JP5040385B2 - Polishing method - Google Patents

Polishing method Download PDF

Info

Publication number
JP5040385B2
JP5040385B2 JP2007068750A JP2007068750A JP5040385B2 JP 5040385 B2 JP5040385 B2 JP 5040385B2 JP 2007068750 A JP2007068750 A JP 2007068750A JP 2007068750 A JP2007068750 A JP 2007068750A JP 5040385 B2 JP5040385 B2 JP 5040385B2
Authority
JP
Japan
Prior art keywords
sample
polishing
angle
installation angle
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007068750A
Other languages
Japanese (ja)
Other versions
JP2008229734A (en
Inventor
裕一 細井
武志 添田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007068750A priority Critical patent/JP5040385B2/en
Publication of JP2008229734A publication Critical patent/JP2008229734A/en
Application granted granted Critical
Publication of JP5040385B2 publication Critical patent/JP5040385B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、試料を研磨して薄膜化する研磨装置及び方法に関し、微細なデバイスが形成された半導体チップの一部を試料とする場合等に適用して好適である。   The present invention relates to a polishing apparatus and method for polishing a sample to form a thin film, and is suitably applied to a case where a part of a semiconductor chip on which a fine device is formed is used as a sample.

従来より、例えば半導体デバイスの電気特性や元素分布等の評価を正確に行なうべく、AFM(Atomic Force Microscope:原子間力顕微鏡)、TEM(Transmission Electron Microscope:透過型電子顕微鏡)、SIMS(Secondary Ion Mass Spectrometry:二次イオン質量分析法)等の物理分析技術が用いられる。このような物理分析技術に供し、正確な分析を行なうには、試料である半導体チップ等を極薄状態に薄膜化することが必要である。   Conventionally, for example, AFM (Atomic Force Microscope), TEM (Transmission Electron Microscope), SIMS (Secondary Ion Mass) are used to accurately evaluate electrical characteristics and element distribution of semiconductor devices. A physical analysis technique such as Spectrometry (secondary ion mass spectrometry) is used. In order to perform such a physical analysis technique and perform an accurate analysis, it is necessary to thin a semiconductor chip or the like as a sample into an extremely thin state.

通常、上記のような薄膜試料を作製するには、試料表面を研磨加工して薄膜化する研磨装置が用いられる。この研磨装置は、試料を研磨する研磨板を備えた研磨部と、試料を固定保持し、研磨板の研磨表面に対して試料を接触させる試料保持部とを備えて構成されている。研磨時には、例えば試料である半導体チップの裏面を回転する研磨板の表面に接触させ、半導体チップのデバイス構造を残したまま目的の位置を露出させる。この場合、全体の試料の厚みを1μm以下程度にまで削ることを要する。このように、ミリメートルオーダーのサイズの半導体チップを1μm以下程度の厚みに削る場合、研磨を終了した試料の表面において、極めて高い平坦度が要求される。   Usually, in order to produce the thin film sample as described above, a polishing apparatus that polishes the sample surface to form a thin film is used. This polishing apparatus includes a polishing unit including a polishing plate for polishing a sample, and a sample holding unit that holds the sample fixedly and brings the sample into contact with the polishing surface of the polishing plate. At the time of polishing, for example, the back surface of a semiconductor chip as a sample is brought into contact with the surface of a rotating polishing plate, and the target position is exposed while leaving the device structure of the semiconductor chip. In this case, it is necessary to reduce the thickness of the entire sample to about 1 μm or less. As described above, when a semiconductor chip having a size on the order of millimeters is cut to a thickness of about 1 μm or less, extremely high flatness is required on the surface of the sample that has been polished.

特開平9−189649号公報JP-A-9-189649 特開2006−84484号公報JP 2006-84484 A

しかしながら、従来の研磨装置では、研磨時に研磨部及び試料保持部の双方が共に回転し、試料保持部に支持された試料を研磨部に対して相対的に研磨する構成を採ることから、試料において研磨方向、接触角及び研磨速度が常に一定でない。そのため、試料の研磨面に研磨痕や応力ムラが発生し易く、特にシリコンのような脆い材質の試料では容易に劈開が発生し、結果として割れが生じてしまう。また、薄膜化された試料が得られたとしても、試料の研磨面に研磨傷が生じてしまい、十分な表面平坦度が得られないことから、試料表面における分析評価の可能な領域が極めて狭くなるという問題がある。   However, the conventional polishing apparatus employs a configuration in which both the polishing unit and the sample holding unit rotate during polishing and the sample supported by the sample holding unit is polished relative to the polishing unit. Polishing direction, contact angle and polishing rate are not always constant. For this reason, polishing marks and stress unevenness are likely to occur on the polished surface of the sample. In particular, a sample made of a brittle material such as silicon is easily cleaved, resulting in cracks. Moreover, even if a thinned sample is obtained, a polishing flaw occurs on the polished surface of the sample, and sufficient surface flatness cannot be obtained. There is a problem of becoming.

本発明は、上記の課題に鑑みてなされたものであり、試料の研磨面における研磨痕や応力ムラの発生を抑え、試料表面の極めて広い範囲において十分な平坦度が得られて分析評価の可能な領域の大幅な拡大化を実現し、信頼性の高い薄膜化された試料を得ることができる研磨方法を提供することを目的とする。 The present invention has been made in view of the above problems, suppresses the occurrence of polishing marks and stress unevenness on the polished surface of the sample, and can provide sufficient flatness over an extremely wide range of the sample surface for analysis evaluation. It is an object of the present invention to provide a polishing method that can realize a large enlargement of such a region and obtain a highly reliable thin film sample.

本発明の研磨方法は、試料を研磨して薄膜化する研磨方法であって、前記試料が固定され、前記試料を研磨する研磨表面内で移動自在とされた前記試料台が、前記研磨表面内の所定部位で位置固定され、前記試料の前記研磨表面との任意の接触点における研磨方向を一定不変とされた状態で、前記試料を研磨して薄膜化する。   The polishing method of the present invention is a polishing method for polishing a sample to form a thin film, wherein the sample stage is fixed and is movable within a polishing surface for polishing the sample. The sample is polished and thinned in a state where the position is fixed at a predetermined portion of the sample and the polishing direction at an arbitrary contact point with the polishing surface of the sample is kept constant.

本発明によれば、試料の研磨面における研磨痕や応力ムラの発生を抑え、試料表面の極めて広い範囲において十分な平坦度が得られて分析評価の可能な領域の大幅な拡大化を実現し、信頼性の高い薄膜化された試料を得ることができる。   According to the present invention, the generation of polishing marks and stress unevenness on the polished surface of the sample is suppressed, and sufficient flatness is obtained over a very wide range of the sample surface, thereby realizing a large enlargement of the area that can be analyzed and evaluated. A highly reliable thin film sample can be obtained.

−本発明の基本骨子−
本発明者は、試料を研磨する研磨表面を備えた研磨部と、研磨表面に対して試料を接触させる試料保持部とを備えた研磨装置において、研磨時における試料の研磨痕や応力ムラの発生が、研磨表面内の研磨速度と試料が固定される試料台との速度差及び研磨表面の局所的凹凸に起因する摩擦力の試料表面におけるバラツキに起因するものであることを見出した。更に、研磨時に研磨表面に対して試料保持部が言わばランダムに移動することから、研磨方向が試料の劈開面に平行となる場合(瞬間的な場合も含む)があり、このときに試料が劈開して割れが発生することを見出した。
-Basic outline of the present invention-
The present inventor uses a polishing unit having a polishing surface for polishing a sample, and a sample holding unit for bringing the sample into contact with the polishing surface. However, the present inventors have found that this is due to the difference in speed between the polishing speed in the polishing surface and the sample stage on which the sample is fixed, and the variation in the friction force caused by local irregularities on the polishing surface on the sample surface. Furthermore, since the sample holder moves randomly relative to the polishing surface during polishing, the polishing direction may be parallel to the cleaved surface of the sample (including momentary cases). At this time, the sample is cleaved. And found that cracking occurs.

本発明では、上記の考察に基づき、試料保持部に、試料台を研磨表面に対して移動自在とし、試料台を研磨表面内の任意の位置で固定する試料台設置機構を設ける。この場合、研磨時において、研磨部の研磨方向(研磨部が回転駆動する研磨板である場合には、試料の研磨表面との接触点における回転接線方向)、研磨方向に対する接触角及び研磨速度が常に一定に保たれる。この構成では、試料の研磨表面における研磨方向、接触角及び研磨速度を適宜調節して研磨することにより、試料の研磨面における研磨痕や応力ムラの発生を抑止することができる。従って、試料表面の極めて広い範囲において十分な平坦度が得られて分析評価の可能な領域の大幅な拡大化を実現し、信頼性の高い薄膜化された試料を得ることができる。   In the present invention, based on the above consideration, the sample holder is provided with a sample stage installation mechanism that allows the sample stage to move with respect to the polishing surface and fixes the sample stage at an arbitrary position within the polishing surface. In this case, at the time of polishing, the polishing direction of the polishing part (in the case where the polishing part is a rotationally driven polishing plate, the rotational tangent direction at the contact point with the polishing surface of the sample), the contact angle with respect to the polishing direction, and the polishing rate are Always kept constant. In this configuration, the polishing direction and the contact angle on the polishing surface of the sample, the polishing angle, and the polishing rate are appropriately adjusted to suppress the occurrence of polishing marks and stress unevenness on the polishing surface of the sample. Accordingly, sufficient flatness can be obtained in a very wide range of the sample surface, and the region where analysis and evaluation can be performed can be greatly enlarged, and a highly reliable thin sample can be obtained.

接触角を適宜調節するには、試料保持部に、試料台に固定された試料の研磨表面内における研磨方向に対する設置角度を調節する角度調節機構を付加すれば良い。この場合、角度調節機構に、試料台に隣接して、設置角度を視認自在とする角度スケールを設けることが好適である。この角度調節機構により、作業者は接触角を容易且つ正確に任意値に設定し、試料の劈開等の発生を確実に防止することができる。試料がシリコンのような脆い材質である場合、容易に劈開が発生し、結果として割れが生じてしまうが、接触角の調節により試料の劈開発生の懸念が払拭される。   In order to adjust the contact angle as appropriate, an angle adjusting mechanism for adjusting the installation angle with respect to the polishing direction in the polishing surface of the sample fixed to the sample table may be added to the sample holding unit. In this case, it is preferable that the angle adjusting mechanism is provided with an angle scale adjacent to the sample stage so that the installation angle is visible. With this angle adjustment mechanism, the operator can easily and accurately set the contact angle to an arbitrary value, and reliably prevent the occurrence of cleaving of the sample. When the sample is made of a brittle material such as silicon, cleavage easily occurs, resulting in cracking. However, the adjustment of the contact angle eliminates the concern of the sample cracker.

なお、特許文献1には、試料の周囲にダミー試料を貼付し、両者の厚みの差から研磨角度を調節する技術が開示されている。また、特許文献2には、微小な試料片をエネルギービームを用いて平面状に加工する技術が開示されている。しかしながら、前者の技術では、試料の研磨を行なうために当該試料に加えてダミー試料を設ける必要がある。従って、本発明とは異なる発明であり、余計な手間がかかるとともに、試料構成の複雑化を招くことは必至である。また、後者の技術では、試料表面の平坦化にエネルギービームを用いるという、本発明とは異なる発明であり、本発明に比較して迂遠な構成を採るものであると言える。   Patent Document 1 discloses a technique in which a dummy sample is attached around a sample and the polishing angle is adjusted based on the difference in thickness between the two. Patent Document 2 discloses a technique for processing a minute sample piece into a planar shape using an energy beam. However, in the former technique, it is necessary to provide a dummy sample in addition to the sample in order to polish the sample. Therefore, it is an invention different from the present invention, and it takes undue effort and inevitably complicates the sample configuration. Further, the latter technique is an invention different from the present invention in which an energy beam is used for flattening the sample surface, and can be said to adopt a detour structure as compared with the present invention.

−本発明を適用した好適な実施形態−
以下、本発明を適用した好適な実施形態について、図面を参照しながら詳細に説明する。
-Preferred embodiment to which the present invention is applied-
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments to which the present invention is applied will be described in detail with reference to the drawings.

(研磨装置の構成)
図1は、本実施形態による研磨装置の概略構成をその動作と共に示す斜視図である。図2は、研磨装置の構成要素である試料保持部の概略構成を示す平面図である。なお、試料保持部2の構成部材である試料台設置機構12については、便宜上、図1では図示を省略する。
この研磨装置は、図1(a)に示すように、試料10を研磨加工する研磨板を有する研磨部1と、研磨板の研磨表面1aに対して試料10を接触させる試料保持部2とを備えて構成されている。
(Configuration of polishing equipment)
FIG. 1 is a perspective view showing a schematic configuration of the polishing apparatus according to the present embodiment together with its operation. FIG. 2 is a plan view showing a schematic configuration of a sample holder which is a component of the polishing apparatus. In addition, about the sample stand installation mechanism 12 which is a structural member of the sample holding part 2, illustration is abbreviate | omitted in FIG. 1 for convenience.
As shown in FIG. 1 (a), this polishing apparatus includes a polishing unit 1 having a polishing plate for polishing a sample 10, and a sample holding unit 2 for bringing the sample 10 into contact with the polishing surface 1a of the polishing plate. It is prepared for.

研磨部1は、円板形状の板状部材である研磨板を有しており、研磨板の研磨表面1aに試料10を接触させて回転駆動(図1には一例として、研磨表面1aの回転方向を矢印A1で示す。)することにより試料10を所望の厚みに薄膜化する。なお、研磨部としては、円板形状のものに代わって、例えば矩形状の板状部材とし、これを所定方向に揺動させて試料10を研磨加工するようにしても良い。
試料10としては、主に半導体チップ等を想定している。半導体チップを構成する主材料であるシリコンは比較的脆い材質であり、劈開が生じ易いものである。
The polishing unit 1 has a polishing plate that is a disk-shaped plate member, and is rotated by bringing the sample 10 into contact with the polishing surface 1a of the polishing plate (for example, the rotation of the polishing surface 1a in FIG. 1). The direction is indicated by an arrow A1), whereby the sample 10 is thinned to a desired thickness. In addition, as a grinding | polishing part, it replaces with a disk-shaped thing, for example, it may be set as the rectangular plate-shaped member, and this may be rock | fluctuated in a predetermined direction and the sample 10 may be grind | polished.
As the sample 10, a semiconductor chip or the like is mainly assumed. Silicon, which is a main material constituting the semiconductor chip, is a relatively brittle material and is likely to be cleaved.

試料保持部2は、試料10が固定される試料台11と、試料台11を研磨表面1aに対して移動自在とし、試料台11を研磨表面1a内の任意の位置で固定する試料台設置機構12と、試料台11に固定された試料10の研磨表面1a内における研磨方向に対する設置角度を調節する角度調節機構13と、試料台11を研磨表面1aに対して水平となるように調節する水平調節機構14とを備えて構成されている。ここで、試料台11、角度調節機構13、及び水平調節機構14が試料保持部2の本体2aに設けられている。   The sample holder 2 includes a sample table 11 on which the sample 10 is fixed, a sample table setting mechanism that allows the sample table 11 to move with respect to the polishing surface 1a, and fixes the sample table 11 at an arbitrary position within the polishing surface 1a. 12, an angle adjusting mechanism 13 for adjusting the installation angle of the sample 10 fixed to the sample table 11 in the polishing surface 1 a with respect to the polishing direction, and a horizontal level for adjusting the sample table 11 so as to be horizontal with respect to the polishing surface 1 a. And an adjustment mechanism 14. Here, the sample stage 11, the angle adjustment mechanism 13, and the horizontal adjustment mechanism 14 are provided in the main body 2 a of the sample holder 2.

試料台設置機構12は、例えば図2に示すように、本体2aを把持するチャッキング部材12aと、チャッキング部材12aを面内で自在に並進移動させ、所定位置でチャッキング部材12aを固定するアーム部材12bとを有して構成されている。
研磨加工時には、チャッキング部材12aにより本体2aを側面から把持し、アーム部材12bにより本体2aを研磨部1の研磨表面1a内で並進移動(図1には一例として、研磨表面1aの半径方向への移動を矢印A2で示す。)させ、研磨表面1a上の所定位置で固定する。
For example, as shown in FIG. 2, the sample stage setting mechanism 12 translates the chucking member 12a for gripping the main body 2a and the chucking member 12a freely in a plane, and fixes the chucking member 12a at a predetermined position. And an arm member 12b.
During polishing, the main body 2a is gripped from the side by the chucking member 12a, and the main body 2a is translated by the arm member 12b within the polishing surface 1a of the polishing unit 1 (in the radial direction of the polishing surface 1a as an example in FIG. 1). Is indicated by an arrow A2) and fixed at a predetermined position on the polishing surface 1a.

試料10の研磨表面1aに対する研磨方向を固定化することにより、試料10の研磨表面1aとの接触部位(接触点)における研磨速度又はトルクが一定となる。更に、研磨表面1aと試料10との接触角が一定となるため、研磨に伴う摩擦力が試料10の表面上で一定となる。従って、試料10の表面における研磨痕や応力ムラの発生を抑止され、試料10の表面の極めて広い範囲において十分な平坦度が得られて分析評価の可能な領域の大幅な拡大化を実現し、信頼性の高い薄膜化された試料を得ることができる。本実施形態では、例えば1ミリメートル角の試料10を1μm以下の厚みとなるまで、割れを防ぎつつ平坦に試料10を加工研磨することができる。   By fixing the polishing direction with respect to the polishing surface 1a of the sample 10, the polishing speed or torque at the contact portion (contact point) with the polishing surface 1a of the sample 10 becomes constant. Further, since the contact angle between the polishing surface 1a and the sample 10 is constant, the frictional force accompanying the polishing is constant on the surface of the sample 10. Therefore, the occurrence of polishing marks and stress unevenness on the surface of the sample 10 is suppressed, sufficient flatness is obtained