JPH04218753A - Total reflection x-ray diffraction microscopic apparatus - Google Patents

Total reflection x-ray diffraction microscopic apparatus

Info

Publication number
JPH04218753A
JPH04218753A JP2070209A JP7020990A JPH04218753A JP H04218753 A JPH04218753 A JP H04218753A JP 2070209 A JP2070209 A JP 2070209A JP 7020990 A JP7020990 A JP 7020990A JP H04218753 A JPH04218753 A JP H04218753A
Authority
JP
Japan
Prior art keywords
sample
rays
angle
incident
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2070209A
Other languages
Japanese (ja)
Other versions
JP2953735B2 (en
Inventor
Tomohisa Kitano
北野 友久
Tetsuya Ishikawa
哲也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUENERUGII BUTSURIGAKU KENKYU SHOCHO
NEC Corp
Original Assignee
KOUENERUGII BUTSURIGAKU KENKYU SHOCHO
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUENERUGII BUTSURIGAKU KENKYU SHOCHO, NEC Corp filed Critical KOUENERUGII BUTSURIGAKU KENKYU SHOCHO
Priority to JP2070209A priority Critical patent/JP2953735B2/en
Publication of JPH04218753A publication Critical patent/JPH04218753A/en
Application granted granted Critical
Publication of JP2953735B2 publication Critical patent/JP2953735B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To observe the crystal flaw in the vicinity of the surface of a sample, in allowing selected X-rays to be incident to the sample at an incident angle equal to or less than a critical angle generating total reflection, by shortening the wavelength of a monochrometer. CONSTITUTION:When the wavelength of X-rays 15 made monochromatic by a monochrometer 14 is slightly shortened by setting the omega rotation of a first goniometer 13 to a low angle, the angle thetabeta of diffraction from an asymmetric reflecting surface is slightly reduced so as to follow the shortening of the wavelength of X-rays 15 and, therefore, by performing the omega rotation of a second goniometer 17 at a low angle, the diffracted wave from a sample is obtained. As a result, the incident angle thetabeta-alpha of the X-rays made monochromatic incident to the sample 18 is reduced and, when this work is repeated, the incident angle thetabeta-alpha can be allowed to approach 0 without missing the asymmetric reflection from the sample 18 and, finally, a critical angle generating total reflection can be reduced. By this method, the diffracted wave from the sample can be microscopically observed under such a condition that the incident angle thetabeta-alpha is set to the critical angle or less by a photographic film 19.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面の微小な結晶欠陥を検出するための表面
に敏感な全反射X線回折顕微法装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a surface-sensitive total reflection X-ray diffraction microscopy device for detecting minute crystal defects on a surface.

(従来の技術) 単結晶内に存在する結晶欠陥(例えば、空孔、転位、積
層欠陥、析出、偏析など)は、半導体デバイス特性に悪
影響を及ぼす。従来、単結晶内の結晶欠陥の場所的分布
の模様を観察するために第2図に示したX線の回折現象
を用いたX線回折顕微法がある(参考:応用物理196
7,36,88−104)。入射X線21は、モノクロ
メータ22によって、単色化かつ角度発散の小さい、幅
の広いX線23に形成された後、試料24に入射し、試
料24からの回折X線25を写真フィルム26で撮影す
ることによって、結晶欠陥を回折顕微法的に観察してい
る。
(Prior Art) Crystal defects (eg, vacancies, dislocations, stacking faults, precipitation, segregation, etc.) existing in a single crystal have a negative effect on semiconductor device characteristics. Conventionally, there is an X-ray diffraction microscopy method that uses the X-ray diffraction phenomenon shown in Figure 2 to observe the pattern of the spatial distribution of crystal defects within a single crystal (Reference: Applied Physics 196
7, 36, 88-104). The incident X-rays 21 are formed by a monochromator 22 into wide X-rays 23 that are monochromatic and have small angular divergence, and then enter a sample 24, and the diffracted X-rays 25 from the sample 24 are captured by a photographic film 26. By photographing, crystal defects are observed using diffraction microscopy.

(発明が解決しようとする問題点) ところが従来の手法は、X線の試料への浸入深さが、数
μm程度と大きく、深さ方向の平均的な情報しか得るこ
とができず、表面極近傍のみの結晶欠陥の情報を得るこ
とが不可能であるという欠点があった。
(Problem to be solved by the invention) However, in the conventional method, the penetration depth of X-rays into the sample is large, approximately several μm, and only average information in the depth direction can be obtained, and surface polarization The drawback is that it is impossible to obtain information about crystal defects only in the vicinity.

本発明は、このような従来の欠点を除去せしめて、表面
極近傍の結晶欠陥をX線回折顕微法的に観察するための
装置を提供することにある。
The object of the present invention is to eliminate such conventional drawbacks and provide an apparatus for observing crystal defects in the very vicinity of the surface using X-ray diffraction microscopy.

(問題を解決するための手段) 本発明は、モノクロメータにより単色化されたX線を試
料に入射させ、試料のω回転を行うことにより試料から
の回折X線が非対称反射となる条件を保ちつつ、前記モ
ノクロメータにより選別された波長をモノクロメータの
ω回転によって短くすることによって入射X線の試料へ
の入射角をX線が全反射を起こす臨界角以下の状態とし
、試料からの回折X線を回折顕微法的に観察することを
特徴とする全反射X線回折顕徴法装置を提供するもので
ある。
(Means for Solving the Problem) The present invention maintains the condition that the diffracted X-rays from the sample are asymmetrically reflected by making monochromatic X-rays incident on the sample using a monochromator and performing ω rotation of the sample. At the same time, by shortening the wavelength selected by the monochromator by ω rotation of the monochromator, the angle of incidence of the incident X-rays on the sample is set to a state below the critical angle at which X-rays undergo total reflection, and the diffracted X-rays from the sample are The present invention provides a total internal reflection X-ray diffraction microscopy apparatus characterized by observing radiation using a diffraction microscopy method.

また、本発明は連続な波長のX線を発生するX線源と、
前記X線源より発生したX線を単色化するためのモノク
ロメータと、モノクロメータによって単色化されたX線
を試料に照射すべく配置された試料台と、X線照射によ
って試料より発生した回折X線を観測するための手段と
を備え、かつ前記モノクロメータと前記試料台はω回転
可能であることを特徴とする全反射X線回折顕微法装置
を提供するものである。
The present invention also provides an X-ray source that generates X-rays of continuous wavelengths;
A monochromator for monochromating the X-rays generated from the X-ray source, a sample stage arranged to irradiate the sample with the monochromatic X-rays by the monochromator, and diffraction generated from the sample by the X-ray irradiation. The present invention provides a total internal reflection X-ray diffraction microscopy apparatus comprising means for observing X-rays, and wherein the monochromator and the sample stage are rotatable by ω.

(作用) 試料と入射X線との関係は、X線の入射角を小さくする
ために非対称反射となる条件を満たす配置にする。入射
X線は連続的な波長を持つX線モノクロメータによって
単色化される。このときモノクロメータのω回転を低角
に回転すると、得られるX線の波長は短くなる。この波
長の変化に追随して、試料もω回転させ常に非対称反射
となる条件を保つようにする。この非対称反射の得られ
る状態で入射X線の波長をさらに短くして行くと、全反
射の生ずる臨界角以外の入射角で試料より回折X線を得
ることができる。その結果、X線の試料への浸入深さを
従来に比べて著しく浅くできるので、試料表面極近傍の
情報を得られる。
(Function) The relationship between the sample and the incident X-rays is arranged to satisfy the conditions for asymmetric reflection in order to reduce the incident angle of the X-rays. The incident X-rays are monochromated by an X-ray monochromator with continuous wavelengths. At this time, if the ω rotation of the monochromator is rotated to a low angle, the wavelength of the obtained X-rays becomes shorter. Following this change in wavelength, the sample is also rotated by ω so that conditions for asymmetric reflection are always maintained. If the wavelength of the incident X-ray is further shortened in a state where this asymmetric reflection is obtained, diffracted X-rays can be obtained from the sample at an incident angle other than the critical angle at which total internal reflection occurs. As a result, the penetration depth of X-rays into the sample can be made significantly shallower than in the past, making it possible to obtain information very close to the sample surface.

(実施例) シンクロトロン放射光は強力な連続の波長を有し、回折
現象を用いた結晶欠陥用のX線源として大変有用なもの
である。本発明は、このシンクロトロン放射光の特徴を
有効に利用したものである。
(Example) Synchrotron radiation has a powerful continuous wavelength and is very useful as an X-ray source for detecting crystal defects using a diffraction phenomenon. The present invention effectively utilizes the characteristics of synchrotron radiation.

以下、本発明の実施例について、図面を参照にして詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明により全反射X線回折顕微法装置の一
実施例を示す図である。第1図において符号11は、連
続光であるシンクロトロン放射光である。このシンクロ
トロン放射光11はスリット12によってX線ビームサ
イズを形成された後、ω−2θ回転可能な第1ゴニオメ
ータ13のヘッドに設置されたモノクロメータ14によ
って、ある特定の波長に単色化される。この単色化され
たX線15は、スリット16によってビームサイズを形
成された後、ω−2θ回転可能な第2ゴニオメータ17
のヘッドに設置された試料18に入射する。試料18か
らの反射は、試料表面に対して斜めに存在する格子面を
利用する非対称反射を用い、試料18に入射する単色化
されたX線15の入射角θβ−αを小さくするように非
対称反射面を選ぶ。ここでθβは、モノクロメータ14
によって単色化されたX線15の試料18の非対称反射
面による回折角であり、αは、試料表面と非対称反射面
のなす角である。
FIG. 1 is a diagram showing an embodiment of a total internal reflection X-ray diffraction microscopy apparatus according to the present invention. In FIG. 1, reference numeral 11 indicates synchrotron radiation light, which is continuous light. After this synchrotron radiation light 11 is formed into an X-ray beam size by a slit 12, it is monochromated to a specific wavelength by a monochromator 14 installed in the head of a first goniometer 13 that is rotatable in ω-2θ. . After the monochromated X-rays 15 are formed into a beam size by a slit 16, a second goniometer 17 which is rotatable in ω-2θ
The light is incident on the sample 18 installed in the head of the camera. The reflection from the sample 18 is asymmetrical so as to reduce the incident angle θβ−α of the monochromated X-rays 15 incident on the sample 18 using asymmetric reflection that utilizes lattice planes that are oblique to the sample surface. Choose a reflective surface. Here, θβ is the monochromator 14
is the diffraction angle of the monochromatic X-ray 15 caused by the asymmetric reflecting surface of the sample 18, and α is the angle formed by the sample surface and the asymmetric reflecting surface.

今、モノクロメータ14によって単色化されたX線15
の波長を第1ゴニオメータ13のω回転を低角に回転す
ることによって、わずかに短くすると非対称反射面から
の回折角θβは、それに追従してわずかに減少するため
、第2ゴニオメータ17のω回転を低角に回転すること
によって試料18からの回折線を得ることが可能である
。その結果、試料18に入射する単色化されたX線15
の入射角θβ−αは減少し、この作業を繰り返し行えば
、試料18からの非対称反射を見失うことなく入射角θ
β−αを0に近づけることが可能となりついには全反射
を起こす臨界角よりも小さくすることが可能である。こ
の単色化されたX線15の波長をモノクロメータ14に
よって連続的に短くすることができるのは、シンクロト
ロン放射光の連続性を有効に利用したものである。入射
角θβ−αを臨界角以下にした条件で、試料18からの
回折線を写真フィルム19で顕微法的に観察する。
Now, the X-ray 15 has been made monochromatic by the monochromator 14.
By rotating the ω rotation of the first goniometer 13 to a lower angle, the wavelength of It is possible to obtain the diffraction line from the sample 18 by rotating it at a low angle. As a result, monochromatic X-rays 15 incident on the sample 18
The incident angle θβ−α decreases, and by repeating this process, the incident angle θβ−α decreases without losing sight of the asymmetric reflection from the sample 18.
It is possible to bring β-α close to 0, and finally to make it smaller than the critical angle at which total internal reflection occurs. The wavelength of the monochromated X-rays 15 can be continuously shortened by the monochromator 14 by effectively utilizing the continuity of synchrotron radiation light. Diffraction lines from the sample 18 are observed microscopically using a photographic film 19 under the condition that the incident angle θβ−α is below the critical angle.

以上の実施例においてはX線源として、シンクロトロン
放射光源を用いたが、これは強力な連続波長のX線が容
易に得られるためである。本発明の効果は連続波長のX
線が得られるものであれば、例えば通常のX線封入管で
あっても良い。また、実施例でばω−2θ回転可能なゴ
ニオメータを装置に用いたが、ω回転可能なゴニオメー
タであれば良い。
In the above embodiments, a synchrotron radiation source was used as the X-ray source because it can easily provide powerful continuous wavelength X-rays. The effect of the present invention is that the continuous wavelength
For example, a normal X-ray sealed tube may be used as long as it can obtain radiation. Further, in the embodiment, a goniometer capable of ω-2θ rotation was used in the apparatus, but any goniometer capable of ω rotation may be used.

(発明の効果) 本発明によれば、全反射を起こす臨界角以下の入射角で
試料にX線を入射し回折X線が得られるため表面から数
nmという極近傍に存在する結晶欠陥、例えば、スワー
ル、表面加工歪層、スクラツチ、転移等をX線顕微法的
に観察可能である。これら結晶欠陥と半導体デバイス特
性の劣化との対比などに有効な手段として用いることが
できる。
(Effects of the Invention) According to the present invention, diffracted X-rays can be obtained by injecting X-rays into the sample at an incident angle below the critical angle that causes total internal reflection, so crystal defects existing in the extremely close vicinity of several nm from the surface, e.g. , swirls, strained layers due to surface treatment, scratches, dislocations, etc. can be observed using X-ray microscopy. It can be used as an effective means for comparing these crystal defects and deterioration of semiconductor device characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による構成図、第2図は、従来のX線
回折顕微法装置を示す構成図である。 11…シンクロトロン放射光、12…スリット、13…
第1ゴニオメータ、14…モノクロメータ、15…単色
化されたX線、16…スリット、17…第2ゴニオメー
タ、18…試料、19…写真フィルム、20…シンクロ
トロン放射光源、21…入射X線、22…モノクロメー
タ、23…X線、24…試料、25…回折X線、26…
写真フィルム。 代理人弁理士 内原晋
FIG. 1 is a block diagram according to the present invention, and FIG. 2 is a block diagram showing a conventional X-ray diffraction microscopy apparatus. 11... Synchrotron radiation, 12... Slit, 13...
1st goniometer, 14... Monochromator, 15... Monochromated X-ray, 16... Slit, 17... Second goniometer, 18... Sample, 19... Photographic film, 20... Synchrotron radiation light source, 21... Incident X-ray, 22... Monochromator, 23... X-ray, 24... Sample, 25... Diffracted X-ray, 26...
photographic film. Representative Patent Attorney Susumu Uchihara

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】モノクロメータにより単色化されたX線を
試料に 入射させ、試料のω回転を行うことにより試料からの回
折X線が非対称反射となる条件を保ちつつ、前記モノク
ロメータのω回転を行うことにより入射X線の波長を短
くして入射X線の試料への入射角をX線が全反射を起こ
す臨界角以下の状態として得られる試料からの回折X線
を回折顕微法的に観察することを特徴とする全反射X線
回折顕微法装置。
[Claim 1] Injecting monochromatic X-rays into a sample by a monochromator, and performing ω rotation of the sample, while maintaining a condition in which the diffracted X-rays from the sample are asymmetrically reflected. By doing this, the wavelength of the incident X-rays is shortened and the angle of incidence of the incident X-rays on the sample is below the critical angle at which the X-rays undergo total internal reflection. A total reflection X-ray diffraction microscopy device characterized by observation.
【請求項2】連続な波長のX線を発生するX線源と、前
記X線 源より発生したX線を単色化するためのモノクロメータ
と、モノクロメータによって単色化されたX線を試料に
照射すべく配置された試料台と、X線照射によって試料
より発生した回折X線を観測するための手段とを備え、
かつ前記モノクロメータと前記試料台はω回転可能であ
ることを特徴とする全反射X線回折顕微法装置。
2. An X-ray source that generates X-rays of continuous wavelength; a monochromator for monochromating the X-rays generated by the X-ray source; comprising a sample stage arranged for irradiation and means for observing diffracted X-rays generated from the sample by X-ray irradiation,
A total internal reflection X-ray diffraction microscopy apparatus characterized in that the monochromator and the sample stage are rotatable by ω.
JP2070209A 1990-03-19 1990-03-19 Total reflection X-ray diffraction microscopy method and diffraction microscopy apparatus Expired - Fee Related JP2953735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2070209A JP2953735B2 (en) 1990-03-19 1990-03-19 Total reflection X-ray diffraction microscopy method and diffraction microscopy apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2070209A JP2953735B2 (en) 1990-03-19 1990-03-19 Total reflection X-ray diffraction microscopy method and diffraction microscopy apparatus

Publications (2)

Publication Number Publication Date
JPH04218753A true JPH04218753A (en) 1992-08-10
JP2953735B2 JP2953735B2 (en) 1999-09-27

Family

ID=13424906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2070209A Expired - Fee Related JP2953735B2 (en) 1990-03-19 1990-03-19 Total reflection X-ray diffraction microscopy method and diffraction microscopy apparatus

Country Status (1)

Country Link
JP (1) JP2953735B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323545A (en) * 1991-04-22 1992-11-12 Nec Corp Method of total reflection x-ray diffraction microscopy
JP2006292551A (en) * 2005-04-11 2006-10-26 National Institute For Materials Science Titanium oxide analyzing method and titanium oxide analyzer carrying out it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323545A (en) * 1991-04-22 1992-11-12 Nec Corp Method of total reflection x-ray diffraction microscopy
JP2006292551A (en) * 2005-04-11 2006-10-26 National Institute For Materials Science Titanium oxide analyzing method and titanium oxide analyzer carrying out it

Also Published As

Publication number Publication date
JP2953735B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
Lang A method for the examination of crystal sections using penetrating characteristic X radiation
Kohra et al. X-Ray Diffraction Topography Utilizing Double-Crystal Arrangement of (+,+) or Non-Parallel (+,-) Setting
US4928294A (en) Method and apparatus for line-modified asymmetric crystal topography
JPH04323545A (en) Method of total reflection x-ray diffraction microscopy
JPH04218753A (en) Total reflection x-ray diffraction microscopic apparatus
Kimura et al. Surface‐selective x‐ray topographic observations of mechanochemical polished silicon surfaces using synchrotron radiation
Parsons et al. Influence of crystalline defects on 2-beam crystal lattice images-Experimental
Yao et al. Synchrotron white beam topographic imaging in grazing Bragg-Laue geometries
Hu et al. High-resolution X-ray characterization of periodically domain-inverted nonlinear optical crystals
Świątek et al. X-Ray topography of the subsurface crystal layers in the skew asymmetric reflection geometry
JP2967609B2 (en) Total reflection X-ray diffraction microscopy
SU1651173A1 (en) X-ray topography method of crystal structure defects detection
Matsui et al. Study of X-ray topography using the super-Borrmann effect
JP3176441B2 (en) Evaluation method of single crystal surface layer
JP2936808B2 (en) X-ray diffraction microscopy
JPH04218754A (en) X-ray diffraction microscopic apparatus
JPH0625740B2 (en) Method for detecting defects in thin film layer of crystal substrate
Beard Jr et al. High resolution imaging of electronic devices via x‐ray diffraction topography
JPH02254347A (en) X-ray diffraction apparatus
Patel Computer-simulation methods in X-ray topography
Born et al. Perspective fields of application of texture topography and further development of its apparatus
Alexandropoulos et al. Use of kinematical diffraction in X-ray topography
Khounsary Advances in X-Ray/EUVOptics and Components Ill
JP2953420B2 (en) Plane wave X-ray microbeam generation method and apparatus
Donaghey et al. Characterization of GaAs substrates and epitaxial GaAs 1− x P x layers by divergent x-ray beam diffraction

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees