JP4348827B2 - Manufacturing method of titanium plate with excellent formability - Google Patents

Manufacturing method of titanium plate with excellent formability Download PDF

Info

Publication number
JP4348827B2
JP4348827B2 JP2000121920A JP2000121920A JP4348827B2 JP 4348827 B2 JP4348827 B2 JP 4348827B2 JP 2000121920 A JP2000121920 A JP 2000121920A JP 2000121920 A JP2000121920 A JP 2000121920A JP 4348827 B2 JP4348827 B2 JP 4348827B2
Authority
JP
Japan
Prior art keywords
titanium
annealing
titanium plate
formability
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000121920A
Other languages
Japanese (ja)
Other versions
JP2001303223A (en
Inventor
篤彦 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000121920A priority Critical patent/JP4348827B2/en
Publication of JP2001303223A publication Critical patent/JP2001303223A/en
Application granted granted Critical
Publication of JP4348827B2 publication Critical patent/JP4348827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、カメラボディー、電子機器用外装材、熱交換器などに使用される成形性に優れたチタン板の製造方法に関する。
【0002】
【従来の技術】
チタンは軽量で優れた耐食性を有しており、化学工業用の熱交換器や配管などに使用されている。また、最近では、軽いという特性を生かしてカメラボディー、パーソナルコンピュータ、携帯電話、コンパクトディスクなどの電子機器用の外装材にも用いられている。
【0003】
上記の用途に使用されるチタン板は、一般に、スポンジ状の金属チタンを用いて作製した円柱状の電極を真空アーク溶解してインゴットとし、このインゴットを分塊圧延および熱間圧延した後、さらに冷間圧延し、焼鈍処理を施すことにより製造され、使用に際し、それぞれの用途に適合するようにプレス成形等の加工が施される。
【0004】
チタン板は良好な成形性を有し、特に、不純物としてのFe、O(酸素)等の含有量が少ないものは高いr値(引張試験時の材料の板厚方向の対数歪みに対する幅方向の対数歪みの比)を示し、良好な深絞り性を有している。しかしながら、チタンは化学的に活性な金属であるため、チタン板をプレス成形する際、金型との接触で焼き付きが生じやすく、さらに型と擦れあうことにより表面に疵が生じるなど、チタン板特有のプレス成形の困難な面を有している。
【0005】
この観点から、チタン板のプレス成形においては、潤滑が重要な課題となっており、さらに金型も潤滑性を高めるために銅製の金型を用いるなどの工夫がなされている。一方、チタン板の素材そのものの成形加工性、表面の耐焼き付き性を高めることも重要な課題であり、この観点から、種々の技術が開発され、提案がなされている。
例えば、特開平9−217157号公報では、冷間圧延されたチタン薄コイルの焼鈍工程において、バッチ式真空炉を用いて、真空度を0.107Pa(0.0008Torr)以下に維持しながら400℃以上で焼鈍温度以下の温度まで昇温し、さらに純度99.999%以上の窒素ガスを封入密閉し、600〜700℃で1〜10時間の熱処理を加える方法が開示されている。この方法によれば、チタン薄板の表面に薄い窒化層が形成され、この窒化層により加工途中のチタン薄板と工具との接触で生じる焼き付きが緩和され、疵の発生が防止されるとしている。
【0006】
また、特開平6−248404号公報では、冷間圧延後のチタン板を無酸化雰囲気中で焼鈍した後、冷却過程で200〜500℃の温度範囲から大気中または酸素を含む不活性ガス雰囲気中で冷却するプレス成形性に優れたチタン板の製造方法が開示されている。これにより、チタン板表面に酸化皮膜が形成され、潤滑性が向上してプレス成形性が格段に向上するとしている。
【0007】
本出願人は、特開平10−30160号公報で、所定量のFe、NiおよびCrを含有するチタン板を冷間圧延した後、600〜850℃で焼鈍し、所定濃度の硝酸とフッ酸の混酸で酸洗する純チタン板の製造方法を提案した。この方法によれば、酸洗処理で発生する微小な凹凸がプレス加工中の潤滑油の保持に有効に働くので、プレス成形性が向上する。
【0008】
また、熱間圧延時に表面に生じた疵やスケールが残存すると、成形性に悪影響を与えるとともに、表面の美麗さが損なわれる。そのため、成形性に優れ、かつ美麗な表面を有するチタン板が求められているが、この要請に対し、特開平7−118819号公報には、熱間圧延後のチタン板(熱延板)に所定の条件でショットブラスト処理を施し、続いて酸洗し、冷間圧延するチタン板の製造方法が開示されている。この方法によれば、熱間圧延時に生成した表面疵やスケールを除去し、美麗な表面の、プレス成形性に優れたチタン板を製造することができるとしている。
上記のように、種々の研究、開発が行われ、焼き付きが生じにくい、プレス成形性に優れたチタン板の製造が可能になってきた。しかしながら、プレス成形品の形状が複雑になってくるにしたがい、さらに良好な耐焼き付き性を有し、プレス成形性に優れたチタン板が要求されている。
【0009】
【発明が解決しようとする課題】
本発明はこのような背景のもとになされたもので、その課題は、良好な耐焼き付き性を有し、プレス成形性に優れたチタン板の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明の要旨は、下記のチタン板の製造方法にある。
【0011】
質量%で、Fe:0.08%以下、Ni:0.05%以下、Cr:0.05%以下を含有し、かつ、下記▲1▼式を満たし、残部はTiおよび不純物からなるチタンの熱間圧延材を、650〜850℃で1分以上焼鈍した後、硝フッ酸水溶液による酸洗処理で表面から厚さ20μm 以上を溶解除去し、次いで、50〜91%の圧下率で冷間圧延を施し、さらに、純度が99.999%以上のアルゴンガス雰囲気中で600〜700℃で仕上げ焼鈍する成形性に優れたチタン板の製造方法。
【0012】
2×Fe(%)+Ni(%)+Cr(%)≧0.04 ・・・▲1▼
ただし、Fe(%)、Ni(%)およびCr(%)は、それぞれの元素の質量%での含有量を意味する。
【0013】
前記の仕上げ焼鈍を、焼鈍炉内をあらかじめ6.67×10-3〜1.33Pa(5×10-5〜1×10-2Torr)まで減圧した後、純度99.999%以上のアルゴンガスを導入して得られる雰囲気中で行うこととすれば、雰囲気の調整が比較的容易になるので、好ましい。
本発明者は、上記の課題を解決するために検討を重ね、以下の知見を得た。本発明はこれらの知見に基づきなされたものである。
(a) プレス成形時の耐焼き付き性を向上させるためには、表面に酸化皮膜を形成させるのが有効であるが、表面に圧延時に生じるムシレ(ロールと材料の焼付による生成物の材料への付着に起因する疵)などがある場合には耐焼き付き性が低下する。
(b) チタンに含まれるNi、Cr、およびFeの含有量を適正にコントロールし、焼鈍処理によりチタンを等軸組織として前記Ni、Cr、およびFeを結晶粒界に適度に分散させた状態とし、酸洗処理を行って結晶粒界におけるNi、Cr、Feの濃化領域を優先的に腐食させることにより圧延前の素材の表面に凹凸を設け、これを適切な圧下量で圧延することにより前記のムシレを防止することができる。
(c) 表面に酸化皮膜を形成させるには、バッチ焼鈍の初期段階で適切な酸素吸収を行わせ、これをより高い温度に保持すればよい。これによって酸素の素材内部への拡散が進み、より強固な酸化皮膜が形成され、この強固な酸化皮膜が潤滑効果を示すので、良好な耐焼き付き性が発現する。
【0014】
【発明の実施の形態】
以下、本発明の成形性に優れたチタン板の製造方法について詳細に説明する。なお、チタンに含まれるFe、Ni、Cr、および不純物の「%」は、いずれも「質量%」を意味する。また、「Fe(%)」、「Ni(%)」および「Cr(%)」は、それぞれの元素の含有量(質量%)を意味する。
本発明のチタン板の製造方法では、まず、Fe:0.08%以下、Ni:0.05%以下、Cr:0.05%以下を含有し、かつ、前記の▲1▼式を満たし、残部はTiおよび不純物からなるチタンの熱間圧延材(熱延材)を素材として用い、これを650〜850℃で1分以上焼鈍する。なお、この熱延材は、前述した一般的なチタン板の製造方法、すなわち、スポンジ状の金属チタンを用いて作製した円柱状の塊を消耗電極として、真空アーク溶解してインゴットとし、このインゴットを分塊圧延してスラブとした後、熱間圧延することによって製造すればよい。
【0015】
チタン熱延材のFe、NiおよびCrの含有量を上記のように規定するのは、以下の理由による。
Fe:0.08%(800ppm )以下
Feは、チタンの結晶粒径をコントロールする上で重要な元素である。また、材料の強度を調整するために意図的に含有させる場合もある。このFeの含有量が0.08%を超えると結晶粒界に過剰に偏析して結晶粒界の移動を妨げるため、後述する焼鈍処理を施したときに十分な大きさの粒径をもつ結晶を得ることができない。チタンの成形加工においては双晶変形が生じることが必要であるが、結晶粒径が細かいと双晶変形が起こりにくく、成形性が不良となる。したがって、Fe含有量の上限は、0.08%とする。なお、含有量の下限は、Fe単独では特に定めず、後述するように、Fe、NiおよびCrの合計の含有量で規定する。
Ni:0.05%(500ppm )以下
Cr:0.05%(500ppm )以下
NiおよびCrも、結晶粒界に偏析してFeと同様に作用する元素であり、Niの含有量が0.05%を超えると、Feの場合と同様、焼鈍後に十分な大きさの粒径の結晶を得ることが困難となり、また、Crの含有量が0.05%を超える場合も、同じく、粒径の十分に大きい結晶を得ることが困難である。したがって、NiおよびCrの含有量の上限は、それぞれ0.05%とする。なお、含有量の下限は、Feの場合と同様、単独では特に定めず、次に述べるように、Fe、NiおよびCrの合計の含有量で規定する。
2×Fe+Ni+Cr:0.04%(400ppm )以上
Fe、NiおよびCrは、チタンの結晶粒界に偏析するとともに、酸洗の際に優先的に溶解して結晶粒界に小さなピット状の腐食域(以下、単に「ピット」ともいう)を形成させる。このピットは母材表面から凹んだ状態となっており、この凹みがプレス成形時に潤滑剤の溜まり部となって成形性を向上させる。その効果を得るためには、これらの元素が所定量以上含まれていることが必要である。また、このとき、Feの作用はNiおよびCrのそれに比べて大きく、その含有量がNi、Crの半分程度であっても、NiやCrが含まれる場合と同じ深さのピットを形成することができる。検討の結果、前記▲1▼式が満たされる場合、十分な深さをもつピットが形成され、成形性を向上させることが確認できた。
【0016】
したがって、前述したFe、NiおよびCrの含有量の下限は、Feの含有量の2倍量とNiの含有量とCrの含有量の合計量で0.04%とする。なお、Fe、NiおよびCrのうちのいずれか一または二の成分が0%であってもよいが、通常は、これらの成分は不純物として含まれている。
本発明で素材として用いるチタン熱延材は、上記の成分以外、残部がTiと不純物からなる材料である。不純物とし含まれるO(酸素)、N(窒素)、C(炭素)およびH(水素)については、それぞれ下記の範囲内に抑えるのが望ましい。
O(酸素):
原料であるスポンジチタンに含まれ、また溶解工程で混入する元素である。その含有量は、0.12%以下とするのが望ましい。
N(窒素):
Oと同様、スポンジチタンに含まれ、また溶解工程で混入する元素であり、0.025%以下とするのが望ましい。
C(炭素):
スポンジチタンから混入する元素で、0.025%以下とするのが望ましい。
H(水素):
スポンジチタンに含まれ、また溶解工程および加熱工程で混入する元素である。0.015%以下とするのが望ましい。
【0017】
上記のチタン熱延材を素材として用い、所定の温度で焼鈍するのであるが、この焼鈍は、Fe、NiおよびCrを素材全体に分散させるとともに結晶粒界に偏析させ、チタンの結晶粒径をコントロールする上で重要である。この焼鈍の温度が650℃未満であると、Fe、NiおよびCrの分散が不十分で、粒径の十分大きい結晶が得られない。一方、焼鈍温度が850℃を超えると、結晶粒が粗大化し、後に行う冷間圧延の段階で割れを生じる。したがって、焼鈍温度は、650〜850℃とする。
【0018】
また、この温度範囲での保持時間は、1分未満では粒径の十分大きい結晶が得られないので、1分以上とする。なお、上限は特に定めないが、長すぎると経済的に不利となるので、10分程度とするのが望ましい。
焼鈍処理後、硝フッ酸水溶液による酸洗処理で、チタン熱延材の表面から厚さ20μm 以上を溶解除去する。
【0019】
この酸洗処理によって、前述したように、結晶粒界に小さなピットが形成される。溶解除去量が表面から厚さ20μm 未満であると、ピットの深さが十分ではなく、圧延時の潤滑剤の溜まり部となる凹んだ領域が浅いため、潤滑剤の溜まり部として十分機能しない。溶解除去量の上限は特に規定しないが、除去量が過大になると高価なチタンを減肉させることとなるので、厚さ60μm とするのが望ましい。
酸洗に用いる硝フッ酸水溶液の濃度、温度等は特に限定しない。従来用いられている濃度、温度等の硝フッ酸水溶液を使用すればよい。なお、処理条件は、実際に用いる酸洗水溶液について、溶解除去量が表面から厚さ20μm 以上となる条件をあらかじめ求めておけばよい。
次いで、50〜91%の圧下率で冷間圧延を行う。なお、ここでいう「圧下率」は、(d1−d2)×100/ d1(ただし、d1:圧延前の板厚、d2:圧延後の板厚である)で定義される。
【0020】
冷間圧延時の圧下率は、この後に続いて行う仕上げ焼鈍の条件との組合せにより素材の結晶粒径を調整する上で重要である。圧下率が50%未満であると、歪みが素材内に不均一にはいるため、焼鈍処理後に均一な結晶粒径とすることができない。一方、圧下率が91%を超えると、ピットが圧延ロールに完全に押しつぶされるため、潤滑剤の供給源としての機能を保持できなくなり、その結果、表面にムシレが生じる。したがって、冷間圧延時の圧下率は、50〜91%とする。
最後に、仕上げ焼鈍を施す。この仕上げ焼鈍は、チタン板の表面に硬質層(酸化皮膜)を設ける上で重要な工程である。表面に硬質層を設けることによってプレス成形時の表面の損傷を防止し、プレス加工時の表面損傷を防止することができる。
仕上げ焼鈍は、純度が99.999%以上のアルゴンガス雰囲気中で600〜700℃で行う。アルゴンガスの純度が99.999%より低いと、アルゴンガス中に不純物として含まれる酸素が焼鈍中にチタン板の表面に厚い酸化皮膜を形成し、表面を着色させるので、好ましくない。なお、仕上げ焼鈍時の雰囲気中にはチタン板の表面に硬質層を形成させるに必要な酸素が含まれている必要があるので、アルゴンガスの純度は、99.999999%よりは低いことが望ましい。
上記の焼鈍雰囲気を比較的容易に得る方法としては、焼鈍炉内をあらかじめ減圧状態にした後、炉内にアルゴンガスを導入する方法を採るのがよい。
【0021】
例えば、炉内をあらかじめ6.67×10-3〜1.33Pa(5×10-5〜1×10-2Torr)の減圧状態にした後、純度99.999%以上のアルゴンガスを導入することとすれば、比較的容易に上記のアルゴンガス雰囲気とすることができる。その際、焼鈍炉内にアルゴンガスを導入する前の減圧の程度(真空度)が重要であり、炉内の圧力が6.67×10-3Pa(5×10-5Torr)より低いと(つまり、真空度が高すぎると)、アルゴンガス導入後の雰囲気中の酸素量が少ないため、前記のように、チタン板の表面に硬質層が形成されず、耐焼き付き性の向上は期待できない。一方、焼鈍炉内の圧力が1.33Pa(1×10-2Torr)より高いと(つまり、真空度が低すぎると)、雰囲気中の残存酸素および窒素の量が多く、これらが焼鈍中にチタン板の表面に吸着し、着色させるので、焼鈍後のチタン板の商品価値が低下する。
【0022】
仕上げ焼鈍温度は、チタン板の結晶粒径がこの温度で決まるので、チタン板の成形性に大きな影響を及ぼす。焼鈍温度が600℃未満であると、焼鈍後の結晶粒径が細かく、前記のように双晶変形が生じにくいため、成形性は不良となる。一方、焼鈍温度が700℃を超えると、結晶粒径が粗大化し、成形後のチタン板表面に肌荒れが生じやすくなる。この結晶粒径の粗大化は、特に、コイルを焼鈍する際に生じやすい。大きなコイル全体の温度が均一化するまでには時間がかかるので、700℃を超える温度で焼鈍すると、コイルの端部近傍は長時間高い温度で焼鈍を受けることとなるからである。したがって、仕上げ焼鈍温度は、600〜700℃とする。なお、焼鈍時間は、短すぎると再結晶化が不十分で成形性が悪化するおそれがあるので、5分以上とするのが望ましい。
【0023】
【実施例】
(実施例1)
純度5NGrade (Ti:99.999%)のチタンスポンジと、純度5NGrade (Ni:99.999%)のNi箔および純度5NGrade (Cr:99.999%)のCr粒を使用し、プラズマアーク式の溶解炉を用いて表1示す化学組成のチタンを溶製し、幅80mm、厚さ25mm、長さ100mmの鋳塊(インゴット)を製造した。
【0024】
【表1】

Figure 0004348827
このインゴットを800℃に加熱して厚さ4mmまで熱間圧延して得たチタンの熱延材に700℃で10分間の焼鈍処理を施し、さらに、硝フッ酸水溶液(3%HFと10%HNO3 の混酸)で酸洗処理し、表面層を溶解除去した。この処理による肉厚減少は両面合計で平均50μm であった。その後、脱スケールを施し、冷間圧延により厚さ0.8mmのチタン板に仕上げた。なお、圧延油には機械油を使用した。次いで、焼鈍炉内で、炉内を排気して1.33×10-2Pa(1×10-4Torr)の減圧状態にした後、純度99.999%のアルゴンを導入し、650℃で1時間の仕上げ焼鈍を施した。
【0025】
仕上げ焼鈍後のチタン板から、直径75mmの深絞り試験用の試験片を採取し、直径30mmのポンチを用いて深絞り試験を行った。なお、試験時の潤滑剤として工作油を使用した。
試験結果を表1に併せて示す。表1の「評価」の欄の「ムシレ」については、前記の冷間圧延を終了した段階でチタン板の表面を30倍の拡大鏡で観察し、「ムシレ」が観察されなかった場合は○印で、観察された場合は×印で表示した。また、「成形性」の欄の○印は上記の深絞り試験で完全に絞り成形できたもので、成形性が良好であることを表す。また、×印は試験中に破断したもので、深絞り性が不良であることを表す。「ムシレ」および「成形性」の少なくとも一方が×印の場合、「総合評価」で不良(×印)とした。
【0026】
表1の結果から、本発明の方法で製造したチタン板は、いずれも良好な成形性を有し、圧延時のムシレも認められないことがわかる。
(実施例2)
消耗電極式真空アーク溶解(VAR溶解)により、Fe:0.0550%、Ni:0.0125%、Cr:0.0100%を含有するチタンを溶製し、直径300mm×長さ300mmの鋳塊(インゴット)を製造した。
【0027】
このインゴットを1100℃で加熱した後、厚さ55mmまで熱間鍛造し、機械加工により厚さ50mm、幅100mmの熱間圧延用の素材を得た。この熱間圧延用素材を850℃で加熱した後、厚さ5mmまで熱間圧延し、得られた熱延材に表2に示す条件で焼鈍処理を施した。
【0028】
【表2】
Figure 0004348827
次いで、焼鈍処理後の熱延材を硝フッ酸水溶液(3%HFと10%HNO3 の混酸)で、浸漬時間を変化させて表2の「酸洗量」の欄に示す肉厚減少量になるように酸洗処理し、圧下率を変えて冷間圧延し、得られた冷間圧延板に、表2に示す各種の条件で仕上げ焼鈍処理(加熱時間はいずれも1時間)を施してチタン板とした。なお、焼鈍は、純度99.999%のアルゴンガス雰囲気(圧力:大気圧)中で行ったが、焼鈍炉内へのアルゴンガスの導入に先立ち、炉内を排気して、表2の「真空度」の欄に示す減圧状態にした。
【0029】
このチタン板について、実施例1の場合と同じ方法で深絞り試験を行い、成形性を評価した。その際、成形性に及ぼす板厚の影響を除くため、表2の「仕上厚」の欄に示した厚さを有するチタン板の片面を研磨し、いずれの試験片についても厚さ0.4mmとした。なお、深絞り試験では、研磨をしていない面をダイスとの当たり面とした。
【0030】
試験結果を表2に併せて示す。表2の「評価」の欄の○印は深絞りこの試験で完全に絞り成形できたもので、成形性が良好であることを表し、×印は試験中に破断したもので、深絞り性が不良であることを表す。なお、−印は、表面が着色し、あるいは冷間圧延中に割れが生じ、製品価値がなかったものである。
【0031】
表2の結果から、本発明の方法で製造したチタン板はいずれも良好な成形性を有していることがわかる。なお、表2のNo.13 の「真空度」の欄の *印は、炉内の排気が不十分で(真空度が低く)、所定のアルゴンガス雰囲気になっていなかったことを意味する。
【0032】
【発明の効果】
上記本発明の方法により製造したチタン板は、良好な耐焼き付き性を有し、プレス成形性に優れている。したがって、複雑な形状を有するプレス成形品の素材としても好適に使用することができる。[0001]
[Industrial application fields]
The present invention relates to a method for producing a titanium plate having excellent formability for use in camera bodies, exterior materials for electronic devices, heat exchangers, and the like.
[0002]
[Prior art]
Titanium is lightweight and has excellent corrosion resistance, and is used in heat exchangers and piping for the chemical industry. Recently, it is also used for exterior materials for electronic devices such as camera bodies, personal computers, mobile phones, compact discs, etc., taking advantage of its light characteristics.
[0003]
In general, the titanium plate used for the above application is a cylindrical electrode made of sponge-like titanium metal, which is vacuum arc melted to form an ingot. After the ingot is subjected to ingot rolling and hot rolling, It is manufactured by cold rolling and annealing, and in use, it is subjected to processing such as press molding so as to suit each application.
[0004]
Titanium plates have good formability, especially those with low contents of impurities such as Fe and O (oxygen) have high r values (in the width direction against logarithmic strain in the thickness direction of the material during tensile testing). Logarithmic distortion ratio) and good deep drawability. However, because titanium is a chemically active metal, when press-molding a titanium plate, it tends to cause seizure when in contact with the mold, and the surface is wrinkled by rubbing against the die. It has the difficult surface of press molding.
[0005]
From this point of view, lubrication is an important issue in the press forming of a titanium plate, and a contrivance has been made such as using a copper mold to improve the lubricity of the mold. On the other hand, it is also important to improve the formability of the titanium plate material itself and the surface seizure resistance. From this viewpoint, various techniques have been developed and proposed.
For example, in Japanese Patent Application Laid-Open No. 9-217157, in a annealing process of a cold-rolled titanium thin coil, a batch type vacuum furnace is used to maintain the degree of vacuum at 0.107 Pa (0.0008 Torr) or less at 400 ° C. A method is disclosed in which the temperature is raised to a temperature equal to or lower than the annealing temperature, nitrogen gas with a purity of 99.999% or higher is sealed, and heat treatment is performed at 600 to 700 ° C. for 1 to 10 hours. According to this method, a thin nitride layer is formed on the surface of the titanium thin plate, and this nitride layer alleviates the seizure caused by the contact between the titanium thin plate and the tool being processed, and prevents the generation of wrinkles.
[0006]
Further, in JP-A-6-248404, after annealing a cold-rolled titanium plate in a non-oxidizing atmosphere, it is cooled in the air or in an inert gas atmosphere containing oxygen from a temperature range of 200 to 500 ° C. The manufacturing method of the titanium plate excellent in the press formability cooled by is disclosed. Thereby, an oxide film is formed on the surface of the titanium plate, the lubricity is improved, and the press formability is remarkably improved.
[0007]
In Japanese Patent Application Laid-Open No. 10-30160, the present applicant cold-rolled a titanium plate containing a predetermined amount of Fe, Ni and Cr, and then annealed it at 600 to 850 ° C. to obtain a predetermined concentration of nitric acid and hydrofluoric acid. A method of manufacturing a pure titanium plate pickled with a mixed acid was proposed. According to this method, the minute irregularities generated in the pickling treatment effectively work to retain the lubricating oil during the press working, so that the press formability is improved.
[0008]
Moreover, when wrinkles and scales generated on the surface during hot rolling remain, the moldability is adversely affected and the surface beauty is impaired. Therefore, there is a demand for a titanium plate having excellent formability and a beautiful surface. In response to this request, JP-A-7-118819 discloses a titanium plate (hot rolled plate) after hot rolling. There is disclosed a method for producing a titanium plate that is subjected to shot blasting under predetermined conditions, followed by pickling and cold rolling. According to this method, it is said that a surface plate and scale generated during hot rolling can be removed to produce a titanium plate having a beautiful surface and excellent press formability.
As described above, various researches and developments have been made, and it has become possible to produce a titanium plate that is not easily seized and has excellent press formability. However, as the shape of the press-molded product becomes complicated, a titanium plate having better seizure resistance and excellent press-formability is required.
[0009]
[Problems to be solved by the invention]
The present invention has been made under such a background, and an object thereof is to provide a method for producing a titanium plate having good seizure resistance and excellent press formability.
[0010]
[Means for Solving the Problems]
The gist of the present invention resides in the following method for producing a titanium plate.
[0011]
It contains, by mass%, Fe: 0.08% or less, Ni: 0.05% or less, Cr: 0.05% or less, and satisfies the following formula (1), with the balance being titanium and impurities. After annealing the hot-rolled material at 650 to 850 ° C. for 1 minute or longer, it is dissolved and removed from the surface by a pickling treatment with an aqueous solution of nitric hydrofluoric acid, and then cold-rolled at a reduction rate of 50 to 91%. A method for producing a titanium plate excellent in formability, which is rolled and further annealed at 600 to 700 ° C. in an argon gas atmosphere having a purity of 99.999% or more.
[0012]
2 × Fe (%) + Ni (%) + Cr (%) ≧ 0.04 (1)
However, Fe (%), Ni (%), and Cr (%) mean content in the mass% of each element.
[0013]
After the above-mentioned finish annealing is reduced in advance in the annealing furnace to 6.67 × 10 −3 to 1.33 Pa (5 × 10 −5 to 1 × 10 −2 Torr), an argon gas having a purity of 99.999% or more is obtained. It is preferable to carry out in an atmosphere obtained by introducing, since the atmosphere can be adjusted relatively easily.
The present inventor has repeatedly studied to solve the above problems, and has obtained the following knowledge. The present invention has been made based on these findings.
(a) In order to improve the seizure resistance during press molding, it is effective to form an oxide film on the surface. When there is a flaw due to adhesion, etc., the seizure resistance decreases.
(b) The contents of Ni, Cr, and Fe contained in titanium are appropriately controlled, and the Ni, Cr, and Fe are appropriately dispersed in the crystal grain boundaries by annealing treatment with titanium as an equiaxed structure. By performing pickling treatment and preferentially corroding the Ni, Cr, Fe concentration region at the grain boundaries, providing unevenness on the surface of the material before rolling, and rolling this with an appropriate reduction amount The above-mentioned blur can be prevented.
(c) In order to form an oxide film on the surface, appropriate oxygen absorption should be performed at the initial stage of batch annealing, and this should be maintained at a higher temperature. As a result, diffusion of oxygen into the material progresses, and a stronger oxide film is formed. This strong oxide film exhibits a lubricating effect, so that good seizure resistance is exhibited.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereafter, the manufacturing method of the titanium plate excellent in the moldability of this invention is demonstrated in detail. Note that “%” of Fe, Ni, Cr, and impurities contained in titanium all mean “mass%”. “Fe (%)”, “Ni (%)”, and “Cr (%)” mean the content (mass%) of each element.
In the method for producing a titanium plate of the present invention, first, Fe: 0.08% or less, Ni: 0.05% or less, Cr: 0.05% or less, and satisfying the above formula (1), The remainder uses a hot rolled material (hot rolled material) of titanium composed of Ti and impurities as a raw material, and this is annealed at 650 to 850 ° C. for 1 minute or more. This hot-rolled material is produced by the above-described general titanium plate manufacturing method, that is, a cylindrical lump produced using sponge-like metal titanium is used as a consumable electrode, and is melted by vacuum arc to form an ingot. The slab may be rolled into a slab and then hot rolled.
[0015]
The reason why the contents of Fe, Ni and Cr in the titanium hot-rolled material are specified as described above is as follows.
Fe: 0.08% (800ppm) or less
Fe is an important element in controlling the crystal grain size of titanium. Moreover, it may be intentionally included in order to adjust the strength of the material. If the Fe content exceeds 0.08%, the crystal grains have a sufficiently large grain size when subjected to the annealing treatment described later, because they are excessively segregated at the grain boundaries and hinder the movement of the grain boundaries. Can't get. In the forming process of titanium, it is necessary to cause twinning deformation. However, if the crystal grain size is small, twinning deformation hardly occurs and the formability becomes poor. Therefore, the upper limit of the Fe content is 0.08%. The lower limit of the content is not particularly determined for Fe alone, but is defined by the total content of Fe, Ni, and Cr, as will be described later.
Ni: 0.05% (500ppm) or less
Cr: 0.05% (500ppm) or less
Ni and Cr are elements that segregate at the grain boundaries and act in the same way as Fe. When the Ni content exceeds 0.05%, the grain size is sufficiently large after annealing as in the case of Fe. It is difficult to obtain a crystal having a sufficiently large grain size when the Cr content exceeds 0.05%. Therefore, the upper limit of the Ni and Cr contents is 0.05% respectively. As in the case of Fe, the lower limit of the content is not particularly determined alone, and is defined by the total content of Fe, Ni, and Cr as described below.
2 x Fe + Ni + Cr: 0.04% (400ppm) or more
Fe, Ni, and Cr segregate at the grain boundaries of titanium and dissolve preferentially during pickling to form small pit-like corrosion zones (hereinafter also simply referred to as “pits”) at the grain boundaries. Let These pits are recessed from the surface of the base material, and these recesses become a reservoir for lubricant during press molding to improve moldability. In order to obtain the effect, it is necessary that these elements are contained in a predetermined amount or more. At this time, the action of Fe is larger than that of Ni and Cr, and even if the content is about half that of Ni and Cr, pits with the same depth as when Ni or Cr is contained should be formed. Can do. As a result of the examination, it was confirmed that when the formula (1) was satisfied, pits having a sufficient depth were formed and the formability was improved.
[0016]
Therefore, the lower limit of the content of Fe, Ni, and Cr described above is 0.04% in terms of the total content of twice the Fe content, the Ni content, and the Cr content. One or two components of Fe, Ni, and Cr may be 0%, but these components are usually included as impurities.
The titanium hot-rolled material used as a raw material in the present invention is a material whose balance is Ti and impurities other than the above components. O (oxygen), N (nitrogen), C (carbon) and H (hydrogen) contained as impurities are preferably suppressed within the following ranges.
O (oxygen):
It is an element contained in titanium sponge, which is a raw material, and mixed in in the melting process. The content is desirably 0.12% or less.
N (nitrogen):
Like O, it is an element contained in titanium sponge and mixed in the melting step, and is preferably 0.025% or less.
C (carbon):
It is an element mixed from sponge titanium, and is preferably 0.025% or less.
H (hydrogen):
It is an element contained in sponge titanium and mixed in the dissolution process and the heating process. It is desirable that the content be 0.015% or less.
[0017]
The above-mentioned hot-rolled titanium material is used as a raw material and annealed at a predetermined temperature. This annealing disperses Fe, Ni, and Cr throughout the material and segregates at the grain boundaries, thereby reducing the crystal grain size of titanium. It is important to control. When the annealing temperature is less than 650 ° C., the dispersion of Fe, Ni and Cr is insufficient, and crystals having a sufficiently large particle size cannot be obtained. On the other hand, when the annealing temperature exceeds 850 ° C., the crystal grains become coarse and cracks occur at the stage of cold rolling performed later. Accordingly, the annealing temperature is set to 650 to 850 ° C.
[0018]
The holding time in this temperature range is set to 1 minute or longer because crystals having a sufficiently large particle diameter cannot be obtained if the holding time is less than 1 minute. The upper limit is not particularly defined, but if it is too long, it is economically disadvantageous, so it is desirable that the upper limit be about 10 minutes.
After the annealing treatment, a thickness of 20 μm or more is dissolved and removed from the surface of the hot-rolled titanium material by pickling treatment with a nitric hydrofluoric acid aqueous solution.
[0019]
By this pickling treatment, as described above, small pits are formed at the crystal grain boundaries. If the amount of dissolution and removal is less than 20 μm thick from the surface, the depth of the pits is not sufficient, and the recessed region that becomes the lubricant reservoir during rolling is shallow, so that it does not function sufficiently as the lubricant reservoir. The upper limit of the dissolution removal amount is not particularly defined, but if the removal amount is excessive, expensive titanium is thinned, so that the thickness is preferably 60 μm.
There are no particular restrictions on the concentration, temperature, etc. of the aqueous fluoric acid solution used for pickling. A conventionally used aqueous solution of nitric hydrofluoric acid having a concentration and temperature may be used. In addition, what is necessary is just to obtain | require the process conditions for the pickling aqueous solution used actually that the amount of dissolution removal is 20 μm or more from the surface in advance.
Next, cold rolling is performed at a rolling reduction of 50 to 91%. The “rolling ratio” here is defined by (d 1 −d 2 ) × 100 / d 1 (where d 1 is the thickness before rolling, and d 2 is the thickness after rolling). .
[0020]
The rolling reduction at the time of cold rolling is important for adjusting the crystal grain size of the raw material in combination with the conditions of the subsequent finish annealing. When the rolling reduction is less than 50%, the strain is unevenly present in the material, and thus a uniform crystal grain size cannot be obtained after the annealing treatment. On the other hand, when the rolling reduction exceeds 91%, the pits are completely crushed by the rolling roll, so that the function as a lubricant supply source cannot be maintained, and as a result, stuffiness occurs on the surface. Therefore, the rolling reduction during cold rolling is 50 to 91%.
Finally, finish annealing is performed. This finish annealing is an important step in providing a hard layer (oxide film) on the surface of the titanium plate. By providing a hard layer on the surface, damage to the surface during press molding can be prevented, and surface damage during press working can be prevented.
The final annealing is performed at 600 to 700 ° C. in an argon gas atmosphere having a purity of 99.999% or more. If the purity of the argon gas is lower than 99.999%, oxygen contained as an impurity in the argon gas forms a thick oxide film on the surface of the titanium plate during the annealing and colors the surface, which is not preferable. Since the atmosphere necessary for forming a hard layer on the surface of the titanium plate needs to be contained in the atmosphere during finish annealing, the purity of the argon gas is desirably lower than 99.99999999%. .
As a method of obtaining the annealing atmosphere relatively easily, it is preferable to adopt a method of introducing an argon gas into the furnace after the pressure inside the annealing furnace is previously reduced.
[0021]
For example, after the pressure inside the furnace is reduced to 6.67 × 10 −3 to 1.33 Pa (5 × 10 −5 to 1 × 10 −2 Torr), argon gas having a purity of 99.999% or more is introduced. If so, the above argon gas atmosphere can be made relatively easily. At that time, the degree of vacuum (degree of vacuum) before introducing the argon gas into the annealing furnace is important, and if the pressure in the furnace is lower than 6.67 × 10 −3 Pa (5 × 10 −5 Torr) (In other words, if the degree of vacuum is too high), since the amount of oxygen in the atmosphere after the introduction of argon gas is small, a hard layer is not formed on the surface of the titanium plate as described above, and improvement in seizure resistance cannot be expected. . On the other hand, if the pressure in the annealing furnace is higher than 1.33 Pa (1 × 10 −2 Torr) (that is, if the degree of vacuum is too low), the amount of residual oxygen and nitrogen in the atmosphere is large, and these during annealing Since it is adsorbed and colored on the surface of the titanium plate, the commercial value of the titanium plate after annealing is lowered.
[0022]
The final annealing temperature greatly affects the formability of the titanium plate because the crystal grain size of the titanium plate is determined by this temperature. If the annealing temperature is less than 600 ° C., the crystal grain size after annealing is fine, and twin deformation is difficult to occur as described above, so the formability becomes poor. On the other hand, when the annealing temperature exceeds 700 ° C., the crystal grain size becomes coarse, and roughening of the surface of the titanium plate after forming tends to occur. This coarsening of the crystal grain size tends to occur particularly when the coil is annealed. This is because it takes time until the temperature of the entire large coil becomes uniform, so if annealing is performed at a temperature exceeding 700 ° C., the vicinity of the end of the coil will be annealed at a high temperature for a long time. Therefore, the finish annealing temperature is 600 to 700 ° C. If the annealing time is too short, recrystallization is insufficient and the moldability may be deteriorated, so it is desirable that the annealing time be 5 minutes or longer.
[0023]
【Example】
Example 1
Using a titanium sponge with a purity of 5 N Grade (Ti: 99.999%), Ni foil with a purity of 5 N Grade (Ni: 99.999%) and Cr particles with a purity of 5 N Grade (Cr: 99.999%), a plasma arc type Titanium having a chemical composition shown in Table 1 was melted using a melting furnace to produce an ingot having a width of 80 mm, a thickness of 25 mm, and a length of 100 mm.
[0024]
[Table 1]
Figure 0004348827
The ingot was heated to 800 ° C. and hot-rolled to a thickness of 4 mm. The titanium hot-rolled material was subjected to an annealing treatment at 700 ° C. for 10 minutes, and a nitric hydrofluoric acid aqueous solution (3% HF and 10% The surface layer was dissolved and removed by pickling with a mixed acid of HNO 3 . The average thickness reduction by this treatment was 50 μm on both sides. Thereafter, descaling was performed, and a titanium plate having a thickness of 0.8 mm was finished by cold rolling. The rolling oil used was machine oil. Next, in the annealing furnace, the inside of the furnace was evacuated to a reduced pressure of 1.33 × 10 −2 Pa (1 × 10 −4 Torr), and then argon with a purity of 99.999% was introduced at 650 ° C. A 1 hour finish annealing was applied.
[0025]
A test piece for a deep drawing test with a diameter of 75 mm was taken from the titanium plate after the finish annealing, and a deep drawing test was performed using a punch with a diameter of 30 mm. Note that machine oil was used as a lubricant during the test.
The test results are also shown in Table 1. For “Mushire” in the column of “Evaluation” in Table 1, the surface of the titanium plate was observed with a 30-fold magnifier at the stage where the cold rolling was completed, and “Mushire” was not observed. When it was observed, it was displayed as a cross. In the column of “formability”, a mark “◯” indicates that the film was completely drawn by the above-described deep drawing test, indicating that the moldability is good. Moreover, x mark is what fractured | ruptured during the test and represents that deep drawability is unsatisfactory. When at least one of “mushy” and “formability” was marked with ×, it was judged as defective (x mark) in “overall evaluation”.
[0026]
From the results shown in Table 1, it can be seen that all of the titanium plates produced by the method of the present invention have good formability, and no musiness is observed during rolling.
(Example 2)
Ingot with 300mm diameter x 300mm length by melting titanium containing Fe: 0.0550%, Ni: 0.0125%, Cr: 0.0100% by consumable electrode type vacuum arc melting (VAR melting) (Ingot) was manufactured.
[0027]
After heating this ingot at 1100 ° C., it was hot forged to a thickness of 55 mm, and a material for hot rolling having a thickness of 50 mm and a width of 100 mm was obtained by machining. This hot rolling material was heated at 850 ° C., then hot rolled to a thickness of 5 mm, and the obtained hot rolled material was annealed under the conditions shown in Table 2.
[0028]
[Table 2]
Figure 0004348827
Next, the hot-rolled material after the annealing treatment is a nitric hydrofluoric acid aqueous solution (mixed acid of 3% HF and 10% HNO 3 ), and the dipping time is changed, and the thickness reduction amount shown in the “Pickling amount” column of Table 2 Pickling treatment, cold rolling at different rolling reduction ratios, and subjecting the resulting cold rolled sheet to finish annealing treatment under various conditions shown in Table 2 (heating time is 1 hour for all). And made a titanium plate. The annealing was performed in an argon gas atmosphere (pressure: atmospheric pressure) with a purity of 99.999%. Prior to the introduction of the argon gas into the annealing furnace, the inside of the furnace was evacuated, and the “vacuum” in Table 2 was used. The pressure was reduced as shown in the “degree” column.
[0029]
This titanium plate was subjected to a deep drawing test in the same manner as in Example 1 to evaluate the formability. At that time, in order to remove the influence of the plate thickness on the formability, one side of the titanium plate having the thickness shown in the column of “Finished thickness” in Table 2 was polished, and the thickness of each test piece was 0.4 mm. It was. In the deep drawing test, the surface that was not polished was used as the contact surface with the die.
[0030]
The test results are also shown in Table 2. ○ in the column of “Evaluation” in Table 2 indicates that deep drawing was completely drawn in this test, indicating that the moldability was good, and × indicates that the drawing was broken during the test. Indicates that it is defective. In addition,-mark is a thing with which the surface colored or the crack produced during cold rolling and there was no product value.
[0031]
From the results in Table 2, it can be seen that all of the titanium plates produced by the method of the present invention have good formability. In addition, * in the column of “Vacuum degree” of No. 13 in Table 2 means that the exhaust in the furnace was insufficient (the degree of vacuum was low) and the predetermined argon gas atmosphere was not achieved.
[0032]
【The invention's effect】
The titanium plate produced by the method of the present invention has good seizure resistance and is excellent in press formability. Therefore, it can be suitably used as a material for a press-formed product having a complicated shape.

Claims (2)

質量%で、Fe:0.08%以下、Ni:0.05%以下、Cr:0.05%以下を含有し、かつ、下記▲1▼式を満たし、残部はTiおよび不純物からなるチタンの熱間圧延材を、650〜850℃で1分以上焼鈍した後、硝フッ酸水溶液による酸洗処理で表面から厚さ20μm 以上を溶解除去し、次いで、50〜91%の圧下率で冷間圧延を施し、さらに、純度が99.999%以上のアルゴンガス雰囲気中で600〜700℃で仕上げ焼鈍することを特徴とする成形性に優れたチタン板の製造方法。
2×Fe(%)+Ni(%)+Cr(%)≧0.04 ・・・▲1▼
ただし、Fe(%)、Ni(%)およびCr(%)は、それぞれの元素の質量%での含有量を意味する。
It contains, by mass%, Fe: 0.08% or less, Ni: 0.05% or less, Cr: 0.05% or less, and satisfies the following formula (1), with the balance being titanium and impurities. After annealing the hot-rolled material at 650 to 850 ° C. for 1 minute or longer, it is dissolved and removed from the surface by a pickling treatment with an aqueous solution of nitric hydrofluoric acid, and then cold-rolled at a reduction rate of 50 to 91%. A method for producing a titanium plate excellent in formability, characterized by rolling and finishing annealing at 600 to 700 ° C. in an argon gas atmosphere having a purity of 99.999% or more.
2 × Fe (%) + Ni (%) + Cr (%) ≧ 0.04 (1)
However, Fe (%), Ni (%), and Cr (%) mean content in the mass% of each element.
仕上げ焼鈍炉内のアルゴンガス雰囲気が、炉内をあらかじめ6.67×10-3〜1.33Paまで減圧した後、純度99.999%以上のアルゴンガスを導入して得られる雰囲気であることを特徴とする成形性に優れたチタン板の製造方法。The argon gas atmosphere in the finish annealing furnace is an atmosphere obtained by introducing an argon gas having a purity of 99.999% or more after reducing the pressure in the furnace to 6.67 × 10 −3 to 1.33 Pa in advance. A method for producing a titanium plate having excellent formability.
JP2000121920A 2000-04-24 2000-04-24 Manufacturing method of titanium plate with excellent formability Expired - Fee Related JP4348827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000121920A JP4348827B2 (en) 2000-04-24 2000-04-24 Manufacturing method of titanium plate with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000121920A JP4348827B2 (en) 2000-04-24 2000-04-24 Manufacturing method of titanium plate with excellent formability

Publications (2)

Publication Number Publication Date
JP2001303223A JP2001303223A (en) 2001-10-31
JP4348827B2 true JP4348827B2 (en) 2009-10-21

Family

ID=18632473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000121920A Expired - Fee Related JP4348827B2 (en) 2000-04-24 2000-04-24 Manufacturing method of titanium plate with excellent formability

Country Status (1)

Country Link
JP (1) JP4348827B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT507114B1 (en) * 2008-07-25 2011-03-15 Wukun Steel Co Ltd METHOD FOR THE HEAT TREATMENT OF METALS
KR101435324B1 (en) 2013-03-28 2014-08-27 현대제철 주식회사 Method of manufacturing steel sheet
US20190226073A1 (en) * 2016-06-30 2019-07-25 Nippon Steel & Sumitomo Metal Corporation Titanium sheet and method for producing the same
CN106011538B (en) * 2016-07-04 2017-11-24 燕山大学 A kind of method for controlling crystal grain isometry to improve Ti20Zr6.5Al4V alloy plasticities
CN109415794B (en) * 2016-07-08 2020-09-11 日本制铁株式会社 Titanium plate and method for producing same
US20210108287A1 (en) * 2017-03-31 2021-04-15 Toho Titanium Co., Ltd. Sponge titanium, method for producing sponge titanium, and method for producing titanium ingot or titanium alloy ingot
CN109825785B (en) * 2017-11-23 2021-06-08 南京理工大学 Preparation method of industrial pure titanium with heterogeneous layered structure
CN113948721A (en) * 2021-09-08 2022-01-18 洛阳双瑞精铸钛业有限公司 Preparation method of titanium metal bipolar plate substrate of hydrogen fuel cell
CN115717242B (en) * 2023-01-10 2023-03-31 江苏富乐华功率半导体研究院有限公司 Method for chemically thinning and flattening titanium foil

Also Published As

Publication number Publication date
JP2001303223A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
EP1514949B1 (en) FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
JP2004060048A (en) Magnesium alloy sheet and method for producing the same
JP6057501B2 (en) Titanium plate for barrel polishing and manufacturing method thereof
JP4348827B2 (en) Manufacturing method of titanium plate with excellent formability
TW202223116A (en) Method for manufacturing austenitic stainless steel strip
JP2021014639A (en) PRODUCING METHOD OF Fe-Ni ALLOY SHEET
WO2005118898A1 (en) Titanium alloy and method of manufacturing titanium alloy material
JP4306547B2 (en) Magnesium alloy plate and manufacturing method thereof
EP3406361B1 (en) Titanium plate
EP4119683A1 (en) Delayed cracking prevention during drawing of high strength steel
JP2002003968A (en) Titanium sheet excellent in processability and its production method
JP2006299295A (en) High temperature molding method for aluminum alloy
JP3228134B2 (en) Method for producing pure titanium plate excellent in formability and seizure resistance
JP3600792B2 (en) Industrial pure titanium sheet and its manufacturing method
JP5874771B2 (en) Steel plate for cans excellent in workability and rough skin resistance and method for producing the same
JP4304425B2 (en) Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet
JP4371201B2 (en) β-type titanium alloy and method for producing the same
KR101311558B1 (en) Nickel material and method for producing nickel material
JP6670441B2 (en) Manufacturing method of steel strip for metal belt
JPH08199270A (en) Iron-nickel alloy sheet excellent in magnetic property and its production
TWI744780B (en) Processed titanium material and its manufacturing method
JP6794585B1 (en) Manufacturing method of titanium material for hot rolling
JP6794586B1 (en) Processed titanium material and its manufacturing method
JP2854055B2 (en) Cold-rolled steel sheet for deep drawing with excellent resistance to galling and chemical conversion
JPH06248404A (en) Production of titanium sheet excellent in press formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4348827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees