JP2018066652A - Analytical method of powder sample - Google Patents

Analytical method of powder sample Download PDF

Info

Publication number
JP2018066652A
JP2018066652A JP2016205386A JP2016205386A JP2018066652A JP 2018066652 A JP2018066652 A JP 2018066652A JP 2016205386 A JP2016205386 A JP 2016205386A JP 2016205386 A JP2016205386 A JP 2016205386A JP 2018066652 A JP2018066652 A JP 2018066652A
Authority
JP
Japan
Prior art keywords
sample
powder sample
particle size
measurement
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016205386A
Other languages
Japanese (ja)
Other versions
JP7005892B2 (en
Inventor
勝史 小野
Katsushi Ono
勝史 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016205386A priority Critical patent/JP7005892B2/en
Publication of JP2018066652A publication Critical patent/JP2018066652A/en
Application granted granted Critical
Publication of JP7005892B2 publication Critical patent/JP7005892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technique that improves the accuracy and correctness of X-ray diffraction measurement.SOLUTION: An analytical method of powder samples includes: filling a powder sample into a recess which is formed on one face of a flat plate-like sample container and of which a periphery is surrounded with a main surface of the sample container; using a measurement sample produced by shearing the powder sample by moving a flat plate-like jig while keeping a state of the main surface of the flat plane-like sample container in contact with a flat face of the flat plate-like jig; and conducting X-ray diffraction measurement for the powder sample of the measurement sample.SELECTED DRAWING: Figure 4

Description

本発明は、粉末試料の分析方法に関する。詳しくは、粉末試料が試料容器に好適に準備調整された測定用試料を用いて、X線回折測定を行う粉末試料の分析方法に関する。   The present invention relates to a method for analyzing a powder sample. More specifically, the present invention relates to a powder sample analysis method for performing X-ray diffraction measurement using a measurement sample in which a powder sample is suitably prepared and adjusted in a sample container.

X線回折法は、物質の状態・物性を調査する手段として、無機物質や有機物質の粉末、高分子材料、タンパク質、金属部品、有機及び無機薄膜半導体、コロイド粒子など、研究開発対象の新規物質から、生産に係る様々な材料まで、多岐に亘って利用されている。例えば、特許文献1においては、鉱物を粉砕した粉末試料に対してX線回折測定を実施している。この分析方法は、試料に所定波長のX線を照射し、結晶格子によるX線の回折作用を観察して、各種物質や材料の定性・定量・同定を行うものである。   X-ray diffractometry is a new material for research and development, such as inorganic and organic powders, polymer materials, proteins, metal parts, organic and inorganic thin-film semiconductors, and colloidal particles as a means of investigating the state and physical properties of substances. To various materials related to production. For example, in Patent Document 1, X-ray diffraction measurement is performed on a powder sample obtained by pulverizing minerals. This analysis method irradiates a sample with X-rays having a predetermined wavelength, observes the X-ray diffraction action by the crystal lattice, and performs qualitative, quantitative, and identification of various substances and materials.

X線回折測定に用いる測定用試料を作製する方法としては、特許文献2の従来例として記載されているが、X線回折法における粉末試料の分析では、測定試料ホルダーの凹部に粉末状試料を充填した後、試料容器の主表面にスライドガラス等を用いて擦り合わせながら充填する(以降、擦り切りと称する)方法が一般的に行われている。
また、JIS−K−0131:X線回折分析通則や、JIS−R−7651:炭素材料の格子定数及び結晶子の大きさ測定方法には、試料作製において、粉末試料の試料容器への擦り切りは、粉末試料を均一かつ平滑に、試料容器の主表面と一致させる(同じ高さに合わせる)様に充填しなければならないとの記載がある。
以上の様に、X線回折法の精度や正確さを維持するためには、試料容器の凹部から盛り上がった粉末試料の表面を平滑化し、試料容器の主表面と粉末試料を同じ高さに合わせる操作が求められている。
As a method for producing a measurement sample used for X-ray diffraction measurement, it is described as a conventional example in Patent Document 2, but in the analysis of a powder sample in X-ray diffraction method, a powder sample is placed in a recess of a measurement sample holder. After filling, a method of filling the main surface of the sample container while rubbing with a slide glass or the like (hereinafter referred to as abrasion) is generally performed.
Further, according to JIS-K-0131: X-ray diffraction analysis general rules and JIS-R-7651: Carbon material lattice constant and crystallite size measurement method, in the preparation of a sample, a powder sample is worn into a sample container. There is a description that the powder sample must be filled uniformly and smoothly so as to coincide with the main surface of the sample container (conform to the same height).
As described above, in order to maintain the accuracy and accuracy of the X-ray diffraction method, the surface of the powder sample raised from the concave portion of the sample container is smoothed, and the main surface of the sample container and the powder sample are adjusted to the same height. Operation is required.

ところが、粉末試料の試料容器への擦り切りでは、粉末試料の粒径によるバラツキのほか、個人の経験やノウハウによるバラツキが生じ易く、これらのバラツキが、X線回折測定のピーク位置(回折角:2θ)および半価幅について、精度や正確さを悪化させる原因(特許文献2参照)となっている。特許文献2においては、この課題を解決すべく、フッ素樹脂系シート、それを貼りつけた樹脂面付板、該シートを貼りつけた樹脂面付台座および厚み調整治具を設けて作製した試料作製台座等々を採用している。   However, when the powder sample is scraped into the sample container, in addition to the variation due to the particle size of the powder sample, variations due to personal experience and know-how are likely to occur. These variations are the peak positions of the X-ray diffraction measurement (diffraction angle: 2θ). ) And the half-value width are causes for deteriorating accuracy and accuracy (see Patent Document 2). In Patent Document 2, in order to solve this problem, a sample prepared by providing a fluororesin-based sheet, a resin surface-attached board to which the fluororesin-based sheet is attached, a resin surface-attached base to which the sheet is attached, and a thickness adjusting jig. A pedestal is used.

一方、特許文献3では、試料容器の主表面と粉末試料を、同じ高さに合わせるための特殊試料容器が開示されているが、この特殊試料容器は、粉末試料の表面を平滑化することについて、全く言及していない。しかも、当該特殊試料容器を使用するためには、試料容器の設置台など、X線回折装置本体側の部品改造や、オートサンプラーによる自動測定のニーズがある場合は、サンプルチェンジャーや搬送アームなどの改造が必要となり、適用することは現実的でない。   On the other hand, Patent Document 3 discloses a special sample container for adjusting the main surface of the sample container and the powder sample to the same height. This special sample container is intended to smooth the surface of the powder sample. No mention at all. Moreover, in order to use the special sample container, if there is a need for modification of parts on the X-ray diffractometer main body side, such as a sample container mounting base, or automatic measurement using an autosampler, a sample changer, a transfer arm, Remodeling is required and it is not practical to apply.

特開平7−12760号公報JP-A-7-12760 特開2016−118557号公報JP 2006-118557 A 特開平8−247969号公報JP-A-8-247969

株式会社リガク、“粉末X線回折測定のサンプル準備”、[online]、Webinar(オンラインセミナー)[リガク](pdxsample)、[2016年1月20日検索]、インターネット<URL:http://www.rigaku.co.jp/rigaku.com/webinar/getwebinar.php?getwebinar=pdxsample>Rigaku Corporation, “Sample Preparation for Powder X-ray Diffraction Measurement”, [online], Webinar (Online Seminar) [Rigaku] (pdxsample), [Search January 20, 2016], Internet <URL: http: // www . rigaku. co. jp / rigaku. com / weberar / getwebinar. php? getwebinar = pdxsample>

本発明は、上記の様な問題点に着目して成されたものであり、試料容器に形成された凹部に充填された粉末試料に対して、X線回折測定を行う粉末試料の分析方法において、粉末試料が試料容器に準備調整して充填された測定用試料を用いて、X線回折測定における精度や正確さを向上させる技術を提供することを目的とする。   The present invention has been made paying attention to the above problems, and in a powder sample analysis method for performing X-ray diffraction measurement on a powder sample filled in a recess formed in a sample container. An object of the present invention is to provide a technique for improving accuracy and accuracy in X-ray diffraction measurement using a measurement sample in which a powder sample is prepared and adjusted in a sample container.

先にも挙げた様に、粉末試料の試料容器への擦り切りが、X線回折測定における精度や正確さに関与し、試料の種類によっては、要求される精度や正確さを満足出来ないことが知られている。
以下、図1を用いて説明する。図1は、従来において、試料容器の凹部から溢れた粉末試料を、スパチュラを用いて擦り切る様子を示す断面概略図であり、符号1は試料容器、符号11はその主表面、符号12は凹部、符号2はスパチュラ、符号Pは粉末試料を指す。以降、説明の便宜上、符号は省略する。
As mentioned earlier, scraping of powder samples into sample containers is involved in the accuracy and accuracy of X-ray diffraction measurement, and depending on the type of sample, the required accuracy and accuracy may not be satisfied. Are known.
Hereinafter, a description will be given with reference to FIG. FIG. 1 is a schematic cross-sectional view showing how a powder sample overflowing from a concave portion of a sample container is scraped with a spatula in the prior art. Reference numeral 1 is a sample container, reference numeral 11 is its main surface, and reference numeral 12 is a concave portion. , 2 indicates a spatula, and P indicates a powder sample. Hereinafter, for convenience of explanation, reference numerals are omitted.

試料容器の凹部から溢れた粉末試料を、スパチュラを用いて擦り切る場合、図1に示す様に、作業者は、スパチュラの先端を試料容器の主表面に当てつつ、スパチュラを把持するために、スパチュラの基端を試料容器の主表面から上方に持ち上げ、角度をつける。そして、スパチュラを手前に引くことにより、凹部から溢れた粉末試料を擦り切るのが通常であった。他の方法として、非特許文献1では、擦り切り治具として、試料容器をもう一つ用意し、その裏面を用いて擦り切る操作が紹介されている。擦り切る際には、上記方法と同じように、試料容器の主表面に対し、当該擦り切り治具を上方に持ち上げて一定の角度をつけ(傾けた時、試料容器の主表面との間に、もう一つの擦り切り治具を挿入出来る程度)、手前に引く操作を行っている。   When the powder sample overflowing from the concave portion of the sample container is scraped off with a spatula, as shown in FIG. 1, the operator holds the tip of the spatula against the main surface of the sample container, Lift the base end of the spatula upward from the main surface of the sample container and make an angle. The powder sample overflowing from the concave portion is usually scraped off by pulling the spatula forward. As another method, Non-Patent Document 1 introduces an operation of preparing another sample container as a scraping jig and scraping it using the back surface thereof. When scraping off, as in the above method, with respect to the main surface of the sample container, the scraping jig is lifted upward to make a certain angle (when tilted, between the main surface of the sample container, To the extent that another shaving jig can be inserted), it is pulling forward.

しかしながら、上記スパチュラや擦り切り治具の先端には、微小な凹凸が生じていることがある。このスパチュラや擦り切り治具を用いて擦り切りを行うと、スパチュラや擦り切り治具の先端の凹凸を、そのまま粉末試料の表面に反映させてしまうことになる。この様子を示すのが図2である。図2では、スパチュラの先端に存在する微小な凹凸が、粉末試料を擦り切る際、凹部に充填された粉末試料の表面に、凹凸を反映させてしまう様子を示している。そして、(a)はスパチュラの擦り切りを行う先端部の拡大模式図、(b)は(a)のスパチュラを用いて従来の操作で擦り切りを行った時の、凹部に充填された粉末試料表面を、平面視した図である。   However, minute irregularities may be formed at the tip of the spatula or scraping jig. When scraping is performed using this spatula or chafing jig, the unevenness at the tip of the spatula or chafing jig is reflected directly on the surface of the powder sample. This is shown in FIG. FIG. 2 shows a state in which minute unevenness present at the tip of the spatula reflects unevenness on the surface of the powder sample filled in the recess when the powder sample is scraped off. And (a) is an enlarged schematic view of the tip part where the spatula is scraped off, (b) is the powder sample surface filled in the recess when scraped by the conventional operation using the spatula of (a). FIG.

図2(b)に示されている粉末試料表面の凹凸は、擦り切りを行ったスパチュラの先端部の凹凸の反映であり、当該粉末試料表面の凹凸は、それぞれの作業者が、スパチュラを手前に引く際の軌跡、スパチュラを持ち上げる際の角度、どのスパチュラを用いるか等により個人差を生じ、大きく変化することになる。これは、非特許文献1の方法をはじめ、ガラス板等を用いて擦り切りを行う場合も同様である。ガラス板を用いる場合でも、ガラス板を把持しなければならない関係上、ガラス板の基端を試料容器の主表面から、上方に持ち上げて角度をつけることが通常であり、結局は、ガラス板の先端の凹凸を、そのまま粉末試料の表面に反映させてしまうことになる。   The unevenness on the surface of the powder sample shown in FIG. 2 (b) is a reflection of the unevenness on the tip of the scraped spatula, and the unevenness on the surface of the powder sample can be made by each operator with the spatula in front. There are individual differences depending on the trajectory at the time of pulling, the angle at which the spatula is lifted, which spatula is used, etc., and it will change greatly. The same applies to the case of scraping using a glass plate or the like, including the method of Non-Patent Document 1. Even when using a glass plate, it is usual to lift the base end of the glass plate upward from the main surface of the sample container and to make an angle because of the need to grip the glass plate. The unevenness at the tip is reflected on the surface of the powder sample as it is.

上記状況こそが、粉末試料の表面を平滑化し、試料容器の主表面と粉末試料を同じ高さに合わせる操作において、個人の経験やノウハウによるバラツキを生み、精度や正確さを低下させている原因であることに、本発明者は想到した。   This is the reason why the accuracy and accuracy are reduced due to the variation of individual experience and know-how in smoothing the surface of the powder sample and adjusting the main surface of the sample container and the powder sample to the same height. Therefore, the present inventor has conceived.

その他、X線回折測定における精度や正確さの低下度合いには、粉末試料の粒径が大きく影響を与えていることも分かっており、先にも挙げた、JIS−K−0131:X線回折分析通則に従うならば、粒径の大きい試料は、必要に応じて乳鉢などを用い、手動または専用の機械で、10μm以下の粒径となる様に粉砕する必要がある。しかし、その粒径の確認方法、粉砕の要否を判定する方法等については開示されていなかった。   In addition, it is also known that the particle size of the powder sample has a great influence on the degree of accuracy and accuracy reduction in the X-ray diffraction measurement. JIS-K-0131: X-ray diffraction mentioned above. If the general rules of analysis are followed, a sample having a large particle size needs to be pulverized to a particle size of 10 μm or less using a mortar or the like, if necessary, manually or with a dedicated machine. However, a method for confirming the particle size, a method for determining the necessity of pulverization, and the like have not been disclosed.

本発明者は、試料容器に形成された凹部に充填された粉末試料の擦り切りだけでなく、併せて、当該粉末試料の粒径確認および粉砕要否の判定にも着目し、鋭意検討を重ねた結果、これらの課題を解決するに至った。   The present inventor has not only worn out the powder sample filled in the recess formed in the sample container, but also focused on checking the particle size of the powder sample and determining the necessity of pulverization. As a result, these problems have been solved.

上記の知見に基づいて成された、本発明の態様は、以下の通りである。
本発明の第1の態様は、
平板状の試料容器の一面に形成された、周囲を当該試料容器の主表面に囲まれた凹部に粉末試料を充填し、当該平板状の試料容器の主表面と、平板状治具の平面とを接触させた状態のまま、前記平板状治具を移動させて前記粉末試料を擦り切ることにより作製した測定用試料を用いて、前記測定用試料の粉末試料に対して、X線回折測定を行うことを特徴とする粉末試料の分析方法である。
The embodiments of the present invention made based on the above findings are as follows.
The first aspect of the present invention is:
A powder sample is filled in a concave portion surrounded by the main surface of the sample container, and the main surface of the flat sample container, the flat surface of the flat jig, The X-ray diffraction measurement was performed on the powder sample of the measurement sample using the measurement sample prepared by moving the flat jig while scraping the powder sample with the plate in contact. It is the analysis method of the powder sample characterized by performing.

本発明の第2の態様は、第1の態様に記載の発明において、
前記粉末試料の擦り切りを行う前に、
前記粉末試料の最大粒径が10μm以下か否かを判定し、
前記粉末試料の最大粒径が10μmを超えている場合は、最大粒径が10μm以下になるまで、前記粉末試料に対して粉砕処理を行い、
前記粉末試料の最大粒径が10μm以下である場合は、前記粉末試料の擦り切りを行うことを特徴とする粉末試料の分析方法である。
According to a second aspect of the present invention, in the invention according to the first aspect,
Before scraping the powder sample,
Determining whether the maximum particle size of the powder sample is 10 μm or less,
When the maximum particle size of the powder sample exceeds 10 μm, the powder sample is pulverized until the maximum particle size is 10 μm or less,
When the maximum particle size of the powder sample is 10 μm or less, the powder sample is scraped off.

本発明の第3の態様は、第2の態様に記載の発明において、
前記判定の前に、前記粉末試料の粒径測定を行うことを特徴とする粉末試料の分析方法である。
According to a third aspect of the present invention, in the invention according to the second aspect,
The method of analyzing a powder sample, wherein the particle size of the powder sample is measured before the determination.

本発明の第4の態様は、第3の態様に記載の発明において、
前記粒径測定は、レーザー回折・散乱法を用いることを特徴とする粉末試料の分析方法である。
According to a fourth aspect of the present invention, in the invention according to the third aspect,
The particle size measurement is a powder sample analysis method using a laser diffraction / scattering method.

本発明によれば、X線回折測定における精度や正確さを向上させることが出来る。   According to the present invention, accuracy and accuracy in X-ray diffraction measurement can be improved.

従来法で、試料容器の凹部から溢れた粉末試料を、スパチュラで擦り切る様子を示す断面概略図である。It is the cross-sectional schematic which shows a mode that the powder sample overflowed from the recessed part of the sample container is scraped off with a spatula by the conventional method. 従来法で、スパチュラの先端に存在する微小な凹凸の変形が、粉末試料を擦り切る際、凹部に充填された粉末試料の表面に、凹凸を反映させてしまう様子を示す図であり、(a)はスパチュラの先端の拡大図、(b)は従来の方法で擦り切りを行った後の、凹部に充填された粉末試料の表面を平面視した様子を示す図である。It is a figure which shows a mode that the deformation | transformation of the micro unevenness | corrugation which exists in the front-end | tip of a spatula reflects an unevenness | corrugation on the surface of the powder sample with which the recessed part was filled when scrubbing a powder sample by a conventional method, (a ) Is an enlarged view of the tip of the spatula, and (b) is a diagram showing a plan view of the surface of the powder sample filled in the recesses after scraping by a conventional method. 本実施形態の粉末試料の分析方法を示すフローチャートである。It is a flowchart which shows the analysis method of the powder sample of this embodiment. 本実施形態の測定用試料の作製における、擦り切りの様子を示す断面概略図である。It is a cross-sectional schematic diagram which shows the mode of abrasion in preparation of the sample for a measurement of this embodiment. 実施例1において、粉末試料の粒径を、粉砕前に測定した結果を示すグラフである。In Example 1, it is a graph which shows the result of having measured the particle size of the powder sample before pulverization. 実施例1において、粉末試料の粒径を、粉砕後に測定した結果を示すグラフである。In Example 1, it is a graph which shows the result of having measured the particle size of the powder sample after grinding | pulverization.

以下、本発明の実施の形態について、以下の順に説明する。
1.粉末試料の分析方法
1−1.粒径測定
1−2.粒径判定
1−3.粉末試料の粉砕
1−4.測定用試料の作製
1−5.X線回折測定
2.実施の形態による効果
3.変形例等
本明細書において、「〜」は所定の値以上かつ所定の値以下のことを指す。なお、本実施形態においては、測定用試料の作製、X線回折測定を必須とする一方、それ以前の粒径測定、粒径判定、粉末試料の粉砕は好適例である。
Hereinafter, embodiments of the present invention will be described in the following order.
1. 1. Analysis method of powder sample 1-1. Particle size measurement 1-2. Particle size determination 1-3. Grinding of powder sample 1-4. Preparation of measurement sample 1-5. 1. X-ray diffraction measurement 2. Effects of the embodiment Modifications etc. In this specification, “to” refers to a value not less than a predetermined value and not more than a predetermined value. In the present embodiment, preparation of a measurement sample and X-ray diffraction measurement are essential, but particle size measurement, particle size determination, and pulverization of a powder sample are suitable examples.

<1.粉末試料の分析方法>
本実施形態においては、図3に示すフローチャートに従って、以下の操作を行う。なお、本実施形態における粉末試料は、X線回折測定を行った時に、測定結果が得られるものであれば、種類、粒子の形状等には特に限定は無い。
<1. Analysis method of powder sample>
In the present embodiment, the following operations are performed according to the flowchart shown in FIG. In addition, the powder sample in the present embodiment is not particularly limited in type, particle shape, or the like as long as a measurement result can be obtained when X-ray diffraction measurement is performed.

1−1.粒径測定
粒径測定においては、粉末試料に対する粒径測定を行う。具体的な測定方法としては、公知のものを用いても構わない。一例を挙げると、粒径測定の手段としては、篩法、自然沈降法、遠心沈降法、空気透過法、コールター法、動的光散乱法、画像解析法、レーザー回折・散乱法、そして最新の超遠心沈降法など、様々な方法が挙げられる。これらの方法は、測定原理によって、粒径や粒度分布の測定範囲のほか、長所・短所が異なるため、粒径の領域と目的に応じて、使い分けることが重要である。
1-1. Particle size measurement In the particle size measurement, the particle size of a powder sample is measured. As a specific measuring method, a known method may be used. For example, particle size measurement methods include sieve method, natural sedimentation method, centrifugal sedimentation method, air permeation method, Coulter method, dynamic light scattering method, image analysis method, laser diffraction / scattering method, and the latest There are various methods such as ultracentrifugation. These methods have different advantages and disadvantages in addition to the measurement range of particle size and particle size distribution depending on the measurement principle, so it is important to use them properly depending on the particle size region and purpose.

本実施形態においては、粉末試料の最大粒径を測定する必要があるが、上記の各方法のうち、レーザー回折・散乱法を採用するのが好ましい。レーザー回折・散乱法は、篩法や各沈降法及び空気透過法に比べ、操作性が良好である。また、粒径測定の再現性や測定範囲(ミクロン)等を鑑みると、有効径を求めるレーザー回折・散乱法が、本実施形態では総合的に見て適している。なお、レーザー回折・散乱法の装置としては、マイクロトラックMT3300EXII(マイクロトラック・ベル株式会社製)のほか、LA950V2(株式会社堀場製作所製)やSALD−3100(株式会社島津製作所製)などが挙げられるが、特に制限されるものではない。   In the present embodiment, it is necessary to measure the maximum particle size of the powder sample, but among the above methods, it is preferable to employ the laser diffraction / scattering method. The laser diffraction / scattering method has better operability than the sieving method, each sedimentation method and the air permeation method. In view of the reproducibility of the particle size measurement, the measurement range (microns), etc., the laser diffraction / scattering method for obtaining the effective diameter is generally suitable in the present embodiment. Examples of the laser diffraction / scattering apparatus include Microtrack MT3300EXII (manufactured by Microtrack Bell Co., Ltd.), LA950V2 (manufactured by Horiba, Ltd.), SALD-3100 (manufactured by Shimadzu Corporation), and the like. However, it is not particularly limited.

1−2.粒径判定
粒径判定では、後述する測定用試料の作製の前に、粉末試料の最大粒径が10μm以下か否かを判定する。判定において、粉末試料の最大粒径が10μmを超えていた場合は、最大粒径が10μm以下になるまで粉末試料に対して粉砕処理を行う(後述する粉末試料の粉砕)。その一方、粉末試料の最大粒径が10μm以下だった場合、測定用試料の作製へと進む。
1-2. Particle size determination In the particle size determination, it is determined whether or not the maximum particle size of the powder sample is 10 μm or less before the preparation of the measurement sample described later. In the determination, when the maximum particle size of the powder sample exceeds 10 μm, the powder sample is pulverized until the maximum particle size becomes 10 μm or less (pulverization of the powder sample described later). On the other hand, when the maximum particle size of the powder sample is 10 μm or less, the process proceeds to preparation of a measurement sample.

上記の様に、粒径判定を行う理由としては、以下の通りである。   As described above, the reason for determining the particle size is as follows.

まず、粉末試料に対してX線回折測定を行う場合、粉末試料の粒径を適度なものとする方が、測定の精度や正確さを向上させることに繋がる。本発明者は、先にも挙げた、JIS−K−0131:X線回折分析通則に記載された試料の粉砕を踏まえて、粉末試料の最大粒径は10μm以下とするという、粒径条件を設定した。   First, when X-ray diffraction measurement is performed on a powder sample, setting the particle size of the powder sample to an appropriate value leads to improvement in measurement accuracy and accuracy. Based on the pulverization of the sample described in JIS-K-0131: General rules for X-ray diffraction analysis, the present inventor has determined the particle size condition that the maximum particle size of the powder sample is 10 μm or less. Set.

また、別の理由としては、後述する測定試料の作製と、大きな関係がある。粒径判定で、粉末試料の最大粒径が10μmを超えているか否かを判定し、上記粉末試料の最大粒径が10μmを超えている場合は、最大粒径が10μm以下になるまで、上記粉末試料に対して粉砕処理を行い、適度な粒径にすることに大きな意味がある。何故ならば、粉末試料の最大粒径が細かければ細かいほど、スパチュラ、あるいはガラス板等の擦り切り治具で角度を付けて粉末試料を擦り切ろうとすると、擦り切り治具の先端の微小な凹凸により粉末試料に深く凹凸の跡が残ることになる。従って、後述する測定用試料の作製において、本発明の擦り切り方法を用いて、粉末試料に擦り切り治具の先端の微小な凹凸跡を残さない様にする必要がある。   Another reason is largely related to the production of a measurement sample described later. In the particle size determination, it is determined whether or not the maximum particle size of the powder sample exceeds 10 μm. When the maximum particle size of the powder sample exceeds 10 μm, the above-mentioned is performed until the maximum particle size becomes 10 μm or less. There is a great significance to pulverize the powder sample to obtain an appropriate particle size. This is because the smaller the maximum particle size of the powder sample, the smaller the unevenness at the tip of the scraping jig, when the powder sample is scraped off at an angle with a scraping jig such as a spatula or glass plate. Deep traces will remain on the powder sample. Therefore, in the preparation of the measurement sample to be described later, it is necessary to use the scraping method of the present invention so as not to leave minute traces on the tip of the scraping jig on the powder sample.

1−3.粉末試料の粉砕
上記した粒径判定において、粉末試料の最大粒径が10μmを超えていると判定された場合は、粉末試料の粉砕において、最大粒径が10μm以下になるまで、粉末試料に対する粉砕処理を行うことが好ましい。具体的な方法としては、公知のものを用いて構わない。一例を挙げると、メノウ乳鉢や振動ミル、若しくは気流式粉砕機などである。なお、上記粉砕処理を行った後に、再度、粉末試料の粒径測定および粒径判定を行い、最大粒径が10μm以下になるまで、当該粉末試料の粉砕処理を行う。
1-3. Grinding of powder sample In the above particle size determination, if it is determined that the maximum particle size of the powder sample exceeds 10 μm, the powder sample is ground until the maximum particle size becomes 10 μm or less. It is preferable to carry out the treatment. As a specific method, a known method may be used. For example, an agate mortar, a vibration mill, or an airflow crusher. In addition, after performing the said grinding | pulverization process, the particle size measurement of a powder sample and a particle size determination are performed again, and the said powder sample is pulverized until the maximum particle size becomes 10 micrometers or less.

1−4.測定用試料の作製
測定用試料の作製は、本実施形態における、大きな特徴の一つである。測定用試料の作製では、平板状の試料容器の一面に形成された、周囲を当該試料容器の主表面に囲まれた凹部に充填した粉末試料を、当該平板状の試料容器の主表面と、平板状治具の平面とを接触させた状態のまま、前記平板状治具を移動させて前記粉末試料を擦り切る。本実施形態においては、上記平板状治具としてガラス板を使用した。以下、手順を追って説明する。
1-4. Production of measurement sample Production of a measurement sample is one of the major features of this embodiment. In the preparation of the measurement sample, a powder sample formed on one surface of a flat sample container and filled with a recess surrounded by the main surface of the sample container, a main surface of the flat sample container, The powder sample is scraped off by moving the flat jig while keeping the flat surface of the flat jig in contact. In the present embodiment, a glass plate is used as the flat jig. The procedure will be described below.

まず、X線回折測定に供される、平板状の試料容器を用意する。試料容器としては、公知のものを用いて構わないが、平板状の試料容器の一面に形成された、周囲を当該試料容器の主表面に囲まれた、粉末試料を充填させるための凹部を、有する試料容器を用いることが相応しい。なお、ここで言う主表面とは、平板状の試料容器の一面における凹部(の側面や底面)以外の同一平面上の部分のことを指す。
そして、上記の、粒径測定、粒径判定、粉末試料の粉砕を経た、最大粒径が10μm以下の粉末試料を、試料容器の凹部に充填する。その際、当該粉末試料は凹部から少し溢れる程度の量を充填することが好ましい。
また、平板状の試料容器中央部裏面まで貫通している開口部が設けられているものも使用することが出来る。上記開口部を有する平板状の試料容器を用いる場合には、平面ガラス板等の平面基板の上に配置し、平面基板と開口部で作られた凹部に粉末試料を充填し、押圧して当該粉末試料が落下しないようにすればよい。
First, a flat sample container used for X-ray diffraction measurement is prepared. As the sample container, a publicly known one may be used, but a recess formed on one surface of a flat sample container, surrounded by the main surface of the sample container, for filling a powder sample, It is suitable to use a sample container having the same. In addition, the main surface said here refers to the part on the same plane other than the recessed part (the side surface and bottom face) in one surface of a flat sample container.
Then, a powder sample having a maximum particle size of 10 μm or less, which has been subjected to the particle size measurement, the particle size determination, and the pulverization of the powder sample, is filled in the concave portion of the sample container. At that time, it is preferable to fill the powder sample with an amount that slightly overflows from the recess.
Moreover, the thing provided with the opening part penetrated to the flat sample container center part back surface can also be used. In the case of using a flat sample container having the above-mentioned opening, it is placed on a flat substrate such as a flat glass plate, filled with a powder sample in a recess made by the flat substrate and the opening, and pressed to The powder sample should not be dropped.

そして、次に擦り切りを実施する。擦り切りについては、図4を用いて説明する。図4は、本実施形態の測定用試料の作製における、擦り切りの様子を示す断面概略図であり、符号3は平板状治具であるが、以降、符号は省略する。図4に示す様に、平板状治具の平面と、試料容器の主表面(即ち、凹部以外の平面部分)とを接触させた状態のまま、前記平板状治具を移動させて前記粉末試料を擦り切る。より詳しく言うと、平板状治具の平面と、試料容器の主表面とを面接触させた状態で、両平面を平行な状態に維持したまま、前記平板状治具を移動させて前記粉末試料を擦り切る。こうして、試料容器の主表面と、凹部に充填された粉末試料の表面を、同じ高さにすることが出来る。しかも、上記方法に依れば、擦り切り治具の先端の微小な凹凸により粉末試料に深く凹凸の跡が残ることなく、平板状治具の側面で粉末試料が擦り切られた後、通過する平板状治具の平面部により凹部内の粉末試料の表面が均一に平坦化されることになる。そのため、当該粉末試料の表面の平滑化が可能となる。   Then, scraping is performed. The scraping will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view showing the state of scraping in the production of the measurement sample of the present embodiment. Reference numeral 3 denotes a flat jig, but the reference numeral is omitted hereinafter. As shown in FIG. 4, the powder sample is moved by moving the flat jig while keeping the flat surface of the flat jig and the main surface of the sample container (that is, the flat portion other than the concave portion) in contact with each other. Scrape off. More specifically, in the state where the plane of the flat jig and the main surface of the sample container are in surface contact, the flat jig is moved and the powder sample is moved while maintaining both planes in parallel. Scrape off. In this way, the main surface of the sample container and the surface of the powder sample filled in the recess can be made the same height. In addition, according to the above method, a flat plate that passes after the powder sample has been scraped off on the side surface of the flat jig without leaving traces of deep irregularities in the powder sample due to minute irregularities at the tip of the scraping jig. The surface of the powder sample in the recess is uniformly flattened by the flat portion of the jig. Therefore, the surface of the powder sample can be smoothed.

なお、上記の例では、平板状治具としてガラス板を使用したが、これに限定されるものではなく、試料容器の主表面に対して、面平行としながら擦り切りを行うことが出来る平板状治具であれば、特に限定は無い。例えば、擦り切りを行うことが出来る平板状金属板に、左官鏝(こて)板の様に取っ手を付けた治具を使用しても構わない。   In the above example, a glass plate is used as the flat jig, but the present invention is not limited to this, and the flat jig that can be scraped while being parallel to the main surface of the sample container. If it is a tool, there is no limitation in particular. For example, you may use the jig which attached the handle like the plastering board (trowel) board to the flat metal plate which can be frayed.

1−5.X線回折測定
上記の、粉末試料を試料容器の凹部に充填した測定用試料を、X線回折装置用の試料ホルダーに取り付け、上記粉末試料の品種および銘柄毎に合わせた、好適なX線回折測定の条件を選択しX線回折測定を行う。走査条件としては、一定速度で軸を駆動しながら測定する連続モードを用いてもよいし、一定角度ずつ軸を送り、静止している状態で測定するステップモードを用いてもよい。
1-5. X-ray diffraction measurement The above-mentioned measurement sample in which the powder sample is filled in the concave portion of the sample container is attached to a sample holder for an X-ray diffractometer, and suitable X-ray diffraction according to the type and brand of the powder sample. Select measurement conditions and perform X-ray diffraction measurement. As the scanning condition, a continuous mode in which the measurement is performed while driving the shaft at a constant speed may be used, or a step mode in which the shaft is fed at a constant angle and measured in a stationary state may be used.

<2.実施の形態による効果>
本実施形態によれば、X線回折測定における、精度や正確さを向上させることが可能となる。具体的に言うと、測定用試料の作製時の擦り切りにおいて、平板状治具を試料容器表面に対し、当該平板状の試料容器の主表面と、平板状治具の平面とを接触させた状態のまま、前記平板状治具を移動させて前記粉末試料を擦り切ることにより、試料容器主表面と試料表面とを同じ高さに合わせられると共に、試料表面の平滑化が可能となるため、個人の経験やノウハウによるバラツキを生み、精度や正確さを低下させる原因となっていた当該粉末試料表面の凹凸は存在せず、X線回折測定結果で精度や正確さを達成出来る。
<2. Advantages of the embodiment>
According to the present embodiment, it is possible to improve accuracy and accuracy in X-ray diffraction measurement. More specifically, in the abrasion when the measurement sample is produced, the flat jig is in contact with the main surface of the flat specimen container and the flat surface of the flat jig on the surface of the specimen container. By moving the flat jig and scraping the powder sample, the main surface of the sample container and the sample surface can be adjusted to the same height and the sample surface can be smoothed. There are no irregularities on the surface of the powder sample, which caused variations in experience and know-how, and reduced accuracy and accuracy, and accuracy and accuracy can be achieved by X-ray diffraction measurement results.

また、粒径測定では、レーザー回折・散乱法を行うことにより、他の方法に比べて、僅か数分レベルで信頼性の高い粒径測定を行い、測定に供する粉末試料の最大粒径を容易に確認出来ると共に、最大粒径が判定基準よりも大きい場合には、早期に粉末試料の粉砕に移ることが可能となる。粉砕を行うことで、試料が不均一であることから生ずる、測定X線回折線の位置ズレや、ピーク強度低下等の精度や正確さの悪化を改善し、再分析の頻度を減らすことが出来る。   In particle size measurement, the laser diffraction / scattering method is used to perform highly reliable particle size measurement in just a few minutes compared to other methods, and the maximum particle size of the powder sample used for measurement can be easily obtained. If the maximum particle size is larger than the criterion, it is possible to move to pulverization of the powder sample at an early stage. By performing pulverization, it is possible to improve the accuracy and accuracy of measurement X-ray diffraction line misalignment and peak intensity reduction caused by non-uniformity of the sample, and reduce the frequency of reanalysis. .

<3.変形例>
本発明の技術的範囲は、上述した実施の形態に限定されるものではなく、発明の構成要件や、その組み合わせによって得られる、特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
<3. Modification>
The technical scope of the present invention is not limited to the above-described embodiment, and various modifications and improvements are added within the scope of deriving specific effects obtained by the constituent elements of the invention and combinations thereof. Including.

例えば、本実施形態においては平板状の試料容器を用いたが、平面としての主表面を有し、その主表面により凹部が囲まれている状態のものならば板状のものでなくとも構わず、例えばある程度厚みのあるブロック状の試料容器を採用しても構わない。平板状治具においても同様であり、試料容器の主表面(平面)と接触可能な平面が存在すれば特に限定は無い。   For example, in the present embodiment, a flat sample container is used, but it may be a plate-like one as long as it has a main surface as a flat surface and a recess is surrounded by the main surface. For example, a block-shaped sample container having a certain thickness may be adopted. The same applies to the flat jig, and there is no particular limitation as long as there is a plane that can contact the main surface (plane) of the sample container.

また、X線回折測定以外の測定(例えば、JIS−R−5201:セメントの物理試験方法(その中の「9.凍結試験」))に供される粉末試料の準備では、混練した粉末試料を試料容器に入れ、過剰分を擦り切り表面を平滑にする。この際に、上記の本発明の擦り切り方法を採用することも可能である。そのため、上述した実施の形態において「X線回折測定」を単に「測定」と言い換えても構わない。   In preparation of a powder sample to be used for measurements other than X-ray diffraction measurement (for example, JIS-R-5201: physical test method for cement (“9. Freezing test” therein)), Put in a sample container and scrape off excess to smooth the surface. At this time, it is also possible to employ the above-described scraping method of the present invention. Therefore, in the above-described embodiment, “X-ray diffraction measurement” may be simply referred to as “measurement”.

以下、本実施例について説明する。なお、本発明の技術的範囲は、以下の実施例に限定されるものではない。   Hereinafter, this embodiment will be described. The technical scope of the present invention is not limited to the following examples.

(実施例1)
粉末試料(金属複合酸化物粉末A)を用いて、以下の手順に従い、X線回折プロファイルから検出された、結晶主相における最強回折線の位置や強度を算出・評価した。また、結晶構造解析手法であるリートベルト(Rietveld)解析により、格子定数のほか、試料容器の主表面からの粉末試料の高さのズレを算出・評価した。
Example 1
Using the powder sample (metal composite oxide powder A), the position and intensity of the strongest diffraction line in the crystal main phase detected from the X-ray diffraction profile were calculated and evaluated according to the following procedure. In addition to the lattice constant, the height deviation of the powder sample from the main surface of the sample container was calculated and evaluated by Rietveld analysis, which is a crystal structure analysis technique.

<粒径測定>
まず、粉末試料の粒径を、レーザー回折・散乱法を用いた測定装置である、マイクロトラックMT3300EXII(マイクロトラック・ベル株式会社製)で測定した。その結果を図5に示す。最大粒径は、約40μmであった。なお、粒径測定における各種条件は、表1に記載する通りである。
<Particle size measurement>
First, the particle size of the powder sample was measured with Microtrac MT3300EXII (manufactured by Microtrac Bell Co., Ltd.), which is a measuring apparatus using a laser diffraction / scattering method. The result is shown in FIG. The maximum particle size was about 40 μm. Various conditions in the particle size measurement are as described in Table 1.

<粒径判定>
次に、粒径測定の結果から、粉砕の要否を判定した。上記の様に、最大粒径は10μmを超えていたため、粉砕が必要であると判定した。
<Determination of particle size>
Next, the necessity of pulverization was determined from the particle size measurement results. As described above, since the maximum particle diameter exceeded 10 μm, it was determined that pulverization was necessary.

<粉末試料の粉砕>
粒径判定で、粉砕が必要であると判定されたことから、メノウ乳鉢を用いた手動粉砕を、約10分間行った。その後、粉砕済みの粉末試料について、再び粒径を測定したところ、図6に示すように、最大粒径が10μm以下(約2.5μm)となったため、次の操作である測定用試料の作製に進んだ。
<Pulverization of powder sample>
Since it was determined in the particle size determination that pulverization was necessary, manual pulverization using an agate mortar was performed for about 10 minutes. Thereafter, the particle size of the pulverized powder sample was measured again. As shown in FIG. 6, the maximum particle size was 10 μm or less (about 2.5 μm). Proceed to.

<測定用試料の作製>
粉砕後の粉末試料を充填させるため、平板状の試料容器の一面に形成され、周囲を当該試料容器の主表面に囲まれた凹部を有する試料容器を準備し、上記粉末試料を、試料容器の凹部に充填した。その際、当該凹部から少し溢れる程度の量の粉末試料を充填した。
<Preparation of measurement sample>
In order to fill the powder sample after pulverization, a sample container formed on one surface of a flat sample container and having a recess surrounded by the main surface of the sample container is prepared. The recess was filled. At that time, an amount of powder sample was filled so as to slightly overflow from the concave portion.

そして、図4に示す様に、ガラス板の面と試料容器の主表面(即ち、凹部以外の部分)とを接触させた状態のまま、前記平板状治具を移動させて前記粉末試料を擦り切った。   Then, as shown in FIG. 4, the flat jig is moved and the powder sample is rubbed while the surface of the glass plate and the main surface of the sample container (that is, the portion other than the concave portion) are in contact with each other. Chopped.

作製した測定用試料を、X線回折装置用の試料ホルダーに取り付け、表2に示す所定の条件でX線回折測定を行った。
X線回折装置にはX’Pert−PRO/MPD(スペクトリス株式会社製)、解析ソフトにはHigh Score Plus(スペクトリス株式会社製)を用いた。
その後、当該粉末試料の最強回折線である003面の回折線について、他の回折線との分離処理を実施し、回折線の位置(2θ)及び強度(cps)を求め、かつリートベルト解析によって格子定数のほか、試料容器の主表面からの粉末試料の高さのズレを計算した。その結果を、表3に示す。
The prepared measurement sample was attached to a sample holder for an X-ray diffractometer, and X-ray diffraction measurement was performed under predetermined conditions shown in Table 2.
X'Pert-PRO / MPD (Spectris Co., Ltd.) was used for the X-ray diffractometer, and High Score Plus (Spectris Co., Ltd.) was used for the analysis software.
Thereafter, the diffraction line on the 003 plane, which is the strongest diffraction line of the powder sample, is separated from other diffraction lines, the position (2θ) and intensity (cps) of the diffraction line are obtained, and Rietveld analysis is performed. In addition to the lattice constant, the height deviation of the powder sample from the main surface of the sample container was calculated. The results are shown in Table 3.

次に、粉末試料の試料容器への擦り切りについて、本発明による擦り切り(試料容器の主表面に対し、平板状治具を接触させたまま移動させる)と、従来の方法による擦り切り(試料容器の主表面に対し、スパチュラに角度をつける)を比較するため、粉末試料の表面状態を比較した。
そのため、オプティカルプロファイラーNewView6200(Zygo−Corporation製)を用い、実施例1の擦り切り後における、粉末試料の平面度(表面粗さ)を調べた。その結果について表3に示す。
Next, with regard to scraping of the powder sample into the sample container, scraping according to the present invention (moving the flat jig in contact with the main surface of the sample container) and scraping by the conventional method (main of the sample container) In order to compare the angle of the spatula with respect to the surface), the surface states of the powder samples were compared.
Therefore, the flatness (surface roughness) of the powder sample after the abrasion of Example 1 was examined using an optical profiler NewView 6200 (manufactured by Zygo-Corporation). The results are shown in Table 3.

実施例1によれば、回折線の位置や強度をはじめ、格子定数のほか、試料容器の主表面からの粉末試料の高さのズレに関する標準偏差が小さく、非常に信頼性の高い分析結果を得られることが証明された。また、平面度の調査結果から、本発明を用いることで平面度が向上しており、粉末試料の表面をより良く平滑化出来ていることも証明された。これらの結果から、従来の方法による擦り切りよりも、本発明による擦り切りのほうが、高い信頼性を要求される分析試料へ対応可能であることが分かった。   According to Example 1, in addition to the position and intensity of the diffraction line, the lattice constant, and the standard deviation with respect to the deviation of the height of the powder sample from the main surface of the sample container is small, and the analysis result is very reliable. Proven to be obtained. In addition, from the investigation results of flatness, it was proved that the flatness was improved by using the present invention, and the surface of the powder sample could be smoothed better. From these results, it was found that the fraying according to the present invention can cope with an analysis sample requiring high reliability rather than the fraying by the conventional method.

(実施例2)
粉末試料(金属複合酸化物粉末A)を用いて、粒径測定〜粒径判定を省き、最大粒径が10μmを超えている状態で、それ以外は、実施例1と同様にして、X線回折測定を行った。その結果を表3に示す。
また、実施例1と同様にして、オプティカルプロファイラーNewView6200(Zygo−Corporation製)を用い、実施例2の擦り切り後における、粉末試料の平面度(表面粗さ)を調べた。その結果について表3に示す。
(Example 2)
Using the powder sample (metal composite oxide powder A), the particle size measurement to particle size determination is omitted, and the maximum particle size exceeds 10 μm. Diffraction measurement was performed. The results are shown in Table 3.
Further, in the same manner as in Example 1, the flatness (surface roughness) of the powder sample after the abrasion in Example 2 was examined using an optical profiler NewView 6200 (manufactured by Zygo- Corporation). The results are shown in Table 3.

実施例1の平均値と比べて、粒径測定〜粒径判定を省いた場合には、回折線の位置や強度をはじめ、格子定数のほか、試料容器の主表面からの粉末試料の高さのズレに関して、差が大きくなる傾向が見られた。また、平面度についても、同じ傾向であった。これらの結果から、最大粒径を10μm以下に粉砕した粉末試料を用いて、本発明の擦り切り方法を用いて、X線回折測定用試料を作製する効果が確認出来た。   Compared with the average value of Example 1, when the particle size measurement to particle size determination are omitted, the height of the powder sample from the main surface of the sample container in addition to the position and intensity of the diffraction line, the lattice constant, and the like. There was a tendency for the difference to increase. Further, the flatness was the same. From these results, the effect of producing a sample for X-ray diffraction measurement using a scraping method of the present invention using a powder sample pulverized to a maximum particle size of 10 μm or less could be confirmed.

(比較例1)
実施例1で粉砕済みの粉末試料(金属複合酸化物粉末A)を用いて、試料容器へ擦り切る際に、従来の方法で行っていた操作と同様にした。具体的には、ガラス板の先端を試料容器の主表面に当てつつ、ガラス板を把持するために、ガラス板の基端を試料容器の主表面から上方に持ち上げ、角度をつける。そして、ガラス板を手前に引くことにより、試料容器の主表面に対し、角度を付けた状態で、ガラス板で凹部から溢れた粉末試料を擦り切った。それ以外は、実施例1と同様にして、X線回折測定を行った。その結果を表3に示す。また、実施例1と同様にして、オプティカルプロファイラーNewView6200(Zygo−Corporation製)を用い、比較例1の擦り切り後における、粉末試料の平面度(表面粗さ)を調べた。その結果について表3に示す。
(Comparative Example 1)
When the powder sample (metal composite oxide powder A) that had been crushed in Example 1 was scraped off into the sample container, the same operation as that performed in the conventional method was performed. Specifically, in order to hold the glass plate while applying the tip of the glass plate to the main surface of the sample container, the base end of the glass plate is lifted upward from the main surface of the sample container, and an angle is formed. Then, by pulling the glass plate to the front, the powder sample overflowing from the recess was scraped off with the glass plate in an angled state with respect to the main surface of the sample container. Other than that was carried out similarly to Example 1, and performed the X-ray-diffraction measurement. The results are shown in Table 3. Further, in the same manner as in Example 1, the flatness (surface roughness) of the powder sample after the abrasion of Comparative Example 1 was examined using an optical profiler NewView 6200 (manufactured by Zygo-Corporation). The results are shown in Table 3.

比較例1によれば、表3における実施例1の場合と比べ、回折線の位置や強度をはじめ、格子定数のほか、試料容器の主表面からの粉末試料の高さのズレに関する標準偏差が、明らかに劣っていた。また、平面度についても、比較例1では実施例1ほどの平面度が得られておらず、粉末試料の表面を平滑化することについても、劣っていることが分かった。   According to Comparative Example 1, compared to the case of Example 1 in Table 3, in addition to the position and intensity of the diffraction line, the standard deviation regarding the deviation of the height of the powder sample from the main surface of the sample container, in addition to the lattice constant, Was clearly inferior. Moreover, also about flatness, the flatness as Example 1 was not acquired in the comparative example 1, and it turned out that it is inferior also about smoothing the surface of a powder sample.

(比較例2)
粉末試料(金属複合酸化物粉末A)を用いて、粒径測定〜粒径判定を省き、最大粒径が10μmを超えている状態で、従来の方法による擦り切り(試料容器の主表面に対し、スパチュラに角度をつける)を行った。それ以外は、実施例1と同様にして、X線回折測定を行った。その結果を表3に示す。また、実施例1と同様にして、オプティカルプロファイラーNewView6200(Zygo−Corporation製)を用い、比較例2の擦り切り後における、粉末試料の平面度(表面粗さ)を調べた。その結果について表3に示す。
(Comparative Example 2)
Using the powder sample (metal composite oxide powder A), omitting the particle size measurement to particle size determination, and in a state where the maximum particle size exceeds 10 μm, it is worn by the conventional method (on the main surface of the sample container, Angled the spatula). Other than that was carried out similarly to Example 1, and performed the X-ray-diffraction measurement. The results are shown in Table 3. Further, in the same manner as in Example 1, the flatness (surface roughness) of the powder sample after abrasion of Comparative Example 2 was examined using an optical profiler NewView 6200 (manufactured by Zygo- Corporation). The results are shown in Table 3.

実施例1の平均値と比べて、粒径測定〜粒径判定を省き、かつ本発明による擦り切り(試料容器の主表面に対し、平板状治具を接触させたまま移動させる)を行わなかった場合には、回折線の位置や強度をはじめ、格子定数のほか、試料容器の主表面からの粉末試料の高さのズレに関して、いっそう差が大きくなる傾向が見られた。また、平面度についても、同じ傾向であった。これらの結果から、最大粒径を10μm以下に粉砕する効果も、より明らかとなった。   Compared with the average value of Example 1, particle size measurement to particle size determination was omitted, and abrasion according to the present invention was not performed (the plate-shaped jig was moved while being in contact with the main surface of the sample container). In some cases, the difference tended to become larger with respect to the deviation of the height of the powder sample from the main surface of the sample container in addition to the position and intensity of the diffraction line, the lattice constant, and the like. Further, the flatness was the same. From these results, the effect of pulverizing the maximum particle size to 10 μm or less was further clarified.

1………試料容器
11……主表面
12……凹部
2………スパチュラ
3………平板状治具
P………粉末試料
DESCRIPTION OF SYMBOLS 1 ......... Sample container 11 ... Main surface 12 ... Concavity 2 ...... Spatula 3 ......... Plate-shaped jig | tool P ......... Powder sample

Claims (4)

平板状の試料容器の一面に形成された、周囲を当該試料容器の主表面に囲まれた凹部に粉末試料を充填し、当該平板状の試料容器の主表面と、平板状治具の平面とを接触させた状態のまま、前記平板状治具を移動させて前記粉末試料を擦り切ることにより作製した測定用試料を用いて、前記測定用試料の粉末試料に対して、X線回折測定を行うことを特徴とする粉末試料の分析方法。   A powder sample is filled in a concave portion surrounded by the main surface of the sample container, and the main surface of the flat sample container, the flat surface of the flat jig, The X-ray diffraction measurement was performed on the powder sample of the measurement sample using the measurement sample prepared by moving the flat jig while scraping the powder sample with the plate in contact. A method for analyzing a powder sample, comprising: 前記粉末試料の擦り切りを行う前に、
前記粉末試料の最大粒径が10μm以下か否かを判定し、
前記粉末試料の最大粒径が10μmを超えている場合は、最大粒径が10μm以下になるまで、前記粉末試料に対して粉砕処理を行い、
前記粉末試料の最大粒径が10μm以下である場合は、前記粉末試料の擦り切りを行うことを特徴とする請求項1に記載の粉末試料の分析方法。
Before scraping the powder sample,
Determining whether the maximum particle size of the powder sample is 10 μm or less,
When the maximum particle size of the powder sample exceeds 10 μm, the powder sample is pulverized until the maximum particle size is 10 μm or less,
The method for analyzing a powder sample according to claim 1, wherein when the maximum particle size of the powder sample is 10 µm or less, the powder sample is scraped off.
前記判定の前に、前記粉末試料の粒径測定を行うことを特徴とする請求項2に記載の粉末試料の分析方法。   The method for analyzing a powder sample according to claim 2, wherein the particle size of the powder sample is measured before the determination. 前記粒径測定は、レーザー回折・散乱法を用いることを特徴とする請求項3に記載の粉末試料の分析方法。





















4. The method for analyzing a powder sample according to claim 3, wherein the particle size measurement uses a laser diffraction / scattering method.





















JP2016205386A 2016-10-19 2016-10-19 Analysis method of powder sample Active JP7005892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016205386A JP7005892B2 (en) 2016-10-19 2016-10-19 Analysis method of powder sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016205386A JP7005892B2 (en) 2016-10-19 2016-10-19 Analysis method of powder sample

Publications (2)

Publication Number Publication Date
JP2018066652A true JP2018066652A (en) 2018-04-26
JP7005892B2 JP7005892B2 (en) 2022-01-24

Family

ID=62086006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205386A Active JP7005892B2 (en) 2016-10-19 2016-10-19 Analysis method of powder sample

Country Status (1)

Country Link
JP (1) JP7005892B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535052A (en) * 2018-05-28 2018-09-14 超威电源有限公司 Powder raw material whiteness detects sampling method and sampler
CN113804670A (en) * 2021-09-29 2021-12-17 合肥国轩高科动力能源有限公司 Raman test method for improving Raman signal-to-noise ratio of powder sample

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4740545Y1 (en) * 1966-09-30 1972-12-07
JPS56157663U (en) * 1980-04-24 1981-11-25
JPH0712760A (en) * 1993-06-22 1995-01-17 Mitsubishi Materials Corp Determination method for mineral
JPH10115596A (en) * 1996-08-21 1998-05-06 Suzuki Motor Corp Sample holder for x-ray diffratometer and sample fixation method
JP2002148163A (en) * 2000-11-07 2002-05-22 Rigaku Industrial Co X-ray analysis sample preparation method and cup-shaped sample vessel used for it
JP2003232665A (en) * 2002-02-13 2003-08-22 Boford Japan:Kk Measuring spoon
JP2005127999A (en) * 2003-10-01 2005-05-19 Sumitomo Chemical Co Ltd Crystal determinating method
JP2005249032A (en) * 2004-03-03 2005-09-15 Nisshinbo Ind Inc Powder scrapping-off method and scrapping-off device
JP2007017258A (en) * 2005-07-07 2007-01-25 Rigaku Corp Composite analyzer and composite analyzing method
JP2013108778A (en) * 2011-11-18 2013-06-06 Nakaden Rare Earth Co Ltd Sample preforming method and component quantification method using the same
JP2016118557A (en) * 2014-12-22 2016-06-30 住友金属鉱山株式会社 X-ray diffraction measurement sample preparation method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4740545Y1 (en) * 1966-09-30 1972-12-07
JPS56157663U (en) * 1980-04-24 1981-11-25
JPH0712760A (en) * 1993-06-22 1995-01-17 Mitsubishi Materials Corp Determination method for mineral
JPH10115596A (en) * 1996-08-21 1998-05-06 Suzuki Motor Corp Sample holder for x-ray diffratometer and sample fixation method
JP2002148163A (en) * 2000-11-07 2002-05-22 Rigaku Industrial Co X-ray analysis sample preparation method and cup-shaped sample vessel used for it
JP2003232665A (en) * 2002-02-13 2003-08-22 Boford Japan:Kk Measuring spoon
JP2005127999A (en) * 2003-10-01 2005-05-19 Sumitomo Chemical Co Ltd Crystal determinating method
JP2005249032A (en) * 2004-03-03 2005-09-15 Nisshinbo Ind Inc Powder scrapping-off method and scrapping-off device
JP2007017258A (en) * 2005-07-07 2007-01-25 Rigaku Corp Composite analyzer and composite analyzing method
JP2013108778A (en) * 2011-11-18 2013-06-06 Nakaden Rare Earth Co Ltd Sample preforming method and component quantification method using the same
JP2016118557A (en) * 2014-12-22 2016-06-30 住友金属鉱山株式会社 X-ray diffraction measurement sample preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535052A (en) * 2018-05-28 2018-09-14 超威电源有限公司 Powder raw material whiteness detects sampling method and sampler
CN108535052B (en) * 2018-05-28 2024-02-27 超威电源集团有限公司 Powder raw material whiteness detection sampling method and sampler
CN113804670A (en) * 2021-09-29 2021-12-17 合肥国轩高科动力能源有限公司 Raman test method for improving Raman signal-to-noise ratio of powder sample

Also Published As

Publication number Publication date
JP7005892B2 (en) 2022-01-24

Similar Documents

Publication Publication Date Title
Sneddon et al. Transmission Kikuchi diffraction in a scanning electron microscope: A review
CN105973674B (en) A kind of preparation method of the thin area&#39;s sample for use in transmitted electron microscope of large area
Manuela Müller et al. Dewetting of Au and AuPt alloy films: a dewetting zone model
CN103492851B (en) Prepared by the automation of sample
KR102265892B1 (en) Razor blade
EP2801787B1 (en) Method for measuring three-dimensional shape of silica glass crucible, and method for producing monocrystalline silicon
CN103411807B (en) Method for making sample for backscattered electron image Yu the inorganic non-metallic powder body material of power spectrum research
JP7005892B2 (en) Analysis method of powder sample
JP2014137367A (en) Abrasive grain inspection device
JP2013140840A (en) Sample observation device
Rasaee et al. A comprehensive study of parameters effect on mechanical properties of butt friction stir welding in aluminium 5083 and copper
Bussière et al. Importance of surface topography on pulsed laser-induced damage threshold of Sapphire crystals
JP5040385B2 (en) Polishing method
JP5903900B2 (en) Particle abundance ratio calculation method and particle crystal size calculation method
KR101771608B1 (en) Method for inspecting silica glass crucible
TW201633394A (en) Wafer group, wafer manufacturing device, and wafer manufacturing method
JP6863139B2 (en) Method of preparing a cross-section sample and method of measuring a cross-section sample
Fuegl et al. Analytical stress characterization after different chip separation methods
CN207528173U (en) A kind of diamond cutter cutting edge contour quality ultra precise measurement device
Besserer et al. Specimen preparation by ion beam slope cutting for characterization of ductile damage by scanning electron microscopy
JP3297736B2 (en) Method and apparatus for analyzing element distribution in the depth direction using precision section processing by focused ion beam
RU2522724C2 (en) Method of metallographic analysis
KR20130073282A (en) Method for measuring ultrafine local strain of materials
Suder et al. Thin solid film sample preparation by a small-angle cleavage for transmission electron microscopy
Gibson Effect of particle size on tool wear in friction stir welding of al 6061 with silicon carbide reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 7005892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150