供給速度Aを、2.8~4.0kg/(分・m)とし、且つ、(ii)四塩化チタンの総供給量を、下記式(2):
   B=スポンジチタン塊の質量(t)/スポンジチタン塊の下側が接する円板又は台座の面積(m)   (2)
で算出されるスポンジチタン塊の底部荷重指数Bが3.5~5.5t/mとなる量とする還元分離工程と、
 採取対象の上限位置を、スポンジチタン塊の下からの質量基準で40~50%の範囲内の位置とし、該採取対象の上限位置より下のスポンジチタン塊を、採取対象として、切断、粉砕及び篩別して、スポンジチタンを得る破砕工程と、
を有すること、
を特徴とするクロール法によるスポンジチタンの製造方法である。
The method for producing sponge titanium of the present invention is a method for producing sponge titanium by a crawl method,
The reaction bath surface area is 2.5 m 2 or more, and (i) titanium sponge is produced from the start of the supply of titanium tetrachloride to the metal magnesium to the position corresponding to the upper limit position of the sample to be collected in the crushing process. During the time, the following formula (1):
A = average feed rate of titanium tetrachloride per minute (kg / min) / area of reaction bath surface (m 2 ) (1)
The average supply rate A of titanium tetrachloride per unit area of the reaction bath calculated in step 2.8 is 2.8 to 4.0 kg / (min · m 2 ), and (ii) the total supply amount of titanium tetrachloride is The following formula (2):
B = mass of titanium sponge lump (t) / area of disk or pedestal with which the lower side of the titanium sponge lump contacts (m 2 ) (2)
A reduction separation step in which the bottom load index B of the sponge titanium mass calculated in step 1 is 3.5 to 5.5 t / m 2 ;
The upper limit position of the collection target is a position within the range of 40 to 50% on the mass basis from the bottom of the sponge titanium lump, and the sponge titanium lump below the upper limit position of the collection target is cut, crushed and Crushing to obtain sponge titanium,
Having
It is the manufacturing method of sponge titanium by the crawl method characterized by these.
 本発明のスポンジチタンの製造方法は、クロール法によるスポンジチタンの製造方法であり溶融状態の金属マグネシウム上に四塩化チタンを滴下し、四塩化チタンを還元して、スポンジチタン塊を生成させ、次いで、真空分離により、スポンジチタン塊から、副生成物である塩化マグネシウムと残存マグネシウムを除去する還元分離工程と、スポンジチタン塊を、切断、破砕及び篩分し、所望の粒径のスポンジチタンを得る破砕工程と、を有する。 The method for producing sponge titanium according to the present invention is a method for producing titanium sponge by a crawl method. Titanium tetrachloride is dropped on molten metal magnesium, titanium tetrachloride is reduced to form a titanium sponge lump, The reduction separation process of removing magnesium chloride and residual magnesium as by-products from the sponge titanium lump by vacuum separation, and the sponge titanium lump is cut, crushed and sieved to obtain sponge titanium having a desired particle size. Crushing step.
 本発明のスポンジチタンの製造方法に係る還元分離工程では、先ず、反応容器内の金属マグネシウム浴上に四塩化チタンを供給して、金属マグネシウムと四塩化チタンを反応させて、四塩化チタンを還元する。この時、反応容器内の反応浴面と、その上の空間にて、主な反応が起こり、チタンの一次粒子が生成し、また、反応浴面近傍の金属マグネシウムが消費され、塩化マグネシウムが副生する。生成したチタン一次粒子は、反応容器下方へ沈降し、反応容器の底に設けられている円板又は台座上に堆積する。また、金属マグネシウムの比重は、塩化マグネシウムよりも小さいため、副生した塩化マグネシウムは容器下方へと沈降し、代りに金属マグネシウムが浮上する。還元反応を行っている間、沈降した塩化マグネシウムを、反応容器下方から適宜抜き取るが、完全に抜き取ることは不可能であり、還元反応終了後も、残留した塩化マグネシウムと未反応の金属マグネシウムが、共に、スポンジチタン塊内に残る。 In the reduction and separation step according to the method for producing titanium sponge of the present invention, first, titanium tetrachloride is supplied onto the metal magnesium bath in the reaction vessel, and the metal magnesium and titanium tetrachloride are reacted to reduce titanium tetrachloride. To do. At this time, the main reaction takes place on the reaction bath surface in the reaction vessel and the space above it, primary particles of titanium are generated, magnesium metal in the vicinity of the reaction bath surface is consumed, and magnesium chloride is a secondary agent. To be born. The produced titanium primary particles settle to the bottom of the reaction vessel and deposit on a disk or pedestal provided at the bottom of the reaction vessel. In addition, since the specific gravity of metallic magnesium is smaller than that of magnesium chloride, the by-produced magnesium chloride settles downward in the container, and instead, metallic magnesium rises. During the reduction reaction, the precipitated magnesium chloride is appropriately extracted from the bottom of the reaction vessel, but it is impossible to completely extract it, and after the reduction reaction, the remaining magnesium chloride and unreacted metallic magnesium are Both remain in the sponge titanium mass.
 還元分離工程では、次いで、真空分離により、スポンジチタン塊から、残留した塩化マグネシウムと未反応の金属マグネシウムを除去する。このとき、生成したスポンジチタン塊が入っている反応容器と空の反応容器を隣接配置し、両者の上部同士を配管により接続する。そして、前者の反応容器を外部から加熱しながら、後者の反応容器の内部を真空引きすることにより、前者の反応容器内のスポンジチタン塊に含まれる金属マグネシウム及び塩化マグネシウムを、反応容器上部同士を繋いている配管を通じて、ガス状態で、空の反応容器内へ移動させる。なお、空の反応容器内へ移動された金属マグネシウムは、再び還元工程に利用される。 In the reduction separation step, the remaining magnesium chloride and unreacted metallic magnesium are then removed from the sponge titanium lump by vacuum separation. At this time, a reaction vessel containing the generated sponge titanium lump and an empty reaction vessel are disposed adjacent to each other, and the upper portions of both are connected by piping. Then, while heating the former reaction vessel from the outside, the inside of the latter reaction vessel is evacuated, so that the metallic magnesium and magnesium chloride contained in the sponge titanium mass in the former reaction vessel are exchanged between the upper portions of the reaction vessel. It is moved into an empty reaction vessel in a gas state through the connected piping. Note that the magnesium metal moved into the empty reaction vessel is used again for the reduction step.
