JP2013134169A - Crystal phase quantitative method using x-ray diffraction - Google Patents

Crystal phase quantitative method using x-ray diffraction Download PDF

Info

Publication number
JP2013134169A
JP2013134169A JP2011285100A JP2011285100A JP2013134169A JP 2013134169 A JP2013134169 A JP 2013134169A JP 2011285100 A JP2011285100 A JP 2011285100A JP 2011285100 A JP2011285100 A JP 2011285100A JP 2013134169 A JP2013134169 A JP 2013134169A
Authority
JP
Japan
Prior art keywords
crystalline phase
sample
ray diffraction
intensity
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011285100A
Other languages
Japanese (ja)
Inventor
悦男 ▲濱▼田
Etsuo Hamada
Chizuko Tanaka
千津子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011285100A priority Critical patent/JP2013134169A/en
Publication of JP2013134169A publication Critical patent/JP2013134169A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply measure a content of a substance composing a material by using an X-ray diffraction method.SOLUTION: First of all, X-ray diffraction intensities Iof respective crystalline phases in a reference sample in which contents of a plurality of crystalline phases are known are measured as reference intensities (step S1). Then X-ray diffraction intensities Iof respective crystalline phases in a sample to be quantitated are measured as quantitative intensities (step S2). Then a value obtained by dividing the quantitative intensity Iof each crystalline phase by the reference intensity Iof each crystalline phase and multiplying the divided value of each crystalline phase by a mass ratio Wof each crystalline phase in the reference sample is calculated as an index value of each crystalline phase and a value obtained by dividing the index value of each crystalline phase by the sum of index values of all the crystalline phases is simultaneously calculated as the content of each crystalline phase in the sample to be quantitated (step S3).

Description

本発明は、X線回折法を利用して被定量試料中における複数の結晶相(以下、結晶質相と記述することもある)の含有率を測定するX線回折を用いた結晶相の定量方法に関する。   The present invention quantifies a crystalline phase using X-ray diffraction that measures the content of a plurality of crystalline phases (hereinafter sometimes referred to as crystalline phases) in a sample to be quantified using an X-ray diffraction method. Regarding the method.

一般に、無機材料、金属材料、薬品、化学製品等の各種材料では、材料を構成する物質の存在量が材料特性を支配する。このため、材料を構成する物質の定量方法は、材料開発や製品の品質保証及び品質管理のための重要な要素技術となっている。材料を構成する物質の定量方法は、材料を構成する元素の存在量を測定する手法と、材料を構成する化合物や分子などの物質の存在量を測定する手法とに大別される。   In general, in various materials such as inorganic materials, metal materials, chemicals, and chemical products, the abundance of substances constituting the materials dominates the material characteristics. For this reason, the quantification method of the substance which comprises material is an important elemental technique for material development, product quality assurance, and quality control. Methods for quantifying substances constituting a material are roughly classified into a technique for measuring the abundance of elements constituting the material and a technique for measuring the abundance of substances such as compounds and molecules constituting the material.

被定量試料が結晶質である場合、X線回折法を利用して被定量試料を構成する物質の存在量を測定できる(非特許文献1参照)。具体的には、複数の結晶質相を含有する被定量試料中の結晶質相iのX線回折強度Iは以下に示す数式(1)で表される。なお、数式(1)中のKは結晶質相iに固有の定数を示し、Wは結晶質相iの質量比率を示し、(μ/ρ)は被定量試料の平均質量吸収係数を示している。従って、X線回折法を利用して結晶質相iのX線回折強度Iを測定することによって被定量試料中における結晶質相iの質量比率Wを求めることができる。 When the sample to be quantified is crystalline, the abundance of a substance constituting the sample to be quantified can be measured using an X-ray diffraction method (see Non-Patent Document 1). Specifically, the X-ray diffraction intensity I i of the crystalline phase i in the sample to be quantified containing a plurality of crystalline phases is represented by the following formula (1). In Formula (1), K i represents a constant specific to the crystalline phase i, W i represents the mass ratio of the crystalline phase i, and (μ / ρ) represents the average mass absorption coefficient of the sample to be quantified. Show. Therefore, by measuring the X-ray diffraction intensity I i of the crystalline phase i using the X-ray diffraction method, the mass ratio W i of the crystalline phase i in the sample to be determined can be obtained.

Figure 2013134169
Figure 2013134169

数式(1)から明らかなように、被定量試料中における結晶質相iの質量比率Wが同じである場合であっても、他の結晶質相の質量比率が異なると、被定量試料の平均質量吸収係数が変化するために、結晶質相iのX線回折強度Iが変化する。このため、X線回折法を利用した定量方法には、被定量試料毎に異なる平均質量吸収係数をどのように補正するかによって様々な手法が存在する。具体的には、X線回折法を利用した定量方法は、質量比率を測定したい物質(被検物質)の純物質又は被検物質の質量比率が既知である被定量試料を入手できる場合と入手できない場合とで大きく2つに分類することができる。 As is apparent from equation (1), even if the mass ratio W i of the crystalline phase i in the quantitative samples are the same, the mass ratio of other crystalline phases are different, of the quantitative sample Since the average mass absorption coefficient changes, the X-ray diffraction intensity I i of the crystalline phase i changes. For this reason, there are various methods in the quantification method using the X-ray diffraction method depending on how the average mass absorption coefficient that differs for each sample to be quantified is corrected. Specifically, the quantification method using the X-ray diffraction method is based on the case where a pure substance of a substance (test substance) whose mass ratio is to be measured (a test substance) or a test sample whose mass ratio of the test substance is known can be obtained. It can be roughly classified into two cases when it cannot be done.

すなわち、被検物質の純物質又は被検物質の質量比率が既知である被定量試料を入手できる場合、質量比率が既知である被検物質に内部標準物質を一定質量混合し、被検物質と内部標準物質とのX線回折強度比を定量に用いることにより、被定量試料毎に異なる平均質量吸収係数を除外することができる(内部標準法、標準添加法)。また、結晶質相iと結晶質相iとの混合比率を変えた数個の被定量試料を調製し、結晶質相iのX線回折強度Iと結晶質相iのX線回折強度Iとの比を求めることにより、被定量試料毎に異なる平均質量吸収係数を除外することもできる(直接比較法)。 That is, when a pure substance of a test substance or a sample to be measured whose mass ratio of the test substance is known can be obtained, a constant mass of an internal standard substance is mixed with the test substance with a known mass ratio, and By using the X-ray diffraction intensity ratio with the internal standard substance for quantification, it is possible to exclude an average mass absorption coefficient that differs for each sample to be quantified (internal standard method, standard addition method). Moreover, several of the quantitative samples with different mixing ratio of the crystalline phase i 1 and the crystalline phase i 2 were prepared, and X-ray diffraction intensity I 1 of the crystalline phase i 1 crystalline phase i 2 X by determining the ratio between the line diffraction intensity I 2, it is also possible to exclude the average mass absorption coefficient differs for each target quantitation sample (direct comparison method).

一方、被検物質の純物質又は被検物質の質量比率が既知である被定量試料を入手できない場合には、X線回折法によって測定されたX線回折強度と被定量試料の構造モデルから理論的に算出されるX線回折強度とに基づいて被検物質の質量比率を求めるリートベルト法を用いるのが一般的である。   On the other hand, when a sample to be measured is not available, a pure substance of the test substance or a mass ratio of the test substance is not available, the theory is calculated from the X-ray diffraction intensity measured by the X-ray diffraction method and the structure model of the sample to be measured. In general, the Rietveld method is used to obtain the mass ratio of the test substance based on the X-ray diffraction intensity calculated on the basis of the X-ray diffraction intensity.

X線回折ハンドブック、理学電機株式会社、2000年2月21日 第3版、62〜71頁X-ray diffraction handbook, Rigaku Corporation, February 21, 2000, 3rd edition, pages 62-71

しかしながら、内部標準法や標準添加法を利用して被検物質の質量比率を測定する場合、被定量試料に内部標準物質を均一に混合するために、被定量試料を粉末状にする必要があり、試料の調製が困難又は不可能になる場合がある。例えば、鉄鋼材料の表面に生成した腐食生成物を定量する場合、腐食生成物を鉄鋼材料から分離する必要があり、この際の腐食生成物の変質が問題となり得る。また、焼結したセラミックス等、非常に硬度の高い材料を粉末状にするのには大きな困難を伴う。さらに、定量する被検物質毎に検量線を作成する手間がかかる。   However, when measuring the mass ratio of a test substance using the internal standard method or standard addition method, the sample to be quantified must be powdered in order to uniformly mix the internal standard substance with the sample to be quantified. Sample preparation may be difficult or impossible. For example, when quantifying the corrosion product generated on the surface of the steel material, it is necessary to separate the corrosion product from the steel material, and alteration of the corrosion product at this time may be a problem. In addition, it is very difficult to powder a material with very high hardness such as sintered ceramics. Furthermore, it takes time to create a calibration curve for each test substance to be quantified.

また、直接比較法を利用して定量を行う場合には、内部標準物質を被定量試料に混合する必要はないものの、適用可能な被定量試料が2成分系に限られる又は成分毎に検量線を作成する手間がかかる。また、リートベルト法を用いて被検物質の質量比率を測定する場合には、各試料について理論計算のためのパラメータを入力する手間、被定量試料のX線回折図形に対する理論計算回折図形のプロファイルフィッティングに関するノウハウなどの高度な知識が必要になる。   In addition, when quantification is performed using the direct comparison method, it is not necessary to mix the internal standard substance with the sample to be quantified, but the applicable sample to be quantified is limited to a two-component system or a calibration curve for each component. It takes time to create. In addition, when measuring the mass ratio of the test substance using the Rietveld method, it takes time to input parameters for the theoretical calculation for each sample, and the profile of the theoretical calculation diffraction pattern for the X-ray diffraction pattern of the sample to be determined. Advanced knowledge such as fitting know-how is required.

以上のような理由で、X線回折法を利用した定量方法を広く一般材料へ適用するのには限界があり、品質保証や品質管理等の目的で工業的に利用する場合にも多くの制約が生じる。このため、X線回折法を利用して材料を構成する物質の存在量を簡易に測定可能な技術の提供が期待されていた。   For the above reasons, there are limits to the application of quantitative methods using X-ray diffraction to a wide range of general materials, and there are many restrictions even when used industrially for purposes such as quality assurance and quality control. Occurs. For this reason, provision of the technique which can measure easily the abundance of the substance which comprises material using X-ray diffraction method was anticipated.

本発明は、上記課題に鑑みてなされたものであって、その目的は、X線回折法を利用して材料を構成する物質の含有率を簡易に測定可能なX線回折を用いた結晶相の定量方法を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to provide a crystal phase using X-ray diffraction that can easily measure the content of a substance constituting the material using an X-ray diffraction method. It is to provide a quantitative method.

上記課題を解決し、目的を達成するに、本発明の第1の態様に係るX線回折を用いた結晶相の定量方法は、複数の結晶質相の含有率が既知である参照試料における各結晶質相のX線回折強度を参照強度として測定するステップと、被定量試料における各結晶質相のX線回折強度を定量強度として測定するステップと、各結晶質相の定量強度を各結晶質相の参照強度で除算し、各結晶質相の除算値に前記参照試料における各結晶質相の含有率を乗算した値を各結晶質相の指標値として算出するステップと、各結晶質相の指標値の比をもって前記被定量試料における各結晶質相の含有率の比とする、又は、各結晶質相の指標値を全結晶質相の指標値の和で除算した値を前記被定量試料における各結晶質相の含有率として一度に算出するステップと、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, the method for quantifying a crystalline phase using X-ray diffraction according to the first aspect of the present invention provides a method for determining the content of a plurality of crystalline phases in each reference sample. A step of measuring the X-ray diffraction intensity of the crystalline phase as a reference intensity, a step of measuring the X-ray diffraction intensity of each crystalline phase in the sample to be quantified as a quantitative intensity, and the quantitative intensity of each crystalline phase for each crystalline substance Dividing by the reference intensity of the phase and multiplying the divided value of each crystalline phase by the content of each crystalline phase in the reference sample as an index value for each crystalline phase; and The ratio of the index values is used as the ratio of the content of each crystalline phase in the sample to be quantified, or the value obtained by dividing the index value of each crystalline phase by the sum of the index values of all crystalline phases Calculating at a time as the content of each crystalline phase in Characterized in that it comprises a.

上記課題を解決し、目的を達成するに、本発明の第2の態様に係るX線回折を用いた結晶相の定量方法は、複数の結晶質相の含有率が既知である参照試料における各結晶質相のX線回折強度を参照強度として測定するステップと、被定量試料における各結晶質相のX線回折強度を定量強度として測定するステップと、結晶質相を任意に一つ、基準結晶質相として選択し、被定量試料と参照試料のそれぞれにおいて、各結晶質相の定量強度の基準結晶質相の定量強度に対する比をその結晶質相の相対強度として求め、各結晶質相につき、被定量試料における相対強度を参照試料における相対強度で除算したものに前記参照試料における各結晶質相の基準結晶質相に対する含有率の比を乗算した値を被定量試料における各結晶質相の基準結晶質相に対する含有率の比として算出するステップと、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, the method for quantifying a crystalline phase using X-ray diffraction according to the second aspect of the present invention provides each of the reference samples in which the contents of the plurality of crystalline phases are known. A step of measuring the X-ray diffraction intensity of the crystalline phase as a reference intensity, a step of measuring the X-ray diffraction intensity of each crystalline phase in the sample to be quantified as a quantitative intensity, and optionally one crystalline phase, a standard crystal In each sample to be quantified and reference sample, the ratio of the quantitative strength of each crystalline phase to the quantitative strength of the standard crystalline phase is determined as the relative strength of the crystalline phase, and for each crystalline phase, The value obtained by dividing the relative intensity in the sample to be measured by the relative intensity in the reference sample multiplied by the ratio of the content of each crystalline phase in the reference sample to the standard crystalline phase in the reference sample is the standard for each crystalline phase in the sample to be measured. Crystalline phase Characterized in that it comprises the steps of: calculating a ratio of the content against.

本発明に係るX線回折を用いた結晶相の定量方法は、上記発明において、各結晶質相の参照強度を理論計算によって算出することを特徴とする。   The crystal phase quantification method using X-ray diffraction according to the present invention is characterized in that, in the above invention, the reference intensity of each crystalline phase is calculated by theoretical calculation.

本発明に係るX線回折を用いた結晶相の定量方法は、上記発明において、1つ以上の結晶質相について、複数の異なる面指数によるX線回折の定量強度と参照強度とを測定し、それぞれの面指数において、定量強度を参照強度で除算した値を求め、次に、各面指数について得られた除算値の平均値を求め、次に、これら平均値に参照試料における各結晶質相の含有率を乗算した値を該結晶質相の指標値として算出することを特徴とする。   According to the method for quantifying a crystalline phase using X-ray diffraction according to the present invention, the quantitative intensity and reference intensity of X-ray diffraction with a plurality of different plane indices are measured for one or more crystalline phases in the above invention, For each surface index, determine the value obtained by dividing the quantitative strength by the reference strength, then determine the average value of the division values obtained for each surface index, and then calculate the average value for each crystalline phase in the reference sample. A value obtained by multiplying the content of is calculated as an index value of the crystalline phase.

本発明に係るX線回折を用いた結晶相の定量方法によれば、X線回折法を利用して材料を構成する物質の含有率を簡易に測定することができる。   According to the crystal phase quantification method using X-ray diffraction according to the present invention, the content of a substance constituting the material can be easily measured using the X-ray diffraction method.

図1は、本発明の一実施形態であるX線回折を用いた結晶相の定量方法の流れを示すフローチャートである。FIG. 1 is a flowchart showing the flow of a crystal phase determination method using X-ray diffraction according to an embodiment of the present invention.

以下、図面を参照して、本発明の一実施形態であるX線回折を用いた結晶相の定量方法の流れについて説明する。なお、本発明の一実施形態であるX線回折を用いた結晶相の定量方法は、定量の対象である結晶質相以外に定量の対象としない結晶質相や非晶質相があっても構わず適用することができる。以下、結晶質相と記載するものは定量の対象とする結晶質相であって、定量の対象としない結晶質相はこれにいれない。また、以下で結晶質相の含有率とは、定量しようとする結晶質相全部(定量しようとする結晶質相の和)に対する各々の結晶質相の含有率を示す。   Hereinafter, a flow of a crystal phase determination method using X-ray diffraction according to an embodiment of the present invention will be described with reference to the drawings. The crystal phase quantification method using X-ray diffraction according to an embodiment of the present invention is applicable even if there is a crystalline phase or an amorphous phase that is not subject to quantification other than the crystalline phase that is subject to quantification. It can be applied regardless. Hereinafter, what is described as a crystalline phase is a crystalline phase to be quantified, and does not include a crystalline phase that is not to be quantified. Hereinafter, the content of the crystalline phase indicates the content of each crystalline phase with respect to the entire crystalline phase to be quantified (the sum of the crystalline phases to be quantified).

〔本発明の概念〕
始めに、本発明の概念について説明する。
[Concept of the present invention]
First, the concept of the present invention will be described.

被定量試料を構成する物質が全て結晶質である場合、又は、被定量試料中の非晶質成分は重要構成物質ではなく、被定量試料中の結晶質相のみの含有率(定量しようとする結晶質相の和に対する各々の結晶質の割合)又は含有率の比を測定できればよい場合、本発明の方法を用いることができる。既述の数式(1)にて、各被検成分(定量しようとする各結晶質相)iの定数Kと、各被検成分iのX線回折強度Iと各被検成分iの質量比率Wとの関係を表すことができる。また、既述の数式(1)を変形すると、定数Kは以下に示す数式(2)のように表せる。数式(2)中の(μ/ρ)は被定量試料の平均質量吸収係数である。また、参照試料中の各被検成分iの質量比率Wsiと各被検成分iのX線回折強度Isiと定数Kとは以下の数式(3)に示す関係を満足する。なお、数式(3)中の(μ/ρ)は参照試料の平均質量吸収係数を示す。 If the material constituting the sample to be quantified is all crystalline, or the amorphous component in the sample to be quantified is not an important constituent material, the content of only the crystalline phase in the sample to be quantified If it is sufficient to measure the ratio of each crystalline substance to the sum of the crystalline phases) or the ratio of the content, the method of the present invention can be used. In Equation (1), the constant K i of each test component (each crystalline phase to be quantified) i, the X-ray diffraction intensity I i of each test component i, and each test component i We can represent the relationship between the weight ratio W i. Further, when the above-described mathematical expression (1) is modified, the constant K i can be expressed as the following mathematical expression (2). (Μ / ρ) in the formula (2) is an average mass absorption coefficient of the sample to be quantified. Further, the mass ratio W si of each test component i in the reference sample, the X-ray diffraction intensity I si of each test component i, and the constant K i satisfy the relationship represented by the following mathematical formula (3). Note that (μ / ρ) s in Equation (3) represents the average mass absorption coefficient of the reference sample.

Figure 2013134169
Figure 2013134169
Figure 2013134169
Figure 2013134169

一方、被定量試料中の被検成分iの質量比率Wは数式(1)より以下に示す数式(4)のように表せる。従って、数式(4)中の定数Kに数式(3)を代入することによって、被定量試料中の被検成分iの質量比率Wは、以下に示す数式(5)のように表される。さらに、数式(5)中の(μ/ρ)/(μ/ρ)は、この場合、被定量試料と参照試料とにより決まり、被検成分iの種類によらず定数であるからこれを定数aと表現することにより、被定量試料中の各被検成分iの質量比率Wは以下に示す数式(6)のように表せる。 On the other hand, the mass ratio W i of the test components i of the quantitative sample can be expressed as Equation (4) shown below from Equation (1). Therefore, by substituting Equation (3) for the constant K i in Equation (4), the mass ratio W i of the test component i in the sample to be quantified is expressed as Equation (5) below. The Further, in this case, (μ / ρ) / (μ / ρ) s in the formula (5) is determined by the sample to be quantified and the reference sample, and is a constant regardless of the type of the test component i. By expressing it as a constant a, the mass ratio W i of each test component i in the sample to be measured can be expressed as the following formula (6).

Figure 2013134169
Figure 2013134169
Figure 2013134169
Figure 2013134169
Figure 2013134169
Figure 2013134169

以上のことから、被定量試料に含まれている複数の被検成分が全て結晶質相である場合、又は、被定量試料中の結晶質相のみの含有率(定量しようとする結晶質相の和に対する各々の結晶質の割合)又は含有率の比を測定できればよい場合、数式(6)に示すように、被検成分iの質量比率Wsiが既知である参照試料のX線回折強度Isiを参照強度、その質量比率Wsiを参照質量比率とし、被定量試料中における被検成分iのX線回折強度Iを参照強度Isiで除算すると共に除算値を参照質量比率Wsiと乗算した値を各被検成分iの指標値として算出し、各被検成分iの指標値を全被検成分iの指標値の和で除算した値を被検成分iの含有率として算出する。又は、各被検成分の指標値の比をもって各被検成分の含有率の比を求めることができる。 From the above, when all of the plurality of test components contained in the sample to be quantified are in the crystalline phase, or the content rate of only the crystalline phase in the sample to be quantified (of the crystalline phase to be quantified). If it is sufficient to measure the ratio of each crystalline substance to the sum) or the content ratio, the X-ray diffraction intensity I of the reference sample whose mass ratio W si of the test component i is known, as shown in Equation (6) Let si be the reference intensity, the mass ratio W si be the reference mass ratio, divide the X-ray diffraction intensity I i of the test component i in the sample to be quantified by the reference intensity I si and divide the divided value by the reference mass ratio W si . The multiplied value is calculated as the index value of each test component i, and the value obtained by dividing the index value of each test component i by the sum of the index values of all the test components i is calculated as the content rate of the test component i. . Or the ratio of the content rate of each test component can be calculated | required with the ratio of the index value of each test component.

また、当然のことながら、上記計算方法によらずとも、以下に示すように上記と数学的に同等の計算方法で求めることも本発明範囲となる。つまり、結晶質相を任意に一つ、基準結晶質相(基準被検成分j)として選択し、被定量試料と参照試料のそれぞれにおいて、各結晶質相の定量強度I、Isiの基準結晶質相の定量強度Isjに対する比をその結晶質相の相対強度R(=I/I)、Rsi(=Isi/Isj)として求め、各結晶質相につき、被定量試料における相対強度Rを参照試料における相対強度Rsiで除算したものに参照試料における各結晶質相の基準結晶質相に対する含有率の比(Wsi/Wsj)を乗算した値を被定量試料における各結晶質相の基準結晶質相に対する含有率の比として算出することも可能である。 Of course, it is within the scope of the present invention to use a calculation method that is mathematically equivalent to the above as shown below, regardless of the calculation method. That is, any one crystalline phase is selected as a standard crystalline phase (standard test component j), and in each of the sample to be quantified and the reference sample, the quantitative strengths I i and I si of each crystalline phase are determined. The ratio of the crystalline phase to the quantitative strength I j I sj is determined as the relative strength R i (= I i / I j ), R si (= I si / I sj ) of the crystalline phase, and for each crystalline phase, The value obtained by multiplying the relative intensity R i of the sample to be quantified by the relative intensity R si of the reference sample multiplied by the ratio of the content ratio of each crystalline phase in the reference sample to the standard crystalline phase (W si / W sj ). It can also be calculated as the ratio of the content of each crystalline phase to the reference crystalline phase in the sample to be determined.

なお、参照強度Isiは実測値又は理論計算値のどちらを使用しても良い。また、被検成分iの質量比率Wsiとして、参照試料中の被検成分iの質量比率が不明であっても、参照試料中での被検成分iの全被検成分の和に対する比率、又は、被検成分どうしの比がわかればそれを用いることができる。また、本発明の方法は、前述したように定量しようとする結晶質相以外に定量の対象としない結晶質相が被定量試料中にあったとしても、その定量の対象としない結晶質相のX線回折ピークが定量しようとする結晶質相のX線回折ピークと重ならない場合、定量しようとする結晶質相のみを対象として本発明の方法を適用することで、定量しようとする結晶質相の含有率の比もしくは含有率を求める方法として用いることができる。 As the reference intensity I si , either an actual measurement value or a theoretical calculation value may be used. Further, as the mass ratio W si of the test component i, even if the mass ratio of the test component i in the reference sample is unknown, the ratio of the test component i in the reference sample to the sum of all the test components, Alternatively, if the ratio between test components is known, it can be used. In addition, as described above, the method of the present invention allows the crystalline phase not to be quantified in addition to the crystalline phase to be quantified in the sample to be quantified. When the X-ray diffraction peak does not overlap with the X-ray diffraction peak of the crystalline phase to be quantified, the crystalline phase to be quantified can be obtained by applying the method of the present invention only to the crystalline phase to be quantified. It can use as a method of calculating | requiring the ratio or content rate of a content rate.

このような本発明に係るX線回折を用いた結晶相の定量方法によれば、内部標準物質は不必要であり、また、検量線を作成する必要もない。また、参照強度Isiを理論計算によって算出する場合であっても、被検物質の純物質を混合した場合のX線回折強度を一旦算出するだけで済む。従って、本発明に係るX線回折を用いた結晶相の定量方法によれば、X線回折法を利用して材料を構成する物質の含有率を簡易に測定することができる。 According to such a crystal phase quantification method using X-ray diffraction according to the present invention, an internal standard substance is unnecessary, and it is not necessary to prepare a calibration curve. Even when the reference intensity I si is calculated by theoretical calculation, it is only necessary to once calculate the X-ray diffraction intensity when the pure substance of the test substance is mixed. Therefore, according to the crystal phase quantification method using X-ray diffraction according to the present invention, the content rate of substances constituting the material can be easily measured using the X-ray diffraction method.

なお、本発明に係るX線回折を用いた結晶相の定量方法では、被検成分iの等量混合物を参照試料とすることによってより簡易な定量が可能となる。すなわち、被検成分iの等量混合物では、各被検成分iの質量比率Wが等しくなるため、被検成分i間のX線回折強度Iの比率は定数Kの比率に相当することになる。詳しくは、被検成分iの等量混合物では(μ/ρ)/Wsiは定数となるため、既述の数式(3)においてこれを定数bと表せば、定数Kは以下に示す数式(7)のように表される。これにより、数式(1)の定数Kに数式(7)を代入することによって、被検成分iの質量比率Wは以下に示す数式(8)のように表される。 In the crystal phase quantification method using X-ray diffraction according to the present invention, simpler quantification is possible by using an equal amount mixture of the test component i as a reference sample. That is, in an equal amount mixture of the test component i, the mass ratios W i of the test components i are equal, so the ratio of the X-ray diffraction intensity I i between the test components i corresponds to the ratio of the constant K i. It will be. Specifically, since (μ / ρ) s / W si is a constant in an equal mixture of the test component i, if this is expressed as a constant b in the above-described equation (3), the constant K i is shown below. It is expressed as Equation (7). Thus, by substituting Equation (7) for the constant K i in Equation (1), the mass ratio W i of the test component i is expressed as Equation (8) below.

Figure 2013134169
Figure 2013134169
Figure 2013134169
Figure 2013134169

数式(8)中の(μ/ρ)/bは定数であるからこれを定数cと表すことによって、被検成分iの質量比率Wは以下に示す数式(9)のように表される。従って、被検成分iの等量混合物を参照試料とすることによって、被定量試料中の被検成分iのX線回折強度を参照試料中の被検成分iのX線回折強度で除算して、除算値を各被検成分iの指標値として算出し、各被検成分iの指標値を全被検成分iの指標値の和で除算した値を被検成分iの含有率として算出することができる。また、各被検成分の指標値の比をもって各被検成分の含有率の比を求めることができる。 Since (μ / ρ) / b in Equation (8) is a constant, by expressing this as a constant c, the mass ratio W i of the test component i is expressed as shown in Equation (9) below. . Therefore, the X-ray diffraction intensity of the test component i in the sample to be measured is divided by the X-ray diffraction intensity of the test component i in the reference sample by using an equal mixture of the test component i as the reference sample. The division value is calculated as the index value of each test component i, and the value obtained by dividing the index value of each test component i by the sum of the index values of all the test components i is calculated as the content rate of the test component i. be able to. Moreover, the ratio of the content rate of each test component can be obtained from the ratio of the index values of each test component.

Figure 2013134169
Figure 2013134169

なお、定量に用いるX線回折ピークとしては、他の被検成分のX線回折ピークと重ならず、且つ、強度の強いX線回折ピークを用いることが望ましい。また、定量に用いるX線回折ピークは被検成分i毎に複数用いてもよい。すなわち、試料配向の影響で、理想的な無配向試料のピーク強度比とは異なる場合、定量値の確かさが低下するが、複数の回折ピークを用いることで、試料配向の影響を軽減できる場合がある。この際、1つ以上の結晶質相について、複数の異なる面指数によるX線回折の定量強度と参照強度を測定し、それぞれの面指数において、定量強度を参照強度で除算した値を求め、次に、各面指数における除算値の平均値を求め、次に、これら平均値に参照試料における各結晶質相の含有率を乗算した値をその結晶質相の指標値として算出することができる。   As the X-ray diffraction peak used for quantification, it is desirable to use an X-ray diffraction peak that does not overlap with the X-ray diffraction peaks of other test components and has high intensity. A plurality of X-ray diffraction peaks used for quantification may be used for each test component i. In other words, if the sample intensity is different from the ideal peak intensity ratio of the non-oriented sample, the accuracy of the quantitative value will decrease, but the use of multiple diffraction peaks can reduce the effect of the sample orientation. There is. At this time, for one or more crystalline phases, the quantitative intensity and the reference intensity of X-ray diffraction with a plurality of different plane indices are measured, and a value obtained by dividing the quantitative intensity by the reference intensity in each plane index is obtained. Then, an average value of the division values in each plane index can be obtained, and then a value obtained by multiplying the average value by the content of each crystalline phase in the reference sample can be calculated as an index value of the crystalline phase.

〔X線回折を用いた結晶相の定量方法〕
次に、図1を参照して、本発明の一実施形態であるX線回折を用いた結晶相の定量方法について説明する。図1は、本発明の一実施形態であるX線回折を用いた結晶相の定量方法の流れを示すフローチャートである。
[Quantification method of crystal phase using X-ray diffraction]
Next, with reference to FIG. 1, a method for quantifying a crystal phase using X-ray diffraction, which is an embodiment of the present invention, will be described. FIG. 1 is a flowchart showing the flow of a crystal phase determination method using X-ray diffraction according to an embodiment of the present invention.

本発明の一実施形態であるX線回折を用いた結晶相の定量方法では、始めに、複数の結晶質相(被定量物質、被検物質)の含有率が既知である参照試料における各結晶質相のX線回折強度Isiを参照強度として測定する(ステップS1)。次に、被定量試料における各結晶質相のX線回折強度Iを定量強度として測定する(ステップS2)。そして、各結晶質相の定量強度Iを各結晶質相の参照強度Isiで除算し、各結晶質相の除算値に参照試料における各結晶質相の質量比率(もしくは含有率)Wsiを乗算した値を各結晶質相の指標値として算出し、各結晶質相の指標値の比をもって各結晶質相の含有率の比とする、又は、各結晶質相の指標値を全結晶質相の指標値の和で除算した値を被定量試料における各結晶質相の含有率として一度に算出する(ステップS3)。 In the crystal phase quantification method using X-ray diffraction which is one embodiment of the present invention, first, each crystal in a reference sample in which the content ratio of a plurality of crystalline phases (quantitative substance, test substance) is known. The X-ray diffraction intensity I si of the mass phase is measured as a reference intensity (step S1). Next, the X-ray diffraction intensity I i of each crystalline phase in the sample to be quantified is measured as the quantitative intensity (step S2). Then, the quantitative strength I i of each crystalline phase is divided by the reference strength I si of each crystalline phase, and the divided value of each crystalline phase is the mass ratio (or content) W si of each crystalline phase in the reference sample. Is calculated as the index value of each crystalline phase, and the ratio of the index values of each crystalline phase is used as the ratio of the content ratio of each crystalline phase, or the index value of each crystalline phase is the total crystal A value obtained by dividing by the sum of the index values of the quality phase is calculated at once as the content of each crystalline phase in the sample to be quantified (step S3).

このような本発明の一実施形態であるX線回折を用いた結晶相の定量方法によれば、内部標準物質は不必要であり、また、検量線を作成する必要もない。また、参照試料のX線回折強度を理論計算によって算出する場合であっても、被定量物質の純物質を混合した場合のX線回折強度を一旦算出するだけで済む。従って、本発明の一実施形態であるX線回折を用いた結晶相の定量方法によれば、X線回折法を利用して材料を構成する複数の結晶質相の含有率を簡易に測定することができる。   According to the crystal phase quantification method using X-ray diffraction as one embodiment of the present invention, an internal standard substance is unnecessary, and it is not necessary to prepare a calibration curve. Further, even when the X-ray diffraction intensity of the reference sample is calculated by theoretical calculation, it is only necessary to once calculate the X-ray diffraction intensity when the pure substance of the quantitative substance is mixed. Therefore, according to the crystal phase quantification method using X-ray diffraction which is one embodiment of the present invention, the content of a plurality of crystalline phases constituting the material is easily measured using the X-ray diffraction method. be able to.

〔実施例1〕
アナターゼ(Anatase)、ルチル(Rutile)、及び窒化チタン(TiN)を以下の表1に示す比率で混合し、等量混合物試料及び被定量試料を作製した。試料の配向を極力減らすよう、試料になるべく圧力を加えないようにして試料ホルダーに試料を充填し作製した各試料のX線回折図形をθ−2θ法で試料を面内回転させて測定した。X線源にはCuKα線を用いた。定量にはアナターゼ、ルチル、及び窒化チタンでそれぞれ101、110、200反射を用いた。但し、定量に用いる反射については、これに限定されるものではない。以下の表1に等量混合物試料及び被定量試料のX線回折強度を示す。なお、被定量試料中におけるアナターゼ、ルチル、及び窒化チタンの定量値は、等量混合物試料におけるアナターゼ、ルチル、及び窒化チタンのX線回折強度はそれぞれAs、Rs、Tsとし、被定量試料におけるアナターゼ、ルチル、及び窒化チタンのX線回折強度はそれぞれAi、Ri、Tiとして、以下に示す数式(10)〜(12)により算出した。
[Example 1]
Anatase (Anatase), rutile (Rutile), and titanium nitride (TiN) were mixed in the ratios shown in Table 1 below to prepare an equivalent mixture sample and a sample to be quantified. In order to reduce the orientation of the sample as much as possible, the X-ray diffraction pattern of each sample prepared by filling the sample holder with the sample being applied with as little pressure as possible was measured by in-plane rotation of the sample by the θ-2θ method. CuKα rays were used as the X-ray source. For the determination, 101, 110, and 200 reflections were used for anatase, rutile, and titanium nitride, respectively. However, the reflection used for quantification is not limited to this. Table 1 below shows the X-ray diffraction intensities of the equivalent mixture sample and the sample to be determined. The quantitative values of anatase, rutile, and titanium nitride in the sample to be quantified are the X-ray diffraction intensities of Anatase, rutile, and titanium nitride in the equivalence mixture sample, respectively, As, Rs, and Ts. , Rutile, and titanium nitride were calculated by the following mathematical formulas (10) to (12) as Ai, Ri, and Ti, respectively.

Figure 2013134169
Figure 2013134169
Figure 2013134169
Figure 2013134169
Figure 2013134169
Figure 2013134169

表1に示すように、本発明に係る定量方法により算出された定量値は、各成分の混合比率とよく一致している。これにより、本発明に係るX線回折を用いた結晶相の定量方法によれば、X線回折法を利用して材料を構成する物質の含有率を簡易に測定できることが確認された。   As shown in Table 1, the quantitative values calculated by the quantitative method according to the present invention are in good agreement with the mixing ratio of each component. Thus, it was confirmed that according to the crystal phase quantification method using X-ray diffraction according to the present invention, the content of the substance constituting the material can be easily measured using the X-ray diffraction method.

Figure 2013134169
Figure 2013134169

〔実施例2〕
試料によっては、試料配向に起因して定量値の確からしさが低下することが考えられるが、その場合、以下に示すように、複数の回折線を用いることで試料配向の影響を軽減できる場合がある。具体的には、本実施例2では、アナターゼ(Anatase)、ルチル(Rutile)、及び窒化チタン(TiN)を表2に示す比率で混合し、等量混合物試料及び被検試料を作製した。本実施例2の被検試料に関しては、実施例1のような試料配向を回避するような試料調製方法を用いなかった。これら供試材のX線回折図形をθ−2θ法で測定した。本実施例2では、等量混合試料を除き、測定の際に試料面内回転をしなかった。X線源にはCuKα線を用いた。アナターゼ、ルチル、及び窒化チタンについてそれぞれ101、110、200反射を用いて定量した。ルチルについては特に試料配向の影響が認められたため、110以外に、101、111の3本の回折線を用いた定量も行った。なお、測定条件、定量に用いる反射については、これらに限定されるものではない。表2に等量混合物試料及び被検試料の回折強度を示す。
[Example 2]
Depending on the sample, the probability of the quantitative value may decrease due to the sample orientation.In this case, as shown below, the influence of the sample orientation may be reduced by using multiple diffraction lines. is there. Specifically, in Example 2, anatase (Anatase), rutile (Rutile), and titanium nitride (TiN) were mixed in the ratios shown in Table 2 to prepare an equal mixture sample and a test sample. For the test sample of Example 2, the sample preparation method that avoids sample orientation as in Example 1 was not used. The X-ray diffraction patterns of these test materials were measured by the θ-2θ method. In Example 2, the sample was not rotated in the sample plane except for an equal amount of the mixed sample. CuKα rays were used as the X-ray source. Anatase, rutile, and titanium nitride were quantified using 101, 110, and 200 reflections, respectively. Since rutile was particularly affected by sample orientation, quantification was also performed using three diffraction lines 101 and 111 in addition to 110. Measurement conditions and reflection used for quantification are not limited to these. Table 2 shows the diffraction intensities of the equivalent mixture sample and the test sample.

ここで、等量混合試料におけるアナターゼ、ルチル、及び窒化チタンの回折強度をそれぞれAs、Rs、Tsとし、被検試料におけるアナターゼ、ルチル、及び窒化チタンの回折強度をそれぞれAi、Ri、Tiとし、被検試料中のアナターゼ、ルチル、及び窒化チタンの定量値は、数式(10)〜(12)により算出した。ルチルについては、回折線として110反射のみを用いて定量した結果と3本の回折線(110反射、101反射、及び111反射)を用いて定量した結果とを表3に示した。3本の回折線を用いた場合は、それぞれの場合のRi/Rsを3つ求め、それらを平均した値をルチルのRi/Rsとして、数式(10)〜(12)によりアナターゼ、ルチル、及び窒化チタンの定量値を算出した。   Here, the diffraction intensities of anatase, rutile, and titanium nitride in the equivalent mixed sample are As, Rs, and Ts, respectively, and the diffraction intensities of anatase, rutile, and titanium nitride in the test sample are respectively Ai, Ri, and Ti, Quantitative values of anatase, rutile, and titanium nitride in the test sample were calculated by Equations (10) to (12). Regarding rutile, the results of quantification using only 110 reflection as diffraction lines and the results of quantification using three diffraction lines (110 reflection, 101 reflection, and 111 reflection) are shown in Table 3. When three diffraction lines are used, three Ri / Rs in each case are obtained, and an average of them is defined as Ri / Rs of rutile, and anatase, rutile, and The quantitative value of titanium nitride was calculated.

Figure 2013134169
Figure 2013134169
Figure 2013134169
Figure 2013134169

本実施例2では、表3に示すように、ルチルの110反射のみを用いた場合、試料配向の影響によって定量値と実際の混合比率との乖離が認められた。一方、ルチルの3本の反射を用いた場合には混合比率に良く一致する定量値が得られた。以上のことから、本発明の方法によれば、内部標準物質を被検試料に混合することなく、且つ、被検試料のX線回折図形に対してプロファイルフィッティングをすることなく、且つ、成分毎に検量線を作製することなく、定量が可能であることが確認された。   In Example 2, as shown in Table 3, when only the rutile 110 reflection was used, a discrepancy between the quantitative value and the actual mixing ratio was recognized due to the influence of the sample orientation. On the other hand, when three rutile reflections were used, a quantitative value that closely matched the mixing ratio was obtained. From the above, according to the method of the present invention, the internal standard substance is not mixed with the test sample, the profile fitting is not performed on the X-ray diffraction pattern of the test sample, and It was confirmed that quantification was possible without preparing a calibration curve.

Claims (4)

X線回折法を利用して被定量試料中における複数の結晶質相の含有率を測定するX線回折を用いた結晶相の定量方法であって、
複数の結晶質相の含有率が既知である参照試料における各結晶質相のX線回折強度を参照強度として測定するステップと、
被定量試料における各結晶質相のX線回折強度を定量強度として測定するステップと、
各結晶質相の定量強度を各結晶質相の参照強度で除算し、各結晶質相の除算値に前記参照試料における各結晶質相の含有率を乗算した値を各結晶質相の指標値として算出するステップと、
各結晶質相の指標値の比をもって前記被定量試料における各結晶質相の含有率の比とする、又は、各結晶質相の指標値を全結晶質相の指標値の和で除算した値を前記被定量試料における各結晶質相の含有率として一度に算出するステップと、
を含むことを特徴とするX線回折を用いた結晶相の定量方法。
A method for quantifying a crystalline phase using X-ray diffraction that measures the content of a plurality of crystalline phases in a sample to be quantified using an X-ray diffraction method,
Measuring the X-ray diffraction intensity of each crystalline phase in a reference sample having a known content of a plurality of crystalline phases as a reference intensity;
Measuring the X-ray diffraction intensity of each crystalline phase in the sample to be quantified as a quantitative intensity;
The index value of each crystalline phase is obtained by dividing the quantitative strength of each crystalline phase by the reference strength of each crystalline phase and multiplying the divided value of each crystalline phase by the content of each crystalline phase in the reference sample. As a step of calculating as
The ratio of the index values of each crystalline phase is the ratio of the content of each crystalline phase in the sample to be quantified, or the value obtained by dividing the index value of each crystalline phase by the sum of the index values of all crystalline phases Calculating at a time as the content of each crystalline phase in the sample to be quantified,
A method for quantifying a crystal phase using X-ray diffraction, which comprises:
X線回折法を利用して被定量試料中における複数の結晶質相の含有率を測定するX線回折を用いた結晶相の定量方法であって、
複数の結晶質相の含有率が既知である参照試料における各結晶質相のX線回折強度を参照強度として測定するステップと、
被定量試料における各結晶質相のX線回折強度を定量強度として測定するステップと、
結晶質相を任意に一つ、基準結晶質相として選択し、被定量試料と参照試料のそれぞれにおいて、各結晶質相の定量強度の基準結晶質相の定量強度に対する比をその結晶質相の相対強度として求め、各結晶質相につき、被定量試料における相対強度を参照試料における相対強度で除算したものに前記参照試料における各結晶質相の基準結晶質相に対する含有率の比を乗算した値を被定量試料における各結晶質相の基準結晶質相に対する含有率の比として算出するステップと、
を含むことを特徴とするX線回折を用いた結晶相の定量方法。
A method for quantifying a crystalline phase using X-ray diffraction that measures the content of a plurality of crystalline phases in a sample to be quantified using an X-ray diffraction method,
Measuring the X-ray diffraction intensity of each crystalline phase in a reference sample having a known content of a plurality of crystalline phases as a reference intensity;
Measuring the X-ray diffraction intensity of each crystalline phase in the sample to be quantified as a quantitative intensity;
Arbitrarily select one crystalline phase as the standard crystalline phase, and in each of the sample to be quantified and the reference sample, the ratio of the quantitative strength of each crystalline phase to the quantitative strength of the standard crystalline phase Obtained as relative strength, and for each crystalline phase, the value obtained by dividing the relative strength in the sample to be quantified by the relative strength in the reference sample multiplied by the ratio of the content ratio of each crystalline phase in the reference sample to the reference crystalline phase Calculating the ratio of the content of each crystalline phase to the reference crystalline phase in the sample to be quantified;
A method for quantifying a crystal phase using X-ray diffraction, which comprises:
各結晶質相の参照強度を理論計算によって算出することを特徴とする請求項1又は2に記載のX線回折を用いた結晶相の定量方法。   3. The method for quantifying a crystalline phase using X-ray diffraction according to claim 1, wherein the reference intensity of each crystalline phase is calculated by theoretical calculation. 1つ以上の結晶質相について、複数の異なる面指数によるX線回折の定量強度と参照強度とを測定し、それぞれの面指数において、定量強度を参照強度で除算した値を求め、次に、各面指数における除算値の平均値を求め、次に、これら平均値に参照試料における各結晶質相の含有率を乗算した値を該結晶質相の指標値として算出することを特徴とする請求項1又は3に記載のX線回折を用いた結晶相の定量方法。   For one or more crystalline phases, measure the quantitative intensity and the reference intensity of X-ray diffraction with a plurality of different plane indices, and determine the value obtained by dividing the quantitative intensity by the reference intensity in each plane index; An average value of division values in each plane index is obtained, and then a value obtained by multiplying the average value by the content of each crystalline phase in the reference sample is calculated as an index value of the crystalline phase. Item 4. A method for quantifying a crystal phase using X-ray diffraction according to Item 1 or 3.
JP2011285100A 2011-12-27 2011-12-27 Crystal phase quantitative method using x-ray diffraction Pending JP2013134169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285100A JP2013134169A (en) 2011-12-27 2011-12-27 Crystal phase quantitative method using x-ray diffraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285100A JP2013134169A (en) 2011-12-27 2011-12-27 Crystal phase quantitative method using x-ray diffraction

Publications (1)

Publication Number Publication Date
JP2013134169A true JP2013134169A (en) 2013-07-08

Family

ID=48910956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285100A Pending JP2013134169A (en) 2011-12-27 2011-12-27 Crystal phase quantitative method using x-ray diffraction

Country Status (1)

Country Link
JP (1) JP2013134169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149913A1 (en) * 2016-02-29 2017-09-08 株式会社リガク Crystal phase quantitative analysis device, crystal phase quantitative analysis method, and crystal phase quantitative analysis program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150845A (en) * 1982-03-04 1983-09-07 Kawatetsu Kousen Kogyo Kk Method of quantitative analysis of multi-element alloy plating layer by x-ray measurement
JPS6058537A (en) * 1983-09-10 1985-04-04 Sumitomo Metal Ind Ltd Method for determining quantity of plating for plated fe-zn alloy steel plate
JPH0712760A (en) * 1993-06-22 1995-01-17 Mitsubishi Materials Corp Determination method for mineral
JP2002039971A (en) * 2000-07-19 2002-02-06 Tosoh Corp Simple method for determining zirconia crystal phase ratio by x-ray diffraction pattern
EP1260812A1 (en) * 2001-05-25 2002-11-27 Lafarge Process and apparatus for the x-ray diffraction characterization of a material with amorphous phase
JP2006292551A (en) * 2005-04-11 2006-10-26 National Institute For Materials Science Titanium oxide analyzing method and titanium oxide analyzer carrying out it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150845A (en) * 1982-03-04 1983-09-07 Kawatetsu Kousen Kogyo Kk Method of quantitative analysis of multi-element alloy plating layer by x-ray measurement
JPS6058537A (en) * 1983-09-10 1985-04-04 Sumitomo Metal Ind Ltd Method for determining quantity of plating for plated fe-zn alloy steel plate
JPH0712760A (en) * 1993-06-22 1995-01-17 Mitsubishi Materials Corp Determination method for mineral
JP2002039971A (en) * 2000-07-19 2002-02-06 Tosoh Corp Simple method for determining zirconia crystal phase ratio by x-ray diffraction pattern
EP1260812A1 (en) * 2001-05-25 2002-11-27 Lafarge Process and apparatus for the x-ray diffraction characterization of a material with amorphous phase
JP2006292551A (en) * 2005-04-11 2006-10-26 National Institute For Materials Science Titanium oxide analyzing method and titanium oxide analyzer carrying out it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149913A1 (en) * 2016-02-29 2017-09-08 株式会社リガク Crystal phase quantitative analysis device, crystal phase quantitative analysis method, and crystal phase quantitative analysis program
JP6231726B1 (en) * 2016-02-29 2017-11-15 株式会社リガク Crystal phase quantitative analysis apparatus, crystal phase quantitative analysis method, and crystal phase quantitative analysis program

Similar Documents

Publication Publication Date Title
Donovan et al. A new EPMA method for fast trace element analysis in simple matrices
Ke et al. Transitions of B c→ ψ (1 S, 2 S) and the modified harmonic oscillator wave function in the light front quark model
Hofmann et al. AquaEnv: An Aqua tic Acid–Base Modelling Env ironment in R
US20200173938A1 (en) Quantitative phase analysis device, quantitative phase analysis method, and non-transitory computer-readable storage medium storing quantitative phase analysis program
Juhás et al. PDFgetN3: atomic pair distribution functions from neutron powder diffraction data using ad hoc corrections
WO2003003002A1 (en) Improved mixture concentration control in manufacturing processes
JP6231726B1 (en) Crystal phase quantitative analysis apparatus, crystal phase quantitative analysis method, and crystal phase quantitative analysis program
JP2013524197A (en) Method for determining the properties of scattered colored pigments.
Vyverberg et al. Quantifying detection limits and uncertainty in X-ray diffraction mineralogical assessments of biogenic carbonates
Dmitrienko et al. Reliable structural data from Rietveld refinements via restraint consistency
JP2016166866A (en) Quantitative analysis method of multicomponent system mixture cement, and manufacture management system of multicomponent system mixture cement
JP2013134169A (en) Crystal phase quantitative method using x-ray diffraction
Dey et al. Viscometric investigation of binary, ternary and quaternary liquid mixtures: Comparative evaluation of correlative and predictive models
Dahlberg et al. Fractional strain-gradient plasticity
JP6845405B2 (en) Analytical equipment, analysis method and analysis program
CN112041670A (en) Quantitative analysis device, analysis method, and analysis program for amorphous phase
Mackay et al. Steady state errors and risk of a QC strategy
Ladshaw et al. A generalized procedure for the prediction of multicomponent adsorption equilibria
WO2018221718A1 (en) Best solution calculation method and dominant solution calculation method for calculation parameter in powder diffraction pattern, and program thereof
RU2477682C1 (en) Method of making cellular concrete mix
Bansal et al. Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements
CN113748333A (en) Fluorescent X-ray analyzer
Lee Uncertainty evaluation in reference material characterization by double isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS)
JP2004184123A (en) Fluorometric x-ray analyzing method
CN109765251A (en) The detection method of undefined structure content in mixed crystal sample

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908