JP2002039971A - Simple method for determining zirconia crystal phase ratio by x-ray diffraction pattern - Google Patents

Simple method for determining zirconia crystal phase ratio by x-ray diffraction pattern

Info

Publication number
JP2002039971A
JP2002039971A JP2000223869A JP2000223869A JP2002039971A JP 2002039971 A JP2002039971 A JP 2002039971A JP 2000223869 A JP2000223869 A JP 2000223869A JP 2000223869 A JP2000223869 A JP 2000223869A JP 2002039971 A JP2002039971 A JP 2002039971A
Authority
JP
Japan
Prior art keywords
crystal
diffraction pattern
tetragonal
monoclinic
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000223869A
Other languages
Japanese (ja)
Inventor
Masanao Tounan
雅尚 東南
Kunikazu Kamioka
邦和 神岡
Senji Kasahara
泉司 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2000223869A priority Critical patent/JP2002039971A/en
Publication of JP2002039971A publication Critical patent/JP2002039971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for quickly and highly accurately determine ratios of crystal phases in a zirconia crystal. SOLUTION: According to this simple method for determining the ratio of each of monoclinic, tetragonal and cubic crystal phases in the zirconia crystal, an actual measurement X-ray diffraction pattern of the crystal to be determined is simulated with the use of an X-ray diffraction pattern of each of monoclinic, tetragonal and cubic crystals preliminarily measured to be a standard, and the ratio is calculated from the obtained parameter ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はジルコニア結晶中の
各結晶相割合をX線回折パターンにより迅速かつ高精度
に定量する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quickly and accurately determining the proportion of each crystal phase in a zirconia crystal by using an X-ray diffraction pattern.

【0002】[0002]

【従来の技術】ジルコニアセラミックスは高破壊靭性、
高強度、低熱伝導率、良耐熱衝撃性、耐食性、耐薬品
性、高温伝導性などの優れた物理的、化学的、機械的特
性を有しているため様々な構造材料として使用されてい
る。
2. Description of the Related Art Zirconia ceramics have high fracture toughness,
Because of its excellent physical, chemical, and mechanical properties such as high strength, low thermal conductivity, good thermal shock resistance, corrosion resistance, chemical resistance, and high-temperature conductivity, it is used as various structural materials.

【0003】これらの特性を左右する要因のひとつに、
結晶構造がある。純粋なジルコニアは温度により安定化
する結晶構造が決まっており、ジルコニアセラミックス
やその原料粉末には、酸化イットリウムをはじめ様々な
結晶安定化剤が添加され、目的とする特性が使用温度で
発揮できる結晶構造に安定化されている。従って、製品
管理及び新たな機能付加あるいは従来の特性向上のため
の開発検討において、原料粉及びジルコニアセラミック
スの結晶相割合を迅速かつ高精度に分析する必要があ
る。
One of the factors affecting these characteristics is
There is a crystal structure. Pure zirconia has a crystal structure that is stabilized by temperature, and zirconia ceramics and its raw material powders are mixed with various crystal stabilizers such as yttrium oxide to provide the desired properties at the operating temperature. The structure is stabilized. Therefore, it is necessary to rapidly and accurately analyze the raw material powder and the crystal phase ratio of zirconia ceramics in product management and development studies for adding new functions or improving conventional characteristics.

【0004】ジルコニアは一般に単斜晶、正方晶、立方
晶の3つの結晶相が安定で、これらの結晶情報はX線回
折パターンに反映される。現在X線回折パターンを使っ
てジルコニアの結晶相割合を定量する方法は2つある。
[0004] Zirconia generally has three stable crystal phases, monoclinic, tetragonal, and cubic, and these crystal information is reflected in the X-ray diffraction pattern. At present, there are two methods for quantifying the crystalline phase ratio of zirconia using X-ray diffraction patterns.

【0005】1つは、各結晶相に特徴的な回折ピークの
強度の比率から求める方法で非常に迅速な方法である。
[0005] One is a very quick method which is obtained from the ratio of the intensity of the diffraction peak characteristic of each crystal phase.

【0006】しかしこの方法では、正方晶と立方晶の回
折パターンが分離できず、単斜晶相の割合を求めること
は可能であるが正方晶相と立方晶相の割合を求めること
ができなという欠点がある。
However, in this method, the diffraction patterns of tetragonal and cubic cannot be separated, and the ratio of the monoclinic phase can be determined, but the ratio of the tetragonal and cubic phases cannot be determined. There is a disadvantage that.

【0007】2つめの方法として、X線回折パターンを
結晶学理論にもとづいてシミュレーションするリートベ
ルト解析法がある。この方法によれば、単斜晶、正方
晶、立方晶の各結晶相の割合を高精度に求めることがで
きる。
As a second method, there is a Rietveld analysis method for simulating an X-ray diffraction pattern based on crystallographic theory. According to this method, the ratio of each of the monoclinic, tetragonal, and cubic crystal phases can be determined with high accuracy.

