JPH06249804A - Fluorescent x-ray spectroscopic device - Google Patents

Fluorescent x-ray spectroscopic device

Info

Publication number
JPH06249804A
JPH06249804A JP4031293A JP4031293A JPH06249804A JP H06249804 A JPH06249804 A JP H06249804A JP 4031293 A JP4031293 A JP 4031293A JP 4031293 A JP4031293 A JP 4031293A JP H06249804 A JPH06249804 A JP H06249804A
Authority
JP
Japan
Prior art keywords
ray
rays
plate
target
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4031293A
Other languages
Japanese (ja)
Other versions
JP3117833B2 (en
Inventor
Yutaka Ichinomiya
豊 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP05040312A priority Critical patent/JP3117833B2/en
Publication of JPH06249804A publication Critical patent/JPH06249804A/en
Application granted granted Critical
Publication of JP3117833B2 publication Critical patent/JP3117833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To reduce scattering X-rays being a factor of background and enhance detection lower limit by inserting an absorption plate composed of an element having an atomic number smaller than a constituent element of a secondary target between the secondary target and an X-ray tube. CONSTITUTION:Primary X-rays (a) generated 1 pass through an absorption plate and are opplied to a secondary target 3a. Absorption plate switching mechanism 2 is provided with the absorption plate composed of an element having an atomic number smaller by five or more than a constituent element of a target plate. Secondary X-rays (b) generated in the secondary target 3a are applied to a sample 4. A constituent element of the sample 4 is excited by the secondary X-rays (b) to generate fluorescent X-rays (c), which are incident upon an X-ray detector 5 of energy dispersion type, converted into an electric signal (d) and detected as an X-ray spectrum by a wave motion analyzer 6. A computer 7 reads the detected X-ray spectrum and carries out qualitative/ quantitative analysis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、蛍光X線分析におけ
る微量分析の検出下限向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of the lower limit of detection for trace analysis in fluorescent X-ray analysis.

【0002】[0002]

【従来の技術】X線管球から発生するエネルギー幅の広
い一次X線を試料に照射する直接励起方式による蛍光X
線分析装置では、前記試料中の元素が励起されて発生す
る特性X線の他に、前記一次X線が前記試料で散乱され
る散乱X線が発生する。前記試料から発生するX線をX
線検出器で検出し、波高分光されたX線スペクトル上で
は前記特性X線(蛍光X線)に起因するピークに対し
て、前記散乱X線は、バックグランドを形成する。この
バックグランドは、蛍光X線分析における検出下限を制
約するものである。この直接励起方式において、前記バ
ックグランドを下げるために前記X線管球と、前記試料
の間に特定のエネルギー範囲だけ大きく吸収する元素で
構成された一次フィルタを配置する。この一次フィルタ
により、前記一次X線のうち前記特定のエネルギー範囲
だけ大きく吸収され、減衰した一次X線が前記試料に照
射される。前記試料に含まれる元素の特性X線のエネル
ギーが前記エネルギー範囲にあれば、検出下限が向上す
る。
2. Description of the Related Art Fluorescent X by a direct excitation method in which a sample is irradiated with primary X-rays having a wide energy range generated from an X-ray tube.
In the line analysis device, in addition to the characteristic X-rays generated by the elements in the sample being excited, scattered X-rays in which the primary X-rays are scattered by the sample are generated. X-ray generated from the sample is X
The scattered X-rays form a background with respect to the peak caused by the characteristic X-rays (fluorescent X-rays) on the X-ray spectrum detected by the line detector and subjected to the pulse height spectroscopy. This background limits the lower limit of detection in fluorescent X-ray analysis. In this direct excitation system, in order to lower the background, a primary filter made of an element that largely absorbs in a specific energy range is arranged between the X-ray tube and the sample. The primary filter irradiates the sample with the primary X-rays that are largely absorbed and attenuated in the specific energy range of the primary X-rays. When the energy of the characteristic X-ray of the element contained in the sample is within the energy range, the lower limit of detection is improved.

【0003】この直接励起方式の他に、X線管球から発
生する一次X線を単一元素で構成されたターゲット板に
照射しターゲット板から発生する単一元素の特性X線を
試料に照射して、前記試料中の元素を励起する二次ター
ゲット励起方式がある。この二次ターゲット方式では前
記ターゲット板から発生するKα線をモノクロ化するた
め、X線の吸収端がKα線とKβ線の中間にあるような
元素で構成された吸収板を前記ターゲット板と、前記試
料の間に配置し、Kβ線を取り除くようにしている。こ
の二次ターゲット方式では、前記ターゲット板から発生
するKα特性X線でほとんど前記試料を励起するため、
バックグランドが下がり、かつ、単一エネルギーのX線
で前記試料を励起するため、定量分析のための解析モデ
ルが単純化される。
In addition to the direct excitation method, a target plate composed of a single element is irradiated with primary X-rays generated from an X-ray tube, and a characteristic X-ray of the single element generated from the target plate is irradiated to the sample. Then, there is a secondary target excitation method for exciting the elements in the sample. In this secondary target method, in order to monochromeize Kα rays generated from the target plate, an absorption plate composed of an element having an X-ray absorption edge between Kα and Kβ rays is used as the target plate. It is arranged between the samples to remove Kβ rays. In this secondary target method, the sample is mostly excited by the Kα characteristic X-rays generated from the target plate,
Since the background is lowered and the sample is excited with monoenergetic X-rays, the analytical model for quantitative analysis is simplified.

【0004】[0004]

【発明が解決しようとする課題】前記直接励起方式で使
用される前記一次フィルタは、前記フィルタを構成する
構成元素のX線の吸収端を利用するものなので、吸収端
より高エネルギー側は、試料に到達するX線が大きく減
衰し、エネルギーが高くなるにつれて減衰率は小さくな
る。そのため、前記吸収端のエネルギーから高エネルギ
ー側へ、数KeVは、バックグランドが低下するので、
その範囲に特性X線をもつ元素の測定しか検出下限が向
上しないという問題点があった。
Since the primary filter used in the direct excitation method utilizes the X-ray absorption edge of the constituent elements forming the filter, the high energy side of the absorption edge is the sample. X-rays that reach the position are greatly attenuated, and the attenuation rate becomes smaller as the energy becomes higher. Therefore, the background decreases for several KeV from the energy at the absorption edge to the high energy side.
There has been a problem that the lower limit of detection is improved only for the measurement of elements having characteristic X-rays in that range.

【0005】更に、前記試料中に含まれる主元素の特性
X線エネルギーの低エネルギー側に微量元素の特性X線
のエネルギーがある場合、エネルギー分散型X線検出系
の計数率の上限から、X線管球の管電流の設定が前記主
元素のピークで決まって、前記微量元素の特性X線強度
を十分には得られないという問題点があった。
Further, when there is a characteristic X-ray energy of a trace element on the low energy side of the characteristic X-ray energy of the main element contained in the sample, from the upper limit of the count rate of the energy dispersive X-ray detection system, X There is a problem in that the setting of the tube current of the wire tube is determined by the peak of the main element, and the characteristic X-ray intensity of the trace element cannot be sufficiently obtained.

【0006】一方、前記二次ターゲット励起方式では、
前記ターゲット板から発生する特性X線で励起するため
複数個の元素の異なるターゲット板を用意して、測定元
素に応じて前記ターゲット板を切り換えることにより低
エネルギーから高エネルギーまで測定可能になり、かつ
検出下限の向上が期待できる。
On the other hand, in the secondary target excitation method,
By preparing a target plate having a plurality of different elements for excitation by the characteristic X-rays generated from the target plate and switching the target plate according to the measurement element, it becomes possible to measure from low energy to high energy, and Improvement of the lower limit of detection can be expected.

【0007】しかし、前記ターゲット板でもX線管球か
ら発生する一次X線を微量ながら散乱するため、極微量
分析する時は、この散乱過程が問題になっていた。
However, since the target plate also scatters a small amount of primary X-rays generated from the X-ray tube, this scattering process has been a problem when performing an extremely small amount of analysis.

【0008】[0008]

【課題を解決するための手段】X線管球と、切換可能な
複数個のターゲット板の内の1個の選択されたターゲッ
ト板との間に、前記ターゲット板を構成する元素の原子
番号より少なくとも5以上小さい原子番号の元素で構成
される吸収板が吸収板切換機構から選べる機構として、
前記X線管球から発生する一次X線により前記ターゲッ
ト板を励起し発生するX線の強度が、吸収板による吸収
がない時の強度とくらべて10%から90%までの範囲
内に低下させるような吸収板を選択して前記一次X線を
吸収させる。前記ターゲットム板から発生するX線を測
定試料に照射し、前記試料から発生する特性X線を検出
する。前記ターゲット板が選択された時、ターゲット板
の種類に応じて、あらかじめX線管球の管電圧と管電流
は指定された値をし前記X線管球に印加する。
Between the X-ray tube and one selected target plate among a plurality of switchable target plates, an atomic number of an element constituting the target plate is used. As a mechanism for selecting an absorbing plate composed of elements having an atomic number smaller than at least 5 from the absorbing plate switching mechanism,
The intensity of the X-rays generated by exciting the target plate with the primary X-rays generated from the X-ray tube is reduced to 10% to 90% as compared with the intensity when there is no absorption by the absorption plate. Such an absorbing plate is selected to absorb the primary X-rays. The measurement sample is irradiated with X-rays generated from the target plate, and characteristic X-rays generated from the sample are detected. When the target plate is selected, the tube voltage and the tube current of the X-ray tube are set to specified values in advance according to the type of the target plate and are applied to the X-ray tube.

【0009】また、二次ターゲットによる励起方式(二
次ターゲット励起)と前記一次X線を試料に直接照射す
る方式(直接励起)とを切り換えられる機構を有し、直
接励起方式の時は、X線の照射量を制限する微小孔をす
るコリメータを配置する。
Further, there is a mechanism capable of switching between the excitation method by the secondary target (secondary target excitation) and the method of directly irradiating the sample with the primary X-ray (direct excitation). In the direct excitation method, X A collimator with micro-holes is placed to limit the dose of radiation.

【0010】[0010]

【作用】前記吸収板の挿入により前記ターゲット板から
発生し、測定試料に照射されるX線強度は、10%から
90%に低下するが、前記ターゲット板は通常特性X線
の内、特にK線を発生するものを選ぶことが多い。この
時、前記吸収板の構成元素を前記ターゲット板の構成元
素より5以上小さい元素で構成すると吸収板の構成元素
の吸収端エネルギーより上は、吸収端がなく、かつ前記
吸収板の吸収端エネルギーに近ければ、近いほど多く吸
収する。この効果は指数関数で変化することと、前記タ
ーゲット板から発生するX線強度は、前記ターゲット板
を構成する元素の吸収端か下のエネルギーX線がその発
生には寄与せず上のエネルギー全部がその発生に寄与す
ることで、前記測定試料に照射されるX線量を差ほど損
なわずに、前記吸収板を構成する元素の吸収端エネルギ
ーから前記ターゲット板を構成する元素の特性X線エネ
ルギーまでは、大きく前記一次X線が吸収される。
When the absorption plate is inserted, the X-ray intensity generated from the target plate and irradiated on the measurement sample is reduced from 10% to 90%. I often choose the one that produces lines. At this time, if the constituent element of the absorption plate is composed of an element smaller than the constituent element of the target plate by 5 or more, there is no absorption edge above the absorption edge energy of the constituent element of the absorption plate, and the absorption edge energy of the absorption plate. The closer it is to, the more it absorbs. This effect changes with an exponential function, and the X-ray intensity generated from the target plate is that the energy X-rays at or below the absorption edge of the elements constituting the target plate do not contribute to the generation and Contributes to the generation thereof, from the absorption edge energy of the element forming the absorption plate to the characteristic X-ray energy of the element forming the target plate, without significantly impairing the X-ray dose irradiated to the measurement sample. Largely absorbs the primary X-rays.

【0011】そのため前記ターゲット板で散乱される前
記エネルギー範囲のX線も極端に小さくなり、前記測定
試料から発生する散乱X線も同様に小さくなる。そのた
め、測定されるX線スペクトルではバックグランドが小
さくなり、検出下限が向上する。
Therefore, the X-rays in the energy range scattered by the target plate are also extremely small, and the scattered X-rays generated from the measurement sample are also small. Therefore, the background is small in the measured X-ray spectrum, and the lower limit of detection is improved.

【0012】[0012]

【実施例】以下、図1に従い本発明の実施例を説明す
る。X線管球1は、一次X線aを発生する。発生した一
次X線1aは、吸収板2a(フィルタ)を通過して、二
次ターゲット3aを照射する。吸収板2aは、吸収板切
換機構2に保持されており、吸収切換機構2は複数の材
質の異なった吸収板2aを備えている。吸収切換機構機
構2を回転することにより任意に、一次X線1aが通過
する吸収板2aを切換えることができる。
Embodiments of the present invention will be described below with reference to FIG. The X-ray tube 1 generates a primary X-ray a. The generated primary X-ray 1a passes through the absorption plate 2a (filter) and irradiates the secondary target 3a. The absorption plate 2a is held by the absorption plate switching mechanism 2, and the absorption switching mechanism 2 includes a plurality of absorption plates 2a made of different materials. By rotating the absorption switching mechanism 2, the absorption plate 2a through which the primary X-ray 1a passes can be arbitrarily switched.

【0013】二次ターゲット3aは、二次ターゲット切
換機構3に保持されている。二次ターゲット切換機構3
は、複数の材質の異なった二次ターゲット3aを備えて
いる。二次ターゲット切換機構3を回転することによ
り、任意に一次X線1aが照射する二次ターゲット3a
を切換えることができる。
The secondary target 3a is held by the secondary target switching mechanism 3. Secondary target switching mechanism 3
Includes a plurality of secondary targets 3a made of different materials. By rotating the secondary target switching mechanism 3, the secondary target 3a arbitrarily irradiated with the primary X-ray 1a
Can be switched.

【0014】二次ターゲット3aから発生する二次X線
1bは、測定する試料4を照射する。試料4を構成する
元素は、二次X線1bにより励起され、蛍光X線1cを
発生する。発生した蛍光X線1cは、エネルギー分散型
のX線検出器5に入射し、電気信号dに変換され、波高
分析器6でX線スペクトルとして検出される。
The secondary X-ray 1b emitted from the secondary target 3a irradiates the sample 4 to be measured. The elements forming the sample 4 are excited by the secondary X-rays 1b and generate fluorescent X-rays 1c. The generated fluorescent X-ray 1c enters the energy dispersive X-ray detector 5, is converted into an electric signal d, and is detected by the wave height analyzer 6 as an X-ray spectrum.

【0015】コンピュータ7は波高分析器6にて検出さ
れたX線スペクトルを読み込んで、定性/定量分析す
る。二次ターゲット機構3で、Si板、Ti板、Cr
板、Ni板、Zn板、Zr板の二次ターゲット3aを選
択可能にし、吸収機構2でBe200μm板、Cr10
0μm板、Al50μm、Al100μm、Al200
μm、Al300μm、Pb5mmの吸収板2aまた
は、ブランクを選択可能にした本実施例の説明する。
The computer 7 reads the X-ray spectrum detected by the wave height analyzer 6 and performs qualitative / quantitative analysis. With the secondary target mechanism 3, Si plate, Ti plate, Cr
Plate, Ni plate, Zn plate, Zr plate secondary target 3a is made selectable, Be 200 μm plate, Cr10 by absorption mechanism 2
0 μm plate, Al 50 μm, Al 100 μm, Al200
A description will be given of the present embodiment in which the absorption plate 2a of μm, Al of 300 μm, and Pb of 5 mm or the blank can be selected.

【0016】例えば、二次ターゲット切換機構3でSi
(原子番号14)板の二次ターゲット3aが選択された
時、吸収機構2でBe(原子番号4)200μm板の吸
収板2aを設定する。この時、二次X線強度1bは、B
eの吸収板2aがない時と比べて57%まで低下する。
For example, in the secondary target switching mechanism 3, Si
When the secondary target 3a of (atomic number 14) plate is selected, the absorption mechanism 2 sets the absorption plate 2a of Be (atomic number 4) 200 μm plate. At this time, the secondary X-ray intensity 1b is B
It is reduced to 57% as compared with the case without the absorption plate 2a of e.

【0017】一方、Beの吸収板2aで吸収された一次
X線1aのAlKα線に相当するエネルギーでの減衰率
は、0.14%となる。これは試料4から発生する特性
X線と散乱X線の強度比(P/B比)が、2桁改善さ
れ、検出下限が1桁向上する。表1にあるその他の元素
の検出下限も1桁以上向上する。表1にその例を示す。
On the other hand, the attenuation rate of the primary X-ray 1a absorbed by the Be absorption plate 2a at the energy corresponding to the AlKα ray is 0.14%. This means that the intensity ratio (P / B ratio) between the characteristic X-rays and the scattered X-rays generated from the sample 4 is improved by two digits, and the lower limit of detection is improved by one digit. The detection limits of the other elements in Table 1 are also improved by one digit or more. Table 1 shows an example.

【0018】[0018]

【表1】 [Table 1]

【0019】表2に、二次ターゲット3aとしてTi
(原子番号22)板を選択した時に、吸収板2aとして
Al(原子番号13)50μmを設定した例を示す。表
2からは、二次X線強度1bが吸収板2aの吸収効果に
より61%に低下する一方、例えばCaKα相当のバッ
クグランドは0.2%まで低下するので、P/B比が2
桁改善し、検出下限が1桁向上する。
In Table 2, Ti is used as the secondary target 3a.
An example in which Al (atomic number 13) 50 μm is set as the absorption plate 2a when the (atomic number 22) plate is selected is shown. From Table 2, the secondary X-ray intensity 1b decreases to 61% due to the absorption effect of the absorption plate 2a, while the background equivalent to CaKα decreases to 0.2%, so that the P / B ratio is 2
The digit is improved, and the lower detection limit is increased by one digit.

【0020】[0020]

【表2】 [Table 2]

【0021】表3に二次ターゲット3aとしてCr(原
子番号24)板を選択した時に、吸収板2aとしてAl
(原子番号13)100μmを設定した例を示す。表3
からは二次X線強度1bが、吸収板2aの吸収効果によ
り55%に低下する、一方例えばTiKα相当のバック
グランドは0.08%まで低下するので、P/B比が2
桁以上改善し、検出下限が1桁向上する。
In Table 3, when a Cr (atomic number 24) plate is selected as the secondary target 3a, Al is used as the absorption plate 2a.
An example in which (atomic number 13) is set to 100 μm is shown. Table 3
The secondary X-ray intensity 1b decreases to 55% due to the absorption effect of the absorption plate 2a, while the background equivalent to TiKα decreases to 0.08%, so that the P / B ratio is 2
It is improved by more than one digit and the lower limit of detection is improved by one digit.

【0022】[0022]

【表3】 [Table 3]

【0023】表4に二次ターゲット3aとしてNi(原
子番号28)板を選択した時に、吸収板2aとしてAl
(原子番号13)200μmを設定した例を示す。表4
からは、二次X線強度1bが吸収板2aの吸収効果によ
り58.2%に低下する一方、例えばMnKα相当のバ
ックグランドは、0.13%まで低下するので、P/B
比が2桁改善し、検出下限が1桁向上する。
When a Ni (atomic number 28) plate is selected as the secondary target 3a in Table 4, Al is used as the absorption plate 2a.
An example in which (atomic number 13) is set to 200 μm is shown. Table 4
The secondary X-ray intensity 1b decreases to 58.2% due to the absorption effect of the absorbing plate 2a, while the background equivalent to MnKα decreases to 0.13%.
The ratio is improved by two digits and the lower limit of detection is improved by one digit.

【0024】[0024]

【表4】 [Table 4]

【0025】表5に二次ターゲット3aとしてNi(原
子番号28)板を選択した時に、吸収板2aとしてAl
(原子番号13)300μmを設定した例を示す。表5
からは、二次X線強度1bが吸収板2aの吸収効果によ
り57%に低下する一方、例えばCoKα相当のバック
グランドは、0.2%まで低下するので、P/B比が2
桁改善し、検出下限が1桁向上する。
In Table 5, when a Ni (atomic number 28) plate is selected as the secondary target 3a, Al is used as the absorption plate 2a.
An example in which (atomic number 13) is set to 300 μm is shown. Table 5
From the above, the secondary X-ray intensity 1b is reduced to 57% by the absorption effect of the absorption plate 2a, while the background equivalent to CoKα is reduced to 0.2%, so that the P / B ratio is 2%.
The digit is improved, and the lower detection limit is increased by one digit.

【0026】[0026]

【表5】 [Table 5]

【0027】表6に二次ターゲット3aとしてZr(原
子番号30)板を選択した時に、吸収板2aとしてCr
100μmを設定した例を示す。表6からは、二次X線
強度1bが吸収板2aの吸収効果により37%に低下す
る一方、例えばPbLα相当のバックグランドは、0.
019%まで低下するので、P/B比が3桁改善し、検
出下限が1桁向上する。
When a Zr (atomic number 30) plate is selected as the secondary target 3a in Table 6, Cr is used as the absorption plate 2a.
An example in which 100 μm is set is shown. From Table 6, while the secondary X-ray intensity 1b decreases to 37% due to the absorption effect of the absorption plate 2a, for example, the background equivalent to PbLα is 0.
Since it decreases to 019%, the P / B ratio is improved by three digits and the lower limit of detection is improved by one digit.

【0028】[0028]

【表6】その他の元素を二次ターゲット3aとして使用
した時に、吸収板2aの元素と厚みが同様に実験的に決
定され使用される。測定を終了したら、吸収板としてP
b5mmを選択すると、X線は完全にカットされ測定試
料の変換が可能になる。もちろん、吸収板切換機構2に
シャッター機能を持たせる他に、シャッター機構を独立
に配置する構成でも良い。二次ターゲット切換機構3
で、前記金属板の他に合金あるいはグラファイト等の軽
元素を二次ターゲットとして使用する場合、合金の場合
は二次X線1bとして特性X線が何本か発生し、グラフ
ァイト等の軽元素の場合は、散乱するX線が多いので散
乱線で試料4の原子を励起することになる。
[Table 6] When other elements are used as the secondary target 3a, the element and the thickness of the absorbing plate 2a are similarly experimentally determined and used. When the measurement is completed, use P as an absorption plate.
When b5 mm is selected, X-rays are completely cut and the measurement sample can be converted. Of course, in addition to the absorption plate switching mechanism 2 having the shutter function, the shutter mechanism may be arranged independently. Secondary target switching mechanism 3
When a light element such as an alloy or graphite is used as a secondary target in addition to the metal plate, some characteristic X-rays are generated as the secondary X-ray 1b in the case of an alloy, and a light element such as graphite is generated. In this case, since many X-rays are scattered, the atoms of the sample 4 are excited by the scattered rays.

【0029】この時は、吸収板切換機構2をX線のパス
からはずれて出入れ可能な機構を設けるか、ブランクを
吸収板切換機構2の設定で選べるようにしておく。この
ような二次ターゲット励起方式の他に、X線管球1から
発生する一次X線aを直接測定試料4に照射する直接励
起方式とを切り換える機構を持たせる。この直接励起方
式の場合は、一次X線a’は、微小孔を有する制限コリ
メータ8を通って、測定試料4に照射される。これは一
次X線a7があまりに強すぎるため、X線管球1に流す
管電流を落とす必要があるが、管電流の直線性を考慮す
ると、せいぜい2桁から3桁までの可変範囲が通常限度
である。そのため、さらに一次X線a’を弱めるために
制限コリメータ8を配置する。
At this time, the absorbing plate switching mechanism 2 is provided with a mechanism that can be moved in and out of the X-ray path, or a blank can be selected by setting the absorbing plate switching mechanism 2. In addition to such a secondary target excitation method, a mechanism for switching between a direct excitation method of directly irradiating the measurement sample 4 with the primary X-ray a generated from the X-ray tube 1 is provided. In the case of this direct excitation method, the primary X-ray a ′ is irradiated onto the measurement sample 4 through the limiting collimator 8 having the micro holes. This is because the primary X-ray a7 is so strong that it is necessary to reduce the tube current flowing in the X-ray tube 1. However, considering the linearity of the tube current, the variable range from 2 to 3 digits is usually the maximum limit. Is. Therefore, the limiting collimator 8 is arranged to further weaken the primary X-ray a ′.

【0030】[0030]

【発明の効果】蛍光X線の測定強度は、吸収板の吸収効
果で数10%吸収されるが、バックグランドは2〜3桁
以上吸収されるのでP/B比が向上し、検出下限が下が
る。つまり、検出感度がよくなる。
EFFECTS OF THE INVENTION The measured intensity of fluorescent X-rays is absorbed by several 10% due to the absorption effect of the absorption plate, but the background is absorbed by 2 to 3 digits or more, so that the P / B ratio is improved and the lower limit of detection is lower. Go down. That is, the detection sensitivity is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の概略斜視図である。FIG. 1 is a schematic perspective view of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 X線管球 2 吸収板切換機構 3 二次ターゲット切換機構 4 試料 5 エネルギー分散型X線検出器 6 波高分析器 7 コンピュータ 8 微小有孔制限コリメータ 1a 一次X線(二次ターゲット励起方式) 1a’二次X線(直接励起方式) 1b 吸収板を通過した二次X線 1c 蛍光X線 d 電気信号 1 X-ray tube 2 Absorption plate switching mechanism 3 Secondary target switching mechanism 4 Sample 5 Energy dispersive X-ray detector 6 Wave height analyzer 7 Computer 8 Micro-perforated limited collimator 1a Primary X-ray (secondary target excitation method) 1a 'Secondary X-ray (direct excitation method) 1b Secondary X-ray passing through the absorption plate 1c Fluorescent X-ray d Electric signal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一次X線を発生するX線管球と、前記一
次X線を照射され二次X線を発生する異なった複数の材
質のターゲット板と、前記一次X線を照射するターゲッ
ト板を任意に切換可能にするターゲット切換機構と、前
記ターゲット板から発生する二次X線を、測定試料に照
射することにより、前記測定試料中に含まれる元素から
発生する蛍光X線を検出するエネルギー分散型X線検出
器と、前記X線管球と前記ターゲット板との間に切換可
能に配置された材質の異なった複数個の吸収板とよりな
る蛍光X線分析装置において、前記吸収板は、前記ター
ゲット板構成元素の原子番号より少なくとも5以上小さ
い原子番号を元素で構成されていることを特徴とする蛍
光X線分析装置。
1. An X-ray tube that generates primary X-rays, target plates of different materials that are irradiated with the primary X-rays and generate secondary X-rays, and a target plate that irradiates the primary X-rays. Of energy for detecting fluorescent X-rays generated from elements contained in the measurement sample by irradiating the measurement sample with a secondary X-ray generated from the target plate, and a target switching mechanism that enables arbitrary switching In a fluorescent X-ray analyzer comprising a dispersive X-ray detector and a plurality of absorption plates of different materials arranged switchably between the X-ray tube and the target plate, the absorption plate is A fluorescent X-ray analysis apparatus comprising an element having an atomic number that is at least 5 or more smaller than the atomic number of the target plate constituent element.
【請求項2】 前記エネルギー分散型蛍光X線分析装置
において、前記複数個のターゲット板の内の1個を選択
した時、あらかじめ前記ターゲットの種類ごとに決めら
れた電圧を前記X線管球に印加される機構を持ち、前記
選択されたターゲットと前記電圧の条件下で発生する前
記二次X線の強度が、前記吸収板による吸収で10%か
ら90%の範囲まで減衰する板厚が、ターゲット種類毎
に決められて切換可能になっている請求項1記載の蛍光
X線分析装置。
2. In the energy dispersive X-ray fluorescence analyzer, when one of the plurality of target plates is selected, a voltage determined in advance for each type of the target is applied to the X-ray tube. The thickness of the secondary X-ray that has a mechanism to be applied and that is generated under the conditions of the selected target and the voltage is attenuated by absorption by the absorption plate to a range of 10% to 90%. The fluorescent X-ray analysis apparatus according to claim 1, which is determined for each target type and is switchable.
【請求項3】 前記エネルギー分散型蛍光X線分析装置
において、前記複数個の吸収板の他に、1個は前記一次
X線をほとんどすべて吸収する遮蔽板で1個は、吸収板
が装着されていない、ブランクを有し、非測定時は前記
遮蔽板を選択し、測定時は前記複数個の吸収板の内の1
個が前記ブランクを選択できる請求項1記載の蛍光X線
分析装置。
3. In the energy dispersive X-ray fluorescence analyzer, in addition to the plurality of absorption plates, one is a shield plate that absorbs almost all the primary X-rays and one is equipped with an absorption plate. Not having a blank, selecting the shielding plate when not measuring, and selecting one of the plurality of absorbing plates when measuring
The X-ray fluorescence analyzer according to claim 1, wherein the blank can be selected individually.
【請求項4】 前記エネルギー分散型蛍光X線分析装置
において、前記蛍光X線励起方式の他に、前記X線管球
と、前記試料の間に駆動機構を有するシャッターを有
し、前記試料が前記一次X線により直接励起することが
切換可能で多数の微小孔を有する制限板を前記X線管球
と前記試料の間に配置した請求項1記載の蛍光X線分析
装置。
4. The energy dispersive X-ray fluorescence analyzer further comprises a shutter having a drive mechanism between the X-ray tube and the sample, in addition to the X-ray fluorescence excitation system, The fluorescent X-ray analysis apparatus according to claim 1, wherein a limiting plate having a large number of minute holes that can be switched to be directly excited by the primary X-rays is arranged between the X-ray tube and the sample.
JP05040312A 1993-03-01 1993-03-01 X-ray fluorescence analyzer Expired - Lifetime JP3117833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05040312A JP3117833B2 (en) 1993-03-01 1993-03-01 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05040312A JP3117833B2 (en) 1993-03-01 1993-03-01 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JPH06249804A true JPH06249804A (en) 1994-09-09
JP3117833B2 JP3117833B2 (en) 2000-12-18

Family

ID=12577105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05040312A Expired - Lifetime JP3117833B2 (en) 1993-03-01 1993-03-01 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP3117833B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328969B1 (en) * 1999-01-20 2002-03-20 송순달 Detector for direct imaging and resolution of the atom
WO2006049051A1 (en) * 2004-11-08 2006-05-11 Sii Nanotechnology Inc. Fluorescent x-ray analy sis device
JP2006292551A (en) * 2005-04-11 2006-10-26 National Institute For Materials Science Titanium oxide analyzing method and titanium oxide analyzer carrying out it
JP2010507810A (en) * 2006-10-24 2010-03-11 サーモ ニトン アナライザーズ リミテッド ライアビリティ カンパニー Two-stage X-ray concentration device
JP2019039746A (en) * 2017-08-24 2019-03-14 株式会社島津製作所 Fluorescent x-ray analysis method
JP2021065579A (en) * 2019-10-28 2021-04-30 キヤノンメディカルシステムズ株式会社 X-ray imaging apparatus and monochrome x-ray generation method
JPWO2021112080A1 (en) * 2019-12-02 2021-06-10
WO2021112079A1 (en) * 2019-12-02 2021-06-10 株式会社堀場アドバンスドテクノ X-ray fluorescence analysis device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566994U (en) * 1992-02-15 1993-09-03 京セラ株式会社 Package for storing semiconductor devices

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328969B1 (en) * 1999-01-20 2002-03-20 송순달 Detector for direct imaging and resolution of the atom
WO2006049051A1 (en) * 2004-11-08 2006-05-11 Sii Nanotechnology Inc. Fluorescent x-ray analy sis device
JPWO2006049051A1 (en) * 2004-11-08 2008-05-29 エスアイアイ・ナノテクノロジー株式会社 X-ray fluorescence analyzer
US7436926B2 (en) 2004-11-08 2008-10-14 Sii Nano Technology Inc. Fluorescent X-ray analysis apparatus
JP2006292551A (en) * 2005-04-11 2006-10-26 National Institute For Materials Science Titanium oxide analyzing method and titanium oxide analyzer carrying out it
JP2010507810A (en) * 2006-10-24 2010-03-11 サーモ ニトン アナライザーズ リミテッド ライアビリティ カンパニー Two-stage X-ray concentration device
JP2019039746A (en) * 2017-08-24 2019-03-14 株式会社島津製作所 Fluorescent x-ray analysis method
JP2021065579A (en) * 2019-10-28 2021-04-30 キヤノンメディカルシステムズ株式会社 X-ray imaging apparatus and monochrome x-ray generation method
JPWO2021112080A1 (en) * 2019-12-02 2021-06-10
WO2021112079A1 (en) * 2019-12-02 2021-06-10 株式会社堀場アドバンスドテクノ X-ray fluorescence analysis device
JPWO2021112079A1 (en) * 2019-12-02 2021-06-10
WO2021112080A1 (en) * 2019-12-02 2021-06-10 株式会社堀場アドバンスドテクノ X-ray fluorescence analyzer

Also Published As

Publication number Publication date
JP3117833B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
Brouwer Theory of XRF
DE102012112866B4 (en) X-ray fluorescence spectrometer and X-ray fluorescence analyzer
EP1811291A1 (en) Fluorescent x-ray analy sis device
US3056027A (en) Apparatus for measuring the thickness of a deposit
JPWO2020202730A1 (en) X-ray analyzer
JPH05240808A (en) Method for determining fluorescent x rays
JP3117833B2 (en) X-ray fluorescence analyzer
JP2018502307A (en) Three-dimensional scanning method and apparatus using fluorescence induced by electromagnetic radiation
US6487269B2 (en) Apparatus for analysing a sample
JP4002149B2 (en) X-ray analyzer
Harada et al. K-line X-ray fluorescence analysis of high-Z elements
US4283625A (en) X-Ray fluorescence analysis
Nejedly et al. Standardization of a micro-PIXE system using NIST iron-and nickel-based alloy reference materials
Injuk et al. Performance and characteristics of two total-reflection X-ray fluorescence and a particle induced X-ray emission setup for aerosol analysis
JPH08145916A (en) Small angle scattering x-ray equipment
JPH0627056A (en) Method for alalyzing composition and structure of substance
JPH08510062A (en) X-ray analyzer for grazing angle
JP2759922B2 (en) Method for measuring high-order X-ray intensity
Bumsted Application of the X-Ray spectrograph to the needs of the industrial hygiene laboratory
CN220188400U (en) X-ray diffraction and X-ray fluorescence spectrum synchronous combination system and device
JPH06235706A (en) Total reflection fluorescent x-ray analyzer
Stevenson Determination of columbium in ores by x-ray fluorescence
Khalid et al. X-Ray Fluorescence (XRF) spectrometry for materials analysis and “discovering” the atomic number
Kobayashi et al. X-ray fluorescence element-mapping spectrometer with improved spatial resolution
JPH05346411A (en) Fluorescent x-ray analyzer

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071006

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081006

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091006

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111006

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12