 本発明のスポンジチタンの製造方法では、還元分離工程において、反応浴面の面積が2.5m以上であり、且つ、金属マグネシウム浴上に四塩化チタンを供給するときに、(i)金属マグネシウムへの四塩化チタンの供給を開始してから、破砕工程における採取対象の上限位置に相当する位置までのスポンジチタンを生成させている間は、下記式(1):
   A=1分間当たりの四塩化チタンの平均供給速度(kg/分)/反応浴面の面積(m)   (1)
で算出される反応浴面単位面積当たりの四塩化チタンの平均供給速度Aを、2.8~4.0kg/(分・m)、好ましくは2.8~3.6kg/(分・m)にして、金属マグネシウム浴上に四塩化チタンを供給する。そして、反応浴面の面積を2.5m以上とし、且つ、金属マグネシウムへの四塩化チタンの供給を開始してから、破砕工程における採取対象の上限位置に相当する位置までのスポンジチタンを生成させている間は、反応浴面単位面積当たりの四塩化チタンの平均供給速度Aを、2.8~4.0kg/(分・m)、好ましくは2.8~3.6kg/(分・m)にすることにより、スポンジチタンの塩素含有量及びマグネシウム含有量の合計を、350質量ppm以下、好ましくは300ppm以下とすることができる。
In the method for producing sponge titanium according to the present invention, in the reduction separation step, when the area of the reaction bath surface is 2.5 m 2 or more and titanium tetrachloride is supplied onto the metal magnesium bath, (i) metal magnesium During the generation of titanium sponge up to a position corresponding to the upper limit position of the object to be collected in the crushing process after starting the supply of titanium tetrachloride to the following formula (1):
A = average feed rate of titanium tetrachloride per minute (kg / min) / area of reaction bath surface (m 2 ) (1)
The average feed rate A of titanium tetrachloride per unit area of the reaction bath calculated in step 2.8 is from 2.8 to 4.0 kg / (min · m 2 ), preferably from 2.8 to 3.6 kg / (min · m 2 ) to supply titanium tetrachloride onto the metal magnesium bath. Then, the area of the reaction bath surface is set to 2.5 m 2 or more, and titanium titanium chloride is generated up to the position corresponding to the upper limit position of the collection target in the crushing process after the supply of titanium tetrachloride to the metal magnesium is started. The average feed rate A of titanium tetrachloride per unit area of the reaction bath is 2.8 to 4.0 kg / (min · m 2 ), preferably 2.8 to 3.6 kg / (min. By making m 2 ), the total of the chlorine content and the magnesium content of the sponge titanium can be 350 mass ppm or less, preferably 300 ppm or less.
 なお、本発明のスポンジチタンの製造方法では、先ず、反応容器への四塩化チタンの供給前に、破砕工程における採取対象の上限位置を、スポンジチタン塊の下から質量基準で何%の位置とするかを決定し、次いで、その位置までのスポンジチタンを生成するのに必要な四塩化チタンの理論量で、反応容器への四塩化チタンの供給を行っているときの、破砕工程における採取対象の上限位置までのスポンジチタンが生成される時点(質量基準)を把握する。例えば、破砕工程における採取対象の上限位置を、スポンジチタン塊の下からの質量基準で50%の位置とする場合は、金属マグネシウムへの四塩化チタンの供給を開始してから、破砕工程における採取対象の上限位置に相当する位置までのスポンジチタンを生成させている間とは、溶融状態の金属マグネシウムに四塩化チタンの供給を開始してから、反応容器に供給する全四塩化チタンのうちの50質量%の四塩化チタンを供給し終えるまでの間とする。また、例えば、破砕工程における採取対象の上限位置を、スポンジチタン塊の下からの質量基準で40%の位置とする場合は、金属マグネシウムへの四塩化チタンの供給を開始してから、破砕工程における採取対象の上限位置に相当する位置までのスポンジチタンを生成させている間とは、溶融状態の金属マグネシウムに四塩化チタンの供給を開始してから、反応容器に供給する全四塩化チタンのうちの40質量%の四塩化チタンを供給し終えるまでの間とする。 In the method for producing sponge titanium according to the present invention, first, before supplying titanium tetrachloride to the reaction vessel, the upper limit position of the sample to be collected in the crushing step is set to a position on the mass basis from the bottom of the sponge titanium lump. The target to be collected in the crushing process when the titanium tetrachloride is supplied to the reaction vessel with the theoretical amount of titanium tetrachloride required to produce titanium sponge up to that position. The time point (mass basis) at which the sponge titanium is produced up to the upper limit position is grasped. For example, when the upper limit position of the collection target in the crushing process is set to 50% on the mass basis from the bottom of the sponge titanium lump, the supply in the crushing process is started after the supply of titanium tetrachloride to the metal magnesium is started. During the generation of titanium sponge up to the position corresponding to the upper limit position of the target, the supply of titanium tetrachloride to the molten metal magnesium is started, and then the titanium tetrachloride supplied to the reaction vessel The time until the supply of 50% by mass of titanium tetrachloride is completed. In addition, for example, when the upper limit position of the collection target in the crushing process is set to a position of 40% based on the mass from the bottom of the sponge titanium lump, the supply of titanium tetrachloride to the metal magnesium is started, and then the crushing process. During the generation of sponge titanium up to the position corresponding to the upper limit position of the sample to be collected, the supply of titanium tetrachloride to the molten metal magnesium is started, and then all the titanium tetrachloride supplied to the reaction vessel The time until the supply of 40% by mass of titanium tetrachloride is completed.
 破砕工程における採取対象の上限位置より上に相当する位置のスポンジチタンを生成させている間の反応浴面単位面積当たりの四塩化チタンの供給速度は、スポンジチタンの製造効率に応じて、適宜選択されるが、一般的には1.0~5.5kg/(分・m)の範囲で選択する。反応容器内の金属マグネシウムは、反応終盤になるほど少なくなるため、四塩化チタンの供給速度は反応終盤ではより小さい値を設定することが好ましい。 The feed rate of titanium tetrachloride per unit area of the reaction bath surface during the generation of sponge titanium at a position corresponding to the upper limit position of the sample to be collected in the crushing process is appropriately selected according to the production efficiency of the titanium sponge. However, it is generally selected in the range of 1.0 to 5.5 kg / (min · m 2 ). Since the metal magnesium in the reaction vessel decreases as the reaction ends, the titanium tetrachloride supply rate is preferably set to a smaller value at the end of the reaction.
 反応浴面の面積とは、反応容器内で溶融状態にある金属マグネシウムの上面の面積であり、金属マグネシウムの上面の位置の反応容器の水平断面の容器内の面積に相当する。 The area of the reaction bath surface is the area of the upper surface of the metallic magnesium in a molten state in the reaction vessel, and corresponds to the area of the horizontal cross section of the reaction vessel at the position of the upper surface of the metallic magnesium.
 更に、本発明のスポンジチタンの製造方法では、還元分離工程において、金属マグネシウム浴上に四塩化チタンを供給するときに、(ii)四塩化チタンの総供給量を、下記式(2):
   B=スポンジチタン塊の質量(t)/スポンジチタン塊の下側が接する円板又は台座の面積(m)   (2)
で算出されるスポンジチタン塊の底部荷重指数Bが3.5~5.5t/m、好ましくは4.0~5.5t/mとなる量にする。そして、四塩化チタンの総供給量を、スポンジチタン塊の底部荷重指数Bが3.5~5.5t/m、好ましくは4.0~5.5t/mとなる量にすることにより、スポンジチタンの空隙率εを、20~50%、好ましくは20~40%とすることができるので、スポンジチタンの充填密度を、1.65~1.95g/cm、好ましくは1.70~1.95g/cmとすることができる。還元分離工程を行い得られるスポンジチタン塊の底部荷重指数Bが、上記範囲を超えると、真空分離のときに、スポンジチタンにかかる圧縮荷重が大きくなるため、空隙率が小さくなり、嵩密度が高くなり、充填密度が高くなるものの、スポンジチタンにかかる圧縮荷重が大きき過ぎるため、スポンジチタンの空隙率が小さくなり過ぎてしまい、閉塞型Type2の塩化マグネシウムが多くなるので、スポンジチタンの塩素含有量が高くなってしまう。一方、還元分離工程を行い得られるスポンジチタン塊の底部荷重指数Bが、上記範囲未満だと、真空分離のときに、スポンジチタンにかかる圧縮荷重が小さ過ぎるため、空隙率が大きくなり過ぎるので、嵩密度が上記範囲未満となり、充填密度が上記範囲未満となる。
Furthermore, in the titanium sponge production method of the present invention, when supplying titanium tetrachloride to the metal magnesium bath in the reduction separation step, (ii) the total supply amount of titanium tetrachloride is expressed by the following formula (2):
B = mass of titanium sponge lump (t) / area of disk or pedestal with which the lower side of the titanium sponge lump contacts (m 2 ) (2)
The bottom load index B of the titanium sponge lump calculated in (5) is 3.5 to 5.5 t / m 2 , preferably 4.0 to 5.5 t / m 2 . The total supply amount of titanium tetrachloride is adjusted so that the bottom load index B of the sponge titanium block is 3.5 to 5.5 t / m 2 , preferably 4.0 to 5.5 t / m 2. Since the porosity ε of the sponge titanium can be 20 to 50%, preferably 20 to 40%, the packing density of the sponge titanium is 1.65 to 1.95 g / cm 3 , preferably 1.70. Up to 1.95 g / cm 3 . When the bottom load index B of the titanium sponge mass obtained by performing the reduction separation process exceeds the above range, the compression load applied to the titanium sponge during vacuum separation increases, so the porosity decreases and the bulk density increases. Although the packing density becomes high, the compressive load applied to the sponge titanium is too large, so the porosity of the sponge titanium becomes too small, and the magnesium chloride of the closed type 2 increases, so the chlorine content of the sponge titanium Becomes higher. On the other hand, if the bottom load index B of the sponge titanium mass obtained by performing the reduction separation process is less than the above range, the compression load applied to the sponge titanium is too small at the time of vacuum separation, so the porosity becomes too large. The bulk density is less than the above range, and the packing density is less than the above range.
 なお、スポンジチタン塊の下側が接する円板又は台座の面積とは、スポンジチタン塊の下に、台座及びその台座の上に配置されている円板が設置されている場合には、円板の上面の面積を指し、また、スポンジチタン塊の下には、円板は配置されておらず、台座のみが設置されている場合には、台座の上面の面積を指す。また、B値を計算する際の、スポンジチタン塊の質量とは、反応容器内に供給される四塩化チタンが、全て金属チタンに変換されたとして計算される理論値であり、反応容器内に供給される四塩化チタンの総モル数に、チタンの原子量を乗じて算出される値である。 The area of the disc or pedestal with which the lower side of the sponge titanium mass contacts is the area of the disc when the pedestal and the disc placed on the pedestal are installed under the sponge titanium mass. It refers to the area of the upper surface, and when no pedestal is placed under the sponge titanium mass and only the pedestal is installed, it refers to the area of the upper surface of the pedestal. In addition, the mass of the titanium sponge lump when calculating the B value is a theoretical value calculated as if all of the titanium tetrachloride supplied into the reaction vessel was converted to titanium metal, This is a value calculated by multiplying the total number of moles of titanium tetrachloride supplied by the atomic weight of titanium.
 還元分離工程の還元反応における上記以外の条件、例えば、還元反応中の反応容器外側の温度は、通常、クロール法によるスポンジチタンの製造において用いられる条件であればよく、還元反応容器温度は700~950℃である。 Conditions other than those described above in the reduction reaction of the reduction separation process, for example, the temperature outside the reaction vessel during the reduction reaction may be any conditions that are usually used in the production of sponge titanium by the crawl method. 950 ° C.
 還元分離工程の真空分離における真空加熱温度は、特に制限されないが、好ましくは900~1080℃である。また、還元分離工程の真空分離における真空加熱時間は、特に制限されず、揮発分離が可能な塩化マグネシウム及び金属マグネシウムが除去される時間が、適宜選択される。なお、上述したように、Type1及び閉塞型Type2の塩素は、スポンジチタン内に閉じ込められるようにして存在しているため、真空加熱時間を長くしても除去されない。そのため、真空加熱時間を無駄に長くすると時間とエネルギーの無駄になるので、真空加熱時間としては、揮発分離が可能な塩化マグネシウム及び金属マグネシウムが除去される時間であればよい。そして、還元分離工程の真空分離における真空加熱時間は、真空加熱時間をp(時間)、スポンジチタン塊の下部が接する円板又は台座の半径をr(mm)(ただし、rは600mm以上である。)としたときに、「112≦0.26×r-p≦125」を満たす範囲であることが、時間と電力の無駄を伴うことなく真空分離を行うことができる点で、好ましい。なお、円板又は台座上面が、真円の場合にはその半径をrとし、楕円である場合には最大径と最小径の平均値をrとする。 The vacuum heating temperature in the vacuum separation in the reduction separation step is not particularly limited, but is preferably 900 to 1080 ° C. Moreover, the vacuum heating time in the vacuum separation in the reduction separation step is not particularly limited, and a time for removing magnesium chloride and metal magnesium capable of volatile separation is appropriately selected. Note that, as described above, Type 1 and closed Type 2 chlorine exists so as to be confined in the sponge titanium, and thus is not removed even if the vacuum heating time is increased. For this reason, if the vacuum heating time is unnecessarily prolonged, time and energy are wasted. Therefore, the vacuum heating time may be any time for removing magnesium chloride and metal magnesium capable of volatile separation. The vacuum heating time in the vacuum separation in the reduction separation step is p (hour) as the vacuum heating time, and r (mm) as the radius of the disk or pedestal with which the lower part of the sponge titanium lump contacts (where r is 600 mm or more). )), A range satisfying “112 ≦ 0.26 × rp ≦ 125” is preferable in that vacuum separation can be performed without wasting time and power. When the disk or pedestal upper surface is a perfect circle, the radius is r, and when it is an ellipse, the average value of the maximum diameter and the minimum diameter is r.
 本発明のスポンジチタンの製造方法に係る破砕工程では、採取対象の上限位置を、スポンジチタン塊の下からの質量基準で40~50%の範囲内の位置とし、採取対象の上限位置から下のスポンジチタン塊を、採取対象として、切断、粉砕及び篩別して、スポンジチタンを得る。破砕工程における採取対象の上限位置は、反応容器への四塩化チタンの供給前に、破砕工程における採取対象の上限位置と決定した位置である。なお、スポンジチタン塊の下からの質量基準でX%の位置とは、スポンジチタン塊の下から、同一高さにあるチタンを垂直方向に積算したときに、累積質量がスポンジチタン塊の全質量に対しX%となる位置である。本発明における採取対象部位は、上限位置より下の範囲内であれば、例えば5%~30%、20~35%のように範囲内の一部であっても構わない。 In the crushing step according to the method for producing titanium sponge of the present invention, the upper limit position of the collection target is set to a position within the range of 40 to 50% on the mass basis from the bottom of the sponge titanium lump, and the lower position from the upper limit position of the collection target. The sponge titanium lump is cut, crushed and sieved as a sample to be collected to obtain sponge titanium. The upper limit position of the collection target in the crushing process is a position determined as the upper limit position of the collection target in the crushing process before supplying titanium tetrachloride to the reaction vessel. Note that the position of X% on the mass basis from the bottom of the sponge titanium lump means that when the titanium at the same height is accumulated vertically from the bottom of the sponge titanium lump, the accumulated mass is the total mass of the sponge titanium lump. Is a position where X%. The collection target site in the present invention may be a part within the range, for example, 5% to 30%, 20 to 35%, as long as it is within the range below the upper limit position.
 破砕工程では、還元分離工程を行い得られるスポンジチタン塊を、公知の押抜装置により、反応容器から取り出し、公知の大型のプレス機で輪切り状に切断粗砕し、部位ごとに分ける。更に、粗砕された小塊のスポンジチタンを、公知のシャーなどにより100mm以下に粉砕し、スポンジチタンとして得る。このとき、採取対象の上限位置と決めた位置から下に存在しているスポンジチタン塊を、採取対象として、切断、粉砕及び篩別する。そして、採取対象の上限位置を、スポンジチタン塊の下からの質量基準で40~50%の範囲内として、その採取対象の上限位置から下に存在するスポンジチタン塊を、切断、粉砕及び篩別することにより、充填密度が、1.65~1.95g/cm、好ましくは1.70~1.95g/cmのスポンジチタンを得ることができ、また、Type1の塩素の含有量が多いために塩素含有量が多くなり易いスポンジチタン塊の上側を避けて、Type1の塩素の含有量が少なく、塩素含有量が少ないスポンジチタン塊の下側を、採取対象とするので、得られるスポンジチタンの塩素含有量を低くすることができる。 In the crushing step, the titanium sponge block obtained by performing the reduction and separation step is taken out from the reaction vessel by a known punching device, cut and crushed into a round shape with a known large press, and divided into parts. Furthermore, the coarsely crushed small-sized sponge titanium is pulverized to 100 mm or less with a known shear or the like to obtain sponge titanium. At this time, the sponge titanium lump existing below the position determined as the upper limit position of the collection target is cut, pulverized, and sieved as the collection target. Then, the upper limit position of the collection target is set within a range of 40 to 50% based on the mass from the bottom of the titanium sponge lump, and the sponge titanium lump existing below the upper limit position of the collection target is cut, crushed and sieved. As a result, sponge titanium having a packing density of 1.65 to 1.95 g / cm 3 , preferably 1.70 to 1.95 g / cm 3 can be obtained, and the Type 1 chlorine content is large. Therefore, avoiding the upper side of the sponge titanium lump that tends to increase the chlorine content, the lower side of the sponge titanium lump with a small content of Type 1 and a low chlorine content is targeted for collection. The chlorine content of can be reduced.
 なお、還元分離工程を行い得られるスポンジチタン塊の下端近傍は、反応初期に生成したスポンジチタンであり、原料となる金属マグネシウム中の鉄や窒素、アルミニウム、ニッケルが濃化して一般的なスポンジチタンの成分規格を満たさないため、破砕工程では、還元分離工程を行い得られるスポンジチタン塊の下端近傍のスポンジチタンは、採取対象としない。破砕工程において、スポンジチタン塊の下から何%の位置を、スポンジチタンの採取対象の下限位置とするかは、スポンジチタン中の塩素含有量及びマグネシウム含有量により、適宜選択されるが、スポンジチタン塊の下からの質量基準で2~8%の位置を、スポンジチタンの採取対象の下限位置とすることが好ましく、スポンジチタン塊の下からの質量基準で2~5%の位置を、スポンジチタンの採取対象の下限位置とすることが特に好ましい。 In addition, the vicinity of the lower end of the sponge titanium mass obtained by performing the reduction and separation process is sponge titanium produced in the initial stage of the reaction, and iron, nitrogen, aluminum, nickel in the metal magnesium used as a raw material is concentrated, and the general sponge titanium In the crushing process, the titanium sponge in the vicinity of the lower end of the sponge titanium mass obtained by performing the reduction and separation process is not taken as a sampling target. In the crushing process, the percentage of the position below the sponge titanium lump that is the lower limit position of the sponge titanium collection target is appropriately selected depending on the chlorine content and the magnesium content in the sponge titanium. It is preferable that the position of 2 to 8% on the basis of mass from the bottom of the lump is the lower limit position of the collection target of sponge titanium, and the position of 2 to 5% on the basis of mass from the bottom of the sponge titanium lump is set to sponge titanium. It is particularly preferable to set the lower limit position of the sampling target.
 本発明のスポンジチタン及び本発明のスポンジチタンの製造方法を行い得られるスポンジチタンは、塩化物の含有量が非常に少ないので、圧縮成型を伴わない溶解方法において、塩化物の揮発に伴うスプラッシュが多く発生すること、溶解歩留りが悪化すること、原料供給口にスプラッシュが付着又は堆積することで、原料挿入が不可能となること、揮発した塩化物によって電子ビームの発生が阻害されること、発生した塩化物ガスが溶解設備を腐食させること等の塩化物の含有に起因する問題の発生を防ぐことができる。また、本発明のスポンジチタン及び本発明のスポンジチタンの製造方法を行い得られるスポンジチタンは、塩化物の含有量が非常に少ないので、圧縮成型を伴わない溶解方法において、鋳肌不良の問題の発生を防ぐことができる。また、本発明のスポンジチタン及び本発明のスポンジチタンの製造方法を行い得られるスポンジチタンは、充填密度が1.65~1.95g/cm、好ましくは1.70~1.95g/cmなので、鉄含有量及び酸素含有量が高い部分が砕けて生じる鉄含有量及び酸素含有量が高いスポンジチタン細粒に起因する大型チタンインゴット内での局所的な成分濃化の問題を防ぐことができ、大型チタンインゴットの局所的な成分外れの問題を防ぐことができる。 The sponge titanium obtained by carrying out the method for producing the sponge titanium of the present invention and the sponge titanium of the present invention has a very low chloride content. Therefore, in the dissolution method not involving compression molding, the splash accompanying the volatilization of chloride is not present. It occurs frequently, the dissolution yield deteriorates, the splash adheres to or deposits on the raw material supply port, the raw material cannot be inserted, and the generation of the electron beam is inhibited by the volatile chloride. Occurrence of problems caused by the inclusion of chloride such as corrosion of the dissolved chloride gas by the melting equipment can be prevented. In addition, since the sponge titanium obtained by carrying out the method for producing the sponge titanium according to the present invention and the sponge titanium according to the present invention has a very low chloride content, in the melting method not involving compression molding, there is a problem of poor casting surface. Occurrence can be prevented. The sponge titanium of the present invention and the sponge titanium obtained by carrying out the method for producing the sponge titanium of the present invention have a packing density of 1.65 to 1.95 g / cm 3 , preferably 1.70 to 1.95 g / cm 3. So, it can prevent the problem of local component concentration in large titanium ingots caused by sponge titanium fine particles with high iron content and oxygen content, which are generated by breaking parts with high iron content and oxygen content. It is possible to prevent the problem of local component deviation of the large titanium ingot.
