JP2005127999A - Crystal determinating method - Google Patents

Crystal determinating method Download PDF

Info

Publication number
JP2005127999A
JP2005127999A JP2004196481A JP2004196481A JP2005127999A JP 2005127999 A JP2005127999 A JP 2005127999A JP 2004196481 A JP2004196481 A JP 2004196481A JP 2004196481 A JP2004196481 A JP 2004196481A JP 2005127999 A JP2005127999 A JP 2005127999A
Authority
JP
Japan
Prior art keywords
crystal
crystals
powder
crystallinity
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004196481A
Other languages
Japanese (ja)
Inventor
Takehiro Okumura
剛宏 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004196481A priority Critical patent/JP2005127999A/en
Publication of JP2005127999A publication Critical patent/JP2005127999A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystal determinating method of high precision for preparing a standard mixed powder, wherein crystals are ground to be mixed, to form a calibration curve. <P>SOLUTION: This crystal determinating method includes a step (a) for grinding at least two kinds of crystals different in crystal form or degree of crystallization by an air flow type grinder to obtain ground crystals, a step (b) for weighing the ground crystals by a predetermined amount to put them in a hollow container of which the outer surface is provided with an elastomer mixed medium and vibrating or rotating the hollow container to obtain a plurality of standard mixed powders different in crystal containing ratio or degree of crystallization, a step (c) for subjecting the standard mixed powders to powder X-ray diffraction measurment to form the calibration curve of the correlation with the weights of the respective crystals in the standard mixed powders or the degrees of crystallization of the standard mixed powders, a step (d) for grinding the crystal mixture to be determinated, and a step (e) for calculating the contents of the respective crystals in the crystal mixture or the degree of crystallization of the crystal mixture from the calibration curve formed in the step (c) by subjecting the ground crystal mixture to powder X-ray diffraction measurement. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、結晶の定量方法に関する。   The present invention relates to a crystal quantification method.

結晶多形が存在する化合物は、結晶形によって種々の性質が異なり、同一の化学組成を有していても、例えば溶解度、溶解速度、安定性、吸湿性等の物理化学的性質や、例えば効力、分解物、代謝物、毒性、製剤特性等の諸特性が異なる場合が多い。そのため、結晶多形を有する化合物を、例えば医薬原体として用いる場合は、医薬原体という分野の特性上、当然に、異なる結晶形を含まないか、もしくは多形の組成比率が一定になるよう制御された医薬原体を提供することが要求され、その製造プロセスの開発においては、当該プロセスにおいて、目的とする結晶形とは異なる結晶形の化合物が生成しないかどうか、得られた原体中に、目的とする結晶形とは異なる結晶形の化合物が含まれていないかどうか、あるいは多形の組成比率が一定になっているかどうか、さらには、製造した医薬原体の保存中や製剤過程において、結晶形の変化がないかどうか等結晶多形の有無、多形の含有量等を確認することが極めて重要であった。また、結晶化度が異なる場合も、前記結晶多形の場合と同様に、物理化学的性質や諸特性が異なることが多く、結晶化度が一定になるように制御された医薬原体を提供することが要求され、その製造プロセスにおいても、同様に、目的とする結晶化度の化合物が得られているか、製造後の保存過程等において、結晶化度の変化がないかどうか等を確認することが極めて重要であった。   A compound having a crystalline polymorph has various properties depending on the crystal form, and even if it has the same chemical composition, for example, physicochemical properties such as solubility, dissolution rate, stability, hygroscopicity, In many cases, various properties such as degradation products, metabolites, toxicity, and formulation characteristics are different. Therefore, when a compound having a crystalline polymorph is used, for example, as a drug substance, it naturally does not contain a different crystal form or the composition ratio of the polymorph is constant due to the characteristics of the drug substance. It is required to provide a controlled drug substance, and in the development of the manufacturing process, whether or not a compound having a crystal form different from the target crystal form is generated in the process is determined in the obtained drug substance. That the compound does not contain a compound with a crystal form different from the intended crystal form, the composition ratio of the polymorph is constant, and during the storage of the manufactured drug substance and the formulation process Therefore, it was extremely important to confirm the presence or absence of crystal polymorphism, the polymorph content, etc. In addition, even when the crystallinity is different, as in the case of the crystalline polymorph, the physicochemical properties and characteristics are often different, and the drug substance is controlled so that the crystallinity is constant. Similarly, in the manufacturing process, it is confirmed whether the compound with the desired crystallinity is obtained, and whether there is no change in the crystallinity in the storage process after the manufacturing. It was extremely important.

従来、かかる結晶多形や結晶化度を定量する方法としては、粉末X線回折測定法が用いられていた。これは、特定の結晶形あるいは結晶化度の結晶をメノウ製乳鉢を用いてすりつぶし、すりつぶした結晶粉末を所定量ずつ採取、混合した後、粉末X線回折測定し、前記結晶の固有ピークの大きさと混合粉末中のそれぞれの結晶粉末の重量または結晶化度との相関の検量線を作成した後、含量未知の結晶混合物を同様にすりつぶし、粉末X線回折測定して得られる粉末X線回折プロファイル中の固有ピークの大きさと前記検量線とから、前記結晶混合物中のそれぞれの結晶形の含有量や結晶混合物の結晶化度を定量する方法であるが、検量線の信頼性の点から、定量限界が5〜10%程度といわれており、また、すりつぶす際に結晶形の転移、非晶化、結晶化等が起こるおそれもあり、例えば医薬原体等の分野における微量の結晶多形の有無、微量の結晶もしくは非晶の有無等を分析する方法としては、必ずしも適しているとは言えなかった。さらに、製剤中に含まれる結晶についても、製剤中の結晶含有量自体が少量であるため、定量下限はさらに大きくなり、結晶形の含有量や結晶試料の結晶化度を精密に定量することは難しかった。   Conventionally, a powder X-ray diffraction measurement method has been used as a method for quantifying such crystal polymorphs and crystallinity. This is because a crystal of a specific crystal form or crystallinity is ground using an agate mortar, and the ground crystal powder is sampled and mixed in predetermined amounts, and then subjected to powder X-ray diffraction measurement to determine the size of the intrinsic peak of the crystal. X-ray diffraction profile obtained by preparing a calibration curve of the correlation between the weight of each crystal powder in the mixed powder and the crystallinity and then grinding the crystal mixture of unknown content in the same manner and measuring the powder X-ray diffraction It is a method for quantifying the content of each crystal form in the crystal mixture and the crystallinity of the crystal mixture from the size of the intrinsic peak in the medium and the calibration curve. It is said that the limit is about 5 to 10%, and there is a possibility that crystal form transition, non-crystallization, crystallization, etc. may occur during grinding. , As a method of analyzing a crystal or presence of amorphous amounts such as not be said to be necessarily suitable. Furthermore, since the crystal content itself in the preparation is small, the lower limit of quantification is further increased, and the crystal form content and the crystallinity of the crystal sample can be accurately quantified. was difficult.

定量限界を小さくし、より信頼性の高い検量線を作成するためには、結晶をできるだけ均質に、結晶形、結晶性等を変化させることなく粉砕し、均等に混合した標準混合粉末を調製し、該標準混合粉末を用いて検量線を作成する必要があるが、これまで、結晶をできるだけ均質に、結晶形の転移、非晶化、結晶化等を起こさせることなく粉砕し、混合して、標準混合粉末を調製する方法は知られておらず、より定量下限の小さな含量未知の結晶の定量方法は知られていなかった。   In order to reduce the limit of quantification and create a more reliable calibration curve, prepare a standard mixed powder by uniformly crushing the crystals as much as possible without changing the crystal form, crystallinity, etc., and mixing them evenly. However, it is necessary to prepare a calibration curve using the standard mixed powder, but until now, the crystals are homogenized as much as possible without causing crystal form transition, non-crystallization, crystallization, etc. The method for preparing the standard mixed powder is not known, and the method for quantifying crystals with unknown contents having a smaller lower limit of quantification has not been known.

このような状況のもと、本発明者は、結晶をできるだけ均質に、結晶形の転移、非晶化、結晶化等を起こさせることなく粉砕し、混合した標準混合粉末を調製でき、より信頼性の高い検量線を作成でき、より定量限界の小さい結晶の定量方法を開発すべく鋭意検討したところ、結晶形または結晶化度の異なる二種以上の結晶を気流式粉砕機を用いて粉砕処理することにより、微粉末結晶が得られ、かかる微粉末結晶を、少なくともその外面が弾性体で形成されてなる混合媒体を備えた中空容器に入れ、該中空容器を振動もしくは回転せしめて、前記粉砕結晶を混合処理することにより、結晶形の転移、結晶化度の変化等を起こすことなく、混合状態が均質な混合微粉末を得ることができ、該混合微粉末を標準混合粉末として、粉末X線回折測定することにより、混合微粉末中の各結晶形の重量または該混合粉末の結晶化度と、得られた粉末X線回折プロファイル中の各結晶の固有ピークの大きさとの相関のより信頼性の高い検量線を作成することができ、かかる検量線を用いることにより、含量未知の結晶を、より精密に定量することができることを見出し、本発明に至った。   Under such circumstances, the present inventor can prepare a standard mixed powder that is pulverized and mixed as homogeneously as possible without causing crystal transformation, amorphization, crystallization, etc. A highly calibrated calibration curve was created, and intensive studies were conducted to develop a method for quantifying crystals with a smaller quantification limit. Two or more crystals with different crystal forms or crystallinity levels were pulverized using an airflow pulverizer. By doing so, a fine powder crystal is obtained, and the fine powder crystal is placed in a hollow container provided with a mixing medium having at least an outer surface formed of an elastic body, and the hollow container is vibrated or rotated to pulverize the fine powder crystal. By mixing the crystals, it is possible to obtain a mixed fine powder having a homogeneous mixed state without causing a change in crystal form, a change in crystallinity, etc., and using the mixed fine powder as a standard mixed powder, Line diffraction measurement Thus, the correlation between the weight of each crystal form in the mixed fine powder or the crystallinity of the mixed powder and the size of the intrinsic peak of each crystal in the obtained powder X-ray diffraction profile is more reliable. It has been found that a calibration curve can be prepared, and by using such a calibration curve, crystals with unknown contents can be quantified more precisely, leading to the present invention.

すなわち本発明は、(a)結晶形または結晶化度の異なる二種以上の結晶を、それぞれ独立に気流式粉砕機を用いて粉砕処理し、それぞれの粉砕結晶を得るステップと、
(b)前記粉砕結晶を、それぞれ所定量ずつ秤量し、少なくともその外面が弾性体で形成されてなる混合媒体を備えてなる中空容器に入れ、該中空容器を振動もしくは回転せしめることにより、前記粉砕結晶の混合処理を行い、結晶形の含有割合または結晶化度の異なる複数の標準混合粉末を得るステップと、
(c)該標準混合粉末を粉末X線回折測定し、得られた粉末X線回折プロファイル中の各結晶の固有ピークの大きさと、該標準混合粉末中の各結晶形の重量または該標準混合粉末の結晶化度との相関の検量線を作成するステップと、
(d)定量すべき結晶混合物を粉砕処理するステップと、
(e)前記粉砕処理された結晶混合物を粉末X線回折測定し、得られた粉末X線回折プロファイル中の各結晶の固有ピークの大きさと、前記ステップ(c)で作成した検量線とから、定量すべき結晶混合物中の各結晶形の含有量または該結晶混合物の結晶化度を算出するステップを含むことを特徴とする結晶の定量方法、該定量方法に用いる標準混合粉末の調製方法および該定量方法に用いる検量線の作成方法を提供するものである。
That is, the present invention includes (a) a step of pulverizing two or more types of crystals having different crystal forms or crystallinity levels independently using an airflow pulverizer to obtain respective pulverized crystals;
(B) Each of the pulverized crystals is weighed in a predetermined amount, placed in a hollow container provided with a mixed medium having at least an outer surface formed of an elastic body, and the pulverized crystal is vibrated or rotated. Performing a mixing process of crystals to obtain a plurality of standard mixed powders having different crystal content or crystallinity;
(C) Powder X-ray diffraction measurement of the standard mixed powder, the size of the intrinsic peak of each crystal in the obtained powder X-ray diffraction profile, the weight of each crystal form in the standard mixed powder, or the standard mixed powder Creating a calibration curve for correlation with crystallinity of
(D) crushing the crystal mixture to be quantified;
(E) Powder X-ray diffraction measurement of the pulverized crystal mixture, from the size of the intrinsic peak of each crystal in the obtained powder X-ray diffraction profile and the calibration curve created in the step (c), A step of calculating the content of each crystal form in the crystal mixture to be quantified or the crystallinity of the crystal mixture, a method of preparing a standard mixed powder used in the quantification method, and the method The present invention provides a method for preparing a calibration curve used in a quantitative method.

本発明によれば、より定量下限が小さく、精密な定量が可能となるため、微量の結晶多形の定量、微量の非晶の定量等の精密な定量が必要とされる医薬の分野はもちろん、他の分野においても有用である。   According to the present invention, since the lower limit of quantification is smaller and precise quantification is possible, of course, the field of medicine that requires precise quantification such as quantification of a small amount of crystal polymorphs, quantification of a small amount of amorphous, etc. It is also useful in other fields.

本発明の結晶の定量方法は、以下の(a)〜(e)の各ステップを含むことを特徴とするものであり、かかる定量方法により、より定量限界の小さい検量線を作成することができ、結晶混合物中に微量含まれる結晶形や非晶等を定量することができる。
(a)結晶形または結晶化度の異なる二種以上の結晶を、それぞれ独立に気流式粉砕機を用いて粉砕処理し、それぞれの粉砕結晶を得るステップ(以下、ステップ(a)と略記する。)、(b)前記粉砕結晶を、それぞれ所定量ずつ秤量し、少なくともその外面が弾性体で形成されてなる混合媒体を備えてなる中空容器に入れ、該中空容器を振動もしくは回転せしめることにより、前記粉砕結晶の混合処理を行い、結晶形の含有割合または結晶化度の異なる複数の標準混合粉末を得るステップ(以下、ステップ(b)と略記する。)、(c)該標準混合粉末を粉末X線回折測定し、得られた粉末X線回折プロファイル中の各結晶の固有ピークの大きさと、該標準混合粉末中の各結晶形の重量または該標準混合粉末の結晶化度との相関の検量線を作成するステップ(以下、ステップ(c)と略記する。)、(d)定量すべき結晶混合物を粉砕処理するステップ(以下、ステップ(d)と略記する。)、(e)前記粉砕処理された結晶混合物を粉末X線回折測定し、得られた粉末X線回折プロファイル中の各結晶の固有ピークの大きさと、前記ステップ(c)で作成した検量線とから、定量すべき結晶混合物中の各結晶形の含有量または該結晶混合物の結晶化度を算出するステップ(以下、ステップ(e)と略記する。)。
The crystal quantification method of the present invention is characterized by including the following steps (a) to (e), and a calibration curve with a smaller quantification limit can be created by such a quantification method. The crystal form and amorphous contained in a trace amount in the crystal mixture can be quantified.
(A) Two or more kinds of crystals having different crystal forms or crystallinity levels are independently pulverized using an airflow pulverizer to obtain respective pulverized crystals (hereinafter abbreviated as step (a)). ), (B) weighing each of the pulverized crystals by a predetermined amount, placing them in a hollow container provided with a mixed medium having at least an outer surface formed of an elastic body, and vibrating or rotating the hollow container, Steps of mixing the pulverized crystals to obtain a plurality of standard mixed powders having different crystal form content ratios or crystallinity (hereinafter abbreviated as step (b)), (c) the standard mixed powders as powders X-ray diffraction measurement and calibration of correlation between the size of the intrinsic peak of each crystal in the obtained powder X-ray diffraction profile and the weight of each crystal form in the standard mixed powder or the crystallinity of the standard mixed powder line Creating step (hereinafter abbreviated as step (c)), (d) crushing crystal mixture to be quantified (hereinafter abbreviated as step (d)), (e) crushing treatment The crystal mixture is subjected to powder X-ray diffraction measurement. From the size of the intrinsic peak of each crystal in the obtained powder X-ray diffraction profile and the calibration curve created in the step (c), A step of calculating the content of the crystal form or the crystallinity of the crystal mixture (hereinafter abbreviated as step (e)).

以下、図1に示した本発明の定量方法のフロー図に基づき、各ステップごとに、順に説明する。   Hereafter, it demonstrates in order for every step based on the flowchart of the fixed_quantity | assay method of this invention shown in FIG.

ステップ(a)は、前記のとおり、結晶形または結晶化度の異なる二種以上の結晶を、それぞれ独立に気流式粉砕機を用いて粉砕処理し、それぞれの粉砕結晶を得るステップ(図1 S1)である。かかるステップにより、微細で、無配向化した粉砕結晶が得られる。   In step (a), as described above, two or more types of crystals having different crystal forms or crystallinity levels are independently pulverized using an airflow pulverizer to obtain respective pulverized crystals (FIG. 1, S1). ). By this step, fine and non-oriented crushed crystals are obtained.

結晶形または結晶化度の異なる二種以上の結晶をそれぞれ独立に粉砕処理する気流式粉砕機としては、ノズルから噴出する圧縮空気もしくは圧縮不活性ガスで生じるジェット気流中に、粉砕すべき結晶を供給し、ジェット気流中での結晶同士の衝突や結晶の衝突板への衝突により、結晶を粉砕する粉砕機であれば特に制限されない。かかる気流式粉砕機としては、例えばジェットミル等が挙げられ、通常市販されているものが用いられる。市販されているジェットミルとしては、例えばA−Oジェットミル(株式会社セイシン企業製)、スパイラルジェットミル(ホソカワミクロン株式会社製)、カウンタージェットミル(ホソカワミクロン株式会社製)、シングルトラックジェットミル(ホソカワミクロン株式会社製)、スーパーシングルトラックジェットミル(ホソカワミクロン株式会社製)、カレントジェット(日清エンジニアリング株式会社製)等が挙げられる。   As an air-flow type pulverizer for independently pulverizing two or more types of crystals having different crystal forms or crystallinity, the crystal to be crushed is contained in a jet stream generated by compressed air or compressed inert gas ejected from a nozzle. There is no particular limitation as long as it is a pulverizer that supplies and pulverizes crystals by collision of crystals in a jet stream or collision of crystals with a collision plate. Examples of such airflow type pulverizers include jet mills, and commercially available ones are used. Commercially available jet mills include, for example, A-O jet mill (manufactured by Seishin Enterprise Co., Ltd.), spiral jet mill (manufactured by Hosokawa Micron Corporation), counter jet mill (manufactured by Hosokawa Micron Corporation), and single track jet mill (Stock of Hosokawa Micron Corporation). Company-made), super single track jet mill (manufactured by Hosokawa Micron Corporation), current jet (manufactured by Nissin Engineering Co., Ltd.), and the like.

結晶の粉砕が行われるミル部分の材質は特に制限されず、例えばステンレス、アルミナ、ジルコニア、炭化ケイ素、チッ化ケイ素等が挙げられる。   There are no particular restrictions on the material of the mill part where the crystals are pulverized, and examples include stainless steel, alumina, zirconia, silicon carbide, silicon nitride, and the like.

かかる粉砕処理では、後述する検量線の精度の観点から、通常D90が約10μm以下の粉砕結晶が得られるよう、気流式粉砕機の気流量、ジェット気流を生じさせるための圧縮空気や圧縮不活性ガスの圧力、気流式粉砕機に投入する結晶量等の粉砕条件を適宜決められる。 In the pulverization process, from the viewpoint of the accuracy of the calibration curve described later, the air flow rate of the airflow pulverizer, compressed air for generating a jet airflow, or a non-compressed air is generally used so that a crushed crystal having a D 90 of about 10 μm or less is obtained. The pulverization conditions such as the pressure of the active gas and the amount of crystals charged into the airflow pulverizer can be determined as appropriate.

気流式粉砕機から排出された粉砕結晶を採取し、所定数の結晶について粉砕処理が終了すれば(図1 S2)、次ステップ(b)に進む。なお、採取した粉砕結晶を、さらに気流式粉砕機に投入し、粉砕処理を二回以上行ってもよい。   When the pulverized crystals discharged from the airflow pulverizer are collected and the pulverization process is completed for a predetermined number of crystals (S2 in FIG. 1), the process proceeds to the next step (b). The collected crushed crystals may be further put into an airflow pulverizer, and the pulverization treatment may be performed twice or more.

ステップ(b)は、前記ステップ(a)で得られた粉砕結晶を、それぞれ所定量ずつ秤量し、少なくともその外面が弾性体で形成されてなる混合媒体を備えてなる中空容器に入れ、該中空容器を振動もしくは回転せしめることにより、前記粉砕結晶の混合処理を行い、結晶形の含有割合または結晶化度の異なる複数の標準混合粉末を得るステップ(図1 S3)である。   In step (b), the pulverized crystals obtained in step (a) are weighed in predetermined amounts, respectively, and placed in a hollow container provided with a mixing medium having at least an outer surface formed of an elastic body. In this step, the pulverized crystals are mixed by vibrating or rotating the container to obtain a plurality of standard mixed powders having different crystal content and crystallinity (FIG. 1, S3).

かかるステップ(b)により、前記ステップ(a)で得られた微細な、無配向化された粉砕結晶を、結晶形の転移、結晶化度の変化等を起こすことなく、均一に混合でき、信頼性の高い検量線を作成可能な標準混合粉末を得ることができる。   By this step (b), the fine, non-oriented pulverized crystals obtained in the step (a) can be uniformly mixed without causing crystal form transition, change in crystallinity, etc. It is possible to obtain a standard mixed powder capable of creating a highly calibrated calibration curve.

標準混合粉末は、二種以上の結晶形の含有割合または結晶化度の異なるものが複数作成される。標準混合粉末の個数は二個以上であればよい。もちろん個数が多いほど、より精密な検量線が作成可能であるため、目的等に応じて個数を決めればよい。また、例えば後述するステップ(d)の定量すべき結晶混合物中に含まれる各結晶形の含有量または該結晶混合物の結晶化度が予想できる場合には、予想される含有量の近傍または予想される結晶化度の近傍における検量線を作成するようにしてもよい。   A plurality of standard mixed powders having different content ratios or crystallinity levels of two or more crystal forms are prepared. The number of standard mixed powders may be two or more. Of course, as the number increases, a more accurate calibration curve can be created. Therefore, the number may be determined according to the purpose or the like. In addition, for example, when the content of each crystal form contained in the crystal mixture to be quantified in step (d) described later or the crystallinity of the crystal mixture can be predicted, it is close to or expected from the expected content. A calibration curve in the vicinity of the degree of crystallinity may be created.

前記ステップ(a)で得られた粉砕結晶の秤量には、例えば電子天秤等の秤量器が用いられ、該秤量器でそれぞれ所定量が秤量される。秤量する所定量は検量線が作成可能であれば、特に限定されない。   For weighing the crushed crystals obtained in the step (a), for example, a weighing instrument such as an electronic balance is used, and a predetermined amount is weighed by the weighing instrument. The predetermined amount to be weighed is not particularly limited as long as a calibration curve can be created.

秤量した各粉砕結晶を、少なくともその外面が弾性体で形成されてなる混合媒体を備えてなる中空容器に入れ、該中空容器を振動もしくは回転せしめることにより、前記粉砕結晶の混合処理が行われ、結晶形の含有割合または結晶化度の異なる複数の標準混合粉末が得られる。   Each ground crystal weighed is placed in a hollow container provided with a mixing medium having at least an outer surface formed of an elastic body, and the hollow container is vibrated or rotated, whereby the ground crystal is mixed. A plurality of standard mixed powders having different crystal form contents or crystallinity levels are obtained.

中空容器は、粉砕結晶を投入する投入口と混合後の混合粉末を排出する排出口が設けられた中空の密閉容器であればよく、その大きさは特に制限されない。投入口と排出口を別々に設けてあってもよいし、投入口と排出口を兼ねた投入/排出口を一つ設けてあってもよい。   The hollow container may be a hollow sealed container provided with an inlet for supplying the pulverized crystals and an outlet for discharging the mixed powder after mixing, and the size is not particularly limited. The input port and the discharge port may be provided separately, or one input / discharge port serving as the input port and the discharge port may be provided.

中空容器の材質は特に制限されず、例えばステンレス、アルミナ、ジルコニア、セラミック等が挙げられる。また、粉砕結晶や混合媒体と接触する中空容器の内面が、弾性体で形成された中空容器を用いると、混合時の粉砕結晶への衝撃をより弱めることができるため、混合処理時の粉砕結晶の結晶形の転移、結晶化度の変化等がより起こりにくく、好ましい。   The material of the hollow container is not particularly limited, and examples thereof include stainless steel, alumina, zirconia, and ceramic. In addition, if a hollow container in which the inner surface of a hollow container that is in contact with the pulverized crystal or the mixing medium is formed of an elastic material can be used, the impact on the pulverized crystal during mixing can be further reduced. This is preferable because the crystal form transition, crystallinity change and the like are less likely to occur.

混合媒体としては、例えば球状、柱状等粉砕結晶と接触して粉砕結晶を混合することが可能な形状であればよく、その個数も、中空容器内で混合媒体が動く余裕があれば特に制限されない。   The mixing medium may be any shape that can mix the pulverized crystals in contact with the pulverized crystals, such as spherical or columnar shapes, and the number of the mixed media is not particularly limited as long as the mixed medium can move within the hollow container. .

かかる混合媒体の少なくともその外面は弾性体で形成されており、これにより、粉砕結晶との接触においても、粉砕結晶の結晶形の転移、結晶化度の変化等を起こすことなく、混合することができる。   At least the outer surface of such a mixing medium is formed of an elastic body, so that even when in contact with the pulverized crystal, it can be mixed without causing a transition of the crystal form of the pulverized crystal, a change in crystallinity, or the like. it can.

混合媒体は、前記のとおり、少なくともその外面が弾性体で形成されており、ある程度の弾力性を有するものであればよく、混合媒体全体が弾性体で形成されていてもよい。外面が弾性体で形成され、内部が例えばセラミック等の弾性体以外の硬い材質で形成された混合媒体の場合、弾性体で形成された外面層は、混合媒体が粉砕結晶と接触した際、該粉砕結晶の結晶形や結晶化度等を変化させない程度の弾力性を有する厚みを有しておればよい。   As described above, at least the outer surface of the mixed medium is formed of an elastic body and has a certain degree of elasticity, and the entire mixed medium may be formed of an elastic body. In the case of a mixed medium in which the outer surface is formed of an elastic body and the inside is formed of a hard material other than an elastic body such as ceramic, the outer surface layer formed of the elastic body is It is only necessary to have a thickness having elasticity that does not change the crystal form or crystallinity of the crushed crystals.

弾性体としては、通常JIS K6253に規定されているタイプAデュロメータで測定したゴム硬さが20〜90の範囲である弾性体が用いられ、好ましくは前記ゴム硬さが40〜85の範囲である弾性体が用いられる。   As the elastic body, an elastic body having a rubber hardness of 20 to 90 as measured by a type A durometer normally defined in JIS K6253 is used, and preferably the rubber hardness is in the range of 40 to 85. An elastic body is used.

かかる弾性体の材質としては、例えば天然ゴム、合成ゴム、樹脂、エラストマー、コルク等が挙げられ、合成ゴム、樹脂が好ましい。合成ゴムとしては、例えばシリコンゴム、ウレタンゴム、フッ素ゴム、多硫化ゴム、アクリルゴム、ブタジエンゴム、スチレンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、イソプレンイソブチレンゴム、エチレンプロピレンゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴム等が挙げられ、シリコンゴム、ウレタンゴムが好ましい。樹脂としては、例えば塩化ビニル樹脂、ポリエチレン樹脂等が挙げられる。   Examples of the material of the elastic body include natural rubber, synthetic rubber, resin, elastomer, cork and the like, and synthetic rubber and resin are preferable. Examples of synthetic rubber include silicon rubber, urethane rubber, fluorine rubber, polysulfide rubber, acrylic rubber, butadiene rubber, styrene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, isoprene isobutylene rubber, ethylene propylene rubber, chloroprene rubber, and chlorosulfonated. Examples thereof include polyethylene rubber, and silicon rubber and urethane rubber are preferable. Examples of the resin include vinyl chloride resin and polyethylene resin.

弾性体として、例えばカーボン、鉄等の導電材をかかる弾性体に混合せしめた導電性ゴム等の導電性を備えた弾性体を用いてもよい。少なくともその外面がかかる導電性を備えた弾性体で形成された混合媒体を用いることにより、混合媒体への粉体の付着を軽減し、混合後の粉体をより容易に取り出すことができる。また、例えば静電気を帯びた粉体や静電気を帯びやすい粉体を混合する場合も、少なくともその外面が導電性を備えた弾性体で形成された混合媒体を用いることが好ましい。   As the elastic body, for example, an elastic body having conductivity such as a conductive rubber obtained by mixing a conductive material such as carbon or iron into the elastic body may be used. By using a mixed medium formed of an elastic body having at least the outer surface having conductivity, adhesion of the powder to the mixed medium can be reduced and the mixed powder can be taken out more easily. In addition, for example, when mixing electrostatically charged powder or easily charged electrostatic powder, it is preferable to use a mixed medium in which at least the outer surface is formed of an elastic body having conductivity.

混合媒体の大きさや使用個数は、中空容器の中空部の大きさにより適宜決めればよい。   What is necessary is just to determine the magnitude | size and the number of use of a mixing medium suitably according to the magnitude | size of the hollow part of a hollow container.

中空容器の振動もしくは回転は人為的に行ってもよいし、機械的に行ってもよい。混合処理の再現性という点から、機械的に振動もしくは回転せしめることが好ましい。単位時間当りの振動数もしくは回転数は特に制限されない。混合時間は、混合媒体の数、振動数もしくは回転数、粉砕結晶の種類等に応じて適宜決めればよい。   The vibration or rotation of the hollow container may be performed artificially or mechanically. From the viewpoint of reproducibility of the mixing process, it is preferable to mechanically vibrate or rotate. There is no particular limitation on the number of vibrations or the number of rotations per unit time. The mixing time may be appropriately determined according to the number of mixing media, the number of vibrations or the number of rotations, the type of pulverized crystal, and the like.

機械的に中空容器を振動もしくは回転せしめるものとしては、例えば中空容器を振動もしくは回転せしめる振動もしくは回転装置を備えた混合装置が挙げられる。かかる中空容器を振動もしくは回転せしめる振動もしくは回転装置を備えた混合装置としては、例えば円筒型混合器、V型混合器、振動ミル、回転ミル、転動ミル等が挙げられ、通常市販されているものが用いられる。   Examples of the device that mechanically vibrates or rotates the hollow container include a mixing device including a vibration or rotating device that vibrates or rotates the hollow container. Examples of the mixing device provided with the vibration or rotation device for vibrating or rotating the hollow container include a cylindrical mixer, a V-type mixer, a vibration mill, a rotary mill, a rolling mill, and the like, and are usually commercially available. Things are used.

また、前記のとおり、中空容器の少なくとも内面が、弾性体で形成されてなる中空容器を用いることにより、混合処理時の粉砕結晶への衝撃をより弱めることができるため、さらに混合処理時の粉砕結晶の結晶形の転移、結晶化度の変化等がより起こりにくく、より好ましい。   In addition, as described above, by using a hollow container in which at least the inner surface of the hollow container is formed of an elastic body, it is possible to further weaken the impact on the pulverized crystal during the mixing process. The transition of the crystal form of the crystal, the change in crystallinity and the like are less likely to occur, and are more preferable.

所定数の粉砕結晶について混合処理が終了すれば(図1 S4)、次ステップ(c)に進む。   When the mixing process is completed for a predetermined number of crushed crystals (S4 in FIG. 1), the process proceeds to the next step (c).

ステップ(c)は、前記ステップ(b)で得た標準混合粉末を粉末X線回折測定し(図1 S5およびS6)、得られた粉末X線回折プロファイル中の各結晶の固有ピークの大きさと、該標準混合粉末中の各結晶形の重量または該標準混合粉末の結晶化度との相関の検量線を作成するステップ(図1 S7)である。   In step (c), the standard mixed powder obtained in step (b) is subjected to powder X-ray diffraction measurement (FIG. 1, S5 and S6), and the size of the intrinsic peak of each crystal in the obtained powder X-ray diffraction profile is determined. This is a step of creating a calibration curve correlating with the weight of each crystal form in the standard mixed powder or the crystallinity of the standard mixed powder (S7 in FIG. 1).

標準混合粉末を粉末X線回折測定する方法としては、通常の粉末X線回折法でよく、通常略一定量の各標準混合粉末を秤量し、粉末X線回折装置で測定が行われる。粉末X線回折法における走査モードとしては、一定速度で軸を駆動しながら測定する連続モードを用いてもよいし、一定角度ずつ軸を送り、静止している状態で計数するステップモードを用いてもよい。低含量域のピークの強度の統計誤差が小さいという点で、ステップモードが好ましい。ステップモードの場合、後述する選定した固有ピークの回折角が通常選択される。   As a method for powder X-ray diffraction measurement of the standard mixed powder, a normal powder X-ray diffraction method may be used. Usually, a certain amount of each standard mixed powder is weighed and measured by a powder X-ray diffractometer. As a scanning mode in the powder X-ray diffraction method, a continuous mode in which measurement is performed while driving the shaft at a constant speed may be used, or a step mode in which the shaft is fed at a constant angle and counted in a stationary state is used. Also good. The step mode is preferable in that the statistical error of the intensity of the peak in the low content range is small. In the case of the step mode, the diffraction angle of the selected intrinsic peak which will be described later is usually selected.

予め各結晶について、単独で粉末X線回折測定を行い、各結晶の固有ピークを選定しておき、得られた粉末X線回折プロファイルから、選定した各固有ピークの大きさを求め、求めた固有ピークの大きさを縦軸に、標準混合粉末中の各結晶形の重量または該標準混合粉末の結晶化度を横軸とし、それぞれのデータをプロットすることにより、検量線が作成される(図1 S7)。プロットする際の固有ピークの大きさとしては、例えば固有ピークの強度、固有ピークのピーク面積、固有ピークの相対強度、固有ピークが複数の場合は、その和等が挙げられる。なお、結晶形が異なる二種以上の結晶を用いて標準混合粉末を調製した場合は、前記各結晶形が特異的に有する回折ピーク、すなわちいずれか一つの結晶形には検出され、他の結晶形では検出されない各結晶形に固有の回折ピークを固有ピークとすればよい。また、結晶化度が異なる二種以上の結晶を用いて標準混合粉末を調製した場合には、検出された回折ピークのいずれを固有ピークとしてもよいが、その強度の変化が大きい回折ピークを固有ピークとすることが好ましい。   For each crystal, the powder X-ray diffraction measurement was performed alone in advance, the specific peak of each crystal was selected, the size of each selected specific peak was determined from the obtained powder X-ray diffraction profile, and the obtained specific peak A calibration curve is created by plotting the data with the peak size on the vertical axis and the weight of each crystal form in the standard mixed powder or the crystallinity of the standard mixed powder on the horizontal axis (Fig. 1 S7). Examples of the size of the intrinsic peak at the time of plotting include the intensity of the intrinsic peak, the peak area of the intrinsic peak, the relative intensity of the intrinsic peak, and the sum of the intrinsic peaks when there are a plurality of intrinsic peaks. In addition, when a standard mixed powder is prepared using two or more types of crystals having different crystal forms, each crystal form has a specific diffraction peak, that is, is detected in any one crystal form, and other crystals. A diffraction peak unique to each crystal form that is not detected in the form may be regarded as an intrinsic peak. In addition, when a standard mixed powder is prepared using two or more types of crystals having different crystallinity levels, any of the detected diffraction peaks may be an intrinsic peak, but a diffraction peak having a large change in intensity is inherent. A peak is preferable.

なお、結晶化度は、通常結晶試料の結晶化度を100%、粉末X線回折プロファイル中に回折ピークが検出されない非晶試料の結晶化度を0%として、規定されるため、本発明においては、標準混合粉末を調製する際の結晶化度の異なる結晶の結晶化度とその混合重量比とから、標準混合粉末の結晶化度を求めればよい。例えば結晶化度100%の結晶と結晶化度10%の結晶、すなわち非晶とを用い、結晶化度100%の結晶/結晶化度10%の結晶(重量比)が、100/0、80/20、50/50、20/80および0/100の5種の標準混合粉末を調製した場合の各標準混合粉末の結晶化度は、それぞれ100%、82%、55%、28%および10%となる。   In the present invention, the crystallinity is normally defined as 100% crystallinity of the crystal sample and 0% crystallinity of the amorphous sample in which no diffraction peak is detected in the powder X-ray diffraction profile. In other words, the crystallinity of the standard mixed powder may be obtained from the crystallinity of crystals having different crystallinity when preparing the standard mixed powder and the mixing weight ratio thereof. For example, a crystal having a crystallinity of 100% and a crystal having a crystallinity of 10%, that is, an amorphous material are used, and a crystal having a crystallinity of 100% / a crystal having a crystallinity of 10% (weight ratio) is 100/0, 80 When the five standard mixed powders of / 20, 50/50, 20/80 and 0/100 were prepared, the crystallinity of each standard mixed powder was 100%, 82%, 55%, 28% and 10%, respectively. %.

粉末X線回折測定(図1 S5)は、各標準混合粉末について、少なくとも一回ずつ行えばよい。もちろん測定誤差をより小さくし、より精度の高い検量線を作成するという観点から、各標準混合粉末について、二回以上測定してもよい。   The powder X-ray diffraction measurement (FIG. 1 S5) may be performed at least once for each standard mixed powder. Of course, each standard mixed powder may be measured twice or more from the viewpoint of making the measurement error smaller and creating a calibration curve with higher accuracy.

所定数の標準混合粉末について、粉末X線回折測定が終了すれば(図1 S6)、検量線が作成される(図1 S7)。検量線は、例えば得られた粉末X線回折プロファイル中の各結晶の固有ピークの大きさと、該標準混合粉末中の各結晶形の重量または該標準混合粉末の結晶化度とを、それぞれ縦軸、横軸とし、データをプロットしたグラフ、例えばその両者の相関を、例えば一次方程式、二次方程式等の近似式で表わしたもの等が挙げられる。検量線グラフの例を、図4に示した。   When powder X-ray diffraction measurement is completed for a predetermined number of standard mixed powders (FIG. 1 S6), a calibration curve is created (FIG. 1 S7). The calibration curve represents, for example, the size of the intrinsic peak of each crystal in the obtained powder X-ray diffraction profile, the weight of each crystal form in the standard mixed powder, or the crystallinity of the standard mixed powder. A graph in which data is plotted on the horizontal axis, for example, a correlation between the two is represented by an approximate expression such as a linear equation or a quadratic equation, for example. An example of a calibration curve graph is shown in FIG.

検量線が作成されれば、次ステップ(d)に進む。   If a calibration curve is created, the process proceeds to the next step (d).

ステップ(d)は、定量すべき結晶混合物を粉砕処理するステップ(図1 S8)である。   Step (d) is a step of pulverizing the crystal mixture to be quantified (S8 in FIG. 1).

粉砕処理は、例えば定量すべき結晶混合物をメノウ製乳鉢に入れ、人為的にもしくは機械的にすりつぶす方法でもよいし、前記ステップ(b)と同様の気流式粉砕機を用いる方法により粉砕処理を行ってもよい。後者の前記ステップ(b)と同様の気流式粉砕機を用いる方法により粉砕処理を行うことが、結晶形の転移、結晶化度の変化等が起こるおそれがより少なく、好ましい。   The pulverization may be performed, for example, by placing the crystal mixture to be quantified into an agate mortar and grinding it artificially or mechanically. Alternatively, the pulverization may be performed by the same method using the airflow pulverizer as in step (b). May be. It is preferable to carry out the pulverization by the same method using the airflow pulverizer as in the latter step (b), since there is less possibility of crystal form transition, change in crystallinity, and the like.

定量すべき結晶混合物の粉砕処理が終了すれば、次ステップ(e)へ進む。   When the pulverization of the crystal mixture to be quantified is completed, the process proceeds to the next step (e).

ステップ(e)は、前記ステップ(d)で粉砕処理された結晶混合物を粉末X線回折測定し、得られた粉末X線回折プロファイル中の各結晶の固有ピークの大きさと、前記ステップ(c)で作成した検量線とから、定量すべき結晶混合物中の各結晶形の含有量またが該結晶混合物の結晶化度を算出するステップ(図1 S9)である。   In step (e), the crystal mixture pulverized in step (d) is subjected to powder X-ray diffraction measurement, and the size of the intrinsic peak of each crystal in the obtained powder X-ray diffraction profile is determined. This is a step of calculating the content of each crystal form in the crystal mixture to be quantified or the crystallinity of the crystal mixture from the calibration curve created in (S9 in FIG. 1).

前記ステップ(d)で粉砕処理された結晶混合物の粉末X線回折測定は、通常の粉末X線回折法により実施すればよい。その測定に用いる測定量は、通常前記ステップ(c)において粉末X線回折測定に用いられた標準混合粉末の量と略同量とされる。   What is necessary is just to implement the powder X-ray-diffraction measurement of the crystal | crystallization mixture grind | pulverized by the said step (d) by the normal powder X-ray-diffraction method. The measurement amount used for the measurement is usually approximately the same as the amount of the standard mixed powder used in the powder X-ray diffraction measurement in the step (c).

結晶混合物を粉末X線回折測定し、得られた粉末X線回折プロファイル中の各結晶の固有ピークの大きさと、前記ステップ(c)で作成した検量線とから、各結晶形の含有量または結晶化度を算出する。固有ピークの大きさとしては、前記ステップ(c)で検量線を作成した際に用いたと同じものが用いられる。各結晶形の含有量または結晶化度は、例えば検量線グラフの縦軸が固有ピークの大きさで、横軸が結晶形の含有量または結晶化度の場合は、各結晶の検量線グラフの縦軸に結晶混合物の固有ピークの大きさをプロットし、該プロット位置から水平線を引き、該水平線と検量線との交点を求め、該交点から垂直線を引いて、該垂直線と横軸との交点を読み取ればよい。また、検量線を、近似式で表わした場合は、前記固有ピークの大きさを近似式に代入することにより、結晶形の含有量または結晶化度を算出してもよい。   The crystal mixture is subjected to powder X-ray diffraction measurement, and the content or crystal of each crystal form is determined from the size of the intrinsic peak of each crystal in the obtained powder X-ray diffraction profile and the calibration curve created in the step (c). The degree of conversion is calculated. The size of the intrinsic peak is the same as that used when the calibration curve was created in step (c). The content or crystallinity of each crystal form is, for example, when the vertical axis of the calibration curve graph is the size of the intrinsic peak and the horizontal axis is the content or crystallinity of the crystal form, Plot the size of the intrinsic peak of the crystal mixture on the vertical axis, draw a horizontal line from the plot position, find the intersection of the horizontal line and the calibration curve, subtract the vertical line from the intersection, the vertical line and the horizontal axis What is necessary is just to read the intersection of. When the calibration curve is expressed by an approximate expression, the content or crystallinity of the crystal form may be calculated by substituting the size of the intrinsic peak into the approximate expression.

また、本発明の定量方法を利用して、製造された結晶または製剤中に含まれる各結晶の含有量または該結晶の結晶化度を測定し、該含有量または結晶化度の変化に応じて、該結晶の製造工程または該結晶を含む製剤を製造する製剤化工程における、結晶多形の生成または結晶化度に影響を及ぼす因子条件を制御し、管理することにより、各結晶の含有量または結晶化度が安定した結晶または該結晶を含む製剤を生産することができる。   Further, by using the quantification method of the present invention, the content of each crystal contained in the produced crystal or preparation or the crystallinity of the crystal is measured, and according to the change in the content or crystallinity. By controlling and managing the factor conditions affecting the generation or crystallinity of crystal polymorphs in the process of producing the crystal or the formulation process of producing a preparation containing the crystal, the content of each crystal or A crystal having a stable crystallinity or a preparation containing the crystal can be produced.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこの実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this Example.

実施例1
<粉砕結晶の取得>
セイシン企業製A−Oジェットミル(ベンチュリー圧0.5MPa、グランディング圧1 0.5MPaおよびグランディング圧2 0.5MPa)を用いて、α形インドメタシン結晶を粉砕処理(ジェットミルへの結晶の供給速度は、1時間当たり30〜40g)し、粒子径約10μm以下のα形粉砕結晶を得た。同様にして、γ形インドメタシン結晶を粉砕処理し、粒子径約10μm以下のγ形粉砕結晶を得た。
Example 1
<Acquisition of ground crystals>
Using α-O jet mill (Venturi pressure 0.5 MPa, grounding pressure 1 0.5 MPa and grounding pressure 2 0.5 MPa) manufactured by Seishin Corporation, α-form indomethacin crystals are pulverized (supply of crystals to the jet mill) The speed was 30 to 40 g per hour), and α-type pulverized crystals having a particle diameter of about 10 μm or less were obtained. Similarly, γ-type indomethacin crystals were pulverized to obtain γ-type crushed crystals having a particle size of about 10 μm or less.

<標準混合粉末の調製>
α形粉砕結晶とγ形粉砕結晶をそれぞれ所定量ずつ秤量し、全体がウレタンゴムで形成されたウレタンゴム製ボール(直径約20mm、重さ約4〜5g、タイプAデュロメータで測定したゴム硬さ70)を混合媒体(個数;3個)とする振動ミル(株式会社シーエムティ科学製 TI−100型)の中空容器内に入れ、振動回転数1730rpm/60Hzおよび振幅7mmで、3分間振動させ、表1に示す10種類のα形の含有割合の異なる標準混合粉末 1〜10(それぞれ約2g)を調製した。
<Preparation of standard mixed powder>
The α-type crushed crystal and the γ-type crushed crystal are weighed in predetermined amounts, respectively, and a urethane rubber ball (diameter: about 20 mm, weight: about 4-5 g, rubber hardness measured with a type A durometer) 70) in a hollow container of a vibration mill (TI-100 type, manufactured by CMT Scientific Co., Ltd.) using a mixed medium (number: 3), and vibrated for 3 minutes at a vibration rotational speed of 1730 rpm / 60 Hz and an amplitude of 7 mm. Standard mixed powders 1 to 10 (about 2 g each) having different content ratios of 10 types of α forms shown in Table 1 were prepared.

Figure 2005127999
Figure 2005127999

<検量線の作成>
調製した標準混合粉末 1〜10を、それぞれ粉末X線回折測定を行った。走査モードを連続モード(走査速度:2.0°/分、サンプリング幅:0.02°)として、各標準混合粉末約200mgを3回詰め替え測定した。また、走査モードをステップモード(固有ピークの回折角(2θ)=8.4°、計数時間:20秒、サンプリング幅:0.01°)として、各標準混合粉末約200mgを3回詰め替え測定した。なお、いずれの走査モードにおいても、標準混合粉末 2については、5回詰め替え測定した。
<Creation of calibration curve>
The prepared standard mixed powders 1 to 10 were each subjected to powder X-ray diffraction measurement. The scanning mode was a continuous mode (scanning speed: 2.0 ° / min, sampling width: 0.02 °), and about 200 mg of each standard mixed powder was refilled and measured three times. Further, about 200 mg of each standard mixed powder was refilled and measured three times by setting the scanning mode to the step mode (diffraction angle of intrinsic peak (2θ) = 8.4 °, counting time: 20 seconds, sampling width: 0.01 °). . In any scanning mode, the standard mixed powder 2 was measured by refilling 5 times.

連続モードで測定して得られた回折プロファイルを図2に、該回折プロファイルから固有ピーク(回折角(2θ)=8.4°)のピーク強度の平均値を表2に示した。また、ステップモードで測定して得られた回折プロファイル(固有ピークの回折角(2θ)=8.4°近傍の回折プロファイル)を図3に、該回折プロファイルから固有ピークのピーク強度の平均値を表3に示した。   The diffraction profile obtained by measurement in the continuous mode is shown in FIG. 2, and the average value of the peak intensity of the intrinsic peak (diffraction angle (2θ) = 8.4 °) from the diffraction profile is shown in Table 2. In addition, FIG. 3 shows the diffraction profile obtained by measurement in the step mode (diffraction angle of intrinsic peak (2θ) = 8.4 ° vicinity), and the average value of the peak intensity of the intrinsic peak is calculated from the diffraction profile. It is shown in Table 3.

Figure 2005127999
Figure 2005127999

Figure 2005127999
Figure 2005127999

各標準混合粉末中のα形の含有量(重量%)を横軸に、固有ピークのピーク強度の平均値を縦軸にとり、表3のデータをプロットし、検量線を作成した。作成した検量線を図4に示した。図4の検量線を近似一次方程式で表わすと、傾き=1675.6、切片=10554であった。   The calibration curve was created by plotting the data in Table 3 with the abscissa representing the α-form content (% by weight) in each standard mixed powder and the ordinate representing the average value of the peak intensity of the intrinsic peak. The prepared calibration curve is shown in FIG. When the calibration curve in FIG. 4 is expressed by an approximate linear equation, the slope is 1675.6 and the intercept is 10554.

<組成未知の混合結晶の定量>
組成が未知のα形およびγ形インドメタシン混合結晶を、メノウ製乳鉢で注意深くすりつぶし、粉砕処理を行った。得られた粉砕粉末を、粉末X線回折測定(走査モード:ステップモード)したところ、回折角(θ)=8.4°のピーク強度は、12924cpsであった。図4に示した検量線から、組成が未知のインドメタシン結晶の組成を求めたところ、α形結晶/γ形結晶=1.4/98.6(重量比)の組成比の混合結晶であることがわかった。
<Quantification of mixed crystals of unknown composition>
The α-form and γ-form indomethacin mixed crystals of unknown composition were carefully ground in an agate mortar and pulverized. When the obtained pulverized powder was measured by powder X-ray diffraction (scanning mode: step mode), the peak intensity at a diffraction angle (θ) = 8.4 ° was 12924 cps. From the calibration curve shown in FIG. 4, the composition of indomethacin crystal having an unknown composition was obtained, and it was a mixed crystal having a composition ratio of α-form crystal / γ-form crystal = 1.4 / 98.6 (weight ratio). I understood.

実施例2
<粉砕結晶の取得>
セイシン企業製A−Oジェットミル(ベンチュリー圧0.5MPa、グランディング圧1 0.5MPaおよびグランディング圧2 0.5MPa)を用いて、γ形インドメタシン結晶を粉砕処理(ジェットミルへの結晶の供給速度は、1時間当たり30〜40g)し、粒子径約10μm以下のγ形粉砕結晶(結晶化度100%とした。)を得た。また、γ形インドメタシン結晶を180℃で溶融させた後、液体窒素で急冷せしめて、インドメタシン非晶を得、該非晶を粉砕処理し、粒子径約10μm以下の粉砕非晶(結晶化度0%とした。)を得た。
Example 2
<Acquisition of ground crystals>
Γ-type indomethacin crystals were pulverized using an A-O jet mill (Venturi pressure 0.5 MPa, grounding pressure 1 0.5 MPa and grounding pressure 2 0.5 MPa) manufactured by Seishin Corporation (supply of crystals to the jet mill) The speed was 30 to 40 g per hour), and γ-type crushed crystals (with a crystallinity of 100%) having a particle size of about 10 μm or less were obtained. Further, after melting the γ-type indomethacin crystal at 180 ° C., it is rapidly cooled with liquid nitrogen to obtain an indomethacin amorphous, the amorphous is pulverized, and a pulverized amorphous having a particle diameter of about 10 μm or less (crystallinity 0%) Was obtained.

<標準混合粉末の調製>
γ形粉砕結晶と粉砕非晶をそれぞれ所定量ずつ秤量し、全体がウレタンゴムで形成されたウレタンゴム製ボール(直径約20mm、重さ約4〜5g、タイプAデュロメータで測定したゴム硬さ70)を混合媒体(個数;3個)とする振動ミル(株式会社シーエムティ科学製 TI−100型)の中空容器内に入れ、振動回転数1730rpm/60Hzおよび振幅7mmで、3分間振動させ、9種類の混合粉末を得た。それぞれの混合粉末に、所定量のマンニトール(混合粉末に対して9重量倍)を加え、表4に示す9種類の結晶化度の異なる標準混合粉末 1’〜9’を調製した。
<Preparation of standard mixed powder>
γ-type crushed crystals and crushed amorphous were weighed in predetermined amounts, and a urethane rubber ball (diameter of about 20 mm, weight of about 4 to 5 g, rubber hardness of 70 measured with a type A durometer) was formed entirely with urethane rubber. ) In a hollow container of a vibration mill (TI-100, manufactured by CMT Science Co., Ltd.) using a mixed medium (number: 3), and vibrated for 3 minutes at a vibration rotational speed of 1730 rpm / 60 Hz and an amplitude of 7 mm. Different kinds of mixed powders were obtained. A predetermined amount of mannitol (9 times by weight with respect to the mixed powder) was added to each mixed powder to prepare nine types of standard mixed powders 1 ′ to 9 ′ having different crystallinity levels shown in Table 4.

Figure 2005127999
Figure 2005127999

<検量線の作成>
得られた標準混合粉体1’〜9’について、粉末X線回折分析(混合粉末約200mg採取、走査モード:連続モード、固有ピークの回折角(2θ)=11.6°、走査速度:2°/分、サンプリング幅:0.02°)を行った。得られたX線回折プロファイルから、γ形インドメタシン結晶の固有ピークの回折角(2θ)=11.6°の回折ピークのピーク強度の平均値と結晶化度の関係を表5に示した。各標準混合粉末の結晶化度(%)を横軸に、固有ピークのピーク強度の平均値を縦軸にとり、表5のデータをプロットし、検量線を作成した。作成した検量線を図5に示した。図5の検量線を近似一次方程式で表わすと、傾き=29.236、切片=−171.52であった。
<Creation of calibration curve>
About the obtained standard mixed powders 1 ′ to 9 ′, powder X-ray diffraction analysis (collected about 200 mg of mixed powder, scanning mode: continuous mode, diffraction angle of intrinsic peak (2θ) = 11.6 °, scanning speed: 2) (Degree / min, sampling width: 0.02 °). From the obtained X-ray diffraction profile, the relationship between the average value of the peak intensity of the diffraction peak of the intrinsic peak of the γ-type indomethacin crystal (2θ) = 11.6 ° and the crystallinity is shown in Table 5. A calibration curve was prepared by plotting the data in Table 5 with the crystallinity (%) of each standard mixed powder on the horizontal axis and the average value of the peak intensity of the intrinsic peak on the vertical axis. The prepared calibration curve is shown in FIG. When the calibration curve in FIG. 5 is expressed by an approximate linear equation, the slope is 29.236, and the intercept is −171.52.

Figure 2005127999
Figure 2005127999

図5に示した検量線を用いることにより、結晶化度が不明なγ形インドメタシン結晶の結晶化度を測定することができる。   By using the calibration curve shown in FIG. 5, the crystallinity of the γ-type indomethacin crystal whose crystallinity is unknown can be measured.

実施例3
<粉砕結晶の取得>
前記実施例1と同様にして、α形結晶/非晶混合インドメタシンとγ形結晶/非晶混合インドメタシンとをそれぞれ粉砕処理し、それぞれの粉末を得た。ルーランド法により結晶化度を測定したところ、α形結晶/非晶混合インドメタシン粉末の結晶化度は43.9%、γ形結晶/非晶混合インドメタシン粉末の結晶化度は53.4%であった。
Example 3
<Acquisition of ground crystals>
In the same manner as in Example 1, α-type crystal / amorphous mixed indomethacin and γ-type crystal / amorphous mixed indomethacin were each pulverized to obtain respective powders. The crystallinity of the α-type crystal / amorphous mixed indomethacin powder was 43.9%, and that of the γ-type crystal / amorphous mixed indomethacin powder was 53.4%. It was.

<標準混合粉末の調製>
得られたα形結晶/非晶混合インドメタシン粉末とγ形結晶/非晶混合インドメタシン粉末をそれぞれ所定量ずつ秤量し、表6に示す標準混合粉末a〜fを調製した。なお、表中、α形含有率(α形インドメタシン結晶の含有率)およびγ形含有率(γ形インドメタシン結晶の含有率)は、α形結晶/非晶混合インドメタシン粉末とγ形結晶/非晶混合インドメタシン粉末の混合割合とα形結晶/非晶混合インドメタシン粉末とγ形結晶/非晶混合インドメタシン粉末の結晶化度とから計算し、非晶含有率は、α形含有率とγ形含有率の和を100から差し引いた値とした。
<Preparation of standard mixed powder>
The obtained α-form crystal / amorphous mixed indomethacin powder and γ-form crystal / amorphous mixed indomethacin powder were weighed in predetermined amounts, respectively, to prepare standard mixed powders a to f shown in Table 6. In the table, α-form content (content ratio of α-form indomethacin crystal) and γ-form content ratio (content ratio of γ-form indomethacin crystal) are α-form crystal / amorphous mixed indomethacin powder and γ-form crystal / amorphous. Calculated from the mixing ratio of the mixed indomethacin powder and the crystallinity of the α-form crystal / amorphous mixed indomethacin powder and the γ-form crystal / amorphous mixed indomethacin powder, the amorphous content is the α-form content and the γ-form content The sum of the values was subtracted from 100.

Figure 2005127999
Figure 2005127999

<検量線の作成>
標準混合粉末a〜fについて、粉末X線回折分析(混合粉末約50mg採取、走査モード:連続モード)を行った。得られたX線回折プロファイルから、α形インドメタシン結晶の固有ピークの回折角(2θ)=8.4°、11.8°および14.4°の3本の回折ピークのピーク強度の合計値の平均値とγ形インドメタシン結晶の固有ピークの回折角(2θ)=12.7°、16.6°および21.8°の3本の回折ピークのピーク強度の合計値の平均値とをそれぞれ算出し、α形含有率またはγ形含有率を横軸に、前記平均値を縦軸にとり、検量線グラフを作成し、それぞれ図6(a)および(b)に示した。図6(a)に示した検量線を近似一次方程式で表わすと、傾き=287.23、切片=736.39であり、図6(b)に示した検量線を近似一次方程式で表わすと、傾き=580.48、切片=2719.7であった。
<Creation of calibration curve>
The standard mixed powders a to f were subjected to powder X-ray diffraction analysis (collected about 50 mg of mixed powder, scanning mode: continuous mode). From the obtained X-ray diffraction profile, the diffraction angle of the intrinsic peak of α-form indomethacin crystal (2θ) = the sum of the peak intensities of the three diffraction peaks at 8.4 °, 11.8 ° and 14.4 ° Average value and diffraction angle (2θ) of intrinsic peak of γ-type indomethacin crystal = 12.5 °, 16.6 °, and average value of total value of peak intensity of three diffraction peaks of 21.8 ° are calculated respectively. A calibration curve graph was prepared by taking the α-form content or γ-form content on the horizontal axis and the average on the vertical axis, and the results are shown in FIGS. 6 (a) and 6 (b), respectively. When the calibration curve shown in FIG. 6 (a) is expressed by an approximate linear equation, the slope is 287.23 and the intercept = 736.39, and the calibration curve shown in FIG. 6 (b) is expressed by an approximate linear equation. The slope was 580.48 and the intercept was 2719.7.

また、標準混合粉末a〜fの結晶化度をルーランド法により測定したところ、表7に示すように、α形結晶/非晶混合インドメタシン粉末とγ形結晶/非晶混合インドメタシン粉末の混合割合に基づいて算出した計算値とルーランド法により測定した実測値にほとんど差がないことも確認できた。   Further, when the crystallinity of the standard mixed powders a to f was measured by the Luland method, as shown in Table 7, the mixing ratio of the α-type crystal / amorphous mixed indomethacin powder and the γ-type crystal / amorphous mixed indomethacin powder was obtained. It was also confirmed that there was almost no difference between the calculated value calculated based on this and the actual value measured by the Roland method.

Figure 2005127999
Figure 2005127999

<組成未知の混合結晶の定量>
組成が未知のα形およびγ形インドメタシン混合物(結晶化度も未知)を、メノウ製乳鉢で注意深くすりつぶし、粉砕処理を行った。得られた粉砕粉末を、粉末X線回折測定(走査モード:連続モード)し、図6(a)および(b)に示した検量線をもとに、α形およびγ形の含有率を算出した。算出したα形およびγ形含有率の和を100から差し引いた値を非晶の含有率とした。その結果、組成が未知のインドメタシン混合物の組成は、α形結晶/γ形結晶/非晶=10.5/32.9/56.6(重量比)であることがわかった。
<Quantification of mixed crystals of unknown composition>
A mixture of α-form and γ-form indomethacin of unknown composition (the degree of crystallinity is also unknown) was carefully ground in an agate mortar and pulverized. The obtained pulverized powder is subjected to powder X-ray diffraction measurement (scanning mode: continuous mode), and the contents of α form and γ form are calculated based on the calibration curves shown in FIGS. 6 (a) and 6 (b). did. The value obtained by subtracting the sum of the calculated α-form content and γ-form content from 100 was taken as the amorphous content. As a result, it was found that the composition of the indomethacin mixture whose composition was unknown was α-form crystal / γ-form crystal / amorphous = 10.5 / 32.9 / 56.6 (weight ratio).

本発明の定量方法のフロー図である。It is a flowchart of the fixed_quantity | assay method of this invention. 標準混合粉末 1〜10を、連続モードで粉末X線回折分析して得られたX線回折プロファイルである。It is an X-ray diffraction profile obtained by conducting powder X-ray diffraction analysis of standard mixed powders 1 to 10 in a continuous mode. 標準混合粉末 1〜10を、ステップモードで粉末X線回折分析して得られたX線回折プロファイル(固有ピークの回折角(2θ)=8.4°近傍の回折プロファイル)である。It is an X-ray diffraction profile (diffraction profile in the vicinity of an intrinsic peak diffraction angle (2θ) = 8.4 °) obtained by performing powder X-ray diffraction analysis of standard mixed powders 1 to 10 in a step mode. 表3に示したデータをプロットして作成した検量線グラフである。It is a calibration curve graph created by plotting the data shown in Table 3. 表5に示したデータをプロットして作成した検量線グラフである。6 is a calibration curve graph created by plotting the data shown in Table 5. (a)α形インドメタシン結晶の含有率を横軸に、3本の回折ピークのピーク強度の合計値の平均値を縦軸にとり、結果をプロットしたグラフである。(b)γ形インドメタシン結晶の含有率を横軸に、3本の回折ピークのピーク強度の合計値の平均値を縦軸にとり、結果をプロットしたグラフである。(A) It is the graph which plotted the result, taking the average value of the total value of the peak intensity of three diffraction peaks on the horizontal axis | shaft, and making the vertical axis | shaft the content rate of (alpha) -form indomethacin crystal. (B) A graph in which the content of γ-type indomethacin crystals is plotted on the horizontal axis and the average value of the total peak intensities of three diffraction peaks is plotted on the vertical axis.

Claims (5)

(a)結晶形または結晶化度の異なる二種以上の結晶を、それぞれ独立に気流式粉砕機を用いて粉砕処理し、それぞれの粉砕結晶を得るステップと、
(b)前記粉砕結晶を、それぞれ所定量ずつ秤量し、少なくともその外面が弾性体で形成されてなる混合媒体を備えてなる中空容器に入れ、該中空容器を振動もしくは回転せしめることにより、前記粉砕結晶の混合処理を行い、結晶形の含有割合または結晶化度の異なる複数の標準混合粉末を得るステップと、
(c)該標準混合粉末を粉末X線回折測定し、得られた粉末X線回折プロファイル中の各結晶の固有ピークの大きさと、該標準混合粉末中の各結晶形の重量または該標準混合粉末の結晶化度との相関の検量線を作成するステップと、
(d)定量すべき結晶混合物を粉砕処理するステップと、
(e)前記粉砕処理された結晶混合物を粉末X線回折測定し、得られた粉末X線回折プロファイル中の各結晶の固有ピークの大きさと、前記ステップ(c)で作成した検量線とから、定量すべき結晶混合物中の各結晶形の含有量または該結晶混合物の結晶化度を算出するステップを含むことを特徴とする結晶の定量方法。
(A) two or more kinds of crystals having different crystal forms or crystallinity levels are independently pulverized using an air-flow pulverizer to obtain respective pulverized crystals;
(B) Each of the pulverized crystals is weighed in a predetermined amount, placed in a hollow container provided with a mixed medium having at least an outer surface formed of an elastic body, and the pulverized crystal is vibrated or rotated. Performing a mixing process of crystals to obtain a plurality of standard mixed powders having different crystal content or crystallinity;
(C) Powder X-ray diffraction measurement of the standard mixed powder, the size of the intrinsic peak of each crystal in the obtained powder X-ray diffraction profile, the weight of each crystal form in the standard mixed powder, or the standard mixed powder Creating a calibration curve for correlation with crystallinity of
(D) crushing the crystal mixture to be quantified;
(E) Powder X-ray diffraction measurement of the pulverized crystal mixture, from the size of the intrinsic peak of each crystal in the obtained powder X-ray diffraction profile and the calibration curve created in the step (c), A method for quantifying a crystal, comprising the step of calculating the content of each crystal form in the crystal mixture to be quantified or the crystallinity of the crystal mixture.
前記ステップ(d)において、定量すべき結晶混合物を、気流式粉砕機を用いて粉砕処理する請求項1に記載の結晶の定量方法。 The crystal quantification method according to claim 1, wherein in step (d), the crystal mixture to be quantified is pulverized using an airflow pulverizer. (a)結晶形または結晶化度の異なる二種以上の結晶を、それぞれ独立に気流式粉砕機を用いて粉砕処理し、それぞれの粉砕結晶を得るステップと、
(b)前記粉砕結晶を、それぞれ所定量ずつ秤量し、少なくともその外面が弾性体で形成されてなる混合媒体を備えてなる中空容器に入れ、該中空容器を振動もしくは回転せしめて、前記粉砕結晶の混合処理を行い、結晶形の含有割合または結晶化度の異なる複数の標準混合粉末を得るステップとを含むことを特徴とする標準混合粉末の調製方法。
(A) two or more kinds of crystals having different crystal forms or crystallinity levels are independently pulverized using an air-flow pulverizer to obtain respective pulverized crystals;
(B) Each of the pulverized crystals is weighed in a predetermined amount, put into a hollow container provided with a mixing medium having at least an outer surface formed of an elastic body, and the hollow container is vibrated or rotated to pulverize the crushed crystals. And a step of obtaining a plurality of standard mixed powders having different crystal form content ratios or crystallinity degrees.
(a)結晶形または結晶化度の異なる二種以上の結晶を、それぞれ独立に気流式粉砕機を用いて粉砕処理し、それぞれの粉砕結晶を得るステップと、
(b)前記粉砕結晶を、それぞれ所定量ずつ秤量し、少なくともその外面が弾性体で形成されてなる混合媒体を備えてなる中空容器に入れ、該中空容器を振動もしくは回転せしめることにより、前記粉砕結晶の混合処理を行い、結晶形の含有割合または結晶化度の異なる複数の標準混合粉末を得るステップと、
(c)該標準混合粉末を粉末X線回折測定し、得られた粉末X線回折プロファイル中の各結晶の固有ピークの大きさと、該標準混合粉末中の各結晶形の重量または該標準混合粉末の結晶化度との相関の検量線を作成するステップを含むことを特徴とする結晶混合物中の各結晶形の含有量または結晶化度を定量するための検量線の作成方法。
(A) two or more kinds of crystals having different crystal forms or crystallinity levels are independently pulverized using an air-flow pulverizer to obtain respective pulverized crystals;
(B) Each of the pulverized crystals is weighed in a predetermined amount, placed in a hollow container provided with a mixing medium having at least an outer surface formed of an elastic body, and the pulverized crystal is vibrated or rotated. Performing a mixing process of crystals to obtain a plurality of standard mixed powders having different crystal content or crystallinity;
(C) Powder X-ray diffraction measurement of the standard mixed powder, the size of the intrinsic peak of each crystal in the obtained powder X-ray diffraction profile, the weight of each crystal form in the standard mixed powder, or the standard mixed powder A method for creating a calibration curve for quantifying the content or crystallinity of each crystal form in a crystal mixture, comprising the step of creating a calibration curve having a correlation with the crystallinity of the crystal.
請求項1または請求項2に記載の結晶の定量方法を利用して、製造された結晶または製剤中に含まれる各結晶の含有量もしくは該結晶の結晶化度を決定し、該含有量もしくは結晶化度の変化に応じて結晶の製造工程または該結晶を含む製剤を製造する製剤化工程を制御することを特徴とする結晶または製剤の製造管理方法。
Using the crystal quantification method according to claim 1 or 2, the content of each crystal or the crystallinity of the crystal contained in the produced crystal or preparation is determined, and the content or crystal A method for managing the production of a crystal or a preparation, comprising controlling a production process of a crystal or a preparation process for producing a preparation containing the crystal according to a change in the degree of conversion.
JP2004196481A 2003-10-01 2004-07-02 Crystal determinating method Pending JP2005127999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196481A JP2005127999A (en) 2003-10-01 2004-07-02 Crystal determinating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003343246 2003-10-01
JP2004196481A JP2005127999A (en) 2003-10-01 2004-07-02 Crystal determinating method

Publications (1)

Publication Number Publication Date
JP2005127999A true JP2005127999A (en) 2005-05-19

Family

ID=34655779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196481A Pending JP2005127999A (en) 2003-10-01 2004-07-02 Crystal determinating method

Country Status (1)

Country Link
JP (1) JP2005127999A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192538A (en) * 2008-02-15 2009-08-27 Panalytical Bv X-ray detection in packaging
JP2014513804A (en) * 2011-05-17 2014-06-05 ザッチ システム エス.ピー.エー. Method for detecting polymorphs using synchrotron radiation
JP2018066652A (en) * 2016-10-19 2018-04-26 住友金属鉱山株式会社 Analytical method of powder sample
CN108896590A (en) * 2018-06-26 2018-11-27 中国矿业大学 Study the method and system of the broken middle each component crushing behavior of coal mixing
WO2019193818A1 (en) * 2018-04-02 2019-10-10 株式会社リガク Amorphous phase quantitative analysis apparatus, amorphous phase quantitative analysis method, and amorphous phase quantitative analysis program
RU2799073C1 (en) * 2022-08-12 2023-07-03 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method for determining the degree of boron crystallinity

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192538A (en) * 2008-02-15 2009-08-27 Panalytical Bv X-ray detection in packaging
JP2014513804A (en) * 2011-05-17 2014-06-05 ザッチ システム エス.ピー.エー. Method for detecting polymorphs using synchrotron radiation
JP2018066652A (en) * 2016-10-19 2018-04-26 住友金属鉱山株式会社 Analytical method of powder sample
JP7005892B2 (en) 2016-10-19 2022-01-24 住友金属鉱山株式会社 Analysis method of powder sample
WO2019193818A1 (en) * 2018-04-02 2019-10-10 株式会社リガク Amorphous phase quantitative analysis apparatus, amorphous phase quantitative analysis method, and amorphous phase quantitative analysis program
JP2019184254A (en) * 2018-04-02 2019-10-24 株式会社リガク Quantitative analyzer of amorphous phase, quantitative analysis method of amorphous phase, and quantitative analysis program of amorphous phase
CN108896590A (en) * 2018-06-26 2018-11-27 中国矿业大学 Study the method and system of the broken middle each component crushing behavior of coal mixing
CN108896590B (en) * 2018-06-26 2020-12-25 中国矿业大学 Method and system for researching crushing behavior of each component in coal mixed crushing
RU2799073C1 (en) * 2022-08-12 2023-07-03 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method for determining the degree of boron crystallinity

Similar Documents

Publication Publication Date Title
Kaialy et al. Influence of lactose carrier particle size on the aerosol performance of budesonide from a dry powder inhaler
EP2264042B1 (en) Micronization of polyols
Kou et al. Physico-chemical aspects of lactose for inhalation
CN1728988B (en) Powdered medicaments containing a tiotropium salt and salmeterol xinafoate
JP4680389B2 (en) Grinding method for producing finely divided medicinal substance
JP2005127999A (en) Crystal determinating method
JP2015537025A (en) Process for making agglomerates using acoustic mixing technology
US20090016780A1 (en) Developing blade
JP2005337777A (en) Quantifying method of crystal
JP2005337776A (en) Method of quantifying crystal
CN109200034A (en) A kind of composition and preparation method thereof of inhalable dry powder form
Tardos et al. Precision dosing of powders by vibratory and screw feeders: an experimental study
Stankovic-Brandl et al. The influence of relative humidity and storage conditions on the physico-chemical properties of inhalation grade fine lactose
Beach Effect of dry particle coating on the properties of cohesive pharmaceutical powders
Eda et al. Small-scale spherical granulation using a planetary centrifugal mixer
de Villiers et al. The measurement of mixture homogeneity and dissolution to predict the degree of drug agglomerate breakdown achieved through powder mixing
AU1401200A (en) Milling process for the production of finely milled medicinal substances
JP2005125309A (en) Method and apparatus for mixing powder
TW201138975A (en) Manufacturing method of resin composition for sealing semiconductors and pulverizing apparatus
EA011549B1 (en) Novel pulverulent formulation for inhalation containing tiotropium
JP2012166178A (en) Method and device for blending highly viscous liquid with granular powder
Okumura et al. A novel standard sample powder preparation method for quantitative analysis of polymorphs
JPH11262650A (en) Automatic granulating apparatus for powder
Pan Pharmaceutical powder dispensing by ultrasonic vibration dosing system
JP5866342B2 (en) Method for producing fine powder for pharmaceutical preparation of loxoprofen sodium dihydrate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070110