【0008】しかし、このリートベルト解析法は、S/
Nの良好な高精度のX線回折パターンが要求されるた
め、1つの試料についての測定時間が約10時間と非常に
長くかかり効率が悪いという問題がある。また、シミュ
レーションには結晶学の高度な専門知識が要求されるた
め、シミュレーションできる人が非常に限定されるとい
う問題もある。さらに、シミュレーション自体にも時間
がかかるという問題もある。
However, this Rietveld analysis method uses S /
Since a high-precision X-ray diffraction pattern with good N is required, there is a problem that the measurement time for one sample is very long, about 10 hours, and the efficiency is low. In addition, the simulation requires a high degree of specialized knowledge of crystallography, so that there is a problem that the number of people who can perform the simulation is very limited. Further, there is a problem that the simulation itself takes time.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は上述し
た課題を解決し、ジルコニア結晶中の結晶相の割合を迅
速かつ高精度に定量する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a method for quickly and accurately determining the ratio of the crystal phase in zirconia crystals.

【0010】[0010]

【課題を解決するための手段】本発明者等は上記課題を
解決すべく鋭意検討を重ねた結果、ジルコニア結晶中の
単斜晶、正方晶、立方晶の各結晶相割合を、あらかじめ
測定した標準となる単斜晶、正方晶、立方晶の各結晶の
X線回折パターンを用いて定量対象となる結晶の実測X
線回折パターンにシミュレーションし、得られたパラメ
ータ比率を計算することで、簡便かつ高精度にジルコニ
ア結晶中の各結晶相割合が得られることを見出し本発明
を完成させるに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the proportion of each of the monoclinic, tetragonal, and cubic crystal phases in the zirconia crystal was measured in advance. Actual measurement of the crystal to be quantified using the X-ray diffraction pattern of each of the standard monoclinic, tetragonal, and cubic crystals
By simulating a line diffraction pattern and calculating the obtained parameter ratios, it was found that the respective crystal phase ratios in the zirconia crystal could be obtained simply and with high accuracy, and the present invention was completed.

【0011】詳しくは、X線回折パターンからジルコニ
ア結晶中の結晶相割合を定量する方法において、数式6
で示される3つの標準結晶相の各X線回折パタ−ンの同
一の回折位置におけるX線強度の線形結合で与えられる
合成X線強度と対象となる結晶のX線回折パターンの対
応する回折位置での実測X線強度との差を最小にするシ
ミュレーションで、数式7で示される残さ2乗和が最小
となるように各パラメータa、b、cを求め、ジルコニ
ア結晶中の各結晶相割合を定量する方法即ち重回帰分析
法に関し、さらに、各結晶相割合を、数式8〜10で決
定することに関する。
More specifically, in the method for determining the crystal phase ratio in the zirconia crystal from the X-ray diffraction pattern,
And the corresponding diffraction positions of the X-ray diffraction pattern of the target crystal and the combined X-ray intensity given by the linear combination of the X-ray intensities at the same diffraction position of each of the X-ray diffraction patterns of the three standard crystal phases In the simulation that minimizes the difference from the measured X-ray intensity in the above, parameters a, b, and c are determined so as to minimize the residual sum of squares shown in Expression 7, and the respective crystal phase ratios in the zirconia crystal are determined. The present invention relates to a method of quantification, that is, a multiple regression analysis method, and further relates to determining each crystal phase ratio by Expressions 8 to 10.

【0012】[0012]

【数6】 (Equation 6)

【0013】a,b,c:パラメータ 2θ:X線回折パターンにおける測定回折角度(°) I(合成(2θ)) :X線回折パターンの2θにおける合成
X線強度 I(単斜晶(2θ)):標準単斜晶結晶のX線回折パター
ンの2θにおけるX線強度 I(正方晶(2θ)):標準正方晶結晶のX線回折パタ
ーンの2θにおけるX線強度 I(立方晶(2θ)):標準立方晶結晶のX線回折パタ
ーンの2θにおけるX線強度
A, b, c: parameters 2θ: measured diffraction angle (°) in X-ray diffraction pattern I (synthetic (2θ)): synthetic X-ray intensity at 2θ of X-ray diffraction pattern I (monoclinic (2θ) ): X-ray intensity at 2θ of X-ray diffraction pattern of standard monoclinic crystal I (tetragonal (2θ)): X-ray intensity at 2θ of X-ray diffraction pattern of standard tetragonal crystal I (cubic (2θ)) : X-ray intensity at 2θ of X-ray diffraction pattern of standard cubic crystal

【0014】[0014]

【数7】 (Equation 7)

【0015】I(対象結晶(2θ)):対象結晶のX線
回折パターンの2θにおけるX線強度 但し:2θ=Start+k×Step (k=0,1,2・・・n-
1) Start:測定X線回折パターンの最小2θ k:測定X線回折パターンの各X線強度の番号を2θ=S
tartを0として低角度から高角度に数えたときの番号 n:測定X線回折パターンの全データ点数 Step:測定X線回折パターンの測定刻み角度
I (target crystal (2θ)): X-ray intensity at 2θ of the X-ray diffraction pattern of the target crystal where 2θ = Start + k × Step (k = 0,1,2... N−
1) Start: Minimum 2θ of measured X-ray diffraction pattern k: Number of each X-ray intensity of measured X-ray diffraction pattern 2θ = S
Number when counting from low angle to high angle with tart as 0 n: Total number of data points of measured X-ray diffraction pattern Step: Measurement step angle of measured X-ray diffraction pattern

【0016】[0016]

【数8】 (Equation 8)

【0017】W1(単斜晶):標準単斜晶結晶の単斜晶
相の割合(%) W2(単斜晶):標準正方晶結晶の単斜晶相の割合
(%) W3(単斜晶):標準立方晶結晶の単斜晶相の割合
(%)
W1 (monoclinic): ratio of monoclinic phase of standard monoclinic crystal (%) W2 (monoclinic): ratio of monoclinic phase of standard tetragonal crystal (%) W3 (monoclinic) ): Ratio of monoclinic phase of standard cubic crystal (%)

【0018】[0018]

【数9】 (Equation 9)

【0019】W1(正方晶):標準単斜晶結晶の正方晶
相の割合(%) W2(正方晶):標準正方晶結晶の正方晶相の割合
(%) W3(正方晶):標準立方晶結晶の正方晶相の割合
(%)
W1 (tetragonal): ratio of tetragonal phase of standard monoclinic crystal (%) W2 (tetragonal): ratio of tetragonal phase of standard tetragonal crystal (%) W3 (tetragonal): standard cubic Of tetragonal phase of polycrystalline (%)

【0020】[0020]

【数10】 (Equation 10)

【0021】W1(立方晶):標準単斜晶結晶の立方晶
相の割合(%) W2(立方晶):標準正方晶結晶の立方晶相の割合
(%) W3(立方晶):標準立方晶結晶の立方晶相の割合
(%) 以下、本発明を詳細に説明する。
W1 (cubic): ratio of cubic phase of standard monoclinic crystal (%) W2 (cubic): ratio of cubic phase of standard tetragonal crystal (%) W3 (cubic): standard cubic The present invention will be described in detail below.

【0022】本発明の方法においてその対象となる試料
は主成分としてジルコニア結晶が含まれていれば特に限
定されるものではなく、結晶安定化剤として酸化イット
リウムや酸化カルシウム、酸化セリウム等が加えられた
各種部分安定化ジルコニアにも適用できる。また、対象
試料の形態はX線回折パターン測定ができる形態であれ
ば特に限定されるものではなく、粉末状態でも焼結状態
であってもよい。
The sample to be treated in the method of the present invention is not particularly limited as long as it contains zirconia crystal as a main component, and yttrium oxide, calcium oxide, cerium oxide or the like is added as a crystal stabilizer. It can also be applied to various partially stabilized zirconia. The form of the target sample is not particularly limited as long as it can perform X-ray diffraction pattern measurement, and may be in a powder state or a sintered state.

【0023】標準試料として使用する単斜晶、正方晶、
立方晶の結晶試料は各結晶相の割合が求まっており、か
つ各標準試料間で、結晶相割合の比が等しくなければ特
に限定されないが、それぞれ単一の結晶相からなるも
の、もしくは対象の結晶相割合が90%以上のものが望ま
しい。
Monoclinic, tetragonal,
The ratio of each crystal phase is determined for the cubic crystal sample, and there is no particular limitation as long as the ratio of the crystal phase ratio is not equal between the standard samples. Those having a crystal phase ratio of 90% or more are desirable.

【0024】また、本発明の各結晶相割合とは下記式
(α)、(β)、(γ)で定義されるものである。
The respective crystal phase ratios of the present invention are defined by the following formulas (α), (β), and (γ).

【0025】 単斜晶相=100×(Wm)/(Wm+Wt+Wc)・・・・(α) 正方晶相=100×(Wt)/(Wm+Wt+Wc)・・・・(β) 立方晶相=100×(Wc)/(Wm+Wt+Wc)・・・・(γ) (式中のWm、Wt、Wcはそれぞれ試料中の単斜晶、正方
晶、立方晶の重量分率である。) 以下本発明の具体的態様を示すが、本発明はこれらに限
定されるものではない。
Monoclinic phase = 100 × (Wm) / (Wm + Wt + Wc) (α) Tetragonal phase = 100 × (Wt) / (Wm + Wt + Wc) β) Cubic phase = 100 × (Wc) / (Wm + Wt + Wc) (γ) (Wm, Wt, and Wc in the formula are monoclinic, tetragonal, and cubic, respectively, in the sample.) Hereinafter, specific embodiments of the present invention will be described, but the present invention is not limited thereto.

【0026】1)X線回折パターンの測定 標準となる単斜晶、正方晶、立方晶の結晶相からなる各
試料及び、定量の対象となる結晶試料のX線回折パター
ンを測定する。X線回折パターンの測定装置は通常のX
線回折装置であれば特に限定されないが、ステップスキ
ャンできるものが望ましい。また、使用するX線回折パ
ターンの領域も特に限定されないが2θが20°から90°
の範囲が望ましい。さらに測定刻み及び、各測定点にお
ける測定時間も特に限定されないが、それぞれ0.04°か
ら1°及び1秒から4秒程度が望ましい。
1) Measurement of X-ray Diffraction Pattern The X-ray diffraction patterns of each of the standard monoclinic, tetragonal, and cubic crystal phases and the crystal sample to be quantified are measured. An X-ray diffraction pattern measuring device is a normal X-ray diffraction pattern.
There is no particular limitation as long as it is a line diffraction apparatus, but an apparatus capable of step scanning is desirable. The region of the X-ray diffraction pattern to be used is not particularly limited, but 2θ is from 20 ° to 90 °.
Is desirable. Further, the measurement interval and the measurement time at each measurement point are not particularly limited, but are preferably about 0.04 ° to 1 ° and about 1 second to 4 seconds, respectively.

【0027】2)回折パターンのデジタル化 標準結晶試料及び対象結晶試料のX線回折パターンを測
定2θと測定X線強度を対にしたデータ点にまとめる。
データ点数は測定2θの操作範囲と2θの刻みで決定され
る。
2) Digitization of Diffraction Patterns The X-ray diffraction patterns of the standard crystal sample and the target crystal sample are compiled into data points in which the measured 2θ and the measured X-ray intensity are paired.
The number of data points is determined by the operation range of measurement 2θ and the increment of 2θ.

【0028】例えば測定2θ範囲が20°から90°で刻み
が0.04°の場合データ点数は1750点となる。
For example, when the measurement 2θ range is from 20 ° to 90 ° and the interval is 0.04 °, the number of data points is 1750.

【0029】本発明のシミュレーションで使用するX線
回折パターンのデータは測定した回折パターンのすべて
あるいは一部の領域を複数抽出して使用してもよい。
The data of the X-ray diffraction pattern used in the simulation of the present invention may be used by extracting a plurality of all or a part of the measured diffraction pattern.

【0030】さらに、シミュレーションに使用するデー
タの前処理は特に限定されないが、ある特定領域の最大
強度と最低強度の幅を一定とする方法や、すべての領域
において最大強度と最低強度の幅を一定にする方法が望
ましい。ここでいう特定領域とはシミュレーションに使
用する回折パターンで1つ以上の回折ピークが含まれる
領域である。
Further, the pre-processing of the data used for the simulation is not particularly limited, but a method of making the width of the maximum intensity and the minimum intensity constant in a specific region, and a method of keeping the width of the maximum intensity and the minimum intensity constant in all the regions. Is desirable. Here, the specific region is a region including one or more diffraction peaks in a diffraction pattern used for the simulation.

【0031】3)対象結晶のX線強度と合成X線強度と
の残さ2乗和の最小化 本操作が本発明のシミュレーション操作にあたる。
3) Minimization of the residual sum of squares of the X-ray intensity of the target crystal and the synthetic X-ray intensity This operation corresponds to the simulation operation of the present invention.

【0032】対象結晶と標準試料について2)で得られ
た各2θのX線強度を先の数式7に代入して対象結晶の
X線回折パターンと合成X線回折パターンの各X線強度
との残さ2乗和を求め、この値が最小となる前記した数
式6のパラメータa、b,cを求める。
By substituting the X-ray intensity of each 2θ obtained in 2) for the target crystal and the standard sample into the above equation 7, the X-ray diffraction pattern of the target crystal and each X-ray intensity of the synthetic X-ray diffraction pattern are calculated. The residual sum of squares is obtained, and the parameters a, b, and c of the above-described Expression 6 that minimize this value are obtained.

【0033】本シミュレーション計算は統計解析手法の
1つである重回帰分析法を使用する。
This simulation calculation is based on the statistical analysis method.
One method is multiple regression analysis.

【0034】即ち、単斜晶、正方晶、立方晶の各標準結
晶試料のX線回折パターンをそれぞれ、説明変数1、説
明変数2、説明変数3とし、対象となる結晶のX線回折パ
ターンを目的変数として、それぞれ対応するX線強度を
各変数の値として、重回帰分析の計算を行えば、説明変
数1,2,3の回帰係数として前記のパラメータのa,b,c
の値が求まる。
That is, the X-ray diffraction patterns of the monoclinic, tetragonal, and cubic standard crystal samples are defined as explanatory variable 1, explanatory variable 2, and explanatory variable 3, respectively. By performing multiple regression analysis calculations using the corresponding X-ray intensity as the objective variable and the value of each variable, the regression coefficients of the explanatory variables 1, 2, and 3 can be used as the regression coefficients of the parameters a, b, and c.
Is obtained.

【0035】4)結晶相割合の算出 3)で得られたa,b,cの値を前記の数式8、9、1
0に代入すれば対象結晶の各結晶相割合が求まる。ここ
で、使用した各標準結晶試料が単一結晶の場合、数式
8,9,10は非常に簡単な式となり、下記数式11,
12,13で示されるように単にパラメータa,b,c
の比率となる。
4) Calculation of Crystalline Phase Ratio The values of a, b, and c obtained in 3) are calculated by the above-mentioned equations (8), (9) and (1).
By substituting 0, each crystal phase ratio of the target crystal can be obtained. Here, when each standard crystal sample used is a single crystal, Expressions 8, 9, and 10 are very simple expressions, and Expressions 11, 9 and
The parameters a, b, and c are simply represented as shown by 12 and 13.
Is the ratio of

【0036】[0036]

【数11】 [Equation 11]

【0037】[0037]

【数12】 (Equation 12)

【0038】[0038]

【数13】 (Equation 13)

【0039】以上のようにあらかじめ測定した標準試料
のX線回折パターンを用いて、対象となる結晶のX線回
折パターンをシミュレーションすることで、単斜晶、正
方晶、立方晶の各結晶相割合を簡便かつ精度よく求める
ことができる。
By simulating the X-ray diffraction pattern of the target crystal using the X-ray diffraction pattern of the standard sample measured in advance as described above, the monoclinic, tetragonal, and cubic crystal phase ratios can be calculated. Can be obtained simply and accurately.

【0040】[0040]

【実施例】以下本発明を実施例にて更に詳細に説明する
が本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0041】尚、以下の実施例では単斜晶、正方晶、立
方晶の単一結晶からなる標準試料としてY2O3含有量がそ
れぞれ0、4、8mol%のZrO2粉末を使用した。また未
知試料としては、未知試料9を除きあらかじめ結晶相割
合が判明しているY2O3含有の部分安定化ZrO2粉末を任
意の割合で混合したもの使用した。
In the following examples, ZrO 2 powders having a Y 2 O 3 content of 0, 4, and 8 mol% were used as standard samples comprising monoclinic, tetragonal, and cubic single crystals, respectively. Except for the unknown sample 9, an unknown sample was used in which a Y 2 O 3 -containing partially stabilized ZrO 2 powder having a known crystal phase ratio was mixed at an arbitrary ratio.

【0042】標準試料及び未知試料の結晶相割合を表1
に示す。X線回折パターンの測定は常法に従って2θが2
0.2~80°の範囲を0.04°の刻みで測定した。従ってデー
タ点数は1496点となる。尚、測定時間は1試料あたり約5
0分を要した。
Table 1 shows the crystal phase ratios of the standard sample and the unknown sample.
Shown in The measurement of the X-ray diffraction pattern is 2θ in accordance with the usual method.
The range from 0.2 to 80 ° was measured in increments of 0.04 °. Therefore, the number of data points is 1496. The measurement time is about 5 per sample.
It took 0 minutes.

【0043】実施例1 1)標準試料及び未知試料のX線回折パターンの測定 表1に示す標準試料及び未知試料1のX線回折パターンを
測定した。
Example 1 1) Measurement of X-ray diffraction patterns of standard sample and unknown sample The X-ray diffraction patterns of the standard sample and unknown sample 1 shown in Table 1 were measured.

【0044】2)回折パターンのデジタル化 標準結晶試料及び対象結晶試料のX線回折パターンを測
定2θとX線強を対にしたデータ点にまとめ、X線強度
の最低強度を0、最高強度を10000として各データ点を規
格化した。
2) Digitization of Diffraction Patterns The X-ray diffraction patterns of the standard crystal sample and the target crystal sample were collected into data points obtained by measuring 2θ and X-ray intensity. Each data point was normalized to 10000.

【0045】規格化後の標準試料と未知試料1の各デー
タを図1,2,3,4に示す。
FIGS. 1, 2, 3, and 4 show the data of the standard sample and the unknown sample 1 after the standardization.

【0046】図2,3から明らかなように正方晶と立方晶
の回折パターンは非常によく似ており、特定の回折角度
2θにおけるX線強度を用いて両者の割合を算出できな
いことがわかる。
As apparent from FIGS. 2 and 3, the diffraction patterns of the tetragonal system and the cubic system are very similar, and a specific diffraction angle is obtained.
It can be seen that the ratio between the two cannot be calculated using the X-ray intensity at 2θ.

【0047】3)対象結晶のX線強度と合成X線強度と
の残さ2乗和の最小化(重回帰分析) 図1、2、3の標準結晶の各データを使用し、合成X線強
度を計算し、対象結晶である図4のデータとの残さ2乗
和が最小になるように先の数式パラメータa、b、cを
決定した。
3) Minimization of the residual sum of squares of the X-ray intensity of the target crystal and the synthetic X-ray intensity (multiple regression analysis) The synthetic X-ray intensity was calculated using the data of the standard crystals shown in FIGS. Were calculated, and the above equation parameters a, b, and c were determined so that the residual sum of squares with the data of FIG. 4 as the target crystal was minimized.

【0048】具体的には、標準試料の単斜晶、正方晶、
立方晶の各X線強度を説明変数、対象結晶のX線強度を
目的変数として重回帰分析して、各パラメータに相当す
る回帰係数を求めた。
Specifically, monoclinic, tetragonal,
A multiple regression analysis was performed using the X-ray intensity of the cubic crystal as an explanatory variable and the X-ray intensity of the target crystal as an objective variable, and a regression coefficient corresponding to each parameter was obtained.

【0049】この重回帰分析計算の場合、説明変数の数
は3つでデータ数は測定点数に相当する1496点であっ
た。重回帰分析計算からa=0.064、b=0.42、c=0.59
が得られた。
In the case of this multiple regression analysis calculation, the number of explanatory variables was 3, and the number of data was 1496 points corresponding to the number of measurement points. A = 0.064, b = 0.42, c = 0.59 from multiple regression analysis calculations
was gotten.

【0050】4)結晶相割合の算出 3)で得られたa、b、cの値を先の数式11、12、
13に代入して各結晶相が単斜晶=6%、正方晶=39
%、立方晶=55%となった。
4) Calculation of Crystalline Phase Ratio The values of a, b, and c obtained in 3) are calculated by the above equations (11), (12),
13 and each crystal phase is monoclinic = 6%, tetragonal = 39
%, Cubic = 55%.

【0051】本定量結果と表1に示す混合比率から算出
した結晶相割合はよく一致しおり、本法により各結晶相
割合が良好に求まることがわかる。
The quantitative results and the crystal phase ratios calculated from the mixing ratios shown in Table 1 are in good agreement with each other, and it can be seen that the respective crystal phase ratios can be determined favorably by this method.

【0052】[0052]

【表1】 [Table 1]

【0053】実施例2 実施例1と同様の方法で未知試料2〜8の結晶相割合を
求め、各結晶相について混合割合から算出した結晶相割
合と本発明の方法で得られた結晶相割合の関係を図5,
6,7に示す。単斜晶、正方晶、立方晶の定量値と混合
割合から算出した結晶相割合との相関係数は、それぞれ
0.989、0.998、0.934と高く、良好な相関関係にあり、
本発明の方法により簡便に結晶相割合が定量できること
がわかる。
Example 2 The crystal phase ratios of the unknown samples 2 to 8 were determined in the same manner as in Example 1, and the crystal phase ratios calculated from the mixing ratios for each crystal phase and the crystal phase ratios obtained by the method of the present invention. Figure 5 shows the relationship
6 and 7. The correlation coefficient between the quantitative value of monoclinic, tetragonal, and cubic and the crystal phase ratio calculated from the mixture ratio is
0.989, 0.998, 0.934 are high and in good correlation,
It is understood that the crystal phase ratio can be easily determined by the method of the present invention.

【0054】実施例3 実施例1と同様の方法で未知試料9について結晶相割合
を求め、従来のリートベルト解析法の結果と比較したも
のを表2に示す。
Example 3 The crystal phase ratio of the unknown sample 9 was determined in the same manner as in Example 1, and a comparison with the result of the conventional Rietveld analysis is shown in Table 2.

【0055】[0055]

【表2】 [Table 2]

【0056】本発明の方法による結果は従来のリートベ
ルト解析法の結果とよく一致しており、本発明の方法の
定量値が従来のリートベルト解析法とほぼ同等の正確さ
であることがわかった。
The results obtained by the method of the present invention are in good agreement with the results of the conventional Rietveld analysis method, and the quantitative values of the method of the present invention are found to be almost as accurate as the conventional Rietveld analysis method. Was.

【0057】また、リートベルト解析では測定と解析を
含め15時間かかったが、本発明の方法では測定と定量値
算出まで、わずか1.5時間と従来のリートベルト解析法
の10分の1の時間であり、本発明の方法が非常に迅速簡
便な方法であることがわかった。尚、従来のピーク強度
比を用いる方法では正方晶と立方晶の回折ピークが重な
るので各結晶相割合を求めることはできない。
In the Rietveld analysis, it took 15 hours including measurement and analysis. However, in the method of the present invention, it takes only 1.5 hours to measure and calculate a quantitative value, which is 1/10 of the conventional Rietveld analysis method. It was found that the method of the present invention was a very quick and simple method. In the conventional method using the peak intensity ratio, since the diffraction peaks of the tetragonal system and the cubic system overlap, it is not possible to determine the ratio of each crystal phase.

【0058】[0058]

【発明の効果】以上詳しく説明したように本発明によれ
ば標準となる単斜晶、正方晶、立方晶の各結晶のX線回
折パターンを用いて定量対象となる結晶の実測X線回折
パターンをシミュレーションし、得られたパラメータ比
率を計算することで、ジルコニア中の3つの結晶相を迅
速かつ高精度に定量することができる。
As described above in detail, according to the present invention, the measured X-ray diffraction patterns of the crystals to be quantified using the standard X-ray diffraction patterns of monoclinic, tetragonal and cubic crystals. Is calculated, and the three parameter phases in zirconia can be quickly and accurately determined by calculating the obtained parameter ratios.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の結果を示す。標準試料の単斜晶のX線
回折パターンをデジタル化後規格化したグラフで、X軸
が回折角度、Y軸が回折X線強度である。
FIG. 1 shows the results of Example 1. In a graph obtained by digitizing the X-ray diffraction pattern of a monoclinic crystal of a standard sample and digitizing the result, the X axis indicates the diffraction angle, and the Y axis indicates the X-ray diffraction intensity.

【図2】実施例1の結果を示す。標準試料の正方晶のX
線回折パターンをデジタル化後規格化したグラフで、X
軸が回折角度、Y軸が回折X線強度である。
FIG. 2 shows the results of Example 1. Standard sample tetragonal X
X is a graph obtained by digitizing the X-ray diffraction pattern and standardizing it.
The axis is the diffraction angle, and the Y axis is the diffracted X-ray intensity.

【図3】実施例1の結果を示す。標準試料の立方晶のX
線回折パターンをデジタル化後規格化したグラフで、X
軸が回折角度、Y軸が回折X線強度である。
FIG. 3 shows the results of Example 1. Cubic X of the standard sample
X is a graph obtained by digitizing the X-ray diffraction pattern and standardizing it.
The axis is the diffraction angle, and the Y axis is the diffracted X-ray intensity.

【図4】実施例1の結果を示す。未知試料1のX線回折パ
ターンをデジタル化後規格化したグラフで、X軸が回折
角度、Y軸が回折X線強度である。
FIG. 4 shows the results of Example 1. In the graph obtained by digitizing the X-ray diffraction pattern of the unknown sample 1, the X-axis is the diffraction angle, and the Y-axis is the diffraction X-ray intensity.

【図5】実施例2の結果を示す。X軸が混合割合から算
出した単斜晶相の割合で、Y軸が本発明の方法で定量し
た単斜晶相の結晶相割合を示したものである。
FIG. 5 shows the results of Example 2. The X axis shows the ratio of the monoclinic phase calculated from the mixing ratio, and the Y axis shows the crystal phase ratio of the monoclinic phase quantified by the method of the present invention.

【図6】実施例2の結果を示す。X軸が混合割合から算
出した正方晶相の割合で、Y軸が本発明の方法で定量し
た正方晶相の結晶相割合を示したものである。
FIG. 6 shows the results of Example 2. The X-axis shows the ratio of the tetragonal phase calculated from the mixing ratio, and the Y-axis shows the crystal phase ratio of the tetragonal phase determined by the method of the present invention.

【図7】実施例2の結果を示す。X軸が混合割合から算
出した立方晶相の割合で、Y軸が本発明の方法で定量し
た立方晶相の結晶相割合を示したものである。
FIG. 7 shows the results of Example 2. The X-axis shows the ratio of the cubic phase calculated from the mixing ratio, and the Y-axis shows the ratio of the cubic phase determined by the method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ジルコニア結晶中の単斜晶、正方晶、立方
晶の各結晶相割合を定量する方法において、あらかじめ
測定した標準となる単斜晶、正方晶、立方晶の各結晶の
X線回折パターンを用いて定量対象となる結晶の実測X
線回折パターンをシミュレーションし、得られたパラメ
ータ比率から計算することを特徴とするジルコニア結晶
中の各結晶相割合の簡易定量法。
1. A method for quantifying the monoclinic, tetragonal, and cubic crystal phase ratios in zirconia crystal, wherein X-rays of standard monoclinic, tetragonal, and cubic crystals are measured in advance. Actual measurement of crystal to be quantified using diffraction pattern X
A simple method for quantifying the proportion of each crystal phase in a zirconia crystal, characterized by simulating a line diffraction pattern and calculating from a parameter ratio obtained.
【請求項2】シミュレーションが以下の数式1で示され
る3つの標準結晶相の各X線回折パタ−ンの同一の回折
位置におけるX線強度の線形結合で与えられる合成X線
強度と対象となる結晶のX線回折パターンの対応する回
折位置での実測X線強度について、以下の数式2で示さ
れる残さ2乗和が最小となるように各パラメータa、
b、cを求める手法である請求項1記載のジルコニア結
晶中の各結晶相割合の簡易定量法。 【数1】 a,b,c :パラメータ 2θ:X線回折パターンにおける測定回折角度(°) I(合成(2θ)) :X線回折パターンの2θにおける合成
X線強度 I(単斜晶(2θ)):標準単斜晶結晶のX線回折パター
ンの2θにおけるX線強度 I(正方晶(2θ)):標準正方晶結晶のX線回折パタ
ーンの2θにおけるX線強度 I(立方晶(2θ)):標準立方晶結晶のX線回折パタ
ーンの2θにおけるX線強度 【数2】 I(対象結晶(2θ)):対象結晶のX線回折パターン
の2θにおけるX線強度 但し:2θ=Start+k×Step (k=0,1,2・・・n-
1) Start:測定X線回折パターンの最小2θ k:測定X線回折パターンの各X線強度の番号を2θ=S
tartを0として低角度から高角度に数えたときの番号 n:測定X線回折パターンの全データ点数 Step:測定X線回折パターンの測定刻み角度
2. A simulation is performed with a composite X-ray intensity given by a linear combination of X-ray intensities at the same diffraction position of each X-ray diffraction pattern of three standard crystal phases represented by the following formula 1. Regarding the measured X-ray intensity at the corresponding diffraction position of the X-ray diffraction pattern of the crystal, each parameter a, such that the residual sum of squares shown by the following equation 2 is minimized:
The simple method for determining the proportion of each crystal phase in a zirconia crystal according to claim 1, which is a technique for obtaining b and c. (Equation 1) a, b, c: parameters 2θ: measured diffraction angle (°) in X-ray diffraction pattern I (synthetic (2θ)): synthetic X-ray intensity at 2θ of X-ray diffraction pattern I (monoclinic (2θ)): standard X-ray intensity at 2θ of X-ray diffraction pattern of monoclinic crystal I (tetragonal (2θ)): X-ray intensity at 2θ of X-ray diffraction pattern of standard tetragonal crystal I (cubic (2θ)): standard cubic -Ray intensity at 2θ of the X-ray diffraction pattern of the crystalline crystal I (target crystal (2θ)): X-ray intensity at 2θ of the X-ray diffraction pattern of the target crystal where 2θ = Start + k × Step (k = 0,1,2... N−
1) Start: Minimum 2θ of measured X-ray diffraction pattern k: Number of each X-ray intensity of measured X-ray diffraction pattern 2θ = S
Number when counting from low angle to high angle with tart as 0 n: Total number of data points of measured X-ray diffraction pattern Step: Measurement step angle of measured X-ray diffraction pattern
【請求項3】パラメータ比率が請求項2記載のシミュレ
ーションで得られたパラメータa、b、cの値を数式3
〜5に代入して得られる請求項1記載のジルコニア結晶中
の各結晶相割合の簡易定量法 【数3】 W1(単斜晶):標準単斜晶結晶の単斜晶相の割合
(%) W2(単斜晶):標準正方晶結晶の単斜晶相の割合
(%) W3(単斜晶):標準立方晶結晶の単斜晶相の割合
(%) 【数4】 W1(正方晶):標準単斜晶結晶の正方晶相の割合
(%) W2(正方晶):標準正方晶結晶の正方晶相の割合
(%) W3(正方晶):標準立方晶結晶の正方晶相の割合
(%) 【数5】 W1(立方晶):標準単斜晶結晶の立方晶相の割合
(%) W2(立方晶):標準正方晶結晶の立方晶相の割合
(%) W3(立方晶):標準立方晶結晶の立方晶相の割合
(%)
3. The parameter ratio is obtained by calculating the values of the parameters a, b, and c obtained by the simulation according to claim 2.
3. A simplified method for quantitatively determining the proportion of each crystal phase in the zirconia crystal according to claim 1 obtained by substituting the values into W1 (monoclinic): ratio of monoclinic phase of standard monoclinic crystal (%) W2 (monoclinic): ratio of monoclinic phase of standard tetragonal crystal (%) W3 (monoclinic): Ratio of monoclinic phase of standard cubic crystal (%) W1 (tetragonal): ratio of tetragonal phase of standard monoclinic crystal (%) W2 (tetragonal): ratio of tetragonal phase of standard tetragonal crystal (%) W3 (tetragonal): standard cubic crystal Ratio of tetragonal phase (%) W1 (cubic): ratio of cubic phase of standard monoclinic crystal (%) W2 (cubic): ratio of cubic phase of standard tetragonal crystal (%) W3 (cubic): standard cubic crystal Cubic phase ratio (%)
JP2000223869A 2000-07-19 2000-07-19 Simple method for determining zirconia crystal phase ratio by x-ray diffraction pattern Pending JP2002039971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000223869A JP2002039971A (en) 2000-07-19 2000-07-19 Simple method for determining zirconia crystal phase ratio by x-ray diffraction pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000223869A JP2002039971A (en) 2000-07-19 2000-07-19 Simple method for determining zirconia crystal phase ratio by x-ray diffraction pattern

Publications (1)

Publication Number Publication Date
JP2002039971A true JP2002039971A (en) 2002-02-06

Family

ID=18717908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223869A Pending JP2002039971A (en) 2000-07-19 2000-07-19 Simple method for determining zirconia crystal phase ratio by x-ray diffraction pattern

Country Status (1)

Country Link
JP (1) JP2002039971A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004549A (en) * 2001-06-18 2003-01-08 Mitsubishi Heavy Ind Ltd Method of estimating temperature of high-temperature member
JP2013134169A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Crystal phase quantitative method using x-ray diffraction
WO2016075953A1 (en) * 2014-11-12 2016-05-19 三菱重工業株式会社 Temperature estimation method for high-temperature member, metastable tetragonal phase content measurement method, and degradation determination method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004549A (en) * 2001-06-18 2003-01-08 Mitsubishi Heavy Ind Ltd Method of estimating temperature of high-temperature member
JP2013134169A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Crystal phase quantitative method using x-ray diffraction
WO2016075953A1 (en) * 2014-11-12 2016-05-19 三菱重工業株式会社 Temperature estimation method for high-temperature member, metastable tetragonal phase content measurement method, and degradation determination method
JP2016095144A (en) * 2014-11-12 2016-05-26 三菱重工業株式会社 Temperature estimation method on high-temperature member, content measurement method of metastable tetragonal phase and deterioration determination method
CN105793683A (en) * 2014-11-12 2016-07-20 三菱重工业株式会社 Temperature estimation method for high-temperature member, metastable tetragonal phase content measurement method, and degradation determination method

Similar Documents

Publication Publication Date Title
León-Reina et al. Round robin on Rietveld quantitative phase analysis of Portland cements
Szutkowska Fracture resistance behavior of alumina–zirconia composites
JP6755068B2 (en) Quantitative analysis method for multi-component mixed cement and manufacturing control system for multi-component mixed cement
Tang et al. Effect of porosity on the microhardness testing of brittle ceramics: A case study on the system of NiO–ZrO2
Seabaugh et al. Comparison of texture analysis techniques for highly oriented α‐Al2O3
Yang et al. Fast determination of oxide content in cement raw meal using NIR spectroscopy with the SPXY algorithm
CN105486708A (en) Method for XRF analysis of chemical components of sample, and making method of working curve thereof
JP2007271448A (en) Quality estimation method of cement, and quality control method using same
JP2006329961A (en) Method for analyzing concentration distribution of element diffused in concrete
Gong et al. Load dependence of low-load Knoop hardness in ceramics: a modified PSR model
Alves et al. Comparison between different fracture toughness techniques in zirconia dental ceramics
US20220411326A1 (en) Method for quantitatively regulating content of periclase in cement
CN109725138B (en) Method, device and equipment for detecting quality of clinker in production of intelligent cement factory
Spitzer et al. Improved reliability of pH measurements
JP2002039971A (en) Simple method for determining zirconia crystal phase ratio by x-ray diffraction pattern
Adams The measurement of very early hydration reactions of portland cement clinker by a thermoelectric conduction calorimeter
Madsen et al. Quantitative Analysis of High‐Alumina Refractories Using X‐ray Powder Diffraction Data and the Rietveld Method
Chang et al. Detecting the water-soluble chloride distribution of cement paste in a high-precision way
Anderson et al. X-ray diffraction—New eyes on the process
Christensen Time of setting
JP6711060B2 (en) A method for calculating the initial setting time of cement based on electrical conductivity
No et al. Chemical metrology
Zahiri et al. Classification of hardened cement and lime mortar using short-wave infrared spectrometry data
Cuesta-García et al. Combined use of laboratory X-ray diffraction and microtomography in early age cement hydration.
Maharishi et al. The Composition of Graded Dental Zirconias