JP2967609B2 - Total reflection X-ray diffraction microscopy - Google Patents

Total reflection X-ray diffraction microscopy

Info

Publication number
JP2967609B2
JP2967609B2 JP3146374A JP14637491A JP2967609B2 JP 2967609 B2 JP2967609 B2 JP 2967609B2 JP 3146374 A JP3146374 A JP 3146374A JP 14637491 A JP14637491 A JP 14637491A JP 2967609 B2 JP2967609 B2 JP 2967609B2
Authority
JP
Japan
Prior art keywords
diffraction
wafer
ray
total reflection
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3146374A
Other languages
Japanese (ja)
Other versions
JPH04369850A (en
Inventor
友久 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3146374A priority Critical patent/JP2967609B2/en
Publication of JPH04369850A publication Critical patent/JPH04369850A/en
Application granted granted Critical
Publication of JP2967609B2 publication Critical patent/JP2967609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Siウェハー表面極く
近傍の微小な結晶欠陥を検出するための表面敏感な全反
射X線回折顕微方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-sensitive total reflection X-ray diffraction microscopic method for detecting minute crystal defects very near the surface of a Si wafer.

【0002】[0002]

【従来の技術】Siウェハー内に存在する結晶欠陥(例
えば、空孔、格子間原子、転位、積層欠陥、析出、偏
析、表面研磨歪み等)は、半導体デバイス特性に悪影響
を及ぼす。特に、近年の超集積回路に代表される半導体
デバイスは、高集積化・多層膜化しつつあり、応力集
中、イオン注入、ドライエッチング等の外部要因により
新たな結晶欠陥がSiウェハーに発生しやすい環境にあ
る。これら結晶欠陥は、半導体のバンド構造における禁
制体中に深い準位を形成する傾向にあり、キャリアの生
成・再結合中心となりえる。従来、Siウェハー内の結
晶欠陥の場所的分布の模様を観察するために様々なX線
の回折現象を用いたX線回折顕微方法が提案されてき
た。しかしながら、表面極く近傍のX線の消衰距離より
も十分に小さな歪み場しか有しない結晶欠陥の観察に適
した方法は、存在していない。
2. Description of the Related Art Crystal defects (for example, vacancies, interstitial atoms, dislocations, stacking faults, precipitation, segregation, surface polishing distortion, etc.) existing in a Si wafer adversely affect semiconductor device characteristics. In particular, semiconductor devices typified by recent super-integrated circuits are becoming highly integrated and multilayered, and are likely to have new crystal defects easily generated on Si wafers due to external factors such as stress concentration, ion implantation, and dry etching. It is in. These crystal defects tend to form deep levels in the forbidden body in the band structure of the semiconductor, and can be generation and recombination centers of carriers. Conventionally, X-ray diffraction microscopy methods using various X-ray diffraction phenomena have been proposed in order to observe the pattern of the spatial distribution of crystal defects in a Si wafer. However, there is no method suitable for observing a crystal defect having a strain field sufficiently smaller than the extinction distance of the X-ray in the vicinity of the surface.

【0003】[0003]

【発明が解決しようとする課題】従来のX線回折顕微法
装置では、X線Siウェハーへの侵入深さが数μm程度
と大きく、深さ方向の平均的な情報しか得ることができ
ず、近年の浅い接合において半導体デバイスが要求する
表面極く近傍の結晶欠陥の情報を得ることが不可能であ
るという欠点があった。また、得られた回折像は、完全
性の高い結晶性を有する場合において得られる動力学的
回折効果に基づいているものであり、微小な歪み場を有
する結晶欠陥を観察することは不可能であった。本発明
は、このような従来の欠点を除去せしめて、表面極く近
傍の微小な結晶欠陥をX線回折顕微法的に観察するため
の方法を提供することにある。
In a conventional X-ray diffraction microscope, the depth of penetration into an X-ray Si wafer is as large as about several μm, and only average information in the depth direction can be obtained. In recent years, in a shallow junction, there has been a defect that it is impossible to obtain information on crystal defects very near the surface required by a semiconductor device. In addition, the obtained diffraction image is based on a dynamic diffraction effect obtained in the case of having high perfect crystallinity, and it is impossible to observe a crystal defect having a minute strain field. there were. An object of the present invention is to provide a method for observing minute crystal defects very near the surface by X-ray diffraction microscopy while eliminating such conventional defects.

【0004】[0004]

【課題を解決するための手段】本発明の全反射X線回折
顕微法は、測定対象のシリコン結晶に対し、単色化した
シンクロトロン放射光を全反射条件で照射して非対称反
射された回折線を得た後、前記回折線の強度のピークか
らはずれた角度位置で回折像を撮影することを特徴とす
る。
According to the total reflection X-ray diffraction microscopy of the present invention, a silicon crystal to be measured is made monochromatic.
Irradiation with synchrotron radiation under total internal reflection conditions
After obtaining the irradiated diffraction line, the peak of the intensity of the diffraction line
It is characterized by taking diffraction images at deviated angular positions
You.

【0005】[0005]

【実施例】シンクロトロン放射光は、強力な連続の波長
を有し、回折現象を用いた結晶欠陥評価用のX線源とし
て大変有用なものである。本発明は、このシンクロトロ
ン放射光の特徴を有効に利用したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Synchrotron radiation has a strong continuous wavelength and is very useful as an X-ray source for crystal defect evaluation using diffraction phenomena. The present invention makes effective use of the features of the synchrotron radiation light.

【0006】以下、本発明の実施例について図面を参照
にして詳細に説明する。図1は、本発明による全反射X
線回折顕微法装置の一実施例を示す図である。符号11
は、連続光であるシンクロトロン放射光である。このシ
ンクロトロン放射光11は、スリット12によってX線
ビームサイズを成形された後、Siの(111)面を有
する結晶を設置した2結晶分光器13によって単色化さ
れる。この単色化されたX線14は、スリット15によ
ってビームサイズを成形された後、ω−2θ回転可能な
ゴニオメータ16のヘッドに設置された(100)Si
ウェハー17に入射する。(100)Siウェハー17
からの回折は、(100)表面に対して35.26°傾
いた格子面である422非対称反射を用いる。仮に、2
結晶分光器13によってシンクロトロン放射光11から
波長λ=1.29Aを持つX線14を選別し、ω−2θ
回転可能なゴニオメータ16によって、(100)Si
ウェハー17をX線14に対して入射角(θB −α)を
持つように設置すると、(100)Siウェハー17の
422非対称反射による回折線18を得ることができ
る。ここで、θB は回折角度であり35.58°を有
し、αは(100)表面と(422)面とのなす角であ
り、前記した35.26°の値を有する。そして、X線
14の(100)Siウェハー17への入射角は0.3
2°となる。この時、図2において計算された侵入深さ
曲線21が示すようにX線14の(100)Siウェハ
ー17内への侵入深さは数千A程度となる。2結晶分光
器13によって選別されたX線14の波長を、2結晶分
光器13をシンクロトロン放射光11に対して低角側に
逐次回転することによって僅かに短くすると、422非
対称反射面による回折角度θB はそれに追従して減少す
る。その結果、(100)Siウェハー17からの回折
線18を見失うことなく、X線14の(100)Siウ
ェハー17への入射角を減少させ、ついには全反射を起
こす臨界角θC よりも小さくすることが可能である。こ
れはシンクロトロン放射光の波長連続性とSi結晶から
の非対称反射とを有効に利用したものである。この操作
をX線14の波長がλ=1.284A近傍になるまで行
うと、X線14の(100)Siウェハー17への入射
角は0.13°となり、臨界角θC =0.18°よりも
小さくなる。この時、反射率曲線22が示すようにX線
14の(100)Siウェハー上での反射率は1近くに
なり、X線の場の強度曲線23が示すようにX線の場の
強さも十分大きい。また、侵入深さ曲線21が示すよう
にX線14の(100)Siウェハー18内への侵入深
さは数十A程度となり、表面極く近傍の情報を得ること
ができる。このように、(100)Siウェハー17表
面で全反射を起こした条件下で、(100)Siウェハ
ー17からの回折線18を得ることが出来る。ここで、
ω−2θ回転可能なゴニオメータ16によって(10
0)Siウェハー17を回折線18のピークの裾の角度
位置に設置する。この配置では、完全性の高いバルク結
晶からの動力学的回折強度は、極度に抑えられており、
表面極く近傍に存在する微小な結晶欠陥によって生じる
運動学的回折強度が相対的に増大している状況にある。
この様な条件下のもとで、(100)Siウェハー17
の422非対称反射による回折線18を写真フィルム1
9で顕微法的に観察する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a total reflection X according to the present invention.
It is a figure which shows one Example of a line diffraction microscopy apparatus. Code 11
Is synchrotron radiation, which is continuous light. This synchrotron radiation light 11 is shaped into an X-ray beam by a slit 12 and then monochromatized by a two-crystal spectroscope 13 provided with a crystal having a Si (111) plane. This monochromatic X-ray 14 is shaped into a beam size by a slit 15 and then installed on the head of a goniometer 16 rotatable by ω-2θ (100) Si.
The light enters the wafer 17. (100) Si wafer 17
Diffraction from uses a 422 asymmetric reflection, which is a grating plane tilted 35.26 ° relative to the (100) surface. For example, 2
An X-ray 14 having a wavelength λ = 1.29 A is selected from the synchrotron radiation 11 by a crystal spectroscope 13, and ω−2θ
The rotatable goniometer 16 provides (100) Si
When the wafer 17 is set so as to have an incident angle (θ B −α) with respect to the X-ray 14, the diffraction line 18 due to the 422 asymmetric reflection of the (100) Si wafer 17 can be obtained. Here, θ B is a diffraction angle having 35.58 °, and α is an angle formed between the (100) surface and the (422) plane, and has the above-mentioned value of 35.26 °. The incident angle of the X-rays 14 on the (100) Si wafer 17 is 0.3
2 °. At this time, as shown by the penetration depth curve 21 calculated in FIG. 2, the penetration depth of the X-ray 14 into the (100) Si wafer 17 is about several thousand A. When the wavelength of the X-rays 14 selected by the two-crystal spectroscope 13 is slightly shortened by sequentially rotating the two-crystal spectroscope 13 toward the low-angle side with respect to the synchrotron radiation 11, diffraction by the 422 asymmetric reflection surface is performed. The angle θ B decreases accordingly. As a result, the incident angle of the X-rays 14 on the (100) Si wafer 17 is reduced without losing the diffraction line 18 from the (100) Si wafer 17 and finally becomes smaller than the critical angle θ C that causes total reflection. It is possible to This makes effective use of the wavelength continuity of synchrotron radiation and asymmetrical reflection from a Si crystal. When this operation is performed until the wavelength of the X-rays 14 becomes close to λ = 1.284 A, the incident angle of the X-rays 14 on the (100) Si wafer 17 becomes 0.13 °, and the critical angle θ C = 0.18. °. At this time, the reflectivity of the X-ray 14 on the (100) Si wafer is close to 1 as indicated by the reflectivity curve 22, and the intensity of the X-ray field is also changed as indicated by the X-ray field intensity curve 23. Big enough. Further, as shown by the penetration depth curve 21, the penetration depth of the X-rays 14 into the (100) Si wafer 18 is about several tens of amperes, and information near the surface can be obtained. As described above, the diffraction line 18 from the (100) Si wafer 17 can be obtained under the condition that the total reflection occurs on the surface of the (100) Si wafer 17. here,
(10) by the goniometer 16 rotatable by ω-2θ
0) The Si wafer 17 is set at an angular position at the foot of the peak of the diffraction line 18. In this configuration, the dynamic diffraction intensity from the highly intact bulk crystal is extremely suppressed,
The kinematic diffraction intensity generated by minute crystal defects existing very near the surface is relatively increasing.
Under such conditions, the (100) Si wafer 17
Line 18 due to 422 asymmetric reflection of photographic film 1
Observe microscopically at 9.

【0007】本発明は、(100)表面に対して25.
24°傾いた格子面である311非対称反射を用いても
同様な効果を発揮する。前記した手順を用いて、最終的
にシンクロトロン放射光11より1.404A近傍の波
長を選別すると、X線14の(100)Siウェハー1
7への入射角は、0.15°となり、臨界角0.20°
より小さくなる。その結果、(100)Siウェハー1
7表面で全反射を起こした条件下で、(100)Siウ
ェハー17からの回折線18を得ることが出来る。ここ
で、ω−2θ回転可能なゴニオメータ16によって(1
00)Siウェハー17を回折線18のピークの裾の角
度位置に設置し、写真フィルム19によって回折顕微法
的に撮影すれば、表面極く近傍に存在する微小な結晶欠
陥を観察することが出来る。
[0007] The present invention relates to 25.
A similar effect can be obtained by using 311 asymmetric reflection, which is a lattice plane inclined by 24 °. When the wavelength near 1.404 A is finally selected from the synchrotron radiation 11 using the above-described procedure, the (100) Si wafer 1
7 was 0.15 °, and the critical angle was 0.20 °
Smaller. As a result, the (100) Si wafer 1
A diffraction line 18 from a (100) Si wafer 17 can be obtained under the condition that total reflection occurs on the surface 7. Here, (1)
00) If the Si wafer 17 is set at an angle position at the foot of the peak of the diffraction line 18 and photographed by diffraction microscopy with the photographic film 19, minute crystal defects existing very near the surface can be observed. .

【0008】本発明は、(100)表面に対して、〈1
00〉方向に4°傾けられた表面を有するSiエピタキ
シャル結晶に対しても同様な効果を発揮する。この場
合、4°傾けられた〈100〉方向と垂直な084面に
よる非対称反射を用いるのが有効である。前記した手順
を用いて、最終的にシンクロトロン放射光11より、
1.086A近傍の波長を選別し、X線14のSiエピ
タキシャル結晶への入射角を、臨界角0.156°以下
にし、回折線18のピークの裾の角度位置で回折顕微法
的に撮影すれば、表面極く近傍に存在する微小な結晶欠
陥を観察することが出来る。
According to the present invention, the (1)
A similar effect is exerted on a Si epitaxial crystal having a surface inclined by 4 ° in the <00> direction. In this case, it is effective to use asymmetrical reflection by the 084 plane perpendicular to the <100> direction inclined by 4 °. Using the procedure described above, finally, from the synchrotron radiation 11,
A wavelength near 1.086 A is selected, the incident angle of the X-rays 14 on the Si epitaxial crystal is reduced to a critical angle of 0.156 ° or less, and imaging is performed by diffraction microscopy at the angular position at the foot of the peak of the diffraction line 18. For example, minute crystal defects existing very close to the surface can be observed.

【0009】[0009]

【発明の効果】以上説明したように本発明によれば、表
面から数十Aという極く近傍に存在する微小な結晶欠陥
をX線顕微法的に観察可能であり、これら結晶欠陥と半
導体デバイス特性の劣化との対比に有効な効果を有す
る。
As described above, according to the present invention, it is possible to observe, by X-ray microscopy, minute crystal defects existing in the vicinity of several tens of amperes from the surface. This has an effective effect on the comparison with the characteristic deterioration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明における条件下での計算結果である。FIG. 2 is a calculation result under conditions according to the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定対象のシリコン結晶に対し、単色化
したシンクロトロン放射光を全反射条件で照射して非対
称反射された回折線を得た後、前記回折線の強度のピー
クからはずれた角度位置で回折像を撮影することを特徴
とする全反射X線回折顕微法。
1. A monochromatization of a silicon crystal to be measured.
Irradiated with synchrotron radiation under total internal reflection conditions
After obtaining the reflected diffraction line, the peak of the intensity of the diffraction line is obtained.
Total reflection X-ray diffraction microscopy , wherein a diffraction image is taken at an angular position deviated from the angle .
JP3146374A 1991-06-19 1991-06-19 Total reflection X-ray diffraction microscopy Expired - Fee Related JP2967609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3146374A JP2967609B2 (en) 1991-06-19 1991-06-19 Total reflection X-ray diffraction microscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3146374A JP2967609B2 (en) 1991-06-19 1991-06-19 Total reflection X-ray diffraction microscopy

Publications (2)

Publication Number Publication Date
JPH04369850A JPH04369850A (en) 1992-12-22
JP2967609B2 true JP2967609B2 (en) 1999-10-25

Family

ID=15406273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3146374A Expired - Fee Related JP2967609B2 (en) 1991-06-19 1991-06-19 Total reflection X-ray diffraction microscopy

Country Status (1)

Country Link
JP (1) JP2967609B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5508906B2 (en) 2009-04-24 2014-06-04 株式会社東芝 Magnetic resonance imaging apparatus and RF coil

Also Published As

Publication number Publication date
JPH04369850A (en) 1992-12-22

Similar Documents

Publication Publication Date Title
JP3813512B2 (en) Bonded substrate evaluation method and evaluation apparatus, and semiconductor device manufacturing method
Hart Synchrotron radiation–its application to high-speed, high-resolution X-ray diffraction topography
Pateras et al. Nondestructive three-dimensional imaging of crystal strain and rotations in an extended bonded semiconductor heterostructure
Kohra et al. X-Ray Diffraction Topography Utilizing Double-Crystal Arrangement of (+,+) or Non-Parallel (+,-) Setting
JP2967609B2 (en) Total reflection X-ray diffraction microscopy
US4928294A (en) Method and apparatus for line-modified asymmetric crystal topography
JPH04323545A (en) Method of total reflection x-ray diffraction microscopy
Parsons et al. Influence of crystalline defects on 2-beam crystal lattice images-Experimental
Mikulík et al. Synchrotron area diffractometry as a tool for spatial high-resolution three-dimensional lattice misorientation mapping
Matsui et al. Microscopic strain analysis of semiconductor crystals using a synchrotron X-ray microbeam
Prieur et al. Threading dislocations in silicon layer produced by separation by implanted oxygen process
JP2953735B2 (en) Total reflection X-ray diffraction microscopy method and diffraction microscopy apparatus
Härtwig et al. X‐ray Diffraction Topography at a Synchrotron Radiation Source Applied to the Study of Bonded Silicon on Insulator Material
Hilgarth Direct observation of dislocations in GaP crystals
JP2008082939A (en) Two-crystallization x-ray topography device
JP2936808B2 (en) X-ray diffraction microscopy
Harada et al. Observation of the mechanochemically polished surface of Si wafer by electron microscopy and diffuse x‐ray scattering
Rantamäki et al. Grazing incidence synchrotron x-ray topography as a tool for denuded zone studies of silicon wafers
Beard Jr et al. High resolution imaging of electronic devices via x‐ray diffraction topography
Bowen et al. Full‐Wafer Defect Identification using X‐ray Topography
Kimura et al. Observation of minute strain fields in a floating-zone-grown silicon crystal containing D defects by means of plane-wave X-ray topography
JPH02216042A (en) Reflected electron beam diffraction apparatus
Milita et al. X-ray diffraction imaging investigation of silicon carbide on insulator structures
JPH04301800A (en) X-ray diffraction microscopic device
Xu et al. Effects of Cl+ and F+ implantation of oxidation‐induced stacking faults in silicon

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990721

LAPS Cancellation because of no payment of annual fees