JPH0712760A - Determination method for mineral - Google Patents

Determination method for mineral

Info

Publication number
JPH0712760A
JPH0712760A JP5150900A JP15090093A JPH0712760A JP H0712760 A JPH0712760 A JP H0712760A JP 5150900 A JP5150900 A JP 5150900A JP 15090093 A JP15090093 A JP 15090093A JP H0712760 A JPH0712760 A JP H0712760A
Authority
JP
Japan
Prior art keywords
quartz
sample
intensity
powder
crystallinity index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5150900A
Other languages
Japanese (ja)
Other versions
JP3132243B2 (en
Inventor
Yasuhiro Kubota
康宏 窪田
Yoji Kizawa
庸二 木沢
Koji Nagashima
幸二 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP05150900A priority Critical patent/JP3132243B2/en
Publication of JPH0712760A publication Critical patent/JPH0712760A/en
Application granted granted Critical
Publication of JP3132243B2 publication Critical patent/JP3132243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To provide a mineral determination method capable of improving measuring efficiency without any need of adding a standard substance to a sample. CONSTITUTION:A sample is pulverized and the diffracted ray intensity of the sample powder is measured with a powder X-ray diffraction method. Then, the crystallinity index of quartz contained in the sample is obtained from the diffracted ray intensity ratio of each reflection peak due to the quartz. Also, maximum X-ray intensity is measured in the same condition for quartz powder having a known crystallinity index. The maximum X-ray intensity of the power quartz so obtained is corrected, depending upon a relative ratio of the crystallinity index of the quartz powder to the crystallinity index of quartz contained in the sample, thereby obtaining the maximum X-ray intensity of the quartz in the sample. Also, a comparison is made between the diffracted ray intensity of quartz in the sample and the maximum X-ray intensity of the quarts in the sample, thereby obtaining the quartz mass ratio of the sample. Furthermore, the diffracted ray intensity of a target mineral in the sample, the diffracted ray intensity of the quartz in the sample, and the quartz mass ratio of the sample are respectively compared with an analytical curve, thereby obtaining the mass ratio of the object mineral.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末X線回折法によっ
て岩石等の試料に含まれる各種鉱物の定量を行う方法に
関し、特に、試料中の石英を標準物質として使用する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying various minerals contained in a sample such as rock by a powder X-ray diffraction method, and more particularly to a method for using quartz in a sample as a standard substance.

【0002】[0002]

【従来の技術】岩石や土砂中に含まれる鉱物種を特定
し、各鉱物毎の質量比を定量することは、地滑りや地面
崩落の可能性、岩石の膨張による建設物への影響、骨材
中でのアルカリ−骨材反応の影響等を予測するうえで有
効であるため、土木関連の分野において鉱物の定量分析
を行う要求が近年高まりつつある。
2. Description of the Related Art It is possible to identify the mineral species contained in rocks and sediments and to quantify the mass ratio of each mineral. The possibility of landslides and ground collapses, the effect of rock expansion on structures, aggregates, etc. In recent years, the demand for quantitative analysis of minerals in the field of civil engineering is increasing because it is effective in predicting the influence of alkali-aggregate reaction in the environment.

【0003】しかし、鉱物には元素組成が同じで結晶構
造の異なるものや多形物質が存在するため、鉱物の定性
・定量は簡便な化学分析、蛍光X線分析等では行うこと
ができず、物質の結晶構造を特定できる粉末X線回折に
頼らざるを得ない。従来技術の説明に先立ち、粉末X線
回折による分析法の基本原理を簡単に説明する。
However, since there are minerals having the same elemental composition but different crystal structures and polymorphic substances, qualitative and quantitative determination of minerals cannot be performed by simple chemical analysis, fluorescent X-ray analysis, etc. There is no choice but to rely on powder X-ray diffraction, which can specify the crystal structure of a substance. Prior to the description of the prior art, the basic principle of the powder X-ray diffraction analysis method will be briefly described.

【0004】n種の成分から成る試料中のi成分の回折
強度は次式(1)で表される。 (1) Ii=Ki・Vi/ μ ただし Ii :i成分の回折x線の強度 Ki :装置条件とi成分の性質による定数 Vi :対象とするi成分の体積比 μ :n種成分による平均線吸収係数 である。
The diffraction intensity of the i component in a sample composed of n types of components is expressed by the following equation (1). (1) Ii = Ki · Vi / μ where Ii: intensity of the diffracted x-ray of the i component Ki: constant depending on the equipment conditions and properties of the i component Vi: volume ratio of the target i component μ: average line of the n-type component Is the absorption coefficient.

【0005】i成分以外による平均線吸収係数をμm、
i成分以外の含有率(体積比)をVmとすれば、 (2) μ=μi・Vi+μm・Vm (3) Vi+Vm=1 であるから、(1)式は(4)式のように表される。
The average linear absorption coefficient other than the i component is μm,
Assuming that the content rate (volume ratio) other than the i component is Vm, (2) μ = μi · Vi + μm · Vm (3) Vi + Vm = 1, so equation (1) is expressed as equation (4). It

【0006】質量比をXで表すと であるから、(4)式は(5)式のように変形できる。
ρは密度、μ/ρは質量吸収係数である。
When the mass ratio is represented by X, Therefore, equation (4) can be transformed into equation (5).
ρ is the density, and μ / ρ is the mass absorption coefficient.

【0007】また、 (μ/ρ)=(μ/ρ)i・Xi+(μ/ρ)m・(1−Xi) であるから、最終的に次の(6)式が得られる。粉末X
線回折法による定量方法は、いずれもこの式を基本にし
ている。
Since (μ / ρ) = (μ / ρ) i · Xi + (μ / ρ) m · (1-Xi), the following equation (6) is finally obtained. Powder X
The quantification method by the line diffraction method is based on this formula.

【0008】従来、多成分系でかつ質量吸収係数が異な
る試料に対する定量分析方法としては、上記(6)式を
応用した以下のような方法が知られている。 (a) 吸収回折法 (b) 内部標準法 (c) 標準添加法
Conventionally, as a quantitative analysis method for a sample having a multi-component system and different mass absorption coefficients, the following method applying the above equation (6) is known. (A) Absorption diffraction method (b) Internal standard method (c) Standard addition method

【0009】しかし、吸収回折法は質量吸収係数(μ/
ρ)を実測により求めなければならず、多成分を含む試
料ではその測定が難しい。標準添加法は簡単に行える
が、対象とする物質の質量比が10%を越えると測定困
難である。
However, the absorption diffraction method has a mass absorption coefficient (μ /
ρ) must be obtained by actual measurement, which is difficult to measure with a sample containing multiple components. Although the standard addition method can be easily performed, it is difficult to measure when the mass ratio of the target substance exceeds 10%.

【0010】一方、内部標準法は、試料に一定量の内部
標準物質sを添加したうえで、目的鉱物と内部標準物質
sの回折強度を測定し、その比を用いて検量線を作成す
ることにより目的物質の質量比を求める方法であり、他
の2法よりも鉱物の定量に適している。以下にその概要
を説明する。
On the other hand, in the internal standard method, a certain amount of the internal standard substance s is added to the sample, the diffraction intensity of the target mineral and the internal standard substance s is measured, and a calibration curve is prepared using the ratio. Is a method for obtaining the mass ratio of the target substance by means of, and is more suitable for quantitative determination of minerals than the other two methods. The outline will be described below.

【0011】試料に占める目的成分(鉱物)iの質量比
をXi、目的鉱物以外の成分mの質量比をXmとする。
試料Xi+Xmに内部標準物質sを質量比Xsだけ添加
すると、添加後試料中の目的成分iおよび内部標準物質
sの質量比は、それぞれXi/(Xi+Xm+Xs)、
およびXs/(Xi+Xm+Xs)となる。この時、目
的成分iの回折線強度Ii、内部標準物質sの回折線強
度Isについて、前記(6)式から次の(7)式および
(8)式が得られる。
The mass ratio of the target component (mineral) i in the sample is Xi, and the mass ratio of the component m other than the target mineral is Xm.
When the mass ratio Xs of the internal standard substance s is added to the sample Xi + Xm, the mass ratios of the target component i and the internal standard substance s in the sample after the addition are Xi / (Xi + Xm + Xs),
And Xs / (Xi + Xm + Xs). At this time, for the diffraction line intensity Ii of the target component i and the diffraction line intensity Is of the internal standard substance s, the following formulas (7) and (8) are obtained from the formula (6).

【0012】 Ii,Is :i,s成分の回折線強度 Ki,Ks :装置条件とi,s成分の性質による定数 Xi,Xs :対象とするi,s成分の質量比 μ :平均線吸収係数 ρ :密度[0012] Ii, Is: Diffraction line intensity of i, s component Ki, Ks: Constant depending on equipment conditions and properties of i, s component Xi, Xs: Mass ratio of target i, s component μ: Average line absorption coefficient ρ: Density

【0013】(7)式と(8)式の比をとり、sを添加
した時の装置条件とi,s成分の性質による係数をKi
sとすると、(9)式が得られる。
Taking the ratio of the equations (7) and (8), the coefficient depending on the apparatus conditions when s is added and the properties of the i and s components is Ki.
When s is given, the equation (9) is obtained.

【0014】Xsは一定なので、K=(1−/Kis)・Xsと
すると、 (10) Xi=K・Ii/Is すなわち、質量吸収係数に関係なく、Ii/Isは目的
成分iの質量比Xiに比例する。したがって、予め特定
の比率で混合した試料を調整し、検量線を作成しておけ
ば、求めようとする鉱物の質量比が求められる。
Since Xs is constant, if K = (1− / Kis) · Xs, then (10) Xi = K · Ii / Is That is, Ii / Is is the mass ratio of the target component i regardless of the mass absorption coefficient. Proportional to Xi. Therefore, the mass ratio of the minerals to be obtained can be obtained by preparing a sample that has been mixed at a specific ratio in advance and creating a calibration curve.

【0015】[0015]

【発明が解決しようとする課題】しかし、前記内部標準
法による鉱物の定量方法では、標準物質の反射ピークが
試料中の鉱物の反射ピークと重なると測定できないの
で、個々の試料の組成に応じて標準物質を注意深く選定
しなければならないうえ、試料に標準物質を添加する手
間を要し、1試料当たりの測定に時間がかかるという問
題があった。
However, in the method for quantifying minerals by the internal standard method, measurement cannot be performed when the reflection peak of the standard substance overlaps with the reflection peaks of the minerals in the sample, and therefore, depending on the composition of each sample. There is a problem that the standard substance must be carefully selected, and it takes time and effort to add the standard substance to the sample, and it takes a long time to perform measurement for each sample.

【0016】本発明は上記事情に鑑みてなされたもの
で、試料に標準物質を添加する必要がなく、1試料当た
りの測定効率を向上できる鉱物の定量方法を提供するこ
とを課題としている。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for quantifying minerals that does not require addition of a standard substance to a sample and can improve the measurement efficiency per sample.

【0017】[0017]

【課題を解決するための手段】まず、本発明に係る鉱物
の定量方法の理論を説明する。試料中に定量すべき目的
鉱物iが質量比Xi、石英sが質量比Xs、それ以外の
成分mが質量比Xm含まれているとき、試料中の目的鉱
物iと石英sの質量比は、それぞれXi/(Xi+Xs
+Xm)とXs/(Xi+Xs+Xm)となる。したが
って、目的鉱物iおよび石英sの回折線強度Iiおよび
Isについては、内部標準法で説明した(9)式がその
まま適用できる。
First, the theory of the method for quantifying minerals according to the present invention will be described. When the target mineral i to be quantified in the sample has a mass ratio Xi, the quartz s has a mass ratio Xs, and the other components m have a mass ratio Xm, the mass ratio of the target mineral i and the quartz s in the sample is: Xi / (Xi + Xs
+ Xm) and Xs / (Xi + Xs + Xm). Therefore, for the diffraction line intensities Ii and Is of the target mineral i and quartz s, the equation (9) explained in the internal standard method can be applied as it is.

【0018】 ここで、K=1/Kisとすると である。[0018] Here, if K = 1 / Kis Is.

【0019】(11)式に示されるように、(Xi/X
s)と(Ii/Is)の関係を検量線化しておけば、
(Ii/Is)の値および試料中の石英質量比Xsを求
めることにより、吸収係数Kに関係なく目的鉱物の質量
比Xiが求められるのである。
As shown in the equation (11), (Xi / X
If the relationship between (s) and (Ii / Is) is made into a calibration curve,
By obtaining the value of (Ii / Is) and the quartz mass ratio Xs in the sample, the mass ratio Xi of the target mineral can be obtained regardless of the absorption coefficient K.

【0020】本発明の方法では、石英質量比Xsの測定
に石英指数法を用いる。石英指数(QI)とは、試料中
の石英の回折線強度を、同じ実験条件下で測定した純粋
な石英の最強X線強度Iq(cps)に対する百分率で
表したもので、次の(12)式で示されるように、本方
法では試料中の石英の質量比を意味する。 (12) QI=Is/Iq×100
In the method of the present invention, the quartz index method is used to measure the quartz mass ratio Xs. The quartz index (QI) is the diffraction line intensity of quartz in a sample expressed as a percentage of the strongest X-ray intensity Iq (cps) of pure quartz measured under the same experimental conditions. As shown by the equation, in this method, the mass ratio of quartz in the sample is meant. (12) QI = Is / Iq × 100

【0021】ただし、鉱物の回折線強度は、測定時の出
力(kw)や管球の劣化により変化するので、試料中の
石英の質量比Xsを求めるためには、予め試料を測定す
る前に標準となる純粋石英を同一条件で測定し、その最
強X線強度(cps)を調べておく必要がある。
However, since the diffraction line intensity of minerals changes due to the output (kw) at the time of measurement and deterioration of the tube, in order to obtain the mass ratio Xs of quartz in the sample, before measuring the sample in advance. It is necessary to measure the standard pure quartz under the same conditions and check the strongest X-ray intensity (cps).

【0022】また、岩石試料に含まれている石英の特
性、特に結晶度は、試料毎にさまざまに異なっており、
回折線強度に影響を与える。このため、結晶度の異なる
石英から測定した最強X線強度を用いて試料の石英質量
比を求めると、定量誤差を生じることになる。したがっ
て本来は、定量すべき試料から石英のみを予め分離して
純粋石英を作成し、この純粋石英を用いて最強X線強度
を求めることが望ましいが、手間がかかり困難である。
さらに、試料中の石英の結晶度を直接求めることも困難
である。
Further, the characteristics of quartz contained in rock samples, in particular the crystallinity, differ from sample to sample,
Affects the intensity of diffraction lines. Therefore, if the quartz mass ratio of the sample is calculated using the strongest X-ray intensity measured from quartz having different crystallinity, a quantitative error will occur. Therefore, originally, it is desirable to separate pure quartz from the sample to be quantified in advance to prepare pure quartz, and to obtain the strongest X-ray intensity using this pure quartz, but it is troublesome and difficult.
Furthermore, it is difficult to directly determine the crystallinity of quartz in the sample.

【0023】そこで、本発明者らは、結晶度の異なる複
数種の石英の最強X線強度と、後述する結晶度指数とを
それぞれ測定することにより、結晶度指数と最強X線強
度との関数を求めた。その結果、試料中の石英の結晶度
指数さえ測定すれば、結晶度の異なる石英による最強X
線強度から、試料中の石英の最強X線強度が推定できる
ことを見いだした。
Therefore, the present inventors measured the strongest X-ray intensities of a plurality of types of quartz having different crystallinities and the crystallinity index, which will be described later, to obtain a function of the crystallinity index and the strongest X-ray intensity. I asked. As a result, if only the crystallinity index of quartz in the sample is measured, the strongest X due to quartz with different crystallinity is obtained.
It was found that the strongest X-ray intensity of quartz in the sample can be estimated from the line intensity.

【0024】結晶度指数の測定は、例えば以下の方法に
より簡便に行える。まず、通常通りの粉末X線回折法に
より、粉末化した試料(石英を分離する必要はない)の
回折線強度を測定する。石英のX線回折ピークは、図1
に示す通り2θ=67〜69゜の間に5本現れる(五重
線とよばれる)。このうち、2θ=67.65゜に現れ
る回折ピークの高さbと、2θ=67.93゜に現れる
谷からの前記回折ピークの高さaとを用い、次式で規定
される結晶度指数(CI)を計算する。 (13) CI=10×1.67×a/b
The crystallinity index can be easily measured, for example, by the following method. First, the diffraction line intensity of a powdered sample (it is not necessary to separate quartz) is measured by a usual powder X-ray diffraction method. The X-ray diffraction peak of quartz is shown in Fig. 1.
As shown in Fig. 5, 5 lines appear between 2θ = 67-69 ° (called a quintet). Of these, using the height b of the diffraction peak appearing at 2θ = 67.65 ° and the height a of the diffraction peak from the valley appearing at 2θ = 67.93 °, the crystallinity index defined by the following equation Calculate (CI). (13) CI = 10 × 1.67 × a / b

【0025】この結晶度指数CIは石英の結晶度を反映
する値であり、この値を用いて最強X線強度を補正する
ことによって、前記石英指数法による石英の定量精度を
高めることができる。
This crystallinity index CI is a value that reflects the crystallinity of quartz, and by using this value to correct the strongest X-ray intensity, the accuracy of quantifying quartz by the quartz index method can be improved.

【0026】なお、石英以外のいくつかの鉱物(例えば
モンモリロナイト、絹雲母など)も結晶度の差によっ
て、回折ピークの相対強度が異なることが知られてい
る。しかしながら、石英以外の鉱物については、石英の
ように結晶度と回折線強度との関係が正確に調べられて
いないのが現状であり、この点からも石英が標準鉱物と
して優れているといえる。
It is known that some minerals other than quartz (such as montmorillonite and sericite) have different relative intensities of diffraction peaks due to the difference in crystallinity. However, with respect to minerals other than quartz, the relationship between crystallinity and diffraction line intensity has not been accurately investigated, unlike quartz, and quartz can be said to be excellent as a standard mineral from this point as well.

【0027】次に、本発明に係る鉱物の定量方法を、具
体的な手順を追って説明する。この方法ではまず、測定
すべき試料を粉末化する。粉末X線回折で使用する試料
は、平均粒径で3〜30μm程度に粉砕する必要があ
る。試料の平均粒径がこの範囲よりも大きいと、解析に
寄与する結晶の数が少なくなって再現性が悪くなる。一
方、平均粒径がこの範囲より小さいと、粒子表面の非結
晶相の体積割合が増加し、回折線強度が減少する。
Next, the method for quantifying minerals according to the present invention will be described by following a specific procedure. In this method, first, a sample to be measured is powdered. The sample used for powder X-ray diffraction needs to be crushed to have an average particle size of about 3 to 30 μm. When the average particle size of the sample is larger than this range, the number of crystals contributing to the analysis is small and the reproducibility is deteriorated. On the other hand, when the average particle size is smaller than this range, the volume ratio of the amorphous phase on the particle surface increases and the diffraction line intensity decreases.

【0028】一般の岩石試料中には、軟らかい鉱物と硬
い鉱物が混在しているために、全ての鉱物を同程度の粒
径に粉砕することは困難である。しかし、粉末の平均粒
径が上記範囲内であれば、丁寧に摩鉱した場合とそうで
ない場合とでX線回折結果はほとんど変わらないことが
本発明者らの実験で確かめられている。岩石を粉末化す
る摩鉱方法は、従来用いられているいずれの方法でもよ
い。
In a general rock sample, since soft and hard minerals are mixed, it is difficult to grind all minerals to the same particle size. However, it has been confirmed by the experiments by the present inventors that the X-ray diffraction results are almost the same when the average particle size of the powder is within the above range, when the powder is carefully ground and when it is not. The grinding method for powdering rock may be any conventionally used method.

【0029】次に、粉末X線回折法により、前記試料粉
末の回折線強度を測定し、2θ=67.65゜に現れる
回折ピークの高さbと、2θ=67.93゜に現れる谷
からの前記回折ピークの高さaとを用い、前述の(1
3)式で規定される結晶度指数(CI)を計算する。そ
して、得られた結晶度指数を、予め求めてある結晶度指
数と最強X線強度の関数に代入し、試料に含まれる石英
の最強X線強度を推定する。
Next, the intensity of the diffraction line of the sample powder was measured by the powder X-ray diffraction method. From the height b of the diffraction peak appearing at 2θ = 67.65 ° and the valley appearing at 2θ = 67.93 °. Using the height a of the diffraction peak of
3) Calculate the crystallinity index (CI) defined by the equation. Then, the obtained crystallinity index is substituted into a previously calculated function of the crystallinity index and the strongest X-ray intensity, and the strongest X-ray intensity of quartz contained in the sample is estimated.

【0030】図2は、本発明者らが測定した結晶度指数
と最強X線強度の関係を示すグラフである。横軸は結晶
度指数、縦軸は強度率であり、この強度率とは、純粋石
英中で結晶度指数が最も高かった人工石英の最強X線強
度を100としたときの、他の純粋石英の最強X線強度
の比率を示す。このグラフを検量線とすれば、結晶度指
数から容易に強度率が求められるから、その強度率を用
いて、試料の測定条件と等しい条件で測定した純粋石英
の最強X線強度を補正することにより、試料中に含まれ
る石英の最強X線強度が求められる。
FIG. 2 is a graph showing the relationship between the crystallinity index and the strongest X-ray intensity measured by the present inventors. The horizontal axis is the crystallinity index, and the vertical axis is the intensity rate. This intensity rate is the other pure quartz when the strongest X-ray intensity of the artificial quartz having the highest crystallinity index is 100. The ratio of the strongest X-ray intensity of If this graph is used as a calibration curve, the intensity ratio can be easily obtained from the crystallinity index. Therefore, use that intensity ratio to correct the strongest X-ray intensity of pure quartz measured under the same conditions as the measurement conditions of the sample. Thus, the strongest X-ray intensity of quartz contained in the sample can be obtained.

【0031】次に、結晶度指数が判明している石英粉末
について、粉末X線回折法により試料と同一条件で最強
X線強度を測定する。ここで使用する石英粉末の平均粒
径は、試料の平均粒径と同等とすることが望ましい。ま
た、結晶度指数は、試料中の石英の結晶度指数に近い方
が好ましい。こうして求めた石英粉末の最強X線強度
を、図2に示すような検量線を用いて補正し、試料中に
含まれる石英の最強X線強度を求める。
Next, with respect to the quartz powder whose crystallinity index is known, the strongest X-ray intensity is measured by the powder X-ray diffraction method under the same conditions as the sample. The average particle size of the quartz powder used here is preferably equal to the average particle size of the sample. The crystallinity index is preferably closer to that of quartz in the sample. The strongest X-ray intensity of the quartz powder thus obtained is corrected using a calibration curve as shown in FIG. 2 to find the strongest X-ray intensity of the quartz contained in the sample.

【0032】さらに、試料中の石英の回折線強度と、試
料中の石英についての最強X線強度とを比較し、(1
2)式を用いて試料中の石英の質量比を求める。そし
て、試料に含まれている目的鉱物の回折線強度と、試料
に含まれている石英の回折線強度と、試料の石英質量比
とを、予め求めてある検量線と比較し、目的鉱物の質量
比を求める。
Further, the diffraction line intensity of quartz in the sample is compared with the strongest X-ray intensity of quartz in the sample, and (1
The mass ratio of quartz in the sample is calculated using the equation (2). Then, the diffraction line intensity of the target mineral contained in the sample, the diffraction line intensity of quartz contained in the sample, and the quartz mass ratio of the sample are compared with a calibration curve obtained in advance, and Calculate the mass ratio.

【0033】検量線としては、例えば、前記目的鉱物と
同一種の鉱物の粉末と、前記結晶度指数が判明している
石英粉末とを、異なる複数の割合で混合した検量線作成
試料について回折線強度を測定することにより、前記結
晶度指数が判明している石英と目的鉱物との回折線強度
比、および前記結晶度指数が判明している石英と目的鉱
物との検量線作成用試料中での質量比をプロットしたも
のが使用される。
As the calibration curve, for example, a diffraction curve of a calibration curve preparation sample obtained by mixing powders of minerals of the same species as the target mineral and quartz powders of which the crystallinity index is known in different ratios are used. By measuring the intensity, the diffraction line intensity ratio between quartz and the target mineral whose crystallinity index is known, and in the sample for preparing a calibration curve between quartz and the target mineral whose crystallinity index is known. A plot of the mass ratio of is used.

【0034】検量線の一例を図3に示す。これは、斜長
石を定量する際に使用されるもので、縦軸は、(斜長石
の回折線強度/石英の回折線強度)の常用対数、横軸は
(斜長石の質量比wt%/石英の質量比wt%)の常用
対数を示している。なお、図中(A)線は結晶の反射面
(040)についてのグラフ、(B)線は結晶の反射面
(201)についてのグラフである。実験の詳細は後述
する。
An example of the calibration curve is shown in FIG. This is used when quantifying plagioclase, where the vertical axis is the common logarithm of (diffracted ray intensity of plagioclase / diffraction line intensity of quartz), and the horizontal axis is (mass ratio of plagioclase wt% / The common logarithm of the mass ratio of quartz (wt%) is shown. In the figure, line (A) is a graph for the reflecting surface (040) of the crystal, and line (B) is a graph for the reflecting surface (201) of the crystal. Details of the experiment will be described later.

【0035】以上の手順からなる鉱物の定量方法によれ
ば、従来の内部標準法のように標準物質を試料に添加す
る必要がないから、目的鉱物と標準物質の反射ピークが
重ならないように注意深く標準物質を選定したり、標準
物質を均一に試料に添加するなどの手間が不要になり、
定量分析作業の簡略化が図れる。
According to the method for quantifying minerals comprising the above procedure, it is not necessary to add the standard substance to the sample as in the conventional internal standard method, so that the reflection peaks of the target mineral and the standard substance should not be overlapped carefully. There is no need to select a standard substance or add the standard substance to the sample uniformly.
The quantitative analysis work can be simplified.

【0036】また、標準となる純粋石英の最強X線強度
を、結晶度指数を用いて試料中の石英成分と一致させて
から検量線を使用するので、検量線を一旦作成した後
は、多数の試料を効率よく定量することが可能であると
いう利点を有する。
Since the calibration curve is used after the strongest X-ray intensity of the standard pure quartz is made to match the quartz component in the sample by using the crystallinity index, a large number of calibration curves are prepared. It has an advantage that the sample can be efficiently quantified.

【0037】[0037]

【実施例】次に、本発明に係る鉱物の定量方法と、内部
標準法とによって、それぞれ模擬試料中の鉱物の定量を
行い、本発明の有効性を確認した。
[Embodiments] Next, the effectiveness of the present invention was confirmed by quantifying the minerals in simulated samples by the mineral quantification method according to the present invention and the internal standard method.

【0038】(検量線作成用試料の作成)目的鉱物とし
て斜長石,方解石,角閃石を、標準用の純粋石英として
は人工石英をそれぞれ用意した。これら鉱物を摩鉱機で
45分、手ずりで10分粉砕し、平均粒径10μmの粉
末とした。各目的鉱物と石英粉末とを目的鉱物毎にいく
つかの割合で混合し、全重量を2.0gとして検量線作
成用の試料を作成した。
(Preparation of Sample for Creating Calibration Curve) Plagioclase, calcite, and amphibole were prepared as target minerals, and artificial quartz was prepared as pure quartz for standard. These minerals were crushed for 45 minutes with a grinder and 10 minutes with a handrail to obtain a powder having an average particle size of 10 μm. Each target mineral and quartz powder were mixed in several ratios for each target mineral, and the total weight was 2.0 g to prepare a sample for preparing a calibration curve.

【0039】(本発明の定量方法に使用する検量線の作
成)得られた検量線作成用試料を、定量すべき模擬試料
と同じ測定条件で、粉末X線回折法にかけた。装置や試
料のセッティングなどの精度を考え、各検量線作成用試
料を5回づつ測定し、その平均値から検量線の近似式を
求めた。回折線強度の測定方法としては、反射ピークの
面積や高さによって求める方法、計数値から求める方法
があるが、この試験ではシンチレーションカウンターに
よる計数値(単位:cps)を用いてIiおよびIsを
それぞれ求めた。本発明の実施に当たっては、いずれの
計数方法を使用してもよい。
(Preparation of calibration curve used in the quantification method of the present invention) The obtained calibration curve preparation sample was subjected to the powder X-ray diffraction method under the same measurement conditions as the simulated sample to be quantified. Considering the accuracy of the equipment and sample settings, each calibration curve preparation sample was measured 5 times, and the approximate expression of the calibration curve was obtained from the average value. As a method of measuring the intensity of the diffraction line, there are a method of obtaining the area and height of the reflection peak and a method of obtaining from the count value. In this test, Ii and Is are respectively calculated using the count value (unit: cps) by the scintillation counter. I asked. Any counting method may be used in the practice of the present invention.

【0040】作成した検量線の一例を図3に示す。検量
線の縦軸は(目的鉱物の回折線強度/石英の回折線強
度)の常用対数、横軸は(目的鉱物の質量比wt%/石
英の質量比wt%)の常用対数を示している。
An example of the prepared calibration curve is shown in FIG. The vertical axis of the calibration curve represents the common logarithm of (diffraction line intensity of target mineral / diffraction line intensity of quartz), and the horizontal axis represents the common logarithm of (wt% by weight of target mineral / wt% of quartz). .

【0041】(石英指数による結晶度補正)結晶度を異
にする5種類の石英を準備し、それらの結晶度指数およ
び最強X線強度の強度率から、結晶度補正用検量線を作
成した。結果を図2に示す。なお、強度率とは、結晶度
指数が一番高い値を示した「人工石英」の最強X線強度
を100としたときの、他の4試料の最強X線強度の比
率である。図2に示すように、結晶度指数と強度率の間
には明確な相関性があり、4点での相関係数はr=0.
9731であった。
(Crystallinity Correction by Quartz Index) Five kinds of quartz having different crystallinities were prepared, and a calibration curve for crystallinity correction was prepared from the crystallinity index and the intensity ratio of the strongest X-ray intensity. The results are shown in Figure 2. The intensity ratio is the ratio of the strongest X-ray intensities of the other four samples, where 100 is the strongest X-ray intensity of "artificial quartz" having the highest crystallinity index. As shown in FIG. 2, there is a clear correlation between the crystallinity index and the intensity ratio, and the correlation coefficient at four points is r = 0.
It was 9731.

【0042】(内部標準法用の検量線の作成)一方、内
部標準物質として酸化亜鉛(ZnO)を使用し、内部標
準法に使用するための検量線を作成した。本発明の鉱物
定量方法のための検量線を作成した後の検量線作成用試
料各2.0gに、それぞれ酸化亜鉛粉末を0.5gづつ
加えて検量線作成用試料とし、上記と同条件で回折線強
度を測定した。
(Preparation of Calibration Curve for Internal Standard Method) On the other hand, zinc oxide (ZnO) was used as an internal standard substance, and a calibration curve for use in the internal standard method was prepared. 0.5 g of each zinc oxide powder was added to 2.0 g of each of the calibration curve preparation samples after the calibration curve preparation for the mineral quantification method of the present invention was performed to prepare a calibration curve preparation sample under the same conditions as above. The diffraction line intensity was measured.

【0043】なお、内部標準物質として望ましい特性
は、質量吸収係数が小さく、反射ピーク数が少なく、適
当な位置(他の反射ピークと重ならない位置)に明瞭な
反射ピークが得られ、岩石中に含まれない物質であるこ
となどであるが、酸化亜鉛はこれらの条件を満たしてい
る。すなわち、酸化亜鉛の回折面(002)の反射ピー
クは2θ=34.5゜に位置し、岩石のおもな構成鉱物
の反射ピークと重複するようなこともなく、回折線強度
も高い。検量線作成用試料の測定結果の一例を表1に示
す。
Desirable characteristics for the internal standard substance are that the mass absorption coefficient is small, the number of reflection peaks is small, and a clear reflection peak is obtained at an appropriate position (a position where it does not overlap with other reflection peaks). Zinc oxide satisfies these conditions, although it is a substance that is not contained. That is, the reflection peak of the diffraction surface (002) of zinc oxide is located at 2θ = 34.5 °, does not overlap with the reflection peaks of the main constituent minerals of rock, and the diffraction line intensity is high. Table 1 shows an example of the measurement results of the calibration curve preparation sample.

【0044】[0044]

【表1】 [Table 1]

【0045】(検証試験)内部標準法用の検量線の作成
に使用した酸化亜鉛を含む検量線作成用試料を全て混合
し、検証用の模擬試料を作成した。この模擬試料の組成
は、表2に示す通りである。
(Verification test) All the samples for preparing a calibration curve containing zinc oxide used for preparing the calibration curve for the internal standard method were mixed to prepare a simulated sample for verification. The composition of this simulated sample is as shown in Table 2.

【0046】[0046]

【表2】 (注)内部標準法で求められる質量比は、酸化亜鉛を除
いて算出されるため、数値が大きくなる。
[Table 2] (Note) Since the mass ratio obtained by the internal standard method is calculated excluding zinc oxide, the numerical value becomes large.

【0047】X線回折測定は、試料が均一に混合された
かをチェックするため、四分法によって総重量7.5g
を1.5〜2.0gの試料1〜4に小分けし、それぞれ
についてX線回折を測定した。結果の一部を表3に示
す。
The X-ray diffraction measurement was carried out by the quarter method to check whether the samples were uniformly mixed.
Was divided into 1.5 to 2.0 g of samples 1 to 4, and the X-ray diffraction was measured for each. Some of the results are shown in Table 3.

【0048】[0048]

【表3】 *は、斜長石(反射面:201)の回折線強度を示す。 本試験での人工石英の最強X線強度は37917cps
であった。
[Table 3] * Indicates the diffraction line intensity of plagioclase (reflection surface: 201). The strongest X-ray intensity of artificial quartz in this test is 37917 cps
Met.

【0049】(内部標準法の測定結果)内部標準法によ
る各鉱物の質量比は、長石、方解石、角閃石がそれぞれ
10%、石英が70%となるべきである(酸化亜鉛は除
外している)。X線回折測定後に検量線を用いて求めた
検証用試料中の各鉱物の定量値(B)は、次の表4の通
りであった。
(Results of Measurement by Internal Standard Method) The mass ratio of each mineral by the internal standard method should be 10% for feldspar, calcite and amphibole and 70% for quartz (zinc oxide is excluded). ). The quantitative value (B) of each mineral in the verification sample obtained by using the calibration curve after the X-ray diffraction measurement is shown in Table 4 below.

【0050】[0050]

【表4】 [Table 4]

【0051】定量値と真の値との比(B/A)を求めた
ところ、内部標準法による定量値は、石英で真の値の
1.03倍、他の成分は長石で1.29倍、方解石で
1.25倍、角閃石で1.38倍であった。また、定量
値の合計が100wt%になるように定量値(B)を補
正して補正値(C)を求めたところ、補正値(C)は真
の値(A)の0.93〜1.24倍の範囲で変動した。
The ratio (B / A) between the quantitative value and the true value was determined. The quantitative value by the internal standard method was 1.03 times the true value for quartz, and the other components were 1.29 for feldspar. It was 1.25 times that of calcite and 1.38 times that of amphibole. Further, when the correction value (C) is obtained by correcting the quantitative value (B) so that the total of the quantitative values becomes 100 wt%, the correction value (C) is 0.93 to 1 of the true value (A). It fluctuated in the range of 24 times.

【0052】(本発明定量方法の結果)本発明法による
鉱物の質量比は、検証試験の模擬試料中に20wt%の
酸化亜鉛が混合されているから、長石、方解石、角閃石
がそれぞれ8wt%、石英が56wt%となるべきであ
る。本発明法で得られた定量値(B)は次表の通りであ
る。
(Results of the Quantitative Method of the Present Invention) The mass ratio of minerals according to the present invention is 8 wt% for feldspar, calcite and amphibole, since 20 wt% of zinc oxide is mixed in the simulated sample of the verification test. , Quartz should be 56 wt%. The quantitative values (B) obtained by the method of the present invention are as shown in the following table.

【0053】[0053]

【表5】 [Table 5]

【0054】本発明法による定量値(B)は、真の値
(A)に比して方解石で0.58倍、長石で0.80
倍、角閃石で0.86倍、石英で0.87倍になり、内
部標準法とは逆に真の値よりも少なく定量される傾向が
みられた。しかし、定量値の合計が100wt%になる
ように定量値(B)を補正して補正値(C)を求めたと
ころ、補正値(C)は真の値(A)の0.69〜1.0
5倍の範囲に収まった。
The quantitative value (B) according to the method of the present invention is 0.58 times that of calcite and 0.80 of feldspar as compared to the true value (A).
Double, amphibole 0.86 times, and quartz 0.87 times. Contrary to the internal standard method, there was a tendency to quantify less than the true value. However, when the correction value (C) is obtained by correcting the quantitative value (B) so that the total of the quantitative values becomes 100 wt%, the correction value (C) is 0.69 to 1 of the true value (A). .0
It was in the range of 5 times.

【0055】[0055]

【発明の効果】本発明に係る鉱物の定量方法によれば、
標準物質を試料に添加する必要がないから、目的鉱物と
標準物質の反射ピークが重ならないように注意深く標準
物質を選定したり、標準物質を均一に試料に添加するな
どの手間が不要になり、定量分析作業の簡略化が図れ
る。また、標準となる純粋石英の最強X線強度を、結晶
度指数を用いて試料中の石英成分と一致させてから検量
線を使用するので、検量線を一旦作成した後は、多数の
試料を効率よく定量することが可能である。
According to the mineral quantification method of the present invention,
Since it is not necessary to add the standard substance to the sample, it is not necessary to carefully select the standard substance so that the reflection peaks of the target mineral and the standard substance do not overlap, or to add the standard substance uniformly to the sample. The quantitative analysis work can be simplified. In addition, the calibration curve is used after the strongest X-ray intensity of pure quartz, which is the standard, is matched with the quartz component in the sample by using the crystallinity index, so once the calibration curve is created, many samples are sampled. It is possible to quantify efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】純粋石英のX線回折グラフである。FIG. 1 is an X-ray diffraction graph of pure quartz.

【図2】結晶度指数と最強X線強度との関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the crystallinity index and the strongest X-ray intensity.

【図3】本発明の鉱物の定量方法による斜長石の検量線
である。
FIG. 3 is a calibration curve of plagioclase by the mineral quantification method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】以下の工程を具備することを特徴とする鉱
物の定量方法。 (a)測定すべき試料を粉末化する工程、 (b)粉末X線回折法により、前記試料粉末の回折線強
度を測定し、試料中の石英によるピークの回折線強度比
から、試料に含まれる石英の結晶度指数を求める工程、 (c)結晶度指数が判明している石英粉末について、粉
末X線回折法により同一条件で最強X線強度を測定する
工程、 (d)石英粉末について求めた最強X線強度を、前記石
英粉末の結晶度指数と試料に含まれる石英の結晶度指数
との相対比に応じて補正し、試料中に含まれる石英の最
強X線強度を求める工程、 (e)試料中の石英の回折線強度と、試料中の石英につ
いての最強X線強度とを比較し、試料の石英質量比を求
める工程、 (f)試料に含まれている目的鉱物の回折線強度と、試
料に含まれている石英の回折線強度と、試料の石英質量
比とを、予め求めた検量線と比較し、目的鉱物の質量比
を求める工程。
1. A method for quantifying minerals, which comprises the following steps. (A) a step of pulverizing a sample to be measured; (b) a powder X-ray diffraction method to measure the diffraction line intensity of the sample powder; The step of obtaining the crystallinity index of quartz, (c) the step of measuring the strongest X-ray intensity by the powder X-ray diffraction method under the same conditions for the quartz powder of which the crystallinity index is known, (d) the quartz powder A step of correcting the strongest X-ray intensity according to the relative ratio between the crystallinity index of the quartz powder and the crystallinity index of quartz contained in the sample to obtain the strongest X-ray intensity of the quartz contained in the sample; e) a step of comparing the diffraction line intensity of quartz in the sample with the strongest X-ray intensity of quartz in the sample to obtain the quartz mass ratio of the sample, (f) the diffraction line of the target mineral contained in the sample Intensity and diffraction line intensity of quartz contained in the sample A quartz mass ratio of the sample, compared to the previously determined calibration curve, obtaining a weight ratio of interest minerals.
【請求項2】前記目的鉱物と同一種の鉱物の粉末と、前
記結晶度指数が判明している石英粉末とを、異なる複数
の割合で混合した検量線作成試料について回折線強度を
測定することにより、前記結晶度指数が判明している石
英および目的鉱物の回折線強度比と、前記結晶度指数が
判明している石英および目的鉱物の検量線作成用試料中
での質量比とをプロットしたものを前記検量線として使
用することを特徴とする請求項1記載の鉱物の定量方
法。
2. The diffraction line intensity of a calibration curve preparation sample in which powders of minerals of the same kind as the target minerals and quartz powders of which the crystallinity index is known are mixed at different ratios. Thus, the diffraction line intensity ratio of quartz and the target mineral whose crystallinity index is known, and the mass ratio of the quartz and the target mineral whose crystallinity index are known in the sample for preparing the calibration curve are plotted. 2. The method for quantifying minerals according to claim 1, wherein a substance is used as the calibration curve.
【請求項3】前記試料に含まれる石英の結晶度指数は、
粉末X線回折で得られる2θ=67.65゜の回折ピー
ク高さと、2θ=67.93゜に現れる谷からの前記回
折ピークの高さとの比を用いて規定することを特徴とす
る請求項1または2記載の鉱物の定量方法。
3. The crystallinity index of quartz contained in the sample is
The ratio is defined by using the ratio of the diffraction peak height of 2θ = 67.65 ° obtained by powder X-ray diffraction and the height of the diffraction peak from the valley appearing at 2θ = 67.93 °. The method for quantifying mineral according to 1 or 2.
JP05150900A 1993-06-22 1993-06-22 Mineral quantification method Expired - Fee Related JP3132243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05150900A JP3132243B2 (en) 1993-06-22 1993-06-22 Mineral quantification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05150900A JP3132243B2 (en) 1993-06-22 1993-06-22 Mineral quantification method

Publications (2)

Publication Number Publication Date
JPH0712760A true JPH0712760A (en) 1995-01-17
JP3132243B2 JP3132243B2 (en) 2001-02-05

Family

ID=15506841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05150900A Expired - Fee Related JP3132243B2 (en) 1993-06-22 1993-06-22 Mineral quantification method

Country Status (1)

Country Link
JP (1) JP3132243B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002671A (en) * 1998-06-17 2000-01-07 Nittetsu Mining Co Ltd Quantitative determination method for quartz
JP2007266470A (en) * 2006-03-29 2007-10-11 Kyocera Corp Evaluation method of dielectric porcelain
JP2013134169A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Crystal phase quantitative method using x-ray diffraction
JP2018066652A (en) * 2016-10-19 2018-04-26 住友金属鉱山株式会社 Analytical method of powder sample
CN110726601A (en) * 2019-11-18 2020-01-24 核工业北京化工冶金研究院 Preparation method of uranium molybdenum ore standard substance
CN113252716A (en) * 2021-05-10 2021-08-13 中国石油天然气股份有限公司 Method for measuring crystallinity of igneous rock
CN115629091A (en) * 2022-10-14 2023-01-20 江苏省沙钢钢铁研究院有限公司 Method for measuring phase reference strength

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2821758C (en) * 2012-03-05 2014-10-21 Kma Concepts Limited Toy projectile launcher
KR101932324B1 (en) * 2016-11-28 2018-12-24 조건호 Shooting flying body for learning

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002671A (en) * 1998-06-17 2000-01-07 Nittetsu Mining Co Ltd Quantitative determination method for quartz
JP2007266470A (en) * 2006-03-29 2007-10-11 Kyocera Corp Evaluation method of dielectric porcelain
JP4597892B2 (en) * 2006-03-29 2010-12-15 京セラ株式会社 Evaluation method of dielectric porcelain
JP2013134169A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Crystal phase quantitative method using x-ray diffraction
JP2018066652A (en) * 2016-10-19 2018-04-26 住友金属鉱山株式会社 Analytical method of powder sample
CN110726601A (en) * 2019-11-18 2020-01-24 核工业北京化工冶金研究院 Preparation method of uranium molybdenum ore standard substance
CN113252716A (en) * 2021-05-10 2021-08-13 中国石油天然气股份有限公司 Method for measuring crystallinity of igneous rock
CN113252716B (en) * 2021-05-10 2023-02-24 中国石油天然气股份有限公司 Method for measuring crystallinity of igneous rock
CN115629091A (en) * 2022-10-14 2023-01-20 江苏省沙钢钢铁研究院有限公司 Method for measuring phase reference strength

Also Published As

Publication number Publication date
JP3132243B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
Madsen et al. Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction
Maxwell et al. The Guelph PIXE software package
Chipman Temperature Dependence of the Debye Temperatures of Aluminum, Lead, and Beta Brass by an X‐Ray Method
Mosenfelder et al. Analysis of hydrogen in olivine by SIMS: Evaluation of standards and protocol
Speakman et al. Sourcing ceramics with portable XRF spectrometers? A comparison with INAA using Mimbres pottery from the American Southwest
Omote et al. X-ray fluorescence analysis utilizing the fundamental parameter method for the determination of the elemental composition in plant samples
Diamond Identification of hydrated cement constituents using a scanning electron microscope energy dispersive X-ray spectrometer combination
JP6755068B2 (en) Quantitative analysis method for multi-component mixed cement and manufacturing control system for multi-component mixed cement
JP3132243B2 (en) Mineral quantification method
CN111033246A (en) Quantitative crystal phase analysis device, quantitative crystal phase analysis method, and quantitative crystal phase analysis program
US11402341B2 (en) Quantitative phase analysis device for analyzing non-crystalline phases, quantitative phase analysis method for analyzing Non-Crystalline phases, and non-transitory computer-readable storage medium storing quantitative phase analysis program for analyzing Non-Crystalline Phases
Raventós et al. A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals
Yakowitz et al. Quantitative electron probe microanalysis: Absorption correction uncertainty
He et al. An integrated system for quantitative EDXRF analysis based on fundamental parameters
Williams et al. Small-angle scattering of X-rays and neutrons
Williams Direct quantitative diffractometric analysis
CN1800811B (en) Flux for X-ray fluorescence spectrum analysis
Le Blond et al. A rapid method for quantifying single mineral phases in heterogeneous natural dusts using X-ray diffraction
Civici et al. Energy‐Dispersive X‐Ray Fluorescence Analysis in Geochemical Mapping
EP0961931B1 (en) Method of standard-less phase analysis by means of a diffractogram
Russ Quantitative results with X‐Ray fluorescence spectrometry using energy dispersive analysis of X‐Rays
Dragoo Standard Reference Materials for X-Ray Diffraction Part I. Overview of Current and Future Standard Reference Materials
JP6838754B1 (en) X-ray fluorescence analyzer
CN110243850B (en) Method for determining hydroxyapatite content in beta-tricalcium phosphate through full-spectrum fine modification
JP2004184123A (en) Fluorometric x-ray analyzing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001024

LAPS Cancellation because of no payment of annual fees