 本発明のスポンジチタンの製造方法は、破砕工程でのスポンジチタンの採取対象の範囲を、スポンジチタンの塊の下からの質量基準で40~50%の位置から下側とすること、還元反応のときに、その採取対象の範囲のスポンジチタンを生成させているときの四塩化チタンの供給速度を、2.8~4.0kg/(分・m)、好ましくは2.8~3.6kg/(分・m)とし且つ反応浴面の面積を2.5m以上とすること、還元反応のときの四塩化チタンの総供給量を調節して、スポンジチタン塊の底部荷重指数を、3.5~5.5t/m、好ましくは4.0~5.5t/mとして、スポンジチタン塊の採取対象部分の空隙率を20~50%、好ましくは20~40%にすることにより、塩素含有量及びマグネシウム含有量の合計が350質量ppm以下、好ましくは300質量ppm以下、且つ、充填密度が1.65~1.95g/cm、好ましくは1.70~1.95g/cmのスポンジチタンを得ることができる。 In the method for producing sponge titanium according to the present invention, the range of the collection target of titanium sponge in the crushing step is 40% to 50% lower than the bottom of the titanium sponge lump, and the reduction reaction. Sometimes, the supply rate of titanium tetrachloride when producing sponge titanium in the range to be collected is 2.8 to 4.0 kg / (min · m 2 ), preferably 2.8 to 3.6 kg. / (Min · m 2 ) and the area of the reaction bath surface is 2.5 m 2 or more, adjusting the total supply amount of titanium tetrachloride during the reduction reaction, 3.5 to 5.5 t / m 2 , preferably 4.0 to 5.5 t / m 2 , and the porosity of the portion to be collected of the sponge titanium mass is set to 20 to 50%, preferably 20 to 40%. Of chlorine content and magnesium content Total 350 mass ppm or less, preferably 300 ppm by mass or less, and the packing density is 1.65 ~ 1.95g / cm 3, preferably it is possible to obtain a titanium sponge 1.70 ~ 1.95g / cm 3 .
 本発明の第一の形態のチタンインゴット又はチタン合金インゴットの製造方法は、本発明のスポンジチタンを溶解原料とすることを特徴とするチタンインゴット又はチタン合金インゴットの製造方法である。また、本発明の第二の形態のチタンインゴット又はチタン合金インゴットの製造方法は、本発明のスポンジチタンの製造方法を行い得られるスポンジチタンを溶解原料とすることを特徴とするチタンインゴット又はチタン合金インゴットの製造方法である。 The method for producing a titanium ingot or titanium alloy ingot according to the first aspect of the present invention is a method for producing a titanium ingot or titanium alloy ingot characterized by using the sponge titanium of the present invention as a melting raw material. The titanium ingot or titanium alloy ingot according to the second aspect of the present invention is a titanium ingot or titanium alloy characterized by using sponge titanium obtained by performing the method for producing sponge titanium according to the present invention as a melting raw material. It is a manufacturing method of an ingot.
 以下、実施例を挙げて本発明をさらに具体的に説明するが、これは単に例示であって、本発明を制限するものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
(実施例1)
 1回当たりのスポンジチタン標準生成量が8.0トンであり、反応浴面部の容器断面積が2.5(m)であり、円板の半径rが750(mm)である8トンバッチの製造装置を用いてスポンジチタンの製造を行った。
 先ず、製造装置内に溶融マグネシウムを10t入れ、そこに、四塩化チタンを供給して、四塩化チタンの還元反応を行った。このとき、四塩化チタンの総供給量32(t)の前半50%の区間に当たる、0~16(t)の四塩化チタンの供給については、反応浴面の単位面積当たりの四塩化チタンの平均供給速度Aが3.3(kg/(分・m))となるように管理して供給し、続いて後半50%の区間に当たる、16~32(t)の四塩化チタンを供給した。底部荷重指数Bは、4.5(t/m)である。
 次いで、真空分離を行い、スポンジチタン塊を得た。このとき、真空加熱を、真空加熱温度が1050℃、真空加熱時間p(時間)が、0.26×r-p=122となるような条件で行った。
 次いで、得られたスポンジチタン塊を下方から、順々に切断していった。先ず、品質の悪い、質量基準で8.0トンの内5%にあたる400kg分をスポンジチタン塊の下方から切除した。次いで、質量基準で8.0トンの内5~50%の部位にあたる3.6トン分を、スポンジチタン塊の下方から他の部位と分けて採取した。このとき、質量100~300gのスポンジチタンサンプルを、スポンジチタン塊の採取対象の上限位置近傍であって、軸心近傍A1と、外周近傍B1と、該外周近傍B1とは軸心を中心として180度ずれた位置の外周近傍C1と、から3点採取し、各スポンジチタンの空隙率を求め、それらの空隙率を平均したところ、採取対象の上限位置の粉砕前の空隙率εは47%であった。また、スポンジチタン塊の採取対象の下限位置近傍であって、軸心近傍A2と、外周近傍B2と、該外周近傍B2とは軸心を中心として180度ずれた位置の外周近傍C2と、から3点採取し、各スポンジチタンの空隙率を求め、それらの空隙率を平均したところ、採取対象の下限位置の粉砕前の空隙率εは23%であった。
 次いで、空隙率を測定したサンプル以外のスポンジチタンを、シャー等で粉砕して、目開き19.1mmの篩以下、目開き0.84mmの篩以上となるように篩った後、混合機で均質化して、スポンジチタンAを得た。
 次いで、スポンジチタンAの塩素含有量、マグネシウム含有量、及び充填密度を測定したところ、塩素含有量は200質量ppm、マグネシウム含有量は90質量ppm、充填密度は1.70g/cmであった。また、0.84mm以下の細粒品は0.2質量%含まれていた。加えて、スポンジチタンAから1.27mmより大きい粒を無作為に5点採取して空隙率を求め平均したところ、粉砕後の空隙率ε´は25%であった。表1にその結果を示す。
Example 1
The standard production amount of titanium sponge per one time is 8.0 tons, the cross-sectional area of the reaction bath surface portion is 2.5 (m 2 ), and the radius r of the disk is 750 (mm). Sponge titanium was manufactured using a manufacturing apparatus.
First, 10 t of molten magnesium was put in the production apparatus, and titanium tetrachloride was supplied thereto to carry out a reduction reaction of titanium tetrachloride. At this time, regarding the supply of titanium tetrachloride of 0 to 16 (t), which corresponds to the first 50% of the total supply amount of titanium tetrachloride 32 (t), the average of titanium tetrachloride per unit area of the reaction bath surface The supply rate A was controlled to be 3.3 (kg / (min · m 2 )), and then 16 to 32 (t) of titanium tetrachloride corresponding to the second half 50% was supplied. The bottom load index B is 4.5 (t / m 2 ).
Next, vacuum separation was performed to obtain a sponge titanium lump. At this time, vacuum heating was performed under such conditions that the vacuum heating temperature was 1050 ° C. and the vacuum heating time p (hour) was 0.26 × rp = 122.
Subsequently, the obtained titanium sponge lump was sequentially cut from below. First, 400 kg corresponding to 5% of 8.0 tons on mass basis with poor quality was excised from below the sponge titanium lump. Next, 3.6 tons corresponding to 5 to 50% of 8.0 tons on a mass basis were collected separately from other parts of the sponge titanium lump. At this time, a sponge titanium sample having a mass of 100 to 300 g is placed in the vicinity of the upper limit position of the sponge titanium lump to be collected, and the vicinity of the axis A1, the vicinity of the outer periphery B1, and the vicinity of the outer periphery B1 are 180 around the axis. Three points were collected from the outer peripheral vicinity C1 of the position shifted by a degree, and the porosity of each sponge titanium was obtained, and the average porosity was found to be 47% before crushing at the upper limit position of the sampled object. there were. Further, from the vicinity of the lower limit position of the collection target of the titanium sponge mass, the vicinity of the axis A2, the vicinity of the outer periphery B2, and the vicinity of the outer periphery B2 from the vicinity of the outer periphery C2 at a position shifted by 180 degrees about the axis. Three points were collected, the porosity of each sponge titanium was determined, and the porosity was averaged. As a result, the porosity ε before pulverization at the lower limit position of the sample was 23%.
Next, sponge titanium other than the sample for which the porosity was measured was pulverized with a shear or the like and sieved to a sieve having an opening of 19.1 mm or less and a sieve having an opening of 0.84 mm or more. Homogenization gave sponge titanium A.
Next, when the chlorine content, the magnesium content, and the packing density of the sponge titanium A were measured, the chlorine content was 200 ppm by mass, the magnesium content was 90 ppm by mass, and the packing density was 1.70 g / cm 3 . . Moreover, 0.2 mass% was contained for the fine granule of 0.84 mm or less. In addition, 5 points larger than 1.27 mm were randomly sampled from sponge titanium A and the porosity was determined and averaged. As a result, the porosity ε ′ after pulverization was 25%. Table 1 shows the results.
(実施例2、比較例1及び2)
 単位面積当たりの四塩化チタン平均供給速度を3.3(kg/(分・m)に管理する区間及びスポンジチタンの採取対象部位を、表1に示す範囲とすること以外は、実施例1と同様に行った。その結果を表1に示す。
(Example 2, Comparative Examples 1 and 2)
Example 1 except that the section for managing the average supply rate of titanium tetrachloride per unit area to 3.3 (kg / (min · m 2 ) and the site to be collected for sponge titanium are within the ranges shown in Table 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、採取対象部位を、スポンジチタン塊の下からの質量基準で50%の位置から下側にすることで、塩化含有量を290質量ppm以下、充填密度を1.70g/cm以上にできる。 As can be seen from Table 1, the site to be collected is lowered from the position of 50% on the basis of the mass from the bottom of the sponge titanium mass, so that the chloride content is 290 mass ppm or less and the packing density is 1.70 g / cm 3 or more.
(実施例3及び4、比較例3)
 四塩化チタンの総供給量32(t)の前半50%の区間に当たる、0~16(t)の、反応浴面の単位面積当たりの四塩化チタンの平均供給速度を、表2に示す値とすること以外は、実施例1と同様に行った。その結果を表2に示す。
(Examples 3 and 4, Comparative Example 3)
The average supply rate of titanium tetrachloride per unit area of the reaction bath surface in the first half 50% of the total supply amount of titanium tetrachloride 32 (t) in the first 50% interval is shown in Table 2. The procedure was the same as in Example 1 except that. The results are shown in Table 2.
(比較例4)
 1回当たりのスポンジチタン標準生成量が6.0トンであり、反応浴面部の容器断面積が2.2(m)であり、円板の半径rが700(mm)である6トンバッチの製造装置を用いてスポンジチタンの製造を行った。
 先ず、製造装置内に溶融マグネシウムを7.5t入れ、そこに、四塩化チタンを供給して、四塩化チタンの還元反応を行った。このとき、四塩化チタンの総供給量24(t)の前半50%の区間に当たる、0~12(t)の四塩化チタンの供給については、反応浴面の単位面積当たりの四塩化チタンの平均供給速度Aが2.8(kg/(分・m))となるように管理して供給し、続いて後半50%の区間に当たる、12~24(t)の四塩化チタンを供給した。底部荷重指数Bは、4.0(t/m)である。
 次いで、真空分離を行い、スポンジチタン塊を得た。このとき、真空加熱を、真空加熱温度が1050℃、真空加熱時間p(時間)が、0.26×r-p=120となるような条件で行った。
 以降は、実施例1と同様の方法で行った。その結果を表1に示す。
(Comparative Example 4)
The standard production amount of titanium sponge per time is 6.0 tons, the cross-sectional area of the reaction bath surface portion is 2.2 (m 2 ), and the radius r of the disc is 700 (mm). Sponge titanium was manufactured using a manufacturing apparatus.
First, 7.5 t of molten magnesium was put in the production apparatus, and titanium tetrachloride was supplied thereto to carry out a reduction reaction of titanium tetrachloride. At this time, for the supply of 0 to 12 (t) of titanium tetrachloride, which corresponds to the first 50% of the total supply of titanium tetrachloride, 24 (t), the average of titanium tetrachloride per unit area of the reaction bath surface The feed rate A was controlled to be 2.8 (kg / (min · m 2 )), and then 12 to 24 (t) of titanium tetrachloride corresponding to the second half 50% section was fed. The bottom load index B is 4.0 (t / m 2 ).
Next, vacuum separation was performed to obtain a sponge titanium lump. At this time, vacuum heating was performed under such conditions that the vacuum heating temperature was 1050 ° C. and the vacuum heating time p (hour) was 0.26 × rp = 120.
Thereafter, the same method as in Example 1 was performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、四塩化チタンの総供給量の前半50%の区間における、反応浴面単位面積当たりの四塩化チタン平均供給速度を4.0(kg/(分・m))以下に抑えることにより、塩素含有量を330質量ppm以下に抑えることができる。 As can be seen from Table 2, the average supply rate of titanium tetrachloride per unit area of the reaction bath surface is 4.0 (kg / (min · m 2 )) or less in the first 50% of the total supply amount of titanium tetrachloride. By suppressing to chlorine, chlorine content can be suppressed to 330 mass ppm or less.
 また、表2の実施例3と比較例4の対比から分かるように、反応浴面単位面積当たりの四塩化チタン平均供給速度が同じであっても、反応浴面の面積が2.5(m)未満になると、塩素含有量が多くなる。 Further, as can be seen from the comparison between Example 3 and Comparative Example 4 in Table 2, even when the average feed rate of titanium tetrachloride per unit area of the reaction bath is the same, the area of the reaction bath is 2.5 (m When less than 2 ), the chlorine content increases.
(実施例6及び7、比較例5及び6)
 実施例6及び比較例5では、四塩化チタンの総供給量を表3に示す値として、底部荷重指数を変化させたこと以外は、実施例1と同様の方法で行った。
 また、実施例7及び比較例6では、1回当たりのスポンジチタン標準生成量が12.0トンであり、反応浴面部の容器断面積が3.5(m)であり、円板の半径rが800(mm)である8.0トンバッチの製造装置を用いてスポンジチタンの製造を行ったこと、及び四塩化チタンの総供給量を表3に示す値として、底部荷重指数を変化させたこと以外は、実施例1と同様の方法で行った。
(Examples 6 and 7, Comparative Examples 5 and 6)
In Example 6 and Comparative Example 5, the total supply amount of titanium tetrachloride was set to the value shown in Table 3, and the same procedure as in Example 1 was performed except that the bottom load index was changed.
In Example 7 and Comparative Example 6, the standard amount of sponge titanium produced per one time was 12.0 tons, the vessel cross-sectional area of the reaction bath surface portion was 3.5 (m 2 ), and the radius of the disk The bottom load index was changed with the production of titanium sponge using an 8.0-ton batch production apparatus with r of 800 mm and the total supply of titanium tetrachloride as the values shown in Table 3. Except for this, the method was performed in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から分かるように、底部荷重指数を制御して、採取対象部位の空隙率を20~50%の範囲に制御することで、塩素含有量290質量ppm以下、充填密度1.65~1.90g/cmを達成できる。一方、空隙率が20%を下回った比較例6では、充填密度は2.00g/cmと非常に高い値を実現できるものの、塩素含有量が1400質量ppm超と極端に高くなり不適である。 As can be seen from Table 3, by controlling the bottom load index and controlling the porosity of the collection target site to be in the range of 20 to 50%, the chlorine content is 290 mass ppm or less and the packing density is 1.65 to 1. 90 g / cm 3 can be achieved. On the other hand, in Comparative Example 6 in which the porosity is lower than 20%, although the packing density can achieve a very high value of 2.00 g / cm 3 , the chlorine content is extremely high at over 1400 mass ppm, which is not suitable. .
(実施例8及び9、比較例7及び8)
 実施例2、実施例5、比較例1及び比較例2と、それぞれと同様の手法で製造したスポンジチタンを原料として、電子ビーム溶解法にて10tのJIS1種チタンインゴットを4本製造した際の、スプラッシュ堆積量、電子銃が一時停止した回数、チタンインゴットの生産速度を調査した。スプラッシュ堆積量は、水冷銅ハースの端部に堆積したスプラッシュの厚みを溶解炉の覗き窓から観測し、実施例2のケースを1として相対比較した。チタンインゴットの生産速度は、チタン原料を溶解炉内に投入してから鋳型へのチタン溶湯の流れ込みが終わるまでの時間で、チタンインゴット質量を除することで算出し、実施例2のケースを1として相対比較した。加えて、溶製したインゴットの鋳肌と成分も評価した。鋳肌は、インゴット表面における深さ5mm以上の鋳肌不良の個数を、成分は、ボトム端からトップ端までインゴット全長を5か所に等分して成分分析した際の鉄及び酸素濃度の工程能力指数Cpkを比較した。Cpkは以下の数式(1)で算出した。ここで、USLは規格上限値、LSLは規格下限値、μは平均値、σは標準偏差である。
(Examples 8 and 9, Comparative Examples 7 and 8)
Using Example 2, Example 5, Comparative Example 1 and Comparative Example 2 and sponge titanium produced by the same method as the raw material, four 10t JIS Class 1 titanium ingots were produced by the electron beam melting method. The amount of splash deposits, the number of times the electron gun was suspended, and the production rate of titanium ingots were investigated. As for the amount of splash deposited, the thickness of the splash deposited on the end of the water-cooled copper hearth was observed from the observation window of the melting furnace, and the case of Example 2 was set as 1. The production rate of the titanium ingot is calculated by dividing the mass of the titanium ingot by the time from the introduction of the titanium raw material into the melting furnace until the flow of the molten titanium into the mold is completed. As a relative comparison. In addition, the cast skin and components of the melted ingot were also evaluated. The casting surface is the number of casting surface defects with a depth of 5 mm or more on the surface of the ingot, and the component is the process of iron and oxygen concentration when the ingot is divided equally into 5 parts from the bottom end to the top end. The ability index Cpk was compared. Cpk was calculated by the following formula (1). Here, USL is a standard upper limit value, LSL is a standard lower limit value, μ is an average value, and σ is a standard deviation.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4から分かるように、塩素含有量が330質量ppm以下、充填密度が1.65g/cm以上のスポンジチタンを溶解原料として使用することで、スプラッシュ堆積量、電子銃一時停止回数、インゴット生産速度といった溶製コストに関する指標だけでなく、鋳肌や鉄及び酸素のCpk等、インゴットの品質に関する指標でも改善が見られる。 As can be seen from Table 4, by using sponge titanium having a chlorine content of 330 mass ppm or less and a packing density of 1.65 g / cm 3 or more as a melting raw material, the amount of splash deposition, the number of electron gun pauses, ingot production Improvements can be seen not only in the index related to the melting cost such as the speed but also in the index related to the quality of the ingot such as cast skin, iron and oxygen Cpk.

Claims (6)

  1.  クロール法により製造されたスポンジチタンであって、塩素含有量及びマグネシウム含有量の合計が350質量ppm以下であり、充填密度が1.65~1.95g/cmであることを特徴とするスポンジチタン。 Sponge titanium manufactured by the crawl method, wherein the total of chlorine content and magnesium content is 350 ppm by mass or less, and the packing density is 1.65 to 1.95 g / cm 3 titanium.
  2.  平均粒径が1.7~19.1mmであることを特徴とする請求項1記載のスポンジチタン。 2. The sponge titanium according to claim 1, wherein the average particle size is 1.7 to 19.1 mm.
  3.  粒径が0.84mm以下のスポンジチタン細粒の割合が0.8質量%以下であることを特徴とする請求項1又は2いずれか1項記載のスポンジチタン。 3. The sponge titanium according to claim 1, wherein the proportion of titanium sponge fine particles having a particle size of 0.84 mm or less is 0.8 mass% or less.
  4.  クロール法によるスポンジチタンの製造方法であって、
     反応浴面の面積が2.5m以上であり、(i)金属マグネシウムへの四塩化チタンの供給を開始してから、破砕工程における採取対象の上限位置に相当する位置までのスポンジチタンを生成させている間は、下記式(1):
       A=1分間当たりの四塩化チタンの平均供給速度(kg/分)/反応浴面の面積(m)   (1)
    で算出される反応浴面単位面積当たりの四塩化チタンの平均供給速度Aを、2.8~4.0kg/(分・m)とし、且つ、(ii)四塩化チタンの総供給量を、下記式(2):
       B=スポンジチタン塊の質量(t)/スポンジチタン塊の下側が接する円板又は台座の面積(m)   (2)
    で算出されるスポンジチタン塊の底部荷重指数Bが3.5~5.5t/mとなる量とする還元分離工程と、
     採取対象の上限位置を、スポンジチタン塊の下からの質量基準で40~50%の範囲内の位置とし、該採取対象の上限位置より下のスポンジチタン塊を、採取対象として、切断、粉砕及び篩別して、スポンジチタンを得る破砕工程と、
    を有すること、
    を特徴とするクロール法によるスポンジチタンの製造方法。
    A method for producing sponge titanium by a crawl method,
    The reaction bath surface area is 2.5 m 2 or more, and (i) titanium sponge is produced from the start of the supply of titanium tetrachloride to the metal magnesium to the position corresponding to the upper limit position of the sample to be collected in the crushing process. During the time, the following formula (1):
    A = average feed rate of titanium tetrachloride per minute (kg / min) / area of reaction bath surface (m 2 ) (1)
    The average supply rate A of titanium tetrachloride per unit area of the reaction bath calculated in step 2.8 is 2.8 to 4.0 kg / (min · m 2 ), and (ii) the total supply amount of titanium tetrachloride is The following formula (2):
    B = mass of titanium sponge lump (t) / area of disk or pedestal with which the lower side of the titanium sponge lump contacts (m 2 ) (2)
    A reduction separation step in which the bottom load index B of the sponge titanium mass calculated in step 1 is 3.5 to 5.5 t / m 2 ;
    The upper limit position of the collection target is a position within the range of 40 to 50% on the mass basis from the bottom of the sponge titanium lump, and the sponge titanium lump below the upper limit position of the collection target is cut, crushed and Crushing to obtain sponge titanium,
    Having
    A method for producing titanium sponge by a crawl method.
  5.  請求項1~3いずれか1項記載のスポンジチタンを溶解原料とすることを特徴とするチタンインゴット又はチタン合金インゴットの製造方法。 A method for producing a titanium ingot or a titanium alloy ingot, wherein the sponge titanium according to any one of claims 1 to 3 is used as a melting raw material.
  6.  請求項4記載のスポンジチタンの製造方法を行い得られるスポンジチタンを溶解原料とすることを特徴とするチタンインゴット又はチタン合金インゴットの製造方法。 A method for producing a titanium ingot or a titanium alloy ingot, characterized in that the titanium sponge obtained by carrying out the method for producing a titanium sponge according to claim 4 is used as a melting raw material.
PCT/JP2018/005738 2017-03-31 2018-02-19 Titanium sponge, method for manufacturing titanium sponge, and method for manufacturing titanium ingot or titanium alloy ingot WO2018179993A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/498,790 US20210108287A1 (en) 2017-03-31 2018-02-19 Sponge titanium, method for producing sponge titanium, and method for producing titanium ingot or titanium alloy ingot
JP2018566330A JP6621550B2 (en) 2017-03-31 2018-02-19 Method for producing sponge titanium and sponge titanium, and method for producing titanium ingot or titanium alloy ingot
CN201880019507.8A CN110462072B (en) 2017-03-31 2018-02-19 Titanium sponge, method for producing titanium sponge, and method for producing titanium ingot or titanium alloy ingot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017072748 2017-03-31
JP2017-072748 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018179993A1 true WO2018179993A1 (en) 2018-10-04

Family

ID=63675130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005738 WO2018179993A1 (en) 2017-03-31 2018-02-19 Titanium sponge, method for manufacturing titanium sponge, and method for manufacturing titanium ingot or titanium alloy ingot

Country Status (4)

Country Link
US (1) US20210108287A1 (en)
JP (1) JP6621550B2 (en)
CN (1) CN110462072B (en)
WO (1) WO2018179993A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111549240A (en) * 2020-04-30 2020-08-18 广州上仕工程管理有限公司 Preparation method of non-ferrous metal alloy material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011829B (en) * 2022-06-15 2023-06-02 北京科技大学广州新材料研究院 Preparation method of titanium-aluminum alloy, titanium-aluminum alloy and application of titanium-aluminum alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288727A (en) * 1988-09-27 1990-03-28 Mitsubishi Metal Corp Production of metal titanium
JPH03294436A (en) * 1990-04-12 1991-12-25 Nippon Steel Corp Method for removing chlorine from metallic titanium powder
JPH09104931A (en) * 1995-10-06 1997-04-22 Sumitomo Sitix Corp Production of high purity titanium material
JP2004169139A (en) * 2002-11-21 2004-06-17 Toho Titanium Co Ltd Production method for high-purity titanium
JP2008190024A (en) * 2007-02-08 2008-08-21 Toho Titanium Co Ltd Method for producing titanium sponge
JP2008274345A (en) * 2007-04-27 2008-11-13 Toho Titanium Co Ltd Method for producing metallic ingot with electron-beam melting
JP2011127148A (en) * 2009-12-15 2011-06-30 Toho Titanium Co Ltd Method of melt-forming metal ingot

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157812A (en) * 1995-11-30 1997-06-17 Senshin Zairyo Riyou Gas Jienereeta Kenkyusho:Kk Heat treating method for titanium-aluminum base alloy and vessel for heat treatment
JPH10265947A (en) * 1997-03-25 1998-10-06 Mitsubishi Materials Corp High-purity ti target material for magnetron supporting with the deposited film showing highly uniform thickness
JP4348827B2 (en) * 2000-04-24 2009-10-21 住友金属工業株式会社 Manufacturing method of titanium plate with excellent formability
JP3782415B2 (en) * 2003-09-25 2006-06-07 住友チタニウム株式会社 High purity sponge titanium material and method for producing titanium ingot
JP4203039B2 (en) * 2005-04-12 2008-12-24 株式会社大阪チタニウムテクノロジーズ Titanium sponge hopper and blending method using the same
CN102115831B (en) * 2011-03-02 2012-12-26 朝阳金达钛业有限责任公司 Method for preparing titanium sponge
CN102921928B (en) * 2012-10-26 2016-04-20 攀钢集团攀枝花钢铁研究院有限公司 A kind of method of titanium sponge production titanium or titanium alloy casting

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288727A (en) * 1988-09-27 1990-03-28 Mitsubishi Metal Corp Production of metal titanium
JPH03294436A (en) * 1990-04-12 1991-12-25 Nippon Steel Corp Method for removing chlorine from metallic titanium powder
JPH09104931A (en) * 1995-10-06 1997-04-22 Sumitomo Sitix Corp Production of high purity titanium material
JP2004169139A (en) * 2002-11-21 2004-06-17 Toho Titanium Co Ltd Production method for high-purity titanium
JP2008190024A (en) * 2007-02-08 2008-08-21 Toho Titanium Co Ltd Method for producing titanium sponge
JP2008274345A (en) * 2007-04-27 2008-11-13 Toho Titanium Co Ltd Method for producing metallic ingot with electron-beam melting
JP2011127148A (en) * 2009-12-15 2011-06-30 Toho Titanium Co Ltd Method of melt-forming metal ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111549240A (en) * 2020-04-30 2020-08-18 广州上仕工程管理有限公司 Preparation method of non-ferrous metal alloy material

Also Published As

Publication number Publication date
JPWO2018179993A1 (en) 2019-04-04
CN110462072A (en) 2019-11-15
US20210108287A1 (en) 2021-04-15
CN110462072B (en) 2021-12-10
JP6621550B2 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
US10576538B2 (en) Alloy structure and method for producing alloy structure
JP5850372B2 (en) Grain refiner for casting and method for producing the same
US10702944B2 (en) Alloy structure and method for producing alloy structure
JP6122016B2 (en) Electrolytic production of powder
CN109295330B (en) Method for refining nitride inclusions in nickel-based wrought superalloy
JP6621550B2 (en) Method for producing sponge titanium and sponge titanium, and method for producing titanium ingot or titanium alloy ingot
JP2017082314A (en) Sputtering target and manufacturing method of sputtering target
JP5617723B2 (en) Cu-Ga alloy sputtering target
CN107385247A (en) A kind of nuclear grade zirconium alloy cast ingot preparation method of the material containing return
JP2013142175A (en) Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
EP2505686B1 (en) Cu-ga-based alloy powder with low oxygen content, cu-ga-based alloy target material and method for producing the target material
CN104152747B (en) A kind of Mg-Zn-Y magnesium alloy and preparation method thereof
CN113234944B (en) Preparation method of zirconium alloy ingot
CN103397225B (en) Nickel molybdenum titanium intermediate alloy and preparation method thereof
Martyushev et al. Influence of modification by superdispersed powder of aluminum oxide on lead-tin bronze structure
JP7220078B2 (en) Manufacturing method of melting raw material and manufacturing method of titanium casting material
JP7471946B2 (en) Manufacturing method of titanium ingot
JP2020158851A (en) Manufacturing method of solid spherical powder and manufacturing method of molded product
JP2016006000A (en) Crucible, and production method of single crystal sapphire using the same
Motsai A parametric study of loose sintering of titanium powders
JP3782415B2 (en) High purity sponge titanium material and method for producing titanium ingot
RU2800271C1 (en) Method for manufacturing ingots of zirconium alloys
RU2233895C1 (en) Method of production of expendable electrodes
CN108690924A (en) A kind of nickel zirconium intermediate alloy material and preparation method thereof
CN117054593A (en) Method for analyzing all iron in steel slag magnetic selection material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566330

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778345

Country of ref document: EP

Kind code of ref document: A1