JP2016166866A - Quantitative analysis method of multicomponent system mixture cement, and manufacture management system of multicomponent system mixture cement - Google Patents

Quantitative analysis method of multicomponent system mixture cement, and manufacture management system of multicomponent system mixture cement Download PDF

Info

Publication number
JP2016166866A
JP2016166866A JP2016029312A JP2016029312A JP2016166866A JP 2016166866 A JP2016166866 A JP 2016166866A JP 2016029312 A JP2016029312 A JP 2016029312A JP 2016029312 A JP2016029312 A JP 2016029312A JP 2016166866 A JP2016166866 A JP 2016166866A
Authority
JP
Japan
Prior art keywords
mixed cement
cement
amorphous
quantitative analysis
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016029312A
Other languages
Japanese (ja)
Other versions
JP6755068B2 (en
Inventor
引田 友幸
Tomoyuki Hikita
友幸 引田
佳史 細川
Yoshifumi Hosokawa
佳史 細川
嘉史 扇
Yoshifumi Ogi
嘉史 扇
秀幸 菅谷
Hideyuki Sugaya
秀幸 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Publication of JP2016166866A publication Critical patent/JP2016166866A/en
Application granted granted Critical
Publication of JP6755068B2 publication Critical patent/JP6755068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quantitative analysis method capable of simply quantifying mixing rate of amorphous admixture to be contained in multicomponent system mixture cement with high accuracy.SOLUTION: A quantitative analysis method of multicomponent system mixture cement includes: a first process of calculating a powder X-ray diffraction pattern of only an amorphous admixture; a second process of calculating a mixing rate (mass%) of amorphous admixtures, and (a number Zof chemical formula units contained in unit cells)×(a molecular weight M) of a virtual crystal for the respective amorphous admixtures by using one powder X-ray diffraction pattern of mixture cement in which the mixing rate of configuration phases is known; and a third process of calculating the mixing rate of the configuration phases of the multicomponent system mixture cement whose mixing rate is unknown by using a unit cell volume Vand (the number Zof chemical formula units contained in the unit cells)×(the molecular weight M) for analysis as unique parameters of the amorphous admixtures.SELECTED DRAWING: Figure 1

Description

本発明は、複数の非晶質混和材を含む混合セメント(以下「多成分系混合セメント」という。)中の各混和材の混合率を定量分析する方法と、該方法を用いた多成分系混合セメントの製造管理システムに関する。   The present invention relates to a method for quantitatively analyzing the mixing ratio of each admixture in a mixed cement containing a plurality of amorphous admixtures (hereinafter referred to as “multicomponent mixed cement”), and a multicomponent system using the method. The present invention relates to a mixed cement manufacturing management system.

高炉スラグ、フライアッシュ、シリカフューム、および石灰石フィラー等の混和材は、コンクリートの耐久性、流動性、および長期強度発現性等の諸性質を改善する目的で用いられる。そして、当然ながら、これらの混和材には適切な混合率(含有率)が存在する。   Admixtures such as blast furnace slag, fly ash, silica fume, and limestone filler are used for the purpose of improving various properties such as durability, fluidity, and long-term strength development of concrete. Of course, these admixtures have an appropriate mixing ratio (content ratio).

前記混和材を1種類のみ含む混合セメントは、JIS規格(JIS R 5211「高炉セメント」、JIS R 5212「シリカセメント」、およびJIS R 5213「フライアッシュセメント」)により混和材の混合率が規定され、制限が設けられている。
また、最近では、超流動コンクリート、低発熱コンクリート、または低炭素コンクリート等の三成分系セメントに代表されるように、多成分系混合セメントが数多く開発されている。これらのセメントを用いたコンクリートの水結合材比は、他のセメントを用いたコンクリートの水結合材比と比べて低い場合が多い。そして、水結合材比が低いと、セメント中の混和材の混合率がコンクリートの性状に影響し易くなるため、多成分系混合セメントは、従来の混合セメントよりも混合率の厳格な管理が必要となる。
すなわち、セメント工場等の多成分系混合セメントの製造現場における品質管理には、従来以上の確度や精度が求められる。
The mixed cement containing only one kind of the admixture is defined by the JIS standards (JIS R 5211 “Blast Furnace Cement”, JIS R 5212 “Silica Cement”, and JIS R 5213 “Fly Ash Cement”). There are restrictions.
Recently, many multi-component mixed cements have been developed as represented by three-component cements such as superfluid concrete, low heat concrete, and low carbon concrete. The water binder ratio of concrete using these cements is often lower than the water binder ratio of concrete using other cements. And if the water binder ratio is low, the mixing rate of the admixture in the cement tends to affect the properties of the concrete, so the multi-component mixed cement requires stricter control of the mixing rate than the conventional mixed cement. It becomes.
That is, the quality control at the production site of multi-component mixed cement such as a cement factory requires higher accuracy and accuracy than before.

セメントの鉱物組成の定量方法として、X線回折−リートベルト解析法(以下「リートベルト法」と略す。)が知られている。そして、非特許文献1は、リートベルト法が、非晶質相から構成される高炉スラグに対しても、有効であると報告している。   As a method for quantifying the mineral composition of cement, an X-ray diffraction-Riet belt analysis method (hereinafter referred to as “Riet belt method”) is known. Non-Patent Document 1 reports that the Rietveld method is also effective for blast furnace slag composed of an amorphous phase.

また、非特許文献2は、高炉スラグ、シリカフューム、およびフライアッシュの非晶質混和材の定量方法に関するもので、セメント、高炉スラグ、およびシリカフュームを含む三成分系セメント中の高炉スラグとシリカフュームについて、個別の定量が可能であると報告している。
しかし、非特許文献2の方法では、リートベルト解析の計算上では1相として定量される非晶質相の分解に、各非晶質混和材のX線回折パターンのハローの高さの比を利用するため、個々の混和材の定量分析の精度は±5%と低い。
さらに、非特許文献2の方法は、測定の対象である混合セメントに、内部標準(α-Al2O3)を混合する必要がある。しかし、該方法を、本邦セメント工場で一般的な自動分析システムに採用するには、試料調整方法が複雑であり現実的でない。
Non-Patent Document 2 relates to a method for quantifying amorphous admixtures of blast furnace slag, silica fume, and fly ash. Regarding blast furnace slag and silica fume in ternary cement containing cement, blast furnace slag, and silica fume, Reports that individual quantification is possible.
However, in the method of Non-Patent Document 2, the ratio of the halo height of the X-ray diffraction pattern of each amorphous admixture is used to decompose the amorphous phase quantified as one phase in the Rietveld analysis calculation. Since it is used, the accuracy of quantitative analysis of individual admixtures is as low as ± 5%.
Furthermore, in the method of Non-Patent Document 2, it is necessary to mix an internal standard (α-Al 2 O 3 ) with the mixed cement to be measured. However, in order to employ this method in an automatic analysis system common in a Japanese cement factory, the sample preparation method is complicated and not practical.

結晶構造が不明確な構成相を含む混合相に対して、内部標準物質が不要なX線回折定量分析方法として、PONKCS(Partial Or No Known Crystal Structure)法が開発された。
そして、PONKCS法とリートベルト法の組み合わせにより、内部標準なしで非晶質相を含んだ物質の定量分析が可能となり(非特許文献3)、高炉セメント中の高炉スラグの混合率の定量分析にも有効であることが報告された(非特許文献4)。しかし、PONKCS法を、多成分系混合セメントの定量分析に適用した例は、知られていない。
A PONKCS (Partial Or No Known Crystal Structure) method has been developed as an X-ray diffraction quantitative analysis method that does not require an internal standard for a mixed phase including a constituent phase with an unclear crystal structure.
The combination of the PONKCS method and the Rietveld method enables quantitative analysis of substances containing an amorphous phase without an internal standard (Non-patent Document 3), and enables quantitative analysis of the mixing ratio of blast furnace slag in blast furnace cement. Is also effective (Non-Patent Document 4). However, there is no known example in which the PONKCS method is applied to quantitative analysis of a multicomponent mixed cement.

また、特許文献1には、混合セメントの反射電子像から、セメントの構成相を定量する方法が記載されている。しかし、当該技術は走査型電子顕微鏡を使用した計測が必要であり、セメント工場等での日常的な品質管理試験方法への採用は困難である。
したがって、セメント工場等の混合セメントの製造現場の品質管理試験方法として採用できる程度に簡便化された、複数の非晶質相を含む多成分系混合セメントの混合率の定量分析方法は、現時点では見当たらない。
Patent Document 1 describes a method for quantifying a constituent phase of cement from a reflected electron image of a mixed cement. However, this technique requires measurement using a scanning electron microscope, and it is difficult to adopt it for a routine quality control test method in a cement factory or the like.
Therefore, the quantitative analysis method for the mixing ratio of multi-component mixed cement containing multiple amorphous phases, which is simplified to the extent that it can be adopted as a quality control test method for mixed cement manufacturing sites such as cement factories, is currently not available. I can't find it.

P.S.Whitfield et al.、「Quantitative Rietveld Analysis of the Amorphous Content in Cements and Clinkers」、Journal of Materials Science、Vol.38、No.21、pp.4415-4421(2003)P.S.Witit et al., “Quantitative Rietveld Analysis of the Amorphous Content in Cements and Clinkers”, Journal of Materials Science, Vol.38, No.21, pp.4415-4421 (2003) 星野清一他、「非晶質混和材を含むセメントの鉱物の定量におけるX線回折/リートベルト法の適用」、セメント・コンクリート論文集、No.59、pp.14-21(2005)Hoichi Seiichi et al., "Application of X-ray diffraction / Rietveld method in the determination of cement minerals containing amorphous admixtures", Cement and concrete papers, No.59, pp.14-21 (2005) N.V.Y.Scarlett et al.、「Quantification of phases with partial or no known crystal structures」、Powder Diffraction、Vol.21、No.4、pp.278-284(2006)N.V.Y.Scarlett et al., "Quantification of phases with partial or no known crystal structures", Powder Diffraction, Vol.21, No.4, pp.278-284 (2006) BRUKER、「QPA with Partial or No Known Crystal Structures(PONKCA)」、BRUKER Advanced XRD Workshop(2011)BRUKER, “QPA with Partial or No Known Crystal Structures (PONKCA)”, BRUKER Advanced XRD Workshop (2011)

特開2013−224932号公報JP2013-224932A

したがって、本発明は、多成分系混合セメントに含まれる複数の種類の混和材の混合率を、簡便かつ高い精度で定量できる、多成分系混合セメントの分析方法等を提供することを目的とする。   Accordingly, an object of the present invention is to provide a multicomponent mixed cement analysis method and the like that can quantitatively determine the mixing ratio of a plurality of types of admixtures contained in the multicomponent mixed cement with high accuracy. .

そこで、本発明者は多成分系混合セメントの分析方法について鋭意検討した結果、結晶相と区別することなくリートベルト法で非晶質相を解析可能とするために、各非晶質相固有のパラメーター(単位胞体積)と[(単位胞中に含まれる化学式単位の個数)×(分子量)]をあらかじめ求めておくことにより、複数の非晶質相を含んだ混合セメントであっても、内部標準物質を使用しない定量分析が可能であることを見出し、本発明を完成させた。
すなわち、本発明は下記の構成を有する多成分系混合セメントの定量分析方法、および多成分系混合セメントの製造管理システムである。
Therefore, as a result of intensive studies on the analysis method of the multi-component mixed cement, the present inventor has made it possible to analyze the amorphous phase by the Rietveld method without distinguishing from the crystalline phase. By determining the parameters (unit cell volume) and [(number of chemical formula units contained in unit cell) x (molecular weight)] in advance, even mixed cement containing multiple amorphous phases The inventors have found that quantitative analysis without using a standard substance is possible, and have completed the present invention.
That is, the present invention is a quantitative analysis method for a multicomponent mixed cement and a production management system for the multicomponent mixed cement having the following configurations.

[1]下記(A)〜(C)工程を有し、多成分系混合セメントに含まれる各構成相の混合率を定量する、多成分系混合セメントの定量分析方法。
(A)非晶質混和材のみの粉末X線回折パターン(ハローパターン)を、仮想的な結晶相による粉末X線回折パターンと見做して、仮想結晶の単位胞体積 Vを求める第1の工程
(B)測定対象とする多成分系混合セメントと同一の構成相を有する混合セメントであって、各構成相の混合率が既知である1つの混合セメントの粉末X線回折パターンを用いて、PONKCS法を用いたリートベルト解析法の逆問題として、各非晶質混和材の混合率(質量%)Wと、(A)工程で求めた単位胞体積 Vから、仮想結晶の[(単位胞中に含まれる化学式単位の個数 Z)×(分子量 M)]を、各非晶質混和材について求める第2の工程
(C)前記(A)工程および(B)工程で得られた、単位胞体積 Vと[(単位胞中に含まれる化学式単位の個数 Z)×(分子量 M)]を、各非晶質混和材の固有のパラメーターとしてリートベルト解析に用いることにより、混合率が不明の多成分系混合セメントの各構成相の混合率を求める第3の工程
ただし、前記構成相とは、セメントクリンカ鉱物、石こう、および混合材等のセメントに含まれる構成成分をいう。また、前記逆問題とは、出力(結果、観測)から、入力を推定する問題をいう。
[2]前記非晶質相混合材が、高炉スラグ、フライアッシュ、およびシリカフュームからなる群より選ばれる2種以上である、前記[1]に記載の多成分系混合セメントの定量分析方法。
[3]前記[1]または[2]に記載の多成分系混合セメントの定量分析方法を用いた、多成分系混合セメントの製造管理システム。
[4]前記[1]または[2]に記載の多成分系混合セメントの定量分析方法を用いて得られた分析結果を、粉砕工程および/または混合工程にフィードバックして、多成分系混合セメントの品質を管理する、前記[3]に記載の多成分系混合セメントの製造管理システム。
[1] A method for quantitative analysis of a multicomponent mixed cement, comprising the following steps (A) to (C), wherein the mixing ratio of each constituent phase contained in the multicomponent mixed cement is quantified.
(A) A powder X-ray diffraction pattern (halo pattern) of only an amorphous admixture is regarded as a powder X-ray diffraction pattern based on a virtual crystal phase, and a unit cell volume V m of the virtual crystal is obtained. Step (B) Using a powder X-ray diffraction pattern of a mixed cement having the same constituent phase as the multi-component mixed cement to be measured, wherein the mixing ratio of each constituent phase is known As an inverse problem of the Rietveld analysis method using the PONKCS method, from the mixing ratio (mass%) W m of each amorphous admixture and the unit cell volume V m obtained in the step (A), the virtual crystal [ (Number of chemical formula units contained in unit cell Z m ) × (molecular weight M m )] is obtained in the second step (C) step (A) and step (B) for each amorphous admixture. Unit cell volume V m and [(the chemistry contained in the unit cell The number of formula units Z m ) × (molecular weight M m )] is used for the Rietveld analysis as a unique parameter of each amorphous admixture, so that each component phase of the multicomponent mixed cement whose mixing ratio is unknown Third Step for Obtaining Mixing Ratio However, the constituent phase refers to a constituent component contained in cement such as cement clinker mineral, gypsum, and a mixed material. The inverse problem is a problem of estimating the input from the output (result, observation).
[2] The quantitative analysis method for a multi-component mixed cement according to [1], wherein the amorphous phase mixture is at least two selected from the group consisting of blast furnace slag, fly ash, and silica fume.
[3] A production management system for a multicomponent mixed cement using the method for quantitative analysis of a multicomponent mixed cement according to [1] or [2].
[4] The multicomponent mixed cement is fed back to the pulverization step and / or the mixing step by using the quantitative analysis method for the multicomponent mixed cement described in [1] or [2]. The multi-component mixed cement production management system according to [3], wherein the quality of the multi-component mixed cement is managed.

本発明の多成分系混合セメントの定量分析方法は、多成分系混合セメントに含まれる非晶質混和材の混合率を、簡便かつ高い精度で定量できる。また、本発明の多成分系混合セメントの製造管理システムは、セメント工場等において、多成分系混合セメントの製造管理に好適に用いられ、生産性の向上に資することができる。   The quantitative analysis method of the multicomponent mixed cement of the present invention can quantitatively determine the mixing rate of the amorphous admixture contained in the multicomponent mixed cement with high accuracy. The production management system for multi-component mixed cement of the present invention is suitably used for production management of multi-component mixed cement in a cement factory or the like, and can contribute to improvement of productivity.

三成分系混合セメント中の普通ポルトランドセメント、高炉スラグ、およびガラス化率が高いフライアッシュの混合率(真値)と、本発明の多成分系混合セメントの定量分析方法を用いて求めた定量値との相関を示す図である。Quantitative value obtained by using the quantitative analysis method of multi-component mixed cement of the present invention and the mixing ratio (true value) of normal Portland cement, blast furnace slag, and fly ash with high vitrification rate in ternary mixed cement FIG. 三成分系混合セメント中の普通ポルトランドセメント、高炉スラグ、およびガラス化率が低いフライアッシュの混合率(真値)と、本発明の多成分系混合セメントの定量分析方法を用いて求めた定量値との相関を示す図である。Quantitative value obtained by using the quantitative analysis method of multi-component mixed cement of the present invention and the mixing ratio (true value) of ordinary Portland cement, blast furnace slag and fly ash with low vitrification rate in ternary mixed cement FIG. 三成分系混合セメント中の普通ポルトランドセメント、高炉スラグ、およびシリカフュームの混合率(真値)と、本発明の多成分系混合セメントの定量分析方法を用いて求めた定量値との相関を示す図である。The figure which shows the correlation with the quantitative value calculated | required using the quantitative analysis method of the multicomponent mixed cement of this invention, and the mixing rate (true value) of normal Portland cement, blast furnace slag, and silica fume in a ternary mixed cement It is. 五成分系混合セメント中の普通ポルトランドセメント、高炉スラグ、ガラス化率が高いフライアッシュ、シリカフューム、および石灰石フィラーの混合率(真値)と、本発明の多成分系混合セメントの定量分析方法を用いて求めた定量値との相関を示す図である。Using the blending ratio (true value) of ordinary Portland cement, blast furnace slag, fly ash with high vitrification rate, silica fume, and limestone filler in quinary mixed cement, and the quantitative analysis method of multi-component mixed cement of the present invention It is a figure which shows the correlation with the fixed value calculated | required in this way.

本発明は、前記のとおり、(A)各非晶質混和材について仮想結晶の単位胞体積 Vを求める第1の工程、(B)各非晶質混和材について仮想結晶の[(単位胞中に含まれる化学式単位の個数 Z)×(分子量 M)]を求める第2の工程、および(C)混合率が不明の多成分系混合セメントのリートベルト法に、(A)および(B)工程で得られた各非晶質混和材の固有のパラメーターを使用して、多成分系混合セメントに含まれる各構成相の混合率を定量する方法等である。
以下、本発明について各工程に分けて具体的に説明する。
As described above, the present invention includes (A) a first step of determining a unit cell volume V m of a virtual crystal for each amorphous admixture, and (B) a virtual crystal [(unit cell for each amorphous admixture). (A) and (A) and (R) in the second step of determining the number of chemical formula units contained therein Z m ) × (molecular weight M m )], and (C) the Rietveld method of a multicomponent mixed cement whose mixing ratio is unknown B) A method of quantifying the mixing ratio of each constituent phase contained in the multi-component mixed cement using the unique parameters of each amorphous admixture obtained in step B).
Hereinafter, the present invention will be specifically described in each process.

1.多成分系混合セメントの定量分析
(A)非晶質混和材について、仮想結晶の単位胞体積 Vを求める第1の工程
該工程は、1種類の非晶質混和材のみを測定試料としたX線回折結果から、リートベルト解析に用いるパラメーターである単位胞体積 Vを求める工程である。
前記非晶質混和材のみのX線回折パターンには、フライアッシュのように結晶相を含む場合もある。WPPD(Whole Powder Pattern Decomposition)法を用いて、得られたX線回折パターンから全結晶相のX線回折パターンを差し引いて、非晶質相のみによるX線回折パターンを取得する。次に、得られたハローパターンと同じX線回折プロファイルを示す仮想的な結晶構造モデルを計算することにより、その仮想結晶の単位胞体積Vを求める。
ここで、非晶質混和材とは、高炉スラグ、フライアッシュ、およびシリカフューム等が挙げられる。
なお、セメントクリンカ鉱物、石こう、および石灰石フィラー等の、混合セメントを構成する結晶相については、ICDD(International Centre for Diffraction Data)のPDFデータ等の種々の結晶構造データベースの値を代用できるので、単位胞体積 Vの事前取得は必要ない。
1. Quantitative analysis of multi-component mixed cement (A) First step for determining unit cell volume V m of virtual crystal for amorphous admixture This step uses only one type of amorphous admixture as a measurement sample This is a step of obtaining a unit cell volume V m which is a parameter used for Rietveld analysis from the X-ray diffraction result.
The X-ray diffraction pattern of only the amorphous admixture may contain a crystal phase like fly ash. Using an WPPD (Whole Powder Pattern Decomposition) method, the X-ray diffraction pattern of only the amorphous phase is obtained by subtracting the X-ray diffraction pattern of the entire crystal phase from the obtained X-ray diffraction pattern. Next, by calculating a virtual crystal structure model showing the same X-ray diffraction profile as the obtained halo pattern, a unit cell volume V m of the virtual crystal is obtained.
Here, examples of the amorphous admixture include blast furnace slag, fly ash, and silica fume.
For crystal phases composing mixed cement, such as cement clinker minerals, gypsum, and limestone filler, values of various crystal structure databases such as PDF data of ICDD (International Center for Diffraction Data) can be substituted. Prior acquisition of cell volume V m is not necessary.

(B)各非晶質混和材について、仮想結晶の[(単位胞中に含まれる化学式単位の個数 Z)×(分子量 M)]を求める第2の工程
該工程は、次の(C)工程で測定対象となる多成分系混合セメントと同一の構成相群から成り、各構成相の混合率が分かっている多成分系混合セメントを測定試料として用いたX線回折結果から、リートベルト解析に用いるパラメーターである[(単位胞中に含まれる化学式単位の個数 Z)×(分子量 M)]を求める工程である。
前記各構成相の混合率が分かっている多成分系混合セメントを測定試料として用いたX線回折結果について、下記(1)式で示すリートベルト解析法の逆問題として、各構成相の混合率(質量%)Wと(A)工程で求めた単位胞体積 Vから、[(単位胞中に含まれる化学式単位の個数 Z)×(分子量 M)]を、非晶質混和材毎に求める。

Figure 2016166866
なお、前記(1)式については、Hillらの以下の文献に記載がある。
R. J. Hill et al.、「Quantitative phase analysis from neutron powder diffraction data using the Rietveld method」、J. Appl. Cryst.、Vol.20、pp.467-474(1987) (B) Second step for obtaining [(number of chemical formula units contained in unit cell Z m ) × (molecular weight M m )] of the virtual crystal for each amorphous admixture. ) Rietveld from X-ray diffraction results using a multi-component mixed cement, which consists of the same constituent phase group as the multi-component mixed cement to be measured in the process, and the mixing ratio of each constituent phase is known as the measurement sample This is a step for obtaining [(number of chemical formula units contained in unit cell Z m ) × (molecular weight M m )], which is a parameter used for analysis.
About the X-ray diffraction result using the multi-component mixed cement whose mixing ratio of each constituent phase is known as a measurement sample, the mixing ratio of each constituent phase is an inverse problem of the Rietveld analysis method represented by the following formula (1). From (mass%) W m and the unit cell volume V m obtained in step (A), [(number of chemical formula units contained in unit cell Z m ) × (molecular weight M m )] Ask every time.
Figure 2016166866
The expression (1) is described in the following document by Hill et al.
RJ Hill et al., “Quantitative phase analysis from neutron powder diffraction data using the Rietveld method”, J. Appl. Cryst., Vol. 20, pp.467-474 (1987)

前記WPPD法およびPONKCS法は、市販のX線回折解析ソフトウェアを用いて行なうことができる。   The WPPD method and the PONKCS method can be performed using commercially available X-ray diffraction analysis software.

(C)多成分系混合セメントの各構成相の混合率を求める第3の工程
該工程は、各構成相の混合率が不明の多成分系混合セメントを測定試料としたX線回折結果に、非晶質混和材については前記(A)工程と(B)工程から得られた単位胞体積 Vと[(単位胞中に含まれる化学式単位の個数 Z)×(分子量 M)]とを、また結晶相については各種結晶構造データベースの値を、リートベルト解析のパラメーターとして用いることで、多成分系混合セメントの各構成相の混合率を求める工程である。
リートベルト解析は、市販のX線回折解析ソフトウェアを用いて行なうことができる。
(C) 3rd process of calculating | requiring the mixing rate of each component phase of a multicomponent mixed cement This process is based on the X-ray diffraction result using a multicomponent mixed cement whose mixing ratio of each constituent phase is unknown as a measurement sample. For the amorphous admixture, the unit cell volume V m obtained from the steps (A) and (B) and [(number of chemical formula units contained in the unit cell Z m ) × (molecular weight M m )] For the crystal phase, the values of various crystal structure databases are used as parameters for Rietveld analysis, thereby obtaining the mixing ratio of each constituent phase of the multicomponent mixed cement.
Rietveld analysis can be performed using commercially available X-ray diffraction analysis software.

2.多成分系混合セメントの製造管理システム
本発明の多成分系混合セメントの製造管理システムは、前記(A)〜(C)工程に記載の多成分系混合セメントの定量分析方法を用いた製造管理システムであり、好ましくは、該定量分析方法を用いて得られた分析結果を、粉砕工程および/または混合工程にフィードバックして、多成分系混合セメントの品質を管理する製造管理システムである。
2. Manufacturing management system of multicomponent mixed cement The manufacturing management system of multicomponent mixed cement of the present invention is a manufacturing management system using the method for quantitative analysis of multicomponent mixed cement described in steps (A) to (C). Preferably, it is a production management system for managing the quality of the multi-component mixed cement by feeding back the analysis result obtained by using the quantitative analysis method to the pulverization step and / or the mixing step.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
以下の材料を定量分析に用いた。
(1)セメント:JIS R 5210「ポルトランドセメント」に規定する少量混合成分を含まない普通ポルトランドセメント(太平洋セメント社製)
(2)高炉スラグ:エスメント4000(エスメント関東社製)
(3)フライアッシュ1(ガラス化率は高い。):ほくでんフライアッシュ(北電興業社製)
(4)フライアッシュ2(ガラス化率は低い。):とうほくフライアッシュ(東北発電工業社製)
(5)シリカフューム:マイクロシリカ(エルケムジャパン社販売)
(6)石灰石フィラー:特級試薬(関東化学社製)
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
1. Materials used The following materials were used for quantitative analysis.
(1) Cement: Normal Portland cement (manufactured by Taiheiyo Cement Co., Ltd.) that does not contain a small amount of mixed components specified in JIS R 5210 “Portland Cement”
(2) Blast furnace slag: ESMENT 4000 (manufactured by ESMENT Kanto)
(3) Fly ash 1 (high vitrification rate): Hokuden fly ash (made by Hokuden Kogyo Co., Ltd.)
(4) Fly ash 2 (low vitrification rate): Tohoku fly ash (made by Tohoku Electric Power Industry Co., Ltd.)
(5) Silica fume: Micro silica (sold by Elchem Japan)
(6) Limestone filler: Special grade reagent (manufactured by Kanto Chemical Co., Inc.)

2.前記使用材料の化学組成の測定
前記セメントの化学組成は、JIS R 5204「セメントの蛍光X線分析方法」に準拠して測定し、前記その他の材料の化学組成は、検量線法による蛍光X線分析により測定した。その結果を表1に示す。
2. Measurement of the chemical composition of the material used The chemical composition of the cement was measured in accordance with JIS R 5204 “Method of analyzing fluorescent X-rays of cement”, and the chemical composition of the other materials was measured by fluorescent X-rays using a calibration curve method. It was measured by analysis. The results are shown in Table 1.

Figure 2016166866
Figure 2016166866

3.前記使用材料の鉱物組成の測定
前記使用材料の鉱物組成を、リートベルト法を用いて求めた。その結果を表2に示す。
なお、前記鉱物組成の測定に用いたX線回折装置は、D8 ADVANCE(ブルカー・エイエックスエス社製)であり、解析ソフトウェアは、DIFFRACplusTOPAS(Ver.3)(ブルカー・エイエックスエス社製)である。
3. Measurement of mineral composition of the material used The mineral composition of the material used was determined using the Rietveld method. The results are shown in Table 2.
The X-ray diffractometer used for the mineral composition measurement is D8 ADVANCE (manufactured by Bruker AXS), and the analysis software is DIFFRAC plus TOPAS (Ver. 3) (manufactured by Bruker AXS). ).

Figure 2016166866
Figure 2016166866

4.前記使用材料のガラス化率等の測定
前記使用材料のガラス化率、ブレーン比表面積、および密度を測定した。その結果を表3に示す。なお、ガラス化率は、Jansenらの以下の文献を参考にしてリートベルト/外部標準(G因子)法を用いて求めた結晶相の合計量(質量%)を100から引いた差分で示し、ブレーン比表面積と密度は、JIS R 5201「セメントの物理試験方法」に準拠して求めた。
D.Jansen et al.、「Does Ordinary Portland Cement contain amorphous phase? A quantitative study using an external standard method」、Powder Diffraction、Vol.26、No.1、pp.31-38(2011)
4). Measurement of Vitrification Rate, etc. of Use Material The vitrification rate, the Blaine specific surface area, and the density of the use material were measured. The results are shown in Table 3. The vitrification rate is expressed as a difference obtained by subtracting the total amount (mass%) of the crystal phase obtained by using the Rietveld / external standard (G-factor) method with reference to the following Jansen et al. The Blaine specific surface area and density were determined according to JIS R 5201 “Cement physical test method”.
D. Jansen et al., “Does Ordinary Portland Cement contain amorphous phase? A quantitative study using an external standard method”, Powder Diffraction, Vol. 26, No. 1, pp. 31-38 (2011)

Figure 2016166866
Figure 2016166866

5.X線回折パターンの測定と各種解析
全ての試料(ただし、多成分系混合セメントは計量して混合した後)は、ディスクミルで5秒間粉砕して細粒化および混合の均斉度を向上させた。また、X線回折パターンの測定は、下記の装置および走査方法で行った。また、得られたX線回折パターンに関する、WPPD法によるパターン分解、PONKCS法による解析、リートベルト解析には、下記の解析ソフトウェアを使用した。
(1)X線回折装置:D8 ADVANCE(ブルカー・エイエックスエス社製)X線:Cu-kα、35kV-350mA
(2)走査方法:ステップスキャン(ステップ幅0.023°)、測定時間:0.13秒/ステップ、走査範囲:2θ 10〜65°、
(3)解析ソフトウェア:DIFFRACplusTOPAS(Ver.3)(ブルカー・エイエックスエス社製)
5. X-ray diffraction pattern measurement and various analyzes All samples (however, after mixing and mixing multi-component mixed cement) were crushed with a disk mill for 5 seconds to improve the fineness and mixing uniformity. . The X-ray diffraction pattern was measured with the following apparatus and scanning method. Moreover, the following analysis software was used for the pattern decomposition by the WPPD method, the analysis by the PONKCS method, and the Rietveld analysis for the obtained X-ray diffraction pattern.
(1) X-ray diffractometer: D8 ADVANCE (manufactured by Bruker AXS) X-ray: Cu-kα, 35 kV-350 mA
(2) Scanning method: step scanning (step width 0.023 °), measurement time: 0.13 seconds / step, scanning range: 2θ 10 to 65 °,
(3) Analysis software: DIFFRAC plus TOPAS (Ver. 3) (manufactured by Bruker AXS)

(1)非晶質混和材(高炉スラグ、フライアッシュ、シリカフューム)のX線回折パターンの測定と、単位胞体積 Vの算出
非晶質混和材は単独でX線回折測定を行い、ハローパターンのプロファイルを事前に取得した。得られたハローパターンと同じX線回折プロファイルを示す、仮想的な結晶構造モデルを計算し、その仮想結晶の単位胞体積 Vを求めた。
(1) Measurement of X-ray diffraction pattern of amorphous admixture (blast furnace slag, fly ash, silica fume) and calculation of unit cell volume V m Amorphous admixture performs X-ray diffraction measurement alone, and halo pattern Profile was acquired in advance. A virtual crystal structure model showing the same X-ray diffraction profile as the obtained halo pattern was calculated, and the unit cell volume V m of the virtual crystal was obtained.

(2)非晶質混和材の混合率が既知である多成分系混合セメントのX線回折パターンの測定と[(単位胞中に含まれる化学式単位の個数 Z)×(分子量 M)]の算出
各構成相の混合率が分かっている多成分系混合セメントを調製して、そのX線回折パターンを取得した。
前記(1)式で示されるリートベルト解析の基本式について、
(i)特定の非晶質相の混合率 Wは既知である。
(ii)特定の非晶質相の単位胞体積 Vは前記工程で算出済みである。
(iii)各結晶相の定数V、Zm、は、ICDDの結晶構造データを初期値として、パターンフィッティング法により精密化した値を用いた。
(iv)非晶質相および結晶相のスケール因子Sは、上記パターンフィッティング法の
精密化の結果として得られる、算出値を用いた。
(2) Measurement of X-ray diffraction pattern of multi-component mixed cement with known mixing ratio of amorphous admixture and [(number of chemical formula units contained in unit cell Z m ) × (molecular weight M m )] The multi-component mixed cement whose mixing ratio of each constituent phase is known was prepared, and its X-ray diffraction pattern was obtained.
About the basic equation of Rietveld analysis shown by the above equation (1),
(I) The mixing ratio W m of a specific amorphous phase is known.
(Ii) The unit cell volume V m of the specific amorphous phase has been calculated in the above step.
(Iii) The constants V m , Z m, and M m of each crystal phase were values refined by a pattern fitting method using ICDD crystal structure data as initial values.
(Iv) As the scale factor S m of the amorphous phase and the crystalline phase, calculated values obtained as a result of the refinement of the pattern fitting method were used.

(3)混合率が不明の多成分系混合セメントの定量分析
非晶質混和材毎に、単位胞体積 Vと[(単位胞中に含まれる化学式単位の個数 Z)×(分子量 M)]が得られたので、これらのパラメーターを用いて、結晶相に適用するのと同じ手順で、当該非晶質混和材にリートベルト解析を適用することが可能になった。
そこで、通常のリートベルト法の手順で、構成相の混合率が不明な多成分系混合セメントの定量分析を行った。
以下に、各種の多成分系混合セメントを定量分析した結果を示す。なお、各混和材の定量値は、各混和材に含まれる非晶質相と結晶相の和とした。
(3) Quantitative analysis of multicomponent mixed cement with unknown mixing ratio For each amorphous admixture, unit cell volume V m and [(number of chemical formula units contained in unit cell Z m ) × (molecular weight M m )] Was obtained, and it became possible to apply Rietveld analysis to the amorphous admixture using these parameters in the same procedure as that applied to the crystal phase.
Then, the quantitative analysis of the multi-component system mixed cement in which the mixing rate of the constituent phase is unknown was performed by the procedure of the ordinary Rietveld method.
The results of quantitative analysis of various multicomponent mixed cements are shown below. The quantitative value of each admixture was the sum of the amorphous phase and the crystalline phase contained in each admixture.

普通ポルトランドセメント、高炉スラグ、およびガラス化率が高いフライアッシュ(フライアッシュ1)からなる三成分系混合セメントの混合率(真値)と、本発明の多成分系混合セメントの定量分析方法を用いて求めた定量値を、表4および図1に示す。   Using the mixing ratio (true value) of ternary mixed cement consisting of ordinary Portland cement, blast furnace slag, and fly ash (fly ash 1) with high vitrification rate, and the quantitative analysis method for multi-component mixed cement of the present invention The quantitative values determined in this way are shown in Table 4 and FIG.

Figure 2016166866
Figure 2016166866

普通ポルトランドセメント、高炉スラグ、およびガラス化率が低いフライアッシュ(フライアッシュ2)の三成分系混合セメントの混合率(真値)と、本発明の多成分系混合セメントの定量分析方法を用いて求めた定量値を、表5および図2に示す。   Using the mixing ratio (true value) of three-component mixed cement of ordinary Portland cement, blast furnace slag, and fly ash (fly ash 2) with low vitrification rate, and the quantitative analysis method of multi-component mixed cement of the present invention The determined quantitative values are shown in Table 5 and FIG.

Figure 2016166866
Figure 2016166866

三成分系混合セメント中の普通ポルトランドセメント、高炉スラグ、およびシリカフュームの混合率(真値)と、本発明の多成分系混合セメントの定量分析方法を用いて求めた定量値を、表6および図3に示す。   Table 6 and Fig. 6 show the mixing ratio (true value) of ordinary Portland cement, blast furnace slag, and silica fume in the ternary mixed cement and the quantitative values obtained using the quantitative analysis method of the multicomponent mixed cement of the present invention. 3 shows.

Figure 2016166866
Figure 2016166866

五成分系混合セメント中の普通ポルトランドセメント、高炉スラグ、ガラス化率が高いフライアッシュ(フライアッシュ1)、シリカフューム、および石灰石フィラーの混合率(真値)と、本発明の多成分系混合セメントの定量分析方法を用いて求めた定量値を、表7および図4に示す。   The mixing ratio (true value) of ordinary Portland cement, blast furnace slag, fly ash with high vitrification rate (fly ash 1), silica fume, and limestone filler in the ternary mixed cement, and the multicomponent mixed cement of the present invention The quantitative values obtained using the quantitative analysis method are shown in Table 7 and FIG.

Figure 2016166866
Figure 2016166866

図1〜4に示すように、混合率(真値)と定量値は極めて高い精度で一致している。したがって、本発明の多成分系混合セメントの定量分析方法は、多成分系混合セメントに含まれる非晶質混和材の混合率を、簡便かつ高い精度で定量できる。また、本発明の多成分系混合セメントの製造管理システムは、セメント工場等において、多成分系混合セメントの品質管理に好適に用いることができる。   As shown in FIGS. 1 to 4, the mixing ratio (true value) and the quantitative value match with extremely high accuracy. Therefore, the quantitative analysis method for multi-component mixed cement of the present invention can quantitatively determine the mixing rate of the amorphous admixture contained in the multi-component mixed cement easily and with high accuracy. The production management system for multi-component mixed cements of the present invention can be suitably used for quality control of multi-component mixed cements in cement factories and the like.

Claims (4)

下記(A)〜(C)工程を有し、多成分系混合セメントに含まれる各構成相の混合率を定量する、多成分系混合セメントの定量分析方法。
(A)非晶質混和材のみの粉末X線回折パターン(ハローパターン)を、仮想的な結晶相による粉末X線回折パターンと見做して、仮想結晶の単位胞体積 Vを求める第1の工程
(B)測定対象とする多成分系混合セメントと同一の構成相を有する混合セメントであって、各構成相の混合率が既知である1つの混合セメントの粉末X線回折パターンを用いて、PONKCS法を用いたリートベルト解析法の逆問題として、各非晶質混和材の混合率(質量%)Wと、(A)工程で求めた単位胞体積 Vから、仮想結晶の[(単位胞中に含まれる化学式単位の個数 Z)×(分子量 M)]を、各非晶質混和材について求める第2の工程
(C)前記(A)工程および(B)工程で得られた、単位胞体積 Vと[(単位胞中に含まれる化学式単位の個数 Z)×(分子量 M)]を、各非晶質混和材の固有のパラメーターとしてリートベルト解析に用いることにより、混合率が不明の多成分系混合セメントの各構成相の混合率を求める第3の工程
A method for quantitative analysis of a multicomponent mixed cement, comprising the following steps (A) to (C), wherein the mixing ratio of each constituent phase contained in the multicomponent mixed cement is quantified.
(A) A powder X-ray diffraction pattern (halo pattern) of only an amorphous admixture is regarded as a powder X-ray diffraction pattern based on a virtual crystal phase, and a unit cell volume V m of the virtual crystal is obtained. Step (B) Using a powder X-ray diffraction pattern of a mixed cement having the same constituent phase as the multi-component mixed cement to be measured, wherein the mixing ratio of each constituent phase is known As an inverse problem of the Rietveld analysis method using the PONKCS method, from the mixing ratio (mass%) W m of each amorphous admixture and the unit cell volume V m obtained in the step (A), the virtual crystal [ (Number of chemical formula units contained in unit cell Z m ) × (molecular weight M m )] is obtained in the second step (C) step (A) and step (B) for each amorphous admixture. Unit cell volume V m and [(the chemistry contained in the unit cell The number of formula units Z m ) × (molecular weight M m )] is used for the Rietveld analysis as a unique parameter of each amorphous admixture, so that each component phase of the multicomponent mixed cement whose mixing ratio is unknown Third step for determining the mixing ratio
前記非晶質相混合材が、高炉スラグ、フライアッシュ、およびシリカフュームからなる群より選ばれる2種以上である、請求項1に記載の多成分系混合セメントの定量分析方法。   The method for quantitative analysis of a multicomponent mixed cement according to claim 1, wherein the amorphous phase mixture is at least two selected from the group consisting of blast furnace slag, fly ash, and silica fume. 請求項1または2に記載の多成分系混合セメントの定量分析方法を用いた、多成分系混合セメントの製造管理システム。   A production management system for a multi-component mixed cement using the multi-component mixed cement quantitative analysis method according to claim 1. 請求項1または2に記載の多成分系混合セメントの定量分析方法を用いて得られた分析結果を、粉砕工程および/または混合工程にフィードバックして、多成分系混合セメントの品質を管理する、請求項3に記載の多成分系混合セメントの製造管理システム。   The analysis result obtained by using the quantitative analysis method for multi-component mixed cement according to claim 1 or 2 is fed back to the pulverization step and / or the mixing step to control the quality of the multi-component mixed cement. The manufacturing management system of the multi-component mixed cement according to claim 3.
JP2016029312A 2015-03-03 2016-02-18 Quantitative analysis method for multi-component mixed cement and manufacturing control system for multi-component mixed cement Active JP6755068B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015041343 2015-03-03
JP2015041343 2015-03-03

Publications (2)

Publication Number Publication Date
JP2016166866A true JP2016166866A (en) 2016-09-15
JP6755068B2 JP6755068B2 (en) 2020-09-16

Family

ID=56897617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016029312A Active JP6755068B2 (en) 2015-03-03 2016-02-18 Quantitative analysis method for multi-component mixed cement and manufacturing control system for multi-component mixed cement

Country Status (1)

Country Link
JP (1) JP6755068B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636499A (en) * 2016-12-15 2017-05-10 钢研晟华工程技术有限公司 Non-crystallization method for blast furnace slags
JP2018131352A (en) * 2017-02-15 2018-08-23 太平洋セメント株式会社 Method for producing Portland cement and method for manufacturing mixed cement
JP2018131361A (en) * 2017-02-16 2018-08-23 太平洋セメント株式会社 Method for producing cement composition, and method for evaluating the cement composition
JP2018145073A (en) * 2017-03-08 2018-09-20 太平洋セメント株式会社 Quality control system of cement composition and quality control method of cement composition
CN108770365A (en) * 2016-02-17 2018-11-06 株式会社理学 Resolver, analytic method and analysis program
CN111033246A (en) * 2017-08-09 2020-04-17 株式会社理学 Quantitative crystal phase analysis device, quantitative crystal phase analysis method, and quantitative crystal phase analysis program
JP2021138567A (en) * 2020-03-04 2021-09-16 太平洋マテリアル株式会社 Cement composition, and ultra-high strength and low shrinkage mortar composition
JP7515885B2 (en) 2021-06-04 2024-07-16 株式会社リガク Quantitative analysis device, method, program, and manufacturing management system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108770365A (en) * 2016-02-17 2018-11-06 株式会社理学 Resolver, analytic method and analysis program
CN106636499A (en) * 2016-12-15 2017-05-10 钢研晟华工程技术有限公司 Non-crystallization method for blast furnace slags
JP2018131352A (en) * 2017-02-15 2018-08-23 太平洋セメント株式会社 Method for producing Portland cement and method for manufacturing mixed cement
JP2018131361A (en) * 2017-02-16 2018-08-23 太平洋セメント株式会社 Method for producing cement composition, and method for evaluating the cement composition
JP2018145073A (en) * 2017-03-08 2018-09-20 太平洋セメント株式会社 Quality control system of cement composition and quality control method of cement composition
CN111033246A (en) * 2017-08-09 2020-04-17 株式会社理学 Quantitative crystal phase analysis device, quantitative crystal phase analysis method, and quantitative crystal phase analysis program
CN111033246B (en) * 2017-08-09 2023-07-14 株式会社理学 Crystal phase quantitative analysis device, crystal phase quantitative analysis method, and crystal phase quantitative analysis program
JP2021138567A (en) * 2020-03-04 2021-09-16 太平洋マテリアル株式会社 Cement composition, and ultra-high strength and low shrinkage mortar composition
JP7515885B2 (en) 2021-06-04 2024-07-16 株式会社リガク Quantitative analysis device, method, program, and manufacturing management system

Also Published As

Publication number Publication date
JP6755068B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP6755068B2 (en) Quantitative analysis method for multi-component mixed cement and manufacturing control system for multi-component mixed cement
León-Reina et al. Round robin on Rietveld quantitative phase analysis of Portland cements
Le Saoût et al. Application of the Rietveld method to the analysis of anhydrous cement
Snellings et al. Rapid, robust, and relevant (R3) reactivity test for supplementary cementitious materials
Stetsko et al. Quantification of supplementary cementitious content in blended Portland cement using an iterative Rietveld–PONKCS technique
JP2009121988A (en) Evaluation method for coal ash
JP2008247715A (en) Sorting method of granulated blast furnace slag for cement, and forming process of cement composition
Wilson et al. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers
Rogers Evaluation and testing of brick dust as a pozzolanic additive to lime mortars for architectural conservation
Ricci et al. Integrated multi-analytical screening approach for reliable radiocarbon dating of ancient mortars
Meier et al. Industrial X-ray diffraction analysis of building materials
Chaunsali et al. On the interaction of Class C fly ash with Portland cement–calcium sulfoaluminate cement binder
Mertens et al. Quantitative composition of ancient mortars from the Notre Dame Cathedral in Tournai (Belgium)
Tanikella et al. Updating physical and chemical characteristics of fly ash for use in concrete
Stutzman Direct determination of phases in portland cements by quantitative X-ray powder diffraction
Ley The effects of fly ash on the ability to entrain and stabilize air in concrete
Liu Early-age hydration studies of Portland cement
Sisomphon A chemical analysis method for determining blast-furnace slag content in hardened concrete
Pyzalski et al. Synthesis and Investigation of the Hydration Degree of CA2 Phase Modified with Boron and Fluorine Compounds
JP6338993B2 (en) Quantitative determination method of mixed materials in mixed cement
Livingston et al. Quantitative X-ray diffraction analysis of handmolded brick
Anderson et al. X-ray diffraction—New eyes on the process
Kang et al. Determining the air-entraining admixture dosage in concrete with non-traditional coal ash
Klika et al. Critical evaluation of quantitative determination of minerals in slags by a new MCQMA and QXRD methods
Stutzman Development of an ASTM standard test method on X-ray powder diffraction analysis of hydraulic cements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200821

R150 Certificate of patent or registration of utility model

Ref document number: 6755068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250