JP2006292551A - Titanium oxide analyzing method and titanium oxide analyzer carrying out it - Google Patents

Titanium oxide analyzing method and titanium oxide analyzer carrying out it Download PDF

Info

Publication number
JP2006292551A
JP2006292551A JP2005114013A JP2005114013A JP2006292551A JP 2006292551 A JP2006292551 A JP 2006292551A JP 2005114013 A JP2005114013 A JP 2005114013A JP 2005114013 A JP2005114013 A JP 2005114013A JP 2006292551 A JP2006292551 A JP 2006292551A
Authority
JP
Japan
Prior art keywords
ray
diffracted
titanium oxide
rays
distribution image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005114013A
Other languages
Japanese (ja)
Other versions
JP4674352B2 (en
Inventor
Kenji Sakurai
健次 桜井
Tazuko Mizusawa
多鶴子 水沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005114013A priority Critical patent/JP4674352B2/en
Publication of JP2006292551A publication Critical patent/JP2006292551A/en
Application granted granted Critical
Publication of JP4674352B2 publication Critical patent/JP4674352B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for obtaining the mixing ratio distribution image of a titanium oxide sample wherein a anatase type crystal and a rutile type crystal coexist in a non-uniform mixing ratio. <P>SOLUTION: The whole of the region to be measured of the surface of the titanium oxide sample is irradiated with monochromatic incident X-rays and the diffracted X rays from the respective regions of the region to be measured of the surface of the titanium oxide sample are discriminated and detected by a two-dimensional sensitive detector to form an intensity distribution image. The wavelength of the monochromatic incident X rays is changed to acquire the intensity distribution image of the predetermined lattice surface of the anatase type crystal and the predetermined lattice surface of the rutile type crystal and the mixing ratio distribution image converted by the division of them is formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アナターゼ型結晶とルチル型結晶とが混合共存する酸化チタン試料の測定表面にX線を照射し、試料各位置から回折するX線を捕らえ、試料を構成する結晶とその割合を画像として取得し、試料を構成する結晶と混合比を同定することを特徴とする、酸化チタンの分析方法とその方法を実施する酸化チタンの分析装置に関する。   The present invention irradiates the measurement surface of a titanium oxide sample in which anatase type crystals and rutile type crystals coexist, irradiates X-rays, captures X-rays diffracted from each position of the sample, and images the crystals constituting the sample and their ratios. The present invention relates to a method for analyzing titanium oxide and a titanium oxide analyzer for performing the method, characterized in that the crystal and mixing ratio constituting the sample are identified.

酸化チタンは、白色顔料として塗料等に使用されるほか、電子材料、触媒材料、紫外線吸収剤、光触媒等、多くの用途に使用されている。二酸化チタンの結晶型には、アナターゼ、ルチル、ブルッカイトの三形態が知られている。アナターゼ型は、低温で安定で主に光触媒として利用される。ルチル型は、高温で安定で主に塗料、顔料に使用される。酸化チタンの製造技術の制約から、純粋なアナターゼ型結晶のみ、ルチル型結晶のみを得ることは難しく、通常、両者が混在して生成されたままで使用されていることが多い。そして、場合によっては、両者が混合しているほうが、良い結果をもたらす場合があるという報告もある(例えば特許文献1)。何れにしても、酸化チタンを利用するに際しては、アナターゼ型結晶とルチル型結晶の混合状態をできるだけ正確に把握することが必要である。   Titanium oxide is used as a white pigment in paints and the like, and is used in many applications such as electronic materials, catalyst materials, ultraviolet absorbers, and photocatalysts. Three crystal forms of titanium dioxide are known: anatase, rutile, and brookite. The anatase type is stable at low temperatures and is mainly used as a photocatalyst. The rutile type is stable at high temperatures and is mainly used for paints and pigments. It is difficult to obtain only pure anatase-type crystals and only rutile-type crystals due to restrictions on the production technology of titanium oxide, and they are usually used in a state where both are mixed and produced. In some cases, there is a report that mixing both of them may give better results (for example, Patent Document 1). In any case, when using titanium oxide, it is necessary to grasp the mixed state of the anatase type crystal and the rutile type crystal as accurately as possible.

アナターゼ型結晶とルチル型結晶とが混合してなる試料の分析において、それらの混合比を決定するためには、X線回折計を用いて測定した回折X線の強度比を利用する方法がよく用いられている。この方法は、銅の特性X線(Cu−Kα線)を試料に照射することによって、アナターゼ型結晶において最も強い回折X線が得られる(101)面(格子面間隔d=0.352nm、ブラッグ角θ=12.68°)とルチル型結晶の最も強い回折X線が得られる(110)面(格子面間隔d=0.3247nm、ブラッグ角θ=13.73°)について着目し、両者の回折X線強度の比から、混合比既知の標準試料を用いて予め作成された検量線を用いて重量比を算出するものであった(非特許文献1、特許文献2)。   In the analysis of a sample in which anatase type crystals and rutile type crystals are mixed, in order to determine the mixing ratio, a method using the intensity ratio of diffracted X-rays measured using an X-ray diffractometer is often used. It is used. In this method, by irradiating a specimen with copper characteristic X-rays (Cu-Kα rays), the strongest diffracted X-rays are obtained in an anatase crystal (101) plane (lattice spacing d = 0.352 nm, Bragg Paying attention to the (110) plane (lattice spacing d = 0.3247 nm, Bragg angle θ = 13.73 °) at which the strongest diffraction X-ray of the rutile crystal can be obtained. From the ratio of the diffracted X-ray intensity, the weight ratio was calculated using a calibration curve prepared in advance using a standard sample with a known mixing ratio (Non-patent Document 1, Patent Document 2).

しかしながら、この従来のX線による同定方法によって得られる結果は、あくまでもX線が照射されている領域全体の平均情報であり、領域を構成する各部位における真の値を反映していない。そのため、試料を構成する結晶の混合割合と諸特性との関係を理解しようとする場合においては問題があった。
酸化チタンの特性を利用する研究、開発を今後一層進めるためには、先ず、試料を構成する結晶の混合比を正確に知ること、すなわち、構成する結晶の混合比を広い領域についての平均値でなく、広い領域内の各所の値として正確に知ることが重要であり、求められている。
However, the result obtained by this conventional X-ray identification method is only average information of the entire region irradiated with X-rays, and does not reflect the true value in each part constituting the region. Therefore, there is a problem when trying to understand the relationship between the mixing ratio of the crystals constituting the sample and various characteristics.
In order to further advance research and development using the characteristics of titanium oxide in the future, first of all, know the mixing ratio of the crystals composing the sample accurately, that is, the average value of the mixing ratio of the composing crystals in a wide area. However, it is important and required to accurately know the values at various points in a wide area.

特開2004−255332号公報JP 2004-255332 A R.A. Spurr and H. Myers,“Quantitative Analysis of Anatase−Rutile Mixtures with an X−Ray Diffractometer ”, Analytical Chemistry, vol.29, No.5, pp.760−762, 1957.R. A. Spurr and H.M. Myers, “Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer”, Analytical Chemistry, vol. 29, no. 5, pp. 760-762, 1957. 特開2004−143453号公報JP 2004-143453 A

本発明は、このようなニーズに応えようというものである。すなわち、酸化チタン試料を構成する結晶の混合比を全体的にも、また局所的にも正確に、しかも簡単且つ短時間に決定しえる酸化チタンの分析方法を提供することを第一の課題とする。また、その酸化チタン分析方法を実施するための酸化チタン分析装置を提供することを第二の課題とする。   The present invention is intended to meet such needs. That is, the first object is to provide a method for analyzing titanium oxide that can accurately and locally determine the mixing ratio of crystals constituting a titanium oxide sample, both locally and accurately, in a short time. To do. Moreover, it is set as the 2nd subject to provide the titanium oxide analyzer for implementing the titanium oxide analysis method.

第一の課題は、
アナターゼ型結晶とルチル型結晶を不均一に含んでいる混合酸化チタン試料の局所的な混合比の分布画像を得る酸化チタン分析方法において、
チタンのK吸収端の波長より長波長の単色の入射X線で酸化チタン試料表面の被測定領域全体を照射し、
酸化チタン試料で回折されて被測定領域から出射する回折X線の角度発散を角度発散制限手段で制限することにより、被測定領域内の各部位から出射する所定の散乱角(入射X線光軸と回折X線光軸とのなす角、回折角)の回折X線を、それらの部位に対応して一対一に対向して配置された二次元位置敏感型検出器の各検出素子で区別して検出し、
各検出素子で検出した回折X線の強度を各画素値とする二次元の回折X線強度分布画像を形成し記録すること、
入射X線の光軸及び酸化チタン試料及び角度発散制限手段及び二次元位置敏感型検出器を固定したままで、単色の入射X線の波長をチタンのK吸収端の波長より長い波長の範囲内で変えることによってアナターゼ型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とルチル型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像を取得し、
それらの画像の対応する画素の画素値の比をとり、その比の値を各画素値とする、もしくは、さらに所定の換算を行った値を各画素値とすることによって二次元の混合比分布画像を形成し記録することを特徴とする、酸化チタン分析方法によって解決される。
The first challenge is
In a titanium oxide analysis method for obtaining a local mixing ratio distribution image of a mixed titanium oxide sample containing anatase type crystals and rutile type crystals non-uniformly,
Irradiate the entire region to be measured on the surface of the titanium oxide sample with a monochromatic incident X-ray having a wavelength longer than the wavelength of the titanium K absorption edge,
By limiting the angle divergence of the diffracted X-rays diffracted by the titanium oxide sample and emitted from the measurement region by the angle divergence limiting means, a predetermined scattering angle (incident X-ray optical axis) emitted from each part in the measurement region And the X-ray diffracted X-rays, the diffraction angle of the X-ray optical axis is differentiated by each detection element of the two-dimensional position sensitive detector arranged in a one-to-one correspondence corresponding to those parts. Detect
Forming and recording a two-dimensional diffracted X-ray intensity distribution image with the intensity of diffracted X-rays detected by each detecting element as each pixel value;
While the optical axis of the incident X-ray, the titanium oxide sample, the angle divergence limiting means, and the two-dimensional position sensitive detector are fixed, the wavelength of the monochromatic incident X-ray is within the wavelength range longer than the wavelength of the K absorption edge of titanium. Diffracted X-ray intensity distribution image of diffracted X-rays derived from one predetermined lattice plane of anatase-type crystal and diffracted X-ray intensity distribution of diffracted X-rays derived from one predetermined lattice plane of rutile-type crystal Get an image,
Two-dimensional mixture ratio distribution by taking the ratio of the pixel values of the corresponding pixels of those images and setting the ratio value as each pixel value, or by further converting each pixel value to a predetermined value This is solved by a titanium oxide analysis method characterized in that an image is formed and recorded.

また、前記第一の課題は、
アナターゼ型結晶とルチル型結晶が不均一に混合共存する酸化チタン試料の局所的な混合比の分布画像を得る酸化チタン分析方法において、
チタンのK吸収端の波長よりも長波長の単色X線からなる入射X線で酸化チタン試料表面の被測定領域全体を照らし、酸化チタン試料で回折されて被測定領域から出射する回折X線の角度発散を角度発散制限手段で制限することにより、被測定領域内の各部位から出射する回折X線を、それらの部位と一対一に対向して配置された二次元位置敏感型検出器の各検出素子で区別して検出し、
各検出素子で検出した回折X線の強度を各画素値とする二次元の回折X線強度分布画像を形成し記録すること、
入射X線の光軸と酸化チタン試料を固定したままで、被測定領域内の各部位と二次元位置敏感型検出器の各検出素子との間の対応関係を変えずに二次元位置敏感型検出器を試料表面と同一の平面内で前記被測定領域の中心を通り入射X線の光軸に垂直に延在する回転軸線のまわりで回動させて、検出する回折X線の散乱角(入射X線光軸と回折X線光軸とのなす角、回折角)を変えることにより、アナターゼ型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とルチル型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とを取得し、それらの画像の対応する画素の画素値の比をとり、その比の値を各画素値とするもしくはさらに所定の換算を行った値を各画素値とする二次元の混合比分布画像を形成し記録することを特徴とする、酸化チタン分析方法によっても解決される。
二次元位置敏感型検出器は、X線回折の迅速測定を行う際に、しばしば用いられる。この場合に二次元位置敏感型検出器で得られる画像は、X線回折図形そのものであり、X線によって照明された試料全体の平均についての情報を与えるものである。これに対し、この発明の酸化チタン分析方法においては、二次元位置敏感型検出器で得られる画像は、画像上の点が試料上の点に対応する。これを図1に基づいて説明する。図1、試料の模式図(a)に示すように、観察視野内にはいろいろな結晶相が異なる場所に分布しているが、この発明の酸化チタン分析方法においては、二次元位置敏感型検出器で得られるX線像は(b)および(c)のように試料上の位置と対応する。すなわち、格子面間隔が特定の値d1である部分を画像化したものが(b)、特定の値d2である部分を画像化したものが(c) になり、さらに、その画像の明るさにより、それぞれの量を知ることができるのである。
In addition, the first problem is
In the titanium oxide analysis method for obtaining a distribution image of the local mixing ratio of a titanium oxide sample in which anatase-type crystals and rutile-type crystals coexist in a heterogeneous manner,
The entire region to be measured on the surface of the titanium oxide sample is illuminated with incident X-rays made of monochromatic X-rays having a wavelength longer than the wavelength of the K absorption edge of titanium, and is diffracted by the titanium oxide sample and emitted from the region to be measured. By restricting the angle divergence with the angle divergence limiting means, the diffracted X-rays emitted from the respective parts in the measured region can be detected by each of the two-dimensional position sensitive detectors arranged one-on-one facing these parts. Detect and distinguish with the detection element,
Forming and recording a two-dimensional diffracted X-ray intensity distribution image with the intensity of diffracted X-rays detected by each detecting element as each pixel value;
Two-dimensional position sensitive type without changing the correspondence between each part in the measurement area and each detection element of the two-dimensional position sensitive detector while fixing the optical axis of the incident X-ray and the titanium oxide sample The detector is rotated around a rotation axis extending perpendicularly to the optical axis of the incident X-ray through the center of the region to be measured within the same plane as the sample surface, and the scattering angle of the diffracted X-ray to be detected ( By changing the angle formed by the incident X-ray optical axis and the diffracted X-ray optical axis, the diffraction angle), the diffraction X-ray intensity distribution image of the diffracted X-ray derived from a predetermined lattice plane of the anatase type crystal and the rutile type A diffracted X-ray intensity distribution image of diffracted X-rays originating from a predetermined single lattice plane of the crystal, taking a ratio of pixel values of corresponding pixels of those images, and calculating the ratio value as each pixel value Or a two-dimensional mixture ratio distribution image in which each pixel value is a value after predetermined conversion. Characterized by recording also solved by titanium oxide analytical methods.
Two-dimensional position sensitive detectors are often used in making rapid measurements of X-ray diffraction. In this case, the image obtained by the two-dimensional position sensitive detector is an X-ray diffraction pattern itself, which gives information on the average of the entire sample illuminated by X-rays. On the other hand, in the titanium oxide analysis method of the present invention, in the image obtained by the two-dimensional position sensitive detector, the point on the image corresponds to the point on the sample. This will be described with reference to FIG. As shown in FIG. 1 and a schematic diagram (a) of the sample, various crystal phases are distributed in different places in the observation field. In the titanium oxide analysis method of the present invention, two-dimensional position sensitive detection is performed. The X-ray image obtained by the instrument corresponds to the position on the sample as shown in (b) and (c). That is, (b) is an image of a portion where the lattice spacing is a specific value d 1 , and (c) is an image of a portion where the lattice value is a specific value d 2. Thus, the amount of each can be known.

チタンのK吸収端の波長よりも長波長の単色X線からなる入射X線としては、チタンのX線管によりチタンの特性X線を発生させて単色化したものを用いてもよい。チタンのKα線を用いる場合には、同時に発生するKβ線はフィルターを用いて除去することが好ましい。例えば通常の粉末X線回折計等で一般的に使用される銅のKα線(8.04keV)は、チタンのK吸収端(4.97keV)よりも高エネルギーであるため、照射すればチタンからの蛍光X線が出てくる。本発明では、酸化チタンの異なる結晶相であるルチルとアナターゼの識別を目的としているが、この蛍光X線はルチルとアナターゼのどちらからも放出されてバックグラウンドとなり、両者の識別を妨げるものである。これに対し、チタンのK吸収端よりも低いエネルギーであるチタンのKα線(4.5keV)を用いると、こうした蛍光X線は放出されないため、回折X線のみによって両者を識別することができる。   As incident X-rays composed of monochromatic X-rays having a wavelength longer than the wavelength of the K absorption edge of titanium, monochromatic X-rays generated by generating titanium characteristic X-rays using a titanium X-ray tube may be used. When titanium Kα rays are used, it is preferable to remove the Kβ rays generated at the same time using a filter. For example, copper Kα ray (8.04 keV) generally used in ordinary powder X-ray diffractometers has higher energy than titanium K absorption edge (4.97 keV). Fluorescent X-ray comes out. The purpose of the present invention is to distinguish between rutile and anatase, which are different crystal phases of titanium oxide, but this fluorescent X-ray is emitted from both rutile and anatase and becomes a background, preventing the discrimination between the two. . On the other hand, when the titanium Kα ray (4.5 keV), which is lower in energy than the K absorption edge of titanium, is used, such fluorescent X-rays are not emitted, and therefore both can be identified only by diffracted X-rays.

前記第二の課題は、
アナターゼ型結晶とルチル型結晶が不均一に混合共存する酸化チタン試料の局所的な混合比の分布画像を得る酸化チタン分析装置において、
光軸不変且つ波長可変にチタンのK吸収端の波長よりも長波長の単色の入射X線を発生させるX線発生部が固定保持されること、
当該X線発生部から出射した前記入射X線が前記酸化チタン試料の表面の被測定領域全体を照らすように前記酸化チタン試料が固定保持されること、
前記酸化チタン試料で回折されて前記被測定領域から出射する回折X線を検出するための二次元に配列された複数の検出素子からなる二次元位置敏感型検出器が固定保持されること、
前記被測定領域内の各部位から出射する所定の散乱角の回折X線をそれらの部位と一対一に対向した前記二次元位置敏感型検出器の各検出素子で区別して検出するために、前記酸化チタン試料と前記二次元位置敏感型検出器との間に前記被測定領域から出射する回折X線の角度発散を制限する角度発散制限手段が設けられていること、
各検出素子によって検出された回折X線の強度を各画素値とする二次元の回折X線強度分布画像を形成し記録する画像形成記録部が設けられていること、
前記入射X線の光軸、前記酸化チタン試料、前記角度発散制限手段、及び前記二次元位置敏感型検出器を固定したままでルチル型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とアナターゼ型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とを取得するために、前記X線発生部が少なくともそれらの格子面の格子間隔に対応した二種類の波長の単色の入射X線を発生させ得ること、
前記画像形成記録部が、ルチル型結晶について取得された回折X線強度分布画像とアナターゼ型結晶について取得された回折X線強度分布画像との対応する画素の画素値の比を各画素値とする、もしくは、さらに所定の換算を行った値を各画素値とする二次元の混合比分布画像を形成し記録し得ること、
を特徴とする酸化チタン分析装置、によって解決される。
The second problem is
In a titanium oxide analyzer that obtains a distribution image of the local mixing ratio of a titanium oxide sample in which anatase-type crystals and rutile-type crystals coexist in a heterogeneous manner,
An X-ray generator that generates monochromatic incident X-rays having a wavelength longer than the wavelength of the K absorption edge of titanium in an optical axis invariable and wavelength-variable manner is fixedly held;
The titanium oxide sample is fixedly held so that the incident X-rays emitted from the X-ray generation unit illuminate the entire region to be measured on the surface of the titanium oxide sample;
A two-dimensional position sensitive detector consisting of a plurality of detection elements arranged in two dimensions for detecting diffracted X-rays diffracted by the titanium oxide sample and emitted from the measurement region;
In order to distinguish and detect diffracted X-rays having a predetermined scattering angle emitted from each part in the measurement region by each detection element of the two-dimensional position sensitive detector facing the parts one-to-one, Angle divergence limiting means for limiting the angle divergence of the diffracted X-rays emitted from the measurement region is provided between the titanium oxide sample and the two-dimensional position sensitive detector,
An image forming recording unit for forming and recording a two-dimensional diffracted X-ray intensity distribution image with the intensity of the diffracted X-ray detected by each detecting element as each pixel value;
While the optical axis of the incident X-ray, the titanium oxide sample, the angle divergence limiting means, and the two-dimensional position sensitive detector are fixed, the diffraction X-ray derived from a predetermined lattice plane of the rutile crystal In order to acquire a diffracted X-ray intensity distribution image and a diffracted X-ray intensity distribution image of diffracted X-rays derived from a predetermined one lattice plane of the anatase type crystal, the X-ray generation unit is at least a lattice of those lattice planes. The ability to generate monochromatic incident X-rays of two different wavelengths corresponding to the spacing;
The image forming recording unit uses each pixel value as a ratio of pixel values of corresponding pixels between the diffracted X-ray intensity distribution image acquired for the rutile crystal and the diffracted X-ray intensity distribution image acquired for the anatase crystal. Alternatively, it is possible to form and record a two-dimensional mixture ratio distribution image with each pixel value as a value after a predetermined conversion,
This is solved by a titanium oxide analyzer characterized by the following.

このとき、注目する格子面に由来する回折X線強度のピーク波長がブラッグの式から理論的に求まる波長と厳密に一致するとは限らない場合に対応し、ピーク波長での回折X線強度分布画像を取得できるように、前記二種類の波長をそれぞれ中心として所望の範囲で前記入射X線の波長を連続的に変え得るようにするとよい。また、二次元位置敏感型検出器と酸化チタン試料とをできるだけ近接させて配置して検出効率を落とさないようにするためには、アナターゼ型結晶とルチル型結晶のどの格子面に注目するかにも依存するが、入射X線の視射角が0度を越え、3度以下の範囲内程度の角度である場合には、試料表面に対して75度から105度の範囲内の一つの出射角を有する回折X線を検出する位置に二次元位置敏感型検出器が固定保持されていると有利である。   At this time, this corresponds to the case where the peak wavelength of the diffracted X-ray intensity derived from the lattice plane of interest does not exactly match the wavelength theoretically determined from the Bragg equation, and the diffracted X-ray intensity distribution image at the peak wavelength. It is preferable that the wavelength of the incident X-ray can be continuously changed within a desired range with the two types of wavelengths as the centers. Also, in order to keep the two-dimensional position sensitive detector and the titanium oxide sample as close as possible so as not to reduce the detection efficiency, which lattice plane of the anatase type crystal and the rutile type crystal should be focused on? However, in the case where the incident angle of the incident X-ray exceeds 0 degree and is within the range of 3 degrees or less, one exit within the range of 75 to 105 degrees with respect to the sample surface. It is advantageous if a two-dimensional position sensitive detector is fixedly held at a position for detecting a diffracted X-ray having an angle.

また、前記第二の課題は、
アナターゼ型結晶とルチル型結晶が不均一に混合共存する酸化チタン試料の局所的な混合比の分布画像を得る酸化チタン分析装置において、
チタンのK吸収端の波長よりも長波長の単色X線からなる入射X線を発生させるX線発生部が固定保持されること、
当該X線発生部から出射した前記入射X線が前記酸化チタン試料の表面の被測定領域全体を照らすように前記酸化チタン試料が固定保持されること、
前記酸化チタン試料で回折されて前記被測定領域から出射する回折X線を検出するための二次元に配列された複数の検出素子からなる二次元位置敏感型検出器が、試料表面と同一の平面内で前記被測定領域の中心を通り前記入射X線の光軸に垂直に延在する回転軸線のまわりで回動可能に配置されていること、
前記被測定領域内の各部位から出射する一つの散乱角の回折X線をそれらの部位と一対一に対向した前記二次元位置敏感型検出器の各検出素子で区別して検出するために、前記酸化チタン試料と前記二次元位置敏感型検出器との間に前記被測定領域から出射する回折X線の角度発散を制限する角度発散制限手段が前記二次元位置敏感型検出器と一体的に設けられていること、
各検出素子によって検出された回折X線の強度を各画素値とする二次元の回折X線強度分布画像を形成し、記録する、画像形成記録部が設けられていること、
前記X線発生部及び前記酸化チタン試料を固定したままでルチル型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とアナターゼ型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とを取得するために、前記二次元位置敏感型検出器が、前記被測定領域内の各部位と各検出素子との間の対応関係を変えることなしに少なくともそれらの格子面の格子間隔に対応する二つの散乱角度の回折X線をそれぞれ検出する角度位置で保持され得ること、
前記画像形成記録部が、ルチル型結晶について取得された回折X線強度分布画像及びアナターゼ型結晶について取得された回折X線強度分布画像の対応する画素の画素値の比を各画素値とする、もしくは、さらに所定の換算を行った値を各画素値とする二次元の混合比分布画像を形成し記録し得ること、
を特徴とする酸化チタン分析装置によっても解決される。
In addition, the second problem is
In a titanium oxide analyzer that obtains a local mixing ratio distribution image of a titanium oxide sample in which anatase-type crystals and rutile-type crystals coexist in a heterogeneous manner,
An X-ray generator that generates incident X-rays composed of monochromatic X-rays having a wavelength longer than the wavelength of the K absorption edge of titanium is fixedly held;
The titanium oxide sample is fixedly held so that the incident X-rays emitted from the X-ray generation unit illuminate the entire region to be measured on the surface of the titanium oxide sample;
A two-dimensional position sensitive detector composed of a plurality of two-dimensionally arranged detection elements for detecting diffracted X-rays diffracted by the titanium oxide sample and emitted from the measurement region is the same plane as the sample surface Is disposed so as to be rotatable around a rotation axis extending through the center of the region to be measured and extending perpendicularly to the optical axis of the incident X-ray,
In order to distinguish and detect diffracted X-rays of one scattering angle emitted from each part in the measurement target region with each detection element of the two-dimensional position sensitive detector facing the parts one-to-one, An angle divergence limiting means for limiting the angle divergence of the diffracted X-rays emitted from the measurement region is provided integrally with the two-dimensional position sensitive detector between the titanium oxide sample and the two-dimensional position sensitive detector. Being done,
An image forming recording unit is provided for forming and recording a two-dimensional diffraction X-ray intensity distribution image having each pixel value as the intensity of the diffraction X-ray detected by each detection element;
The diffraction X-ray intensity distribution image of the diffracted X-ray derived from the predetermined one lattice plane of the rutile type crystal and the predetermined one lattice plane of the anatase type crystal with the X-ray generation portion and the titanium oxide sample fixed. In order to obtain a diffracted X-ray intensity distribution image of the derived diffracted X-ray, the two-dimensional position sensitive detector changes a correspondence relationship between each part in the measurement target region and each detection element. Without being able to be held at an angular position for detecting diffracted X-rays of two scattering angles respectively corresponding to the lattice spacing of at least their lattice planes,
The image forming recording unit uses each pixel value as a ratio of pixel values of corresponding pixels of the diffracted X-ray intensity distribution image acquired for the rutile crystal and the diffracted X-ray intensity distribution image acquired for the anatase crystal. Alternatively, it is possible to form and record a two-dimensional mixture ratio distribution image in which each pixel value is a value obtained by performing a predetermined conversion,
This is also solved by a titanium oxide analyzer characterized by the following.

ここで、チタンのK吸収端の波長よりも長波長の単色X線としてチタンの特性X線を用いるためにX線発生部にチタン管を使用してもよい。その場合、そのX線取り出し窓には、ヨウ素またはヨウ素化合物を含む溶液を調製しこれを直接塗布するか、該溶液を塗布してなる高分子フィルムを貼り付けることによって、窓をKβ線を吸収除去するフィルター構造とし、チタンのKα線だけを入射X線として用いることができるようにすることが望ましい。   Here, in order to use the characteristic X-ray of titanium as a monochromatic X-ray having a wavelength longer than the wavelength of the K absorption edge of titanium, a titanium tube may be used for the X-ray generation unit. In that case, a solution containing iodine or an iodine compound is prepared in the X-ray extraction window and directly applied thereto, or a polymer film formed by applying the solution is applied to absorb the Kβ ray. It is desirable that the filter structure be removed so that only the Kα ray of titanium can be used as the incident X-ray.

また、目的とする格子面からの回折X線の散乱角がブラッグ条件から理論的に求められる散乱角と厳密に一致するとは限らないので、二次元位置敏感型検出器が、被測定領域内の各部位と各検出素子との間の一対一の対応関係を変えることなしに、前記二つの散乱角度に対応する角度位置をそれぞれ中心として所望の角度範囲で連続的に回動可能で且つ当該角度範囲内の任意の角度位置に保持可能であるように設定することがより好ましい。   In addition, since the scattering angle of the diffracted X-ray from the target grating surface does not always exactly match the scattering angle theoretically obtained from the Bragg condition, the two-dimensional position sensitive detector is Without changing the one-to-one correspondence between each part and each detection element, the angle position corresponding to the two scattering angles can be continuously rotated in a desired angle range, and the angle It is more preferable to set such that it can be held at an arbitrary angular position within the range.

本発明に係る酸化チタン分析方法及び酸化チタン分析装置では、酸化チタン試料のある領域を1点としてみた平均情報ではなく、その領域を複数の部位(各部位をそれぞれ1点とみる)、典型的には1000×1000の部位、に区画したときの各部位の情報としてのアナターゼ型結晶とルチル型結晶の混合比を各画素の値としてもつ二次元の混合比分布画像を従来の平均情報を得るのと同程度の時間で取得することができる。混合比分布画像は、アナターゼ型結晶の所定の格子面とルチル型結晶の所定の格子面に由来する回折X線強度の比の分布としても、混合比のわかった標準試料を用いて決定した所定の換算式を用いて換算した重量比の分布としても得ることができる。 In the titanium oxide analysis method and the titanium oxide analysis apparatus according to the present invention, the average information obtained by considering a certain region of the titanium oxide sample as one point, the region includes a plurality of portions (each portion is regarded as one point), typical. The conventional average information is obtained for a two-dimensional mixture ratio distribution image having a mixture ratio of anatase type crystal and rutile type crystal as information of each part when divided into 1000 × 1000 parts as values of each pixel. Can be obtained in the same amount of time. The mixing ratio distribution image is a predetermined distribution determined by using a standard sample with a known mixing ratio as the distribution of the ratio of the diffracted X-ray intensity derived from the predetermined lattice plane of the anatase crystal and the predetermined lattice plane of the rutile crystal. It can also be obtained as a distribution of weight ratios converted using the conversion formula.

従来の平均情報を得る方法は、アナターゼ型結晶の最も強い回折X線が得られる(101)面とルチル型結晶の最も強い回折X線が得られる(110)面とに注目して回折X線強度比を取得するものであったが、二次元位置敏感型検出器で酸化チタン試料の被測定領域の各部位の情報を同時に区別して収集する本発明では、アナターゼ型結晶の(200)面とルチル型結晶の(111)面または(210)面または(211)面に注目すると、酸化チタン試料の表面と二次元位置敏感型検出器の検出器面(各検出素子の検出面が構成する面)が平行に近い状態で位置して対向することとなり近接した配置をとることができるので、検出効率の点で有利である。   Conventional methods for obtaining average information pay attention to the (101) plane from which the strongest diffracted X-ray of the anatase crystal is obtained and the (110) plane from which the strongest diffracted X-ray of the rutile crystal is obtained. Although the intensity ratio was acquired, in the present invention in which information of each part of the measurement region of the titanium oxide sample is simultaneously distinguished and collected by a two-dimensional position sensitive detector, the (200) plane of the anatase crystal is Focusing on the (111) plane, (210) plane, or (211) plane of the rutile crystal, the surface of the titanium oxide sample and the detector plane of the two-dimensional position sensitive detector (the plane formed by the detection plane of each detection element) ) Are positioned in a nearly parallel state and are opposed to each other and can be arranged close to each other, which is advantageous in terms of detection efficiency.

入射X線の波長を固定して、二次元位置敏感型検出器を回動させて散乱角を変えることにより、注目する格子面についての回折X線強度分布画像を取得する場合には、入射X線としてチタンのKα線を使用すると、チタンからの蛍光X線が生じないので、バックグラウンドの低い、すなわち、明瞭な回折X線強度分布画像を取得することができる。   In the case of acquiring a diffraction X-ray intensity distribution image for a lattice plane of interest by rotating the two-dimensional position sensitive detector and changing the scattering angle while fixing the wavelength of the incident X-ray, When titanium Kα rays are used as the rays, no fluorescent X-rays are produced from titanium, and therefore, a low-background diffracted X-ray intensity distribution image can be obtained.

試料に対するX線の視射角(試料表面と入射X線とのなす角、狙い角)を、0度を超え3度以下の低角に設定すると、細い線状断面の入射X線を用いても被測定領域全面を均一に照らすことが可能となり、酸化チタン試料と二次元位置敏感型検出器をより近接させることも可能となる。また、基板上に酸化チタンの薄い層があるような試料についても、基板からの回折X線や蛍光X線の影響は、これを抑制することができる。本発明に係る酸化チタン分析装置では、X線発生部と酸化チタン試料と角度発散制限手段と二次元位置敏感型検出器とが上記の相対的な位置関係を満たしていれば、酸化チタン試料の表面が水平になるように配置しても、あるいは鉛直になるように配置しても、さらには傾斜するように配置してもかまわない。酸化チタン試料が粉末試料など、固定が必ずしも容易ではない試料である場合には、水平に配置した構成とするとよいことは言うまでもない。   When the X-ray viewing angle (angle formed between the sample surface and the incident X-ray, the target angle) is set to a low angle of more than 0 degrees and 3 degrees or less, the incident X-rays with a thin linear section are used. In addition, it becomes possible to uniformly illuminate the entire surface of the measurement area, and it is also possible to bring the titanium oxide sample and the two-dimensional position sensitive detector closer to each other. In addition, even for a sample having a thin layer of titanium oxide on the substrate, the influence of diffracted X-rays and fluorescent X-rays from the substrate can be suppressed. In the titanium oxide analyzer according to the present invention, if the X-ray generator, the titanium oxide sample, the angle divergence limiting means, and the two-dimensional position sensitive detector satisfy the above relative positional relationship, You may arrange | position so that it may arrange | position so that the surface may become horizontal, or it may arrange | position so that it may become vertical. Needless to say, when the titanium oxide sample is a sample that is not always easy to fix, such as a powder sample, the sample may be arranged horizontally.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明に係るアナターゼ型結晶とルチル型結晶が不均一に混合共存する酸化チタン試料の局所的な混合比の分布画像を得る酸化チタン分析方法は、図2あるいは図3に示すように、入射X線で酸化チタン試料表面の被測定領域(この領域内から出射した回折X線だけが二次元位置敏感型検出器の検出面に入射することができる)全体を照らし、酸化チタン試料で回折されて被測定領域から出射する回折X線の角度発散を角度発散制限手段で制限して回折X線のうちの所定の光軸にほぼ平行な成分だけをとりだすことによって、被測定領域内の各部位から出射する一つの散乱角をもつ回折X線を、それらの部位と一対一に対向して配置された二次元位置敏感型検出器の各検出素子で区別して検出し、各検出素子で検出した回折X線の強度を各画素値とする二次元の回折X線強度分布画像を形成し記録する。   As shown in FIG. 2 or FIG. 3, the titanium oxide analysis method for obtaining a local mixing ratio distribution image of a titanium oxide sample in which anatase-type crystals and rutile-type crystals coexist in a non-homogeneous mixture is used. The entire region to be measured on the surface of the titanium oxide sample is illuminated by the line (only the diffracted X-rays emitted from this region can enter the detection surface of the two-dimensional position sensitive detector), and is diffracted by the titanium oxide sample. By restricting the angular divergence of the diffracted X-rays emitted from the measured region by the angle divergence limiting means and extracting only the component of the diffracted X-rays substantially parallel to the predetermined optical axis, Diffraction X-rays with one scattering angle that is emitted are detected by distinguishing each detection element of a two-dimensional position sensitive detector placed one-on-one facing these parts, and detected by each detection element X-ray intensity for each image Forming a two-dimensional diffraction X-ray intensity distribution image to a value to be recorded.

第一の実施形態では、入射X線がチタンのK吸収端の波長よりも長波長の単色X線であり、入射X線の光軸も酸化チタン試料も二次元位置敏感型検出器も固定したままで、単色の入射X線の波長をチタンのK吸収端の波長よりも長い波長範囲内で変えることによってアナターゼ型結晶の所定の一つの格子面に由来する回折X線の強度を画素値とする回折X線強度分布画像とルチル型結晶の所定の一つの格子面に由来する回折X線の強度を画素値とする回折X線強度分布画像を上述のように取得し、それらの画像の対応する画素の画素値の比をとり、その比の値を各画素値とする二次元の混合比分布画像を形成し記録する。その際、アナターゼ型結晶とルチル型結晶の混合比がわかっている試料を用いて注目する格子面についての回折X線の強度比を重量比に換算する換算式を予め求めておき、その換算式を用いて換算した重量比の値を各画素値とする二次元の混合比分布画像を形成してもよい。   In the first embodiment, the incident X-ray is a monochromatic X-ray having a wavelength longer than the wavelength of the K absorption edge of titanium, and the optical axis of the incident X-ray, the titanium oxide sample, and the two-dimensional position sensitive detector are fixed. The intensity of the diffracted X-ray derived from a predetermined lattice plane of the anatase crystal is changed to the pixel value by changing the wavelength of the monochromatic incident X-ray within a wavelength range longer than the wavelength of the titanium K absorption edge. The diffraction X-ray intensity distribution image to be obtained and the diffraction X-ray intensity distribution image having the pixel value as the intensity of the diffracted X-ray derived from a predetermined lattice plane of the rutile crystal are obtained as described above, and the correspondence between these images The ratio of the pixel values of the pixels to be taken is taken, and a two-dimensional mixture ratio distribution image is formed and recorded with the ratio value as each pixel value. At that time, a conversion formula for converting the intensity ratio of diffracted X-rays to the lattice plane of interest into a weight ratio using a sample whose mixing ratio of anatase type crystal and rutile type crystal is known is calculated in advance. A two-dimensional mixture ratio distribution image may be formed in which each pixel value is a weight ratio value converted using.

より詳しく説明すると、散乱角(回折角、入射X線の光軸と回折X線の光軸とのなす角)が所定の値2θ0(ブラッグ角θ0)になる位置に二次元位置敏感型検出器を固定配置してアナターゼ型結晶及びルチル型結晶の予め決めた格子面のそれぞれの格子面間隔dA、dRに対してブラッグ条件(2dAsinθ0=λA、2dRsinθ0=λR)を満たすそれぞれの波長λA、λRでの回折X線強度分布画像を取得し、波長λAで得られるアナターゼ型結晶の回折X線強度分布画像で波長λRで得られるルチル型結晶の回折X線強度分布画像を割り算し、回折X線強度比を各画素値としてもつあるいは換算式によって換算された重量比を各画素値としてもつ二次元の混合比分布画像を作成する。この画像の各画素は被測定領域内の各部位と1対1に対応しているので、画像の明暗あるいは色の分布から被測定領域内のある部位ではアナターゼ型結晶の割合が大きく、ある部位ではルチル型結晶の割合が大きいということが一目瞭然となる。各画素値から混合比を数字で表すことも可能である。 More specifically, the two-dimensional position-sensitive type has a scattering angle (diffraction angle, an angle formed by the optical axis of incident X-rays and the optical axis of diffracted X-rays) at a predetermined value 2θ 0 (Bragg angle θ 0 ). The detector is fixedly arranged, and Bragg conditions (2d A sin θ 0 = λ A , 2d R sin θ 0 == the lattice spacings d A and d R of the lattice planes determined in advance of the anatase type crystal and the rutile type crystal, respectively. The diffraction X-ray intensity distribution images at the respective wavelengths λ A and λ R satisfying λ R ) are obtained, and the rutile type obtained at the wavelength λ R in the diffraction X-ray intensity distribution image of the anatase crystal obtained at the wavelength λ A A diffracted X-ray intensity distribution image of the crystal is divided to create a two-dimensional mixture ratio distribution image having the diffracted X-ray intensity ratio as each pixel value or the weight ratio converted by the conversion formula as each pixel value. Since each pixel of this image has a one-to-one correspondence with each part in the measurement area, the ratio of anatase crystals is large in a certain part in the measurement area due to light and darkness or color distribution of the image. Then, it is clear at a glance that the ratio of rutile crystals is large. It is also possible to represent the mixture ratio by a number from each pixel value.

理論上は格子面間隔dA、dRに対してブラッグ条件を満たす波長がλA、λRであっても、実際にはこれらの波長よりも多少ずれることがありうるので、回折X線強度分布画像を取得するときには、これらの波長の近傍(例えば0.01〜0.02nmの程度の範囲、エネルギーにして100〜200eV程度の範囲)で連続的に波長掃引を行って最も強度が強くなる波長での回折X線強度分布画像を取得する必要がある。この方法では、アナターゼ型結晶についての画像取得のときとルチル型結晶についての画像取得のときとで入射X線の光軸、試料位置、角度発散制限手段位置、及び二次元位置敏感型検出器位置が不変であり、変わるのは入射X線の波長のみである。したがって、試料と角度発散制限手段と二次元位置敏感型検出器とが干渉しないような2θ0となるように比較に用いる格子面を選択すれば、試料のサイズや形状にかかわらず二次元位置敏感型検出器を試料に近接させて効率よく回折X線強度分布画像を取得することができる。それぞれの型を代表させる格子面としては、強度プロファイルにおいて最強線となるアナターゼ型(101)面、ルチル型(110)面を用いなければならないというものではない。 Theoretically, even if the wavelengths satisfying the Bragg condition with respect to the lattice spacings d A and d R are λ A and λ R , they may actually deviate slightly from these wavelengths. When acquiring a distribution image, the wavelength is swept continuously in the vicinity of these wavelengths (for example, in the range of about 0.01 to 0.02 nm and the energy is in the range of about 100 to 200 eV), and the intensity becomes strongest. It is necessary to acquire a diffraction X-ray intensity distribution image at a wavelength. In this method, the optical axis of the incident X-ray, the sample position, the position of angle divergence limiting means, and the position of the two-dimensional position sensitive detector at the time of image acquisition for the anatase crystal and at the time of image acquisition for the rutile crystal Is unchanged and only the wavelength of the incident X-rays changes. Therefore, by selecting a grating surface used for comparison to the sample and the angular divergence limiting means and two-dimensional position sensitive detector is 2 [Theta] 0 that does not interfere with the two-dimensional position sensitive regardless of the size and shape of the sample A diffracted X-ray intensity distribution image can be efficiently acquired by bringing the mold detector close to the sample. As a lattice plane representing each type, it is not necessary to use an anatase type (101) plane and a rutile type (110) plane which are the strongest lines in the intensity profile.

図2は、第一の実施形態に係る酸化チタン分析方法を実施するための酸化チタン分析装置の概念図である。X線発生部1は、例えば放射光や回転対陰極X線源からの連続X線をモノクロメータ等の単色化手段で単色化することによって、波長可変に水平方向に幅広な線状断面を有するチタンのK吸収端の波長よりも長波長の単色の入射X線2を発生させる。波長にかかわらず入射X線2の光軸は一定である。酸化チタン試料3は、視射角(入射X線の光軸と試料表面とのなす角)θiが1°となるように試料支持部4によって固定保持され、試料表面上のハッチングして示した被測定領域A全体が入射X線2によって照らされる。複数の検出素子が二次元に配列されてなる二次元位置敏感型検出器5は、試料で回折されて試料表面の被測定領域A内から出射する85°の散乱角(回折角2θ=85°)をもつ回折X線8を検出する位置に検出器支持部6によって固定保持されている。   FIG. 2 is a conceptual diagram of a titanium oxide analyzer for carrying out the titanium oxide analysis method according to the first embodiment. The X-ray generator 1 has a linear cross section that is variable in wavelength and wide in the horizontal direction by, for example, monochromating continuous X-rays from synchrotron radiation or a rotating anti-cathode X-ray source with a monochromator such as a monochromator. A monochromatic incident X-ray 2 having a wavelength longer than the wavelength of the K absorption edge of titanium is generated. The optical axis of the incident X-ray 2 is constant regardless of the wavelength. The titanium oxide sample 3 is fixed and held by the sample support 4 so that the viewing angle (angle formed between the optical axis of the incident X-ray and the sample surface) is 1 °, and is shown hatched on the sample surface. The entire measurement area A is illuminated by the incident X-ray 2. The two-dimensional position sensitive detector 5 in which a plurality of detection elements are arranged two-dimensionally has a scattering angle of 85 ° (diffraction angle 2θ = 85 °) that is diffracted by the sample and emitted from the measured region A on the sample surface. ) Is fixedly held by a detector support 6 at a position where a diffracted X-ray 8 having a) is detected.

この二次元位置敏感型検出器5は、XY座標で表現される平面上での位置の情報を与える二次元検出器、たとえば電荷結合型素子(=CCD)カメラでありうる。試料3と二次元位置敏感型検出器5との間には、角度発散制限手段7が設けられている。角度発散制限手段7は、微細管集合体でありうる。図2においては、角度発散制限手段7は、二次元位置敏感型検出器5と一体的に設けられているが、必ずしも一体的である必要はない。角度発散制限手段7が、被測定領域Aから出射する回折X線8の角度発散を制限して所定の光軸にほぼ平行な成分だけをとりだす。それによって、被測定領域Aのうちの二次元位置敏感型検出器5の検出素子とほぼ同サイズの各部位から試料表面に対して84°の出射角度(視射角1°で散乱角85°であるから試料表面に対する出射角度は84°である)で出射する回折X線8を各部位に対向する各検出素子がそれぞれ別々に検出する。そして、各検出素子が検出した回折X線強度を各画素値とする二次元の回折X線強度分布画像が不図示の画像形成記録部で作成され記録される。   The two-dimensional position sensitive detector 5 can be a two-dimensional detector that gives information of a position on a plane expressed by XY coordinates, for example, a charge coupled device (= CCD) camera. Between the sample 3 and the two-dimensional position sensitive detector 5, angle divergence limiting means 7 is provided. The angle divergence limiting means 7 can be a fine tube assembly. In FIG. 2, the angle divergence limiting means 7 is provided integrally with the two-dimensional position sensitive detector 5, but is not necessarily integrated. The angle divergence limiting means 7 limits the angle divergence of the diffracted X-rays 8 emitted from the measurement area A and extracts only a component substantially parallel to a predetermined optical axis. As a result, an emission angle of 84 ° with respect to the sample surface (a viewing angle of 1 ° and a scattering angle of 85 °) from each part of the area A to be measured, which is approximately the same size as the detection element of the two-dimensional position sensitive detector 5. Therefore, each detection element facing each part detects the diffracted X-rays 8 emitted at an angle of 84 ° with respect to the sample surface. Then, a two-dimensional diffracted X-ray intensity distribution image having the diffracted X-ray intensity detected by each detecting element as each pixel value is created and recorded by an image forming recording unit (not shown).

この装置を用いてアナターゼ型結晶の(200)面(dA=0.1892nm)からの回折X線の強度とルチル型結晶の(210)面(dR=0.2054nm)からの回折X線の強度との比から両者の重量比を評価する場合には、ブラッグの条件に従って、λA=0.2556nmの近傍で入射X線の波長を連続的に変えてアナターゼ型結晶の(200)面からの回折X線の強度が最大となる波長λ1をさがし、その波長での二次元の回折X線強度分布画像を取得する。一方、λR=0.2775nmの近傍で入射X線の波長を連続的に変えてルチル型結晶の(210)面からの回折X線の強度が最大となる波長λ2をさがし、その波長での二次元の回折X線強度分布画像を取得する。そして、ルチル型結晶の(210)面に関して取得された回折X線強度分布画像の各画素の値をアナターゼ型結晶の(200)面に関して取得された回折X線強度分布画像の対応する画素の値で割り、予め混合比のわかった試料を用いて作成しておいた回折X線強度比と重量比との換算式にあてはめることにより得られる重量比を各画素値とする二次元の重量比分布画像を形成する操作が画像形成記録部において行われる。 Using this apparatus, the intensity of the diffracted X-ray from the (200) plane (d A = 0.1892 nm) of the anatase crystal and the diffracted X-ray from the (210) plane (d R = 0.2054 nm) of the rutile crystal When the weight ratio of both is evaluated from the ratio to the intensity of the anatase crystal, the wavelength of incident X-rays is continuously changed in the vicinity of λ A = 0.2556 nm according to the Bragg condition. The wavelength λ 1 at which the intensity of the diffracted X-ray from the maximum is searched for, and a two-dimensional diffracted X-ray intensity distribution image at that wavelength is obtained. On the other hand, the wavelength of the incident X-ray is continuously changed in the vicinity of λ R = 0.2775 nm to find the wavelength λ 2 at which the intensity of the diffracted X-ray from the (210) plane of the rutile crystal is maximum, and at that wavelength The two-dimensional diffraction X-ray intensity distribution image is acquired. Then, the value of each pixel of the diffracted X-ray intensity distribution image acquired for the (210) plane of the rutile crystal is used as the value of the corresponding pixel of the diffracted X-ray intensity distribution image acquired for the (200) plane of the anatase crystal. Two-dimensional weight ratio distribution in which each pixel value is a weight ratio obtained by dividing by, and applying to a conversion formula between the diffracted X-ray intensity ratio and the weight ratio prepared in advance using a sample with a known mixing ratio An operation for forming an image is performed in the image forming recording unit.

作成された重量比分布画像の各画素は被測定領域A内の各部位と一対一の対応関係にあるので、この重量比分布画像から被測定領域A内の各部位での酸化チタンのアナターゼ型結晶とルチル型結晶の混合割合を知ることができる。   Since each pixel of the created weight ratio distribution image has a one-to-one correspondence with each part in the region to be measured A, the anatase type of titanium oxide at each part in the region to be measured A from this weight ratio distribution image. The mixing ratio of crystals and rutile crystals can be known.

二次元位置敏感型検出器5は、図2に示した装置では、散乱角度2θが85°(試料表面に対して84°で出射する回折X線を検出する)となる位置に固定配置されているが、別の散乱角度位置に配置されていてもよい。ただし、試料3となるべく近接させて検出効率を高くすることを念頭に置くならば、試料表面に対する出射角が75°〜105°程度の範囲内の一つの角度となる回折X線を検出する位置とするとよい。より好ましくは、試料と正対する角度位置(試料表面に対して90°で出射する回折X線を検出する)にできるだけ近い角度位置に配置することが望ましい。   In the apparatus shown in FIG. 2, the two-dimensional position sensitive detector 5 is fixedly arranged at a position where the scattering angle 2θ is 85 ° (detects diffracted X-rays emitted at 84 ° with respect to the sample surface). However, it may be arranged at another scattering angle position. However, if it is considered that the detection efficiency is increased by bringing the sample 3 as close as possible, a position for detecting a diffracted X-ray having an emission angle with respect to the sample surface that is one angle within a range of about 75 ° to 105 °. It is good to do. More preferably, it is desirable to arrange at an angular position as close as possible to the angular position facing the sample (detecting diffracted X-rays emitted at 90 ° with respect to the sample surface).

ここでは、視射角を1°とした場合の例を示したが、視射角は1°でなければならないというものではない。しかし、水平方向に幅広の細い線状断面をもつ入射X線を用いて、被測定領域A全体を均一に照らすためには、視射角をあまり大きくすることはできない。また、視射角が大きくなると、入射X線2を遮らないように、二次元位置敏感型検出器5と試料3との間の距離を大きくする必要が生じる場合もある。したがって、検出効率の点で不利になる。さらに、試料3が基板の上に酸化チタンの薄い層を形成したものであれば、入射角度を低角にすることはバックグラウンドを低く抑えるためにも有利である。よって、目安としては、いわゆる薄膜配置といわれる試料表面に対して0度を超え、3度以下程度の視射角とするとよい。また、装置の配置上、あるいは試料の形状の都合上、さらに大きな視射角を必要とする場合には、被測定領域全体を均一に照らすために、入射X線の形状を多少変更し、かつ二次元位置敏感型検出器をやや遠ざけて使用することにすれば、空間分解能や検出効率を犠牲にしつつも、目的とする画像を得ることが可能である。   Here, an example in which the viewing angle is 1 ° is shown, but the viewing angle does not have to be 1 °. However, in order to uniformly illuminate the entire measurement area A using incident X-rays having a wide and narrow linear cross section in the horizontal direction, the viewing angle cannot be increased too much. Further, when the viewing angle increases, it may be necessary to increase the distance between the two-dimensional position sensitive detector 5 and the sample 3 so as not to block the incident X-ray 2. Therefore, it is disadvantageous in terms of detection efficiency. Furthermore, if the sample 3 is a substrate in which a thin layer of titanium oxide is formed on the substrate, it is advantageous to reduce the incident angle in order to keep the background low. Therefore, as a guideline, it is preferable that the viewing angle is greater than 0 degree and less than or equal to 3 degrees with respect to the sample surface, which is so-called thin film arrangement. In addition, if a larger viewing angle is required due to the arrangement of the apparatus or the shape of the sample, the shape of the incident X-ray is slightly changed in order to uniformly illuminate the entire measurement area, and If the two-dimensional position sensitive detector is used at a distance, it is possible to obtain a desired image while sacrificing spatial resolution and detection efficiency.

ここでは、二次元位置敏感型検出器が散乱角85度の回折X線を検出する位置に配置されている装置でアナターゼ型結晶の(200)面とルチル型結晶の(210)面を用いる例を示したが、用いる格子面は二次元位置敏感型検出器がどのような散乱角度位置に配置されているかということと、入射X線の使用できる波長範囲(一般的に使用できるX線は0.31nm(4keV)程度よりも短波長である場合が多く、また短波長側の限界であるチタンのK吸収端は0.2497nm(4.97keVである)を考慮に入れて、回折X線強度分布画像を取得しやすい格子面を用いればよい。この配置でルチル型結晶の(210)面のかわりに(111)面(dR=0.2188nm、λR=0.296nm近傍で波長掃引)を用いてもよいが、この配置よりもわずかに散乱角の小さい配置としたほうが入射X線の波長としては使い易い。散乱角2θ=100°となる位置に二次元位置敏感型検出器が配置された装置であれば、アナターゼ型結晶の格子面として(200)面(dA=0.1892nm、λA=0.290nm近傍で波長掃引)を、ルチル型結晶の格子面として(211)面(dR=0.16874nm、λR=0.259nm近傍で波長掃引)を用いればよい。 Here, an example in which the (200) plane of the anatase crystal and the (210) plane of the rutile crystal are used in an apparatus in which the two-dimensional position sensitive detector is disposed at a position for detecting diffracted X-rays with a scattering angle of 85 degrees. However, the lattice plane to be used is the scattering angle position of the two-dimensional position sensitive detector and the wavelength range in which incident X-rays can be used (generally usable X-ray is 0). In many cases, the wavelength is shorter than about .31 nm (4 keV), and the K absorption edge of titanium, which is the limit on the short wavelength side, takes into account 0.2497 nm (4.97 keV), and the diffraction X-ray intensity In this arrangement, a (111) plane (d R = 0.2188 nm, wavelength sweep in the vicinity of λ R = 0.296 nm) may be used instead of the (210) plane of the rutile crystal. You may use The arrangement with a slightly smaller scattering angle than this arrangement is easier to use as the wavelength of incident X-rays, so long as the apparatus has a two-dimensional position sensitive detector at a position where the scattering angle 2θ = 100 °. The (200) plane (d A = 0.1892 nm, wavelength sweeping in the vicinity of λ A = 0.290 nm) is used as the lattice plane of the anatase crystal, and the (211) plane (d R = 0.16874 nm is used as the lattice plane of the rutile crystal. , Λ R = 0.259 nm (wavelength sweep) may be used.

例えば、最適な配置とはいえないが散乱角2θ=75°となる位置に二次元位置敏感型検出器が配置された装置では、アナターゼ型結晶の格子面として(103)面(dA=0.2431nm、λA=0.296nm近傍で波長掃引)もしくは(004)面(dA=0.2378nm、λA=0.290nm近傍で波長掃引)もしくは(112)面(dA=0.2332nm、λA=0.284nm近傍で波長掃引)を、ルチル型結晶の格子面として(101)面(dR=0.2487nm、λR=0.303nm近傍で波長掃引)もしくは(200)面(dR=0.2297nm、λR=0.280nm近傍で波長掃引)もしくは(111)面(dR=0.2188nm、λR=0.266nm近傍で波長掃引)を用いることも不可能ではない。 For example, in an apparatus in which a two-dimensional position sensitive detector is arranged at a position where the scattering angle 2θ = 75 °, although it is not an optimum arrangement, the (103) plane (d A = 0) is used as the lattice plane of the anatase crystal. 2431 nm, wavelength sweep near λ A = 0.296 nm) or (004) plane (d A = 0.2378 nm, wavelength sweep near λ A = 0.290 nm) or (112) plane (d A = 0.2332 nm) , Λ A = 0.284 nm in the vicinity of a wavelength sweep) as a rutile crystal lattice plane (101) plane (d R = 0.2487 nm, λ R = 0.303 nm wavelength sweep) or (200) plane ( d R = 0.2297nm, λ R = 0.280nm wavelength sweep in the vicinity) or (111) plane (d R = 0.2188nm, λ R = 0.266nm wavelength sweep in the vicinity) is not impossible to use a .

第二の実施形態では、入射X線として、チタンのK吸収端の波長よりも長い波長の単色X線、例えばチタンの特性X線、特にKα線を用い、入射X線の光軸と酸化チタン試料を固定したままで、被測定領域内の各部位と二次元位置敏感型検出器の各検出素子との間の対応関係を変えずに二次元位置敏感型検出器を試料表面と同一の平面内で被測定領域の中心を通り入射X線の光軸に垂直に延在する回転軸線のまわりで回動(旋回)させて検出する回折X線の散乱角を変えることにより、アナターゼ型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とルチル型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とを取得し、それらの画像の対応する画素の画素値の比をとり、その比の値を各画素値とするもしくは予め求めておいた換算式を用いて換算した重量比の値を各画素値とする二次元の混合比分布画像を形成し記録する。   In the second embodiment, as the incident X-ray, a monochromatic X-ray having a wavelength longer than the wavelength of the K absorption edge of titanium, for example, a characteristic X-ray of titanium, particularly Kα ray, is used. With the sample fixed, the 2D position sensitive detector can be placed on the same plane as the sample surface without changing the correspondence between each part in the measurement area and each detection element of the 2D position sensitive detector. By changing the scattering angle of the diffracted X-rays detected by rotating (turning) around the rotation axis extending perpendicularly to the optical axis of the incident X-ray through the center of the region to be measured, A diffraction X-ray intensity distribution image of diffracted X-rays derived from a predetermined single lattice plane and a diffraction X-ray intensity distribution image of diffracted X-rays derived from a predetermined single lattice plane of a rutile crystal are obtained, and Take the ratio of the pixel values of the corresponding pixels in the image, and use the ratio value as each pixel value. The values of conversion and weight ratio to form a mixture ratio distribution image of the two-dimensional to each pixel value is recorded using the Rumoshikuwa previously obtained conversion formula.

例えばチタンのKα線を使う場合には、入射X線の波長がλ0=0.2749nmに決まっているので、アナターゼ型結晶の予め決めた格子面の格子面間隔dAに対してブラッグ条件(2dAsinθA=λ0)を満たす回折角度(散乱角度)2θAの位置に二次元位置敏感型検出器を配置して回折X線強度分布画像を取得し、ルチル型結晶の予め決めた格子面の格子面間隔dRに対してブラッグ条件(2dRsinθR=λ0)を満たす回折角度2θRの位置に二次元位置敏感型検出器を配置して回折X線強度分布画像を取得し、2θA位置で取得したアナターゼ型結晶の回折X線強度分布画像で2θR位置で取得したルチル型結晶の回折X線強度分布画像を割り算して二次元の強度比分布画像を作成する。 For example, when titanium Kα rays are used, the wavelength of incident X-rays is determined to be λ 0 = 0.2749 nm. Therefore, the Bragg condition (with respect to the lattice spacing d A of the lattice plane of the anatase crystal is determined ( 2d A sin θ A = λ 0 ) A diffraction angle (scattering angle) 2θ A satisfying a diffraction angle (scattering angle) 2θ A is arranged to obtain a diffraction X-ray intensity distribution image, and a predetermined lattice of a rutile crystal A diffraction X-ray intensity distribution image is obtained by placing a two-dimensional position sensitive detector at a diffraction angle 2θ R that satisfies the Bragg condition (2d R sin θ R = λ 0 ) with respect to the lattice spacing d R of the surface. A two-dimensional intensity ratio distribution image is created by dividing the diffraction X-ray intensity distribution image of the rutile crystal acquired at the 2θ R position by the diffraction X-ray intensity distribution image of the anatase crystal acquired at the 2θ A position.

入射X線としてチタンのK吸収端の波長より長い波長の単色X線を使用するのは、チタンからの蛍光X線が生じないため回折X線強度分布画像のバックグラウンドを低く抑えることができるからである。理論上は格子面間隔dA、dRに対してブラッグ条件を満たすブラッグ角はθA、θRであっても、実際にはこれらの角度よりも多少ずれることがありうるので、回折X線強度分布画像を取得するときには、二次元位置敏感型検出器を散乱角2θA及び2θBのそれぞれの近傍で連続的に回動させて角度走査して最も強度が強くなる検出器角度位置で保持して回折X線強度分布画像を取得する必要がある(角度走査範囲は試料の状況等に応じて変わるが通常は回折角度をはさんで2°程度走査すれば十分である場合が多い)。 The reason why the monochromatic X-ray having a wavelength longer than the wavelength of the K absorption edge of titanium is used as the incident X-ray is that the fluorescent X-ray from the titanium is not generated, so that the background of the diffraction X-ray intensity distribution image can be kept low. It is. Theoretically, even if the Bragg angles satisfying the Bragg conditions with respect to the lattice spacings d A and d R are θ A and θ R , they may actually deviate slightly from these angles. When acquiring an intensity distribution image, the two-dimensional position sensitive detector is continuously rotated in the vicinity of each of the scattering angles 2θ A and 2θ B , and is angularly scanned and held at the detector angular position where the intensity is strongest. Thus, it is necessary to acquire a diffraction X-ray intensity distribution image (the angle scanning range varies depending on the condition of the sample, etc., but it is usually sufficient to scan about 2 ° across the diffraction angle).

したがって、二次元位置敏感型検出器は、試料面内で被測定領域の中心を通り入射X線の光軸に対して垂直に延在する回転軸線のまわりで少なくとも2θAと2θRに対応する位置を含む角度領域で回動(旋回移動)可能であることが必要であり、さらに、強度最強位置を角度走査で探すためにこれらの位置をそれぞれ中心として数度の範囲では連続的に回動可能であっていたるところで保持可能であることが必要である。これらの位置の間の角度領域であって強度最強位置を探すための角度走査範囲に含まれない領域については二次元位置敏感型検出器を移動させることができれば十分である。したがって、それぞれの型の結晶を代表させる格子面は装置構成上二次元位置敏感型検出器が検出し得る散乱角度をもつ回折X線を発生させる面とする必要がある。この実施形態の場合も、必ずしもそれぞれの結晶型の最強線となる格子面を用いなければならないというものではない。 Therefore, the two-dimensional position sensitive detector corresponds to at least 2θ A and 2θ R around the rotation axis extending perpendicularly to the optical axis of the incident X-ray through the center of the region to be measured in the sample plane. It is necessary to be able to rotate (swivel movement) in the angular region including the position, and in order to find the strongest intensity position by angle scanning, it is continuously rotated in the range of several degrees around each of these positions. It must be able to be held wherever possible. It is sufficient that the two-dimensional position sensitive detector can be moved in an angular region between these positions and not included in the angular scanning range for searching for the strongest intensity position. Therefore, the lattice plane representing each type of crystal needs to be a plane that generates diffracted X-rays having a scattering angle that can be detected by the two-dimensional position-sensitive detector in terms of the device configuration. Also in this embodiment, it is not always necessary to use the lattice plane that is the strongest line of each crystal type.

図3に、第二の実施形態に係る酸化チタン分析方法を実施するための酸化チタン分析装置の概念図を示す。X線発生部11は、チタンのK吸収端の波長よりも長い波長をもつチタンの特性X線(Kα線;波長0.2749nm、X線エネルギー4510eV、Kβ線:波長0.2514nm、X線エネルギー4931eV)を発生させるX線管(チタン管)であり、X線管支持部20によって固定保持されている。このX線管11のX線取り出し窓はKβ線を吸収するフィルターからなっている。フィルターは、該X線取り出し窓にヨウ素またはヨウ素化合物を含む溶液を直接塗布するか、該溶液を塗布してなる高分子フィルムを貼り付けることによって構成される。これによって、Kβ線は吸収除去され、チタンのKα線だけが入射X線として用いられる。
したがって、図において、X線管11から出射される略水平方向に幅広の線状断面をもつ入射X線12は、チタンのKα線からなる。しかし、必ずしもチタン管を利用してチタンのKα線を入射X線としなければならないわけではなく、放射光や回転対陰極X線源から得られる連続X線をモノクロメータ等で単色化することによりチタンのK吸収端の波長より長波長の入射X線を得てもよい。
In FIG. 3, the conceptual diagram of the titanium oxide analyzer for implementing the titanium oxide analysis method which concerns on 2nd embodiment is shown. The X-ray generator 11 is a characteristic X-ray of titanium having a wavelength longer than the wavelength of the K absorption edge of titanium (Kα ray; wavelength 0.2749 nm, X-ray energy 4510 eV, Kβ ray: wavelength 0.2514 nm, X-ray energy) 4931 eV), which is fixedly held by the X-ray tube support section 20. The X-ray extraction window of the X-ray tube 11 includes a filter that absorbs Kβ rays. The filter is configured by directly applying a solution containing iodine or an iodine compound to the X-ray extraction window or attaching a polymer film formed by applying the solution. As a result, Kβ rays are absorbed and removed, and only titanium Kα rays are used as incident X-rays.
Therefore, in the drawing, incident X-rays 12 having a linear cross section that is wide in the substantially horizontal direction and emitted from the X-ray tube 11 are composed of titanium Kα rays. However, it is not always necessary to use a titanium tube to convert the titanium Kα ray into an incident X-ray. By using a monochromator or the like to monochromate continuous X-rays obtained from synchrotron radiation or a rotating cathode X-ray source. An incident X-ray having a wavelength longer than the wavelength of the K absorption edge of titanium may be obtained.

酸化チタン試料13は、視射角(入射X線の光軸と試料表面とのなす角)θiが1°となるように且つ入射X線断面の長手方向と試料表面がほぼ平行になるように且つ試料表面上のハッチングして示した被測定領域A’全体が入射X線12によって照らされるように試料支持部14によって固定保持されている。複数の検出素子が二次元に配列されてなる二次元位置敏感型検出器15は、検出器支持部16によって、試料表面と同一の面内で被測定領域A’の中心を通って入射X線12の光軸に垂直に延在する回転軸線19のまわりで回動(旋回)可能に保持されている。図3に示した装置の場合には、二次元位置敏感型検出器15は、検出器面の法線と入射X線の光軸とのなす角(検出する回折X線の散乱角(回折角)に相当)がほぼ80°〜97°の範囲となる回転軸線19を中心とする円弧上を移動させられ且つその角度範囲内の所望の角度位置で保持され得る。   The titanium oxide sample 13 has a viewing angle (angle formed by the optical axis of the incident X-ray and the sample surface) θi of 1 °, and the longitudinal direction of the incident X-ray cross section is substantially parallel to the sample surface. In addition, the entire measurement area A ′ indicated by hatching on the sample surface is fixed and held by the sample support portion 14 so as to be illuminated by the incident X-rays 12. A two-dimensional position sensitive detector 15 in which a plurality of detection elements are two-dimensionally arranged is incident X-rays by the detector support 16 through the center of the measurement area A ′ in the same plane as the sample surface. It is held so as to be rotatable (turnable) around a rotation axis 19 extending perpendicularly to the twelve optical axes. In the case of the apparatus shown in FIG. 3, the two-dimensional position sensitive detector 15 has an angle formed by the normal of the detector surface and the optical axis of the incident X-ray (the scattering angle of the detected diffracted X-ray (the diffraction angle). ) Can be moved on an arc centered on the rotation axis 19 in the range of approximately 80 ° to 97 ° and can be held at a desired angular position within the angular range.

この角度範囲内のどの角度位置でも、検出器面の中心を通る法線は被測定領域A’の中心を指し、各検出素子が常に被測定領域A’内の同じ部位を見込む。
試料13と二次元位置敏感型検出器15との間には、角度発散制限手段17が二次元位置敏感型検出器15と一体的に設けられており、被測定領域A’から出射する回折X線18の角度発散を制限し、検出器面の法線にほぼ平行な成分だけをとりだす。それによって、被測定領域A’のうちの二次元位置敏感型検出器15の検出素子とほぼ同サイズの各部位から出射する一つの散乱角をもつ回折X線18を各部位に一対一で対向する各検出素子がそれぞれ別々に検出する。そして、各検出素子が検出した回折X線強度を各画素とする二次元の回折X線強度分布画像が不図示の画像形成記録部で作成され記録される。
At any angular position within this angular range, the normal passing through the center of the detector surface points to the center of the measurement area A ′, and each detection element always expects the same part in the measurement area A ′.
Between the sample 13 and the two-dimensional position sensitive detector 15, angle divergence limiting means 17 is provided integrally with the two-dimensional position sensitive detector 15, and the diffraction X emitted from the measurement area A ′. Limits the angular divergence of the line 18 and extracts only the component approximately parallel to the normal of the detector plane. As a result, the diffracted X-rays 18 having one scattering angle emitted from each part having the same size as the detection element of the two-dimensional position sensitive detector 15 in the measurement area A ′ are opposed to each part on a one-to-one basis. Each detecting element to detect separately detects. Then, a two-dimensional diffraction X-ray intensity distribution image having the diffraction X-ray intensity detected by each detection element as each pixel is created and recorded by an image forming recording unit (not shown).

図3に示す装置を用いて、アナターゼ型結晶の(200)面(dA=0.1892nm)からの回折X線の強度とルチル型結晶の(210)面(dR=0.2054nm)からの回折X線の強度との比から両者の混合割合を評価する場合には、λ0=0.2749nmであるので、ブラッグの条件に従って、二次元位置敏感型検出器位置を散乱角が2θA=93.18°となる位置の近傍で回動させることにより連続的に角度走査してアナターゼ型結晶の(200)面からの回折X線の強度が最大となる散乱角度2θ1を探し、その散乱角度位置で二次元の回折X線強度分布画像を取得する。 Using the apparatus shown in FIG. 3, the intensity of diffracted X-rays from the (200) plane (d A = 0.1892 nm) of the anatase crystal and the (210) plane (d R = 0.2054 nm) of the rutile crystal Λ 0 = 0.2749 nm in the case of evaluating the mixing ratio of the two based on the ratio of the diffracted X-ray intensity to the two-dimensional position sensitive detector position according to the Bragg condition, the scattering angle is 2θ A. = A scanning angle 2θ 1 at which the intensity of the diffracted X-ray from the (200) plane of the anatase crystal is maximized by rotating the angle near the position where it becomes = 93.18 ° is found. A two-dimensional diffraction X-ray intensity distribution image is acquired at the scattering angle position.

一方、2θR=84.0°の近傍で二次元位置敏感型検出器15を連続的に回動させて角度走査してルチル型結晶の(210)面からの回折X線の強度が最大となる散乱角度2θ2を探し、その散乱角度位置での二次元の回折X線強度分布画像を取得する。そして、ルチル型結晶の(210)面に関して取得された回折X線強度分布画像の各画素の値をアナターゼ型結晶の(200)面に関して取得された回折X線強度分布画像の対応する画素の値で割り、予め混合比のわかった試料を用いて作成しておいた回折X線強度比と重量比との換算式にあてはめることにより得られた重量比を各画素値とする二次元の重量比分布画像が画像形成記録部において作成され記録される。作成された重量比分布画像の各画素は被測定領域A’内の各部位と一対一の対応関係にあるので、この重量比分布画像から被測定領域A’内の各部位での酸化チタンのアナターゼ型結晶とルチル型結晶の混合割合を知ることができる。 On the other hand, the intensity of the diffracted X-ray from the (210) plane of the rutile crystal is maximized by continuously rotating the two-dimensional position sensitive detector 15 in the vicinity of 2θ R = 84.0 ° and performing angular scanning. locate the composed scattering angle 2 [Theta] 2, to obtain the two-dimensional diffraction X-ray intensity distribution image in the scattering angle position. Then, the value of each pixel of the diffracted X-ray intensity distribution image acquired for the (210) plane of the rutile crystal is used as the value of the corresponding pixel of the diffracted X-ray intensity distribution image acquired for the (200) plane of the anatase crystal. Two-dimensional weight ratio in which each pixel value is a weight ratio obtained by dividing it by a conversion formula between a diffraction X-ray intensity ratio and a weight ratio prepared in advance using a sample with a known mixing ratio. A distribution image is created and recorded in the image formation recording unit. Since each pixel of the created weight ratio distribution image has a one-to-one correspondence with each part in the measurement area A ′, titanium oxide at each part in the measurement area A ′ is determined from this weight ratio distribution image. The mixing ratio of the anatase type crystal and the rutile type crystal can be known.

二次元位置敏感型検出器15の回動角度範囲は、図3に示した装置では、ほぼ80°〜97°の範囲であるが、この角度範囲は注目する格子面に応じて異なってくる。例えばアナターゼ型結晶については(200)面を対象としたままとし、ルチル型結晶の(101)面(dR=0.2487nm、2θR=67.10°近傍で角度走査)を用いるならば、回動角度範囲がほぼ63°〜97°、ルチル型結晶の(111)面(dR=0.2188nm、2θR=77.8°近傍で角度走査)を用いるならば、ほぼ74°〜97°、ルチル型結晶の(211)面(dR=0.16874nm、2θR=109.09°近傍で角度走査)を用いるならば、ほぼ89°〜113°とすればよい。 The rotation angle range of the two-dimensional position sensitive detector 15 is approximately 80 ° to 97 ° in the apparatus shown in FIG. 3, but this angle range varies depending on the lattice plane to be noticed. For example, if the (200) plane is left as the target for the anatase type crystal, and the (101) plane of the rutile type crystal (d R = 0.2487 nm, angle scan near 2θ R = 67.10 °) is used, If the rotation angle range is approximately 63 ° to 97 ° and the (111) plane of rutile crystal (d R = 0.2188 nm, angular scanning near 2θ R = 77.8 °) is used, approximately 74 ° to 97 If the (211) plane of rutile crystal (d R = 0.16874 nm, angle scan in the vicinity of 2θ R = 109.09 °) is used, the angle may be approximately 89 ° to 113 °.

ただし、二次元位置敏感型検出器15と試料13との距離は常に固定であるので、なんらかの部材によって入射X線が遮られることのない範囲でこれらをなるべく近接させて回折X線を効率よく検出することを念頭に置くならば、回動角度範囲がなるべく90°近傍の狭い範囲となるように注目する格子面を選択することが望ましい。
装置の構成上不利な角度とはなるが、原理的には、アナターゼ型結晶の(103)面(dA=0.2431nm、2θA=68.86°近傍で角度走査)、(004)面(dA=0.2378nm、2θA=70.62°近傍で角度走査)、(112)面(dA=0.2332nm、2θA=72.23°近傍で角度走査)などとの間で強度比を調べてもよい。
However, since the distance between the two-dimensional position sensitive detector 15 and the sample 13 is always fixed, the diffracted X-rays are efficiently detected by bringing them as close as possible within a range in which the incident X-rays are not blocked by any member. With this in mind, it is desirable to select the lattice plane to be noted so that the rotation angle range is as narrow as possible in the vicinity of 90 °.
Although it is an unfavorable angle in terms of the configuration of the apparatus, in principle, the (103) plane of anatase type crystal (d A = 0.2431 nm, angle scan in the vicinity of 2θ A = 68.86 °), (004) plane (D A = 0.2378 nm, angle scan near 2θ A = 70.62 °), (112) plane (d A = 0.2332 nm, angle scan near 2θ A = 72.23 °), etc. The intensity ratio may be examined.

図2および図3のどちらの装置の場合にも、試料3、13と二次元位置敏感型検出器5、15は、角度発散制限手段7、17等によって入射X線が遮られない範囲でできるだけ近接させたほうが回折X線の強度の点で有利である。   2 and 3, the samples 3 and 13 and the two-dimensional position sensitive detectors 5 and 15 are as far as possible in the range where the incident X-rays are not blocked by the angle divergence limiting means 7 and 17. It is advantageous in terms of the intensity of diffracted X-rays to be close.

角度発散制限手段7、17としてはコリメータ(例えば直径6ミクロン、長さ1mm)の合成石英製キャピラリーを図4のように円盤状に(例えば直径20mm)集合させたキャピラリープレート、あるいはリソグラフィ技術により軽金属に同様の加工を施したもの)等を用いることができる。   As the angle divergence limiting means 7 and 17, a capillary plate in which synthetic silica capillaries (for example, 6 microns in diameter and 1 mm in length) are assembled in a disk shape (for example, 20 mm in diameter) as shown in FIG. And the like which have been processed in the same manner.

二次元位置敏感型検出器5、15としては、多素子の半導体検出器、X線検出能力を有するCCDカメラ、CMOSイメージセンサー等を用いることができる。X線を直接検出するのではなく、X線によって発光するシンチレータを有し、そのシンチレータの発光を検知するような検出器であってもよい。 As the two-dimensional position sensitive detectors 5 and 15, a multi-element semiconductor detector, a CCD camera having an X-ray detection capability, a CMOS image sensor, or the like can be used. Instead of directly detecting X-rays, a detector having a scintillator that emits light by X-rays and detecting the light emitted from the scintillator may be used.

画像形成記録部は、コンピュータであり、全てのデータをコンピュータに記録し、データ処理、画像化処理をおこなう。コンピュータの機能をマイクロチップとして二次元位置敏感型検出器に内蔵させて構成することも可能であり、含むものである。   The image forming recording unit is a computer, records all data in the computer, and performs data processing and imaging processing. The function of the computer can be built in a two-dimensional position sensitive detector as a microchip, and includes it.

本発明の効果を確認するため、図5(a) に示すようなアナターゼ型酸化チタンとルチル型酸化チタンの粉末が混在する試料(直径13ミリ、厚さ2ミリ)に対し、約8ミリ(横)×約0.4ミリ(縦)の大きさのX線(エネルギー4600eV、波長0.2695nm)を約1度で入射させた(撮像時間 1秒×100回)。この試料の混合分布状態は既知であり、図において観察視野内のRはルチルが多く分布する領域、Aはアナターゼが多く分布する領域である。X線は破線で示す8ミリ角の観察視野全体に照明された。76度(ルチルの(210)面、d=0.2054nmに対応する反射が得られる角度)と84度(アナターゼの(200)面、d=0.1892nmに対応する反射が得られる角度)の2つの散乱角でX線像を取得した後、演算処理によって、ルチル型酸化チタンとアナターゼ型酸化チタンとの分布状態を抽出したものが、それぞれ(b)と(c) である。この結果は、準備した試料の混合状態ときわめてよく対応しており、ルチルとアナターゼが異なる分布を持っていることを明瞭な画像として示すことができている。(b)と(c)の画像は、ルチル対アナターゼの混合比がそれぞれ1:0および0:1の場合の分布を示しているが、本発明に係る酸化チタン分析方法では、更に、同様にして、任意の混合比、例えば1:1や2:1のような混合比のものがどの部分に多く、どの部分に少ないかを示すこともできるし、(b)と(c)
の間の画像間の簡単な割り算によって試料上の各点のそれぞれにおける混合比が
どうであるかを示す画像を得ることもできる。
In order to confirm the effect of the present invention, about 8 mm (about 13 mm in diameter and 2 mm in thickness) of a sample in which powders of anatase type titanium oxide and rutile type titanium oxide as shown in FIG. X-rays (energy 4600 eV, wavelength 0.2695 nm) having a size of (horizontal) × about 0.4 mm (vertical) were incident at about 1 degree (imaging time 1 second × 100 times). The mixed distribution state of this sample is known. In the figure, R in the observation field is a region where a lot of rutile is distributed, and A is a region where a lot of anatase is distributed. X-rays were illuminated over the entire observation field of 8 mm square indicated by broken lines. 76 degrees (the rutile (210) plane, the angle at which reflection corresponding to d = 0.2054 nm is obtained) and 84 degrees (the anatase (200) plane, the angle at which reflection corresponding to d = 0.1892 nm is obtained) (B) and (c) are obtained by obtaining the X-ray images at two scattering angles and then extracting the distribution state of rutile titanium oxide and anatase titanium oxide by arithmetic processing. This result corresponds very well to the mixed state of the prepared sample, and it can be shown as a clear image that rutile and anatase have different distributions. The images of (b) and (c) show the distributions when the mixing ratio of rutile to anatase is 1: 0 and 0: 1, respectively. In addition, it is possible to indicate which part has a certain mixing ratio, for example, a mixing ratio such as 1: 1 or 2: 1, which part is large and which part is small, and (b) and (c)
An image showing what the mixing ratio at each of the points on the sample is can be obtained by simple division between the images.

以上のX線画像情報は、実際の分布状況と整合し、二次元に展開された実際の試料における結晶の分布状況、量比を全体的にも、局部的にも正確に同定しうることが確認された。一方、図5(a)に示した試料を従来技術の粉末X線回折装置により測定すると、X線がR領域とA領域を同時に照明するため、得られる回折X線強度はそれぞれの領域からの回折X線の強度の平均値となるため、どのように混合して分布しているかについては全くわからず、R領域とA領域を含む全領域の平均混合比しか得ることはできない。そこで、試料の一部しか照明できないような小さなX線ビームを用いて、照明される試料位置を変えながら測定を繰り返すほかないことになるが、それでは、多数の点を測定するための測定時間があまりに膨大となり、本発明に係る方法のような短時間での同定は不可能である。
本発明は、X線照射するX線発生部も、そして試料も動かすことなく固定したままで、X線を短時間全面照射することにより、試料の各位置における結晶混合比情報を短時間で分析し、提供できるものであり、優れた同定手段を提供したものである。
The above X-ray image information is consistent with the actual distribution status, and can accurately identify the distribution status and quantity ratio of crystals in an actual sample developed two-dimensionally, both globally and locally. confirmed. On the other hand, when the sample shown in FIG. 5A is measured by a conventional powder X-ray diffractometer, the X-ray illuminates the R region and the A region at the same time. Since it is the average value of the intensity of the diffracted X-rays, it is completely unknown how the mixture is distributed and only the average mixture ratio of the entire region including the R region and the A region can be obtained. Therefore, using a small X-ray beam that can illuminate only a part of the sample, the measurement must be repeated while changing the position of the illuminated sample. It becomes too enormous and identification in a short time like the method according to the present invention is impossible.
The present invention analyzes the crystal mixing ratio information at each position of the sample in a short time by irradiating the entire surface with the X-ray for a short time while the X-ray irradiating part and the sample are fixed without moving. It can be provided and provides an excellent identification means.

酸化チタンは古くから電子材料、触媒材料、紫外線吸収剤、光触媒等、多くの用途に使用されてきた物質であるが、近年の研究で、改めてその重要性が認識され、見直されている。例えば、紫外線を吸収し、有害物質を分解する働きを利用して、ガラスや壁面にコーティングすることによって、付着する汚れを分解し、雨水で自然に洗い流す自己洗浄機能等は、その一例である。このような例は、一例にすぎずとどまる事がない。いずれにしても酸化チタンの利用が進むに従い、構成する酸化チタン結晶の分布状態を正確に把握し、管理し、あるいは制御するとともに、品質管理を徹底することが求められている。 本発明は、このような分野に適った技術であることは明白であり、今後、大いに酸化チタンを利用する技術分野において採用され、普及することが期待される。   Titanium oxide is a substance that has been used for many applications such as electronic materials, catalyst materials, ultraviolet absorbers, photocatalysts, etc. for a long time, but its importance has been recognized and reviewed again in recent research. For example, a self-cleaning function that absorbs ultraviolet rays and decomposes adhering dirt by coating glass or a wall surface by using a function of decomposing harmful substances and naturally washing with rainwater is one example. Such an example is only an example and does not stop. In any case, as the use of titanium oxide progresses, it is required to accurately grasp, manage, or control the distribution state of the titanium oxide crystals to be constructed and thoroughly control the quality. It is clear that the present invention is a technology suitable for such a field, and it is expected that it will be widely adopted and spread in the technical field using titanium oxide in the future.

本発明において取得されるX線像がどのようなものであるかを示す概念図である。(a) は試料の模式図である。観察視野内にはいろいろな結晶相が異なる場所に分布している。(b)および(c)は、取得されるX線像を模式的に示したものである。すなわち、格子面間隔が特定の値d1である部分を画像化したものが(b) であり、特定の値d2である部分を画像化したものが(c) である。さらに、その画像の明るさにより、その量を知ることができる。It is a conceptual diagram which shows what kind of X-ray image is acquired in this invention. (a) is a schematic diagram of a sample. Various crystal phases are distributed in different places in the observation field. (b) and (c) schematically show the acquired X-ray images. That is, (b) is an image of a portion where the lattice spacing is a specific value d 1 , and (c) is an image of a portion where the lattice value is a specific value d 2 . Furthermore, the amount can be known from the brightness of the image. 本発明の第一の実施形態に係る酸化チタン分析方法を実施するための酸化チタン分析装置の概念図である。It is a conceptual diagram of the titanium oxide analyzer for enforcing the titanium oxide analysis method which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る酸化チタン分析方法を実施するための酸化チタン分析装置の概念図である。It is a conceptual diagram of the titanium oxide analyzer for enforcing the titanium oxide analysis method which concerns on 2nd embodiment of this invention. 実施例で使用した角度発散制限手段であるキャピラリープレートを一部切載して示した外観図である。It is the external view which cut and shown partially the capillary plate which is an angle divergence limiting means used in the Example. ルチルとアナターゼが異なる分布を持つ酸化チタン試料(a) に適用した実施例である。(b)および(c)は、実験的に得られたX線像からルチルとアナターゼの分布状態を抽出したものである。This is an example applied to a titanium oxide sample (a) having a different distribution of rutile and anatase. (b) and (c) are obtained by extracting the distribution of rutile and anatase from experimentally obtained X-ray images.

符号の説明Explanation of symbols

1 X線発生部
2 入射X線
3 酸化チタン試料
4 試料支持部
5 二次元位置敏感型検出器
6 検出器支持部
7 角度発散制限手段
8 回折X線
9 検出器支持部
11 X線発生部(X線管、チタン管)
12 入射X線
13 酸化チタン試料
14 試料支持部
15 二次元位置敏感型検出器
16 検出器支持部
17 角度発散制限手段
18 回折X線
19 回転軸線
20 X線管支持部
A 被測定領域
A‘ 被測定領域
DESCRIPTION OF SYMBOLS 1 X-ray generation part 2 Incident X-ray 3 Titanium oxide sample 4 Sample support part 5 Two-dimensional position sensitive type detector 6 Detector support part 7 Angular divergence limiting means 8 Diffracted X-ray 9 Detector support part 11 X-ray generation part ( X-ray tube, titanium tube)
12 incident X-ray 13 titanium oxide sample 14 sample support 15 two-dimensional position sensitive detector 16 detector support 17 angle divergence limiting means 18 diffracted X-ray 19 rotation axis 20 X-ray tube support A measurement area A ′ Measurement area

Claims (20)

アナターゼ型結晶とルチル型結晶が不均一に混合共存する酸化チタン試料の局所的な混合比の分布画像を得る酸化チタン分析方法において、
チタンのK吸収端の波長より長波長の単色の入射X線で酸化チタン試料表面の被測定領域全体を照らし、
該酸化チタン試料で回折されて被測定領域から出射する回折X線の角度発散を角度発散制限手段で制限することにより、被測定領域内の各部位から出射する所定の散乱角の回折X線を、それらの部位と一対一に対向して配置された二次元位置敏感型検出器の各検出素子で区別して検出し、
各検出素子で検出した回折X線の強度を各画素値とする二次元の回折X線強度分布画像を形成し記録すること、
入射X線の光軸及び酸化チタン試料及び角度発散制限手段及び二次元位置敏感型検出器を固定したままで、単色の入射X線の波長をチタンのK吸収端の波長より長い波長の範囲内で変えることによってアナターゼ型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とルチル型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像を取得し、
それらの画像の対応する画素の画素値の比をとり、その比の値を各画素値とする、もしくは、さらに所定の換算を行った値を各画素値とすることによって二次元の混合比分布画像を形成し記録することを特徴とする、酸化チタン分析方法。
In the titanium oxide analysis method for obtaining a distribution image of the local mixing ratio of a titanium oxide sample in which anatase-type crystals and rutile-type crystals coexist in a heterogeneous manner,
Illuminate the entire region to be measured on the surface of the titanium oxide sample with a monochromatic incident X-ray having a wavelength longer than the wavelength of the titanium K absorption edge,
By limiting the angle divergence of the diffracted X-rays diffracted by the titanium oxide sample and emitted from the measurement region by the angle divergence limiting means, the diffracted X-rays having a predetermined scattering angle emitted from each part in the measurement region can be obtained. The two-dimensional position sensitive detectors placed one-on-one opposite to those parts are detected separately by each detection element,
Forming and recording a two-dimensional diffracted X-ray intensity distribution image with the intensity of diffracted X-rays detected by each detecting element as each pixel value;
While the optical axis of the incident X-ray, the titanium oxide sample, the angle divergence limiting means, and the two-dimensional position sensitive detector are fixed, the wavelength of the monochromatic incident X-ray is within the wavelength range longer than the wavelength of the K absorption edge of titanium. Diffracted X-ray intensity distribution image of diffracted X-rays derived from one predetermined lattice plane of anatase-type crystal and diffracted X-ray intensity distribution of diffracted X-rays derived from one predetermined lattice plane of rutile-type crystal Get an image,
Two-dimensional mixture ratio distribution by taking the ratio of the pixel values of the corresponding pixels of those images and setting the ratio value as each pixel value, or by further converting each pixel value to a predetermined value A method for analyzing titanium oxide, comprising forming and recording an image.
アナターゼ型結晶とルチル型結晶が不均一に混合共存する酸化チタン試料の局所的な混合比の分布画像を得る酸化チタン分析方法において、
チタンのK吸収端の波長よりも長波長の単色X線からなる入射X線で酸化チタン試料表面の被測定領域全体を照らし、酸化チタン試料で回折されて被測定領域から出射する回折X線の角度発散を角度発散制限手段で制限することにより、被測定領域内の各部位から出射する回折X線を、それらの部位と一対一に対向して配置された二次元位置敏感型検出器の各検出素子で区別して検出し、
各検出素子で検出した回折X線の強度を各画素値とする二次元の回折X線強度分布画像を形成し記録すること、
入射X線の光軸と酸化チタン試料を固定したままで、被測定領域内の各部位と二次元位置敏感型検出器の各検出素子との間の対応関係を変えずに二次元位置敏感型検出器を試料表面と同一の平面内で被測定領域の中心を通り入射X線の光軸に垂直に延在する回転軸線のまわりで回動させて検出する回折X線の散乱角を変えることにより、アナターゼ型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とルチル型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像を取得し、
それらの画像の対応する画素の画素値の比をとり、その比の値を各画素値とする、もしくは、さらに所定の換算を行った値を各画素値とする二次元の混合比分布画像を形成し記録することを特徴とする酸化チタン分析方法。
In the titanium oxide analysis method for obtaining a distribution image of the local mixing ratio of a titanium oxide sample in which anatase-type crystals and rutile-type crystals coexist in a heterogeneous manner,
The entire region to be measured on the surface of the titanium oxide sample is illuminated with incident X-rays made of monochromatic X-rays having a wavelength longer than the wavelength of the K absorption edge of titanium, and is diffracted by the titanium oxide sample and emitted from the region to be measured. By restricting the angle divergence with the angle divergence limiting means, the diffracted X-rays emitted from the respective parts in the measured region can be detected by each of the two-dimensional position sensitive detectors arranged one-on-one facing these parts. Detect and distinguish with the detection element,
Forming and recording a two-dimensional diffracted X-ray intensity distribution image with the intensity of diffracted X-rays detected by each detecting element as each pixel value;
Two-dimensional position sensitive type without changing the correspondence between each part in the measurement area and each detection element of the two-dimensional position sensitive detector while fixing the optical axis of the incident X-ray and the titanium oxide sample Changing the scattering angle of diffracted X-rays detected by rotating the detector around a rotation axis extending perpendicularly to the optical axis of incident X-rays through the center of the region to be measured in the same plane as the sample surface The diffraction X-ray intensity distribution image of the diffracted X-ray derived from the predetermined one lattice plane of the anatase crystal and the diffracted X-ray intensity distribution image of the diffracted X-ray derived from the predetermined one lattice plane of the rutile crystal are Acquired,
Take a ratio of the pixel values of the corresponding pixels in those images, and use the ratio value as each pixel value, or a two-dimensional mixture ratio distribution image with each pixel value as a predetermined converted value. A method for analyzing titanium oxide, comprising forming and recording.
前記入射X線がチタンX線管から発生するチタンの特性X線であることを特徴とする、請求項2に記載の酸化チタン分析方法。   The method for analyzing titanium oxide according to claim 2, wherein the incident X-ray is a characteristic X-ray of titanium generated from a titanium X-ray tube. 前記チタンX線管には、チタンのKβ線を吸収するフィルターが取り付けられていることを特徴とする、請求項3に記載の酸化チタン分析方法。   The titanium oxide analysis method according to claim 3, wherein a filter that absorbs titanium Kβ rays is attached to the titanium X-ray tube. 前記Kβ線を吸収するフィルターは、X線取り出し窓にヨウ素またはヨウ素化合物を含む溶液を直接塗布するか、該溶液を塗布してなる高分子フィルムを貼り付けることによって構成されていることを特徴とする、請求項4に記載の酸化チタン分析方法。   The filter that absorbs Kβ rays is configured by directly applying a solution containing iodine or an iodine compound to an X-ray extraction window or by attaching a polymer film formed by applying the solution. The method for analyzing titanium oxide according to claim 4. 前記所定の一つの格子面における回折X線強度分布画像を取得する際の結晶格子面が、ルチル型結晶においては(111)面、(210)面、及び(211)面のうちのいずれか一つであり、アナターゼ型結晶においては(200)面であり、各格子面に由来する回折X線の回折X線強度分布画像を取得することを特徴とする、請求項1ないし5のいずれか一項に記載の酸化チタン分析方法。 The crystal lattice plane when acquiring a diffraction X-ray intensity distribution image on the predetermined one lattice plane is any one of (111) plane, (210) plane, and (211) plane in the rutile crystal. The diffraction X-ray intensity distribution image of the diffracted X-rays derived from each lattice plane is obtained in an anatase type crystal, which is (200) plane. The method for analyzing titanium oxide according to Item. アナターゼ型結晶とルチル型結晶が不均一に混合共存する酸化チタン試料の局所的な混合比の分布画像を得る酸化チタン分析装置において、
光軸不変且つ波長可変にチタンのK吸収端の波長よりも長波長の単色の入射X線を発生させるX線発生部が固定保持されること、
当該X線発生部から出射した前記入射X線が前記酸化チタン試料の表面の被測定領域全体を照らすように前記酸化チタン試料が固定保持されること、
前記酸化チタン試料で回折されて前記被測定領域から出射する回折X線を検出するための二次元に配列された複数の検出素子からなる二次元位置敏感型検出器が固定保持されること、
前記被測定領域内の各部位から出射する所定の散乱角の回折X線をそれらの部位と一対一に対向した前記二次元位置敏感型検出器の各検出素子で区別して検出するために、前記酸化チタン試料と前記二次元位置敏感型検出器との間に前記被測定領域から出射する回折X線の角度発散を制限する角度発散制限手段が設けられていること、
各検出素子によって検出された回折X線の強度を各画素値とする二次元の回折X線強度分布画像を形成し記録する画像形成記録部が設けられていること、
前記入射X線の光軸、前記酸化チタン試料、前記角度発散制限手段、及び前記二次元位置敏感型検出器を固定したままでルチル型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とアナターゼ型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とを取得するために、前記X線発生部が少なくともそれらの格子面の格子間隔に対応した二種類の波長の単色の入射X線を発生させ得ること、
前記画像形成記録部が、ルチル型結晶について取得された回折X線強度分布画像とアナターゼ型結晶について取得された回折X線強度分布画像の対応する画素の画素値の比を各画素値とする、もしくは、さらに所定の換算を行った値を各画素値とする二次元の混合比分布画像を形成し記録し得ることを特徴とする、酸化チタン分析装置。
In a titanium oxide analyzer that obtains a local mixing ratio distribution image of a titanium oxide sample in which anatase-type crystals and rutile-type crystals coexist in a heterogeneous manner,
An X-ray generator that generates monochromatic incident X-rays having a wavelength longer than the wavelength of the K absorption edge of titanium in an optical axis invariable and wavelength-variable manner is fixedly held;
The titanium oxide sample is fixedly held so that the incident X-rays emitted from the X-ray generation unit illuminate the entire region to be measured on the surface of the titanium oxide sample;
A two-dimensional position sensitive detector consisting of a plurality of detection elements arranged in two dimensions for detecting diffracted X-rays diffracted by the titanium oxide sample and emitted from the measurement region;
In order to distinguish and detect diffracted X-rays having a predetermined scattering angle emitted from each part in the measurement region by each detection element of the two-dimensional position sensitive detector facing the parts one-to-one, Angle divergence limiting means for limiting the angle divergence of the diffracted X-rays emitted from the measurement region is provided between the titanium oxide sample and the two-dimensional position sensitive detector,
An image forming recording unit for forming and recording a two-dimensional diffracted X-ray intensity distribution image with the intensity of the diffracted X-ray detected by each detecting element as each pixel value;
While the optical axis of the incident X-ray, the titanium oxide sample, the angle divergence limiting means, and the two-dimensional position sensitive detector are fixed, the diffraction X-ray derived from a predetermined lattice plane of the rutile crystal In order to acquire a diffracted X-ray intensity distribution image and a diffracted X-ray intensity distribution image of diffracted X-rays derived from a predetermined one lattice plane of the anatase type crystal, the X-ray generation unit is at least a lattice of those lattice planes. The ability to generate monochromatic incident X-rays of two different wavelengths corresponding to the spacing;
The image forming recording unit uses each pixel value as a ratio of pixel values of corresponding pixels of the diffraction X-ray intensity distribution image acquired for the rutile crystal and the diffraction X-ray intensity distribution image acquired for the anatase crystal. Alternatively, the titanium oxide analyzer can form and record a two-dimensional mixture ratio distribution image in which each pixel value is a value obtained by performing a predetermined conversion.
前記二種類の波長をそれぞれ中心として所望の範囲で前記入射X線の波長を連続的に変え得ることを特徴とする、請求項7に記載の酸化チタン分析装置。   The titanium oxide analyzer according to claim 7, wherein the wavelength of the incident X-ray can be continuously changed in a desired range with the two types of wavelengths as the centers. 視射角が0度を超え3度以下の間の角度となるように前記酸化チタン試料が固定保持されること、前記入射X線が試料表面と平行な方向に幅広の線状断面を有すること、前記二次元位置敏感型検出器が試料表面に対して75度から105度の範囲内の一つの出射角を有する回折X線を検出する位置に固定保持されていることを特徴とする、請求項7または請求項8に記載の酸化チタン分析装置。   The titanium oxide sample is fixed and held so that the viewing angle is between 0 ° and 3 °, and the incident X-ray has a wide linear cross section in a direction parallel to the sample surface. The two-dimensional position sensitive detector is fixedly held at a position for detecting diffracted X-rays having one exit angle within a range of 75 to 105 degrees with respect to the sample surface. Item 9. The titanium oxide analyzer according to Item 7 or Item 8. 前記所定の一つの格子面における回折X線強度分布画像を取得する際の結晶格子面が、ルチル型結晶においては(111)面、(210)面、及び(211)面のうちのいずれか一つであり、アナターゼ型結晶においては(200)面であり、各格子面に由来する回折X線の回折X線強度分布画像を取得することを特徴とする、請求項7ないし9のいずれか一項に記載の酸化チタン分析装置。   The crystal lattice plane when acquiring a diffraction X-ray intensity distribution image on the predetermined one lattice plane is any one of (111) plane, (210) plane, and (211) plane in the rutile crystal. The diffraction X-ray intensity distribution image of the diffracted X-rays derived from each lattice plane is obtained in an anatase-type crystal (200) plane. The titanium oxide analyzer described in the item. アナターゼ型結晶とルチル型結晶が不均一に混合共存する酸化チタン試料の局所的な混合比の分布画像を得る酸化チタン分析装置において、
チタンのK吸収端の波長よりも長波長の単色X線からなる入射X線を発生させるX線発生部が固定保持されること、 当該X線発生部から出射した前記入射X線が前記酸化チタン試料の表面の被測定領域全体を照らすように前記酸化チタン試料が固定保持されること、
前記酸化チタン試料で回折されて前記被測定領域から出射する回折X線を検出するための二次元に配列された複数の検出素子からなる二次元位置敏感型検出器が、試料表面と同一の平面内で前記被測定領域の中心を通り前記入射X線の光軸に垂直に延在する回転軸線のまわりで回動可能に配置されていること、
前記被測定領域内の各部位から出射する一つの散乱角の回折X線をそれらの部位と一対一に対向した前記二次元位置敏感型検出器の各検出素子で区別して検出するために、前記酸化チタン試料と前記二次元位置敏感型検出器との間に前記被測定領域から出射する回折X線の角度発散を制限する角度発散制限手段が前記二次元位置敏感型検出器と一体的に設けられていること、
各検出素子によって検出された回折X線の強度を各画素値とする二次元の回折X線強度分布画像を形成し記録する画像形成記録部が設けられていること、
前記X線発生部及び前記酸化チタン試料を固定したままでルチル型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とアナターゼ型結晶の所定の一つの格子面に由来する回折X線の回折X線強度分布画像とを取得するために、前記二次元位置敏感型検出器が、前記被測定領域内の各部位と各検出素子との間の対応関係を変えることなしに少なくともそれらの格子面の格子間隔に対応する二つの散乱角の回折X線をそれぞれ検出する角度位置で保持され得ること、
前記画像形成記録部が、ルチル型結晶について取得された回折X線強度分布画像及びアナターゼ型結晶について取得された回折X線強度分布画像の対応する画素の画素値の比を各画素値とするもしくはさらに所定の換算を行った値を各画素値とする二次元の混合比分布画像を形成し記録し得ることを特徴とする、酸化チタン分析装置。
In a titanium oxide analyzer that obtains a local mixing ratio distribution image of a titanium oxide sample in which anatase-type crystals and rutile-type crystals coexist in a heterogeneous manner,
An X-ray generator that generates incident X-rays having a monochromatic X-ray having a wavelength longer than the wavelength of the K absorption edge of titanium is fixed and held, and the incident X-rays emitted from the X-ray generator are converted into the titanium oxide. The titanium oxide sample is fixed and held so as to illuminate the entire measurement area on the surface of the sample,
A two-dimensional position sensitive detector composed of a plurality of two-dimensionally arranged detection elements for detecting diffracted X-rays diffracted by the titanium oxide sample and emitted from the measurement region is the same plane as the sample surface Is disposed so as to be rotatable around a rotation axis extending through the center of the region to be measured and extending perpendicularly to the optical axis of the incident X-ray,
In order to distinguish and detect diffracted X-rays of one scattering angle emitted from each part in the measurement target region with each detection element of the two-dimensional position sensitive detector facing the parts one-to-one, An angle divergence limiting means for limiting the angle divergence of the diffracted X-rays emitted from the measurement region is provided integrally with the two-dimensional position sensitive detector between the titanium oxide sample and the two-dimensional position sensitive detector. Being done,
An image forming recording unit for forming and recording a two-dimensional diffracted X-ray intensity distribution image with the intensity of the diffracted X-ray detected by each detecting element as each pixel value;
The diffraction X-ray intensity distribution image of the diffracted X-ray derived from the predetermined one lattice plane of the rutile type crystal and the predetermined one lattice plane of the anatase type crystal with the X-ray generation portion and the titanium oxide sample fixed. In order to obtain a diffracted X-ray intensity distribution image of the derived diffracted X-ray, the two-dimensional position sensitive detector changes a correspondence relationship between each part in the measurement target region and each detection element. Without being able to be held at an angular position for detecting diffracted X-rays of two scattering angles respectively corresponding to the lattice spacing of at least their lattice planes,
The image forming recording unit sets each pixel value as a ratio of pixel values of corresponding pixels of the diffracted X-ray intensity distribution image acquired for the rutile crystal and the diffracted X-ray intensity distribution image acquired for the anatase crystal, or Furthermore, a titanium oxide analyzer characterized in that it can form and record a two-dimensional mixture ratio distribution image in which each pixel value is a value after a predetermined conversion.
前記X線発生部がチタンの特性X線を発生させるX線管からなることを特徴とする、請求項11に記載の酸化チタン分析装置。   The titanium oxide analyzer according to claim 11, wherein the X-ray generation unit includes an X-ray tube that generates characteristic X-rays of titanium. 前記X線発生部がチタンのKβ線を吸収するフィルターを備え、前記入射X線としてチタンのKα線が出射されるようにしてなることを特徴とする、請求項11または請求項12に記載の酸化チタン分析装置。   13. The X-ray generator according to claim 11 or 12, wherein the X-ray generation unit includes a filter that absorbs titanium Kβ rays, and titanium Kα rays are emitted as the incident X-rays. Titanium oxide analyzer. 前記Kβ線を吸収するフィルターが、ヨウ素またはヨウ素化合物を含む溶液が直接塗布されたX線取り出し窓、または、該溶液が塗布された高分子フィルムが貼付されたX線取り出し窓によって構成されているものであることを特徴とする、請求項13に記載の酸化チタン分析装置。   The filter that absorbs Kβ rays is configured by an X-ray extraction window directly coated with a solution containing iodine or an iodine compound, or an X-ray extraction window to which a polymer film coated with the solution is attached. The titanium oxide analyzer according to claim 13, wherein the titanium oxide analyzer is a thing. 前記二つの散乱角が、77.80°及び93.18°であり、前記所定の一つの格子面における回折X線強度分布画像を取得する際の結晶格子面が、ルチル型結晶においては(111)面、アナターゼ型結晶においては(200)面であり、各格子面に由来する回折X線の回折X線強度分布画像を取得することを特徴とする、請求項13または請求項14に記載の酸化チタン分析装置。   The two scattering angles are 77.80 ° and 93.18 °, and the crystal lattice plane when the diffraction X-ray intensity distribution image on the predetermined one lattice plane is acquired is (111) in the rutile crystal. The diffraction X-ray intensity distribution image of the diffracted X-ray derived from each lattice plane is obtained in the ()) plane and the (200) plane in the anatase type crystal. Titanium oxide analyzer. 前記二つの散乱角が、84.00°及び93.18°であり、前記所定の一つの格子面における回折X線強度分布画像を取得する際の結晶格子面が、ルチル型結晶においては(210)面であり、アナターゼ型結晶においては(200)面であり、各格子面に由来する回折X線の回折X線強度分布画像を取得することを特徴とする、請求項13または請求項14に記載の酸化チタン分析装置。   The two scattering angles are 84.00 ° and 93.18 °, and the crystal lattice plane when acquiring the diffraction X-ray intensity distribution image on the predetermined one lattice plane is (210 The diffracted X-ray intensity distribution image of the diffracted X-rays derived from each lattice plane is acquired in the anatase type crystal according to claim 13 or claim 14. The described titanium oxide analyzer. 前記二つの散乱角が、109.09°及び93.18°であり、前記所定の一つの格子面における回折X線強度分布画像を取得する際の結晶格子面が、ルチル型結晶においては(211)面であり、アナターゼ型結晶においては(200)面であり、各格子面に由来する回折X線の回折X線強度分布画像を取得することを特徴とする、請求項13または請求項14に記載の酸化チタン分析装置。   The two scattering angles are 109.09 ° and 93.18 °, and the crystal lattice plane when obtaining the diffraction X-ray intensity distribution image on the predetermined one lattice plane is (211 in the rutile crystal. The diffracted X-ray intensity distribution image of the diffracted X-rays derived from each lattice plane is acquired in the anatase type crystal according to claim 13 or claim 14. The described titanium oxide analyzer. 前記所定の一つの格子面における回折X線強度分布画像を取得する際の結晶格子面が、ルチル型結晶においては(111)面、(210)面、及び(211)面のうちのいずれか一つであり、アナターゼ型結晶においては(200)面であり、各格子面に由来する回折X線の回折X線強度分布画像を取得することを特徴とする、請求項11または請求項12に記載の酸化チタン分析装置。   The crystal lattice plane when acquiring a diffraction X-ray intensity distribution image on the predetermined one lattice plane is any one of (111) plane, (210) plane, and (211) plane in the rutile crystal. The diffracted X-ray intensity distribution image of the diffracted X-rays derived from each lattice plane is obtained in the anatase type crystal, which is a (200) plane. Titanium oxide analyzer. 前記二次元位置敏感型検出器が、前記被測定領域内の各部位と各検出素子との間の対応関係を変えることなしに、前記二つの散乱角をそれぞれ中心として所望の角度範囲で連続的に回動可能で且つ当該角度範囲内の任意の角度位置に保持可能であることを特徴とする、請求項11ないし18のいずれか一項に記載の酸化チタン分析装置。   The two-dimensional position sensitive detector can continuously operate in a desired angle range around the two scattering angles without changing the correspondence between each part in the measurement region and each detection element. The titanium oxide analyzer according to any one of claims 11 to 18, characterized in that the titanium oxide analyzer can be rotated at any angle and can be held at an arbitrary angular position within the angular range. 視射角が0度を超え3度以下の間の角度となるように前記酸化チタン試料が固定保持されること、及び前記入射X線が試料表面と平行な方向に幅広の線状断面を有することを特徴とする、請求項11ないし19のいずれか一項に記載の酸化チタン分析装置。   The titanium oxide sample is fixed and held so that the viewing angle is between 0 ° and 3 °, and the incident X-ray has a wide linear cross section in a direction parallel to the sample surface. The titanium oxide analyzer according to any one of claims 11 to 19, wherein the titanium oxide analyzer is characterized in that
JP2005114013A 2005-04-11 2005-04-11 Titanium oxide analysis method and titanium oxide analyzer for carrying out this method Expired - Fee Related JP4674352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114013A JP4674352B2 (en) 2005-04-11 2005-04-11 Titanium oxide analysis method and titanium oxide analyzer for carrying out this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114013A JP4674352B2 (en) 2005-04-11 2005-04-11 Titanium oxide analysis method and titanium oxide analyzer for carrying out this method

Publications (2)

Publication Number Publication Date
JP2006292551A true JP2006292551A (en) 2006-10-26
JP4674352B2 JP4674352B2 (en) 2011-04-20

Family

ID=37413272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114013A Expired - Fee Related JP4674352B2 (en) 2005-04-11 2005-04-11 Titanium oxide analysis method and titanium oxide analyzer for carrying out this method

Country Status (1)

Country Link
JP (1) JP4674352B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108709A1 (en) * 2010-03-05 2011-09-09 株式会社Ihi Nondestructive inspection device and method
JP2013134169A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Crystal phase quantitative method using x-ray diffraction
JP2015011031A (en) * 2013-06-26 2015-01-19 パナリティカル ビー ヴィ Diffraction imaging
CN104764760A (en) * 2015-03-19 2015-07-08 中国科学院兰州化学物理研究所 Polycrystalline X-ray diffraction-photocatalysis combination in situ characterization analysis system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058847B1 (en) * 2018-09-19 2019-12-24 인하대학교 산학협력단 CELL SEGMENTATION METHOD FOR ANODIZED TiO2 SURFACE STRUCTURE

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139299A (en) * 1986-12-02 1988-06-11 科学技術庁無機材質研究所長 One-dimensional scanning x-ray diffraction microscope
JPH0196542A (en) * 1987-10-09 1989-04-14 Hitachi Ltd Analysis of crystal structure
JPH04218753A (en) * 1990-03-19 1992-08-10 Nec Corp Total reflection x-ray diffraction microscopic apparatus
JPH0574907A (en) * 1991-06-19 1993-03-26 Nec Corp X-ray diffraction microscopic method
JPH05107203A (en) * 1991-10-15 1993-04-27 Jeol Ltd X-ray apparatus for evaluating surface condition of sample
JPH06249804A (en) * 1993-03-01 1994-09-09 Seiko Instr Inc Fluorescent x-ray spectroscopic device
JPH06258260A (en) * 1993-03-05 1994-09-16 Seiko Instr Inc X-ray diffraction device
JPH07229861A (en) * 1994-02-16 1995-08-29 Dkk Corp Radiation analyzer
JPH0972864A (en) * 1995-09-04 1997-03-18 Jeol Ltd X-ray diffraction measuring device
JP2000292379A (en) * 1999-04-12 2000-10-20 Rigaku Corp X-ray diffraction device and measuring method of x-ray locking curve
JP2004143453A (en) * 2002-10-02 2004-05-20 Mitsubishi Materials Corp Photocatalytic coating material and method for producing the same and photocatalytic coated film with photocatalytic function obtained by coating the material and multilayered photocatalytic coated film
JP2004255332A (en) * 2003-02-27 2004-09-16 Ichikoh Ind Ltd Visible light response type photocatalyst
JP2005083999A (en) * 2003-09-10 2005-03-31 National Institute For Materials Science X-ray diffraction microscope apparatus and x-ray diffraction measuring method by the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139299A (en) * 1986-12-02 1988-06-11 科学技術庁無機材質研究所長 One-dimensional scanning x-ray diffraction microscope
JPH0196542A (en) * 1987-10-09 1989-04-14 Hitachi Ltd Analysis of crystal structure
JPH04218753A (en) * 1990-03-19 1992-08-10 Nec Corp Total reflection x-ray diffraction microscopic apparatus
JPH0574907A (en) * 1991-06-19 1993-03-26 Nec Corp X-ray diffraction microscopic method
JPH05107203A (en) * 1991-10-15 1993-04-27 Jeol Ltd X-ray apparatus for evaluating surface condition of sample
JPH06249804A (en) * 1993-03-01 1994-09-09 Seiko Instr Inc Fluorescent x-ray spectroscopic device
JPH06258260A (en) * 1993-03-05 1994-09-16 Seiko Instr Inc X-ray diffraction device
JPH07229861A (en) * 1994-02-16 1995-08-29 Dkk Corp Radiation analyzer
JPH0972864A (en) * 1995-09-04 1997-03-18 Jeol Ltd X-ray diffraction measuring device
JP2000292379A (en) * 1999-04-12 2000-10-20 Rigaku Corp X-ray diffraction device and measuring method of x-ray locking curve
JP2004143453A (en) * 2002-10-02 2004-05-20 Mitsubishi Materials Corp Photocatalytic coating material and method for producing the same and photocatalytic coated film with photocatalytic function obtained by coating the material and multilayered photocatalytic coated film
JP2004255332A (en) * 2003-02-27 2004-09-16 Ichikoh Ind Ltd Visible light response type photocatalyst
JP2005083999A (en) * 2003-09-10 2005-03-31 National Institute For Materials Science X-ray diffraction microscope apparatus and x-ray diffraction measuring method by the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108709A1 (en) * 2010-03-05 2011-09-09 株式会社Ihi Nondestructive inspection device and method
JP5286411B2 (en) * 2010-03-05 2013-09-11 株式会社Ihi Nondestructive inspection equipment
JP2013134169A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Crystal phase quantitative method using x-ray diffraction
JP2015011031A (en) * 2013-06-26 2015-01-19 パナリティカル ビー ヴィ Diffraction imaging
CN104764760A (en) * 2015-03-19 2015-07-08 中国科学院兰州化学物理研究所 Polycrystalline X-ray diffraction-photocatalysis combination in situ characterization analysis system

Also Published As

Publication number Publication date
JP4674352B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
Bertrand et al. Development and trends in synchrotron studies of ancient and historical materials
JP6656519B2 (en) X-ray diffractometer
Tsuji et al. New developments of X-ray fluorescence imaging techniques in laboratory
Błachucki et al. A laboratory-based double X-ray spectrometer for simultaneous X-ray emission and X-ray absorption studies
US7680243B2 (en) X-ray measurement of properties of nano-particles
Szlachetko et al. Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray microscopy beamline ID21 (ESRF)
JP4674352B2 (en) Titanium oxide analysis method and titanium oxide analyzer for carrying out this method
JP3834652B2 (en) X-ray diffraction microscope apparatus and X-ray diffraction measurement method using X-ray diffraction microscope apparatus
WO2018102792A1 (en) X-ray diffraction and x-ray spectroscopy method and related apparatus
US6751287B1 (en) Method and apparatus for x-ray analysis of particle size (XAPS)
JP2014521106A (en) How to collect and process electron diffraction data
Egan et al. Dark-field hyperspectral X-ray imaging
JP5959057B2 (en) X-ray analyzer
US20030179850A1 (en) X-ray fluorescence holography apparatus
JP5081556B2 (en) X-ray diffraction measurement apparatus equipped with a Debye-Scherrer optical system and X-ray diffraction measurement method therefor
JP6009156B2 (en) Diffractometer
JP4581126B2 (en) X-ray diffraction analysis method and X-ray diffraction analysis apparatus
WO2014041675A1 (en) X-ray imaging device and x-ray imaging method
JP5346916B2 (en) X-ray analysis apparatus of sample provided with diffraction analyzer system for performing energy filter and angle filter
JP3982732B2 (en) X-ray fluorescence measurement equipment
JP3049313B2 (en) X-ray imaging analysis method and apparatus
JP2008180656A (en) Non-scanning wavelength-dispersive x-ray spectrometer and measuring method of using the same
JP6395275B2 (en) X-ray imaging apparatus and method of using the same
JP6202484B2 (en) Neutron imaging device and method of using the same
JP4660748B2 (en) X-ray fluorescence analysis method and X-ray fluorescence analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4674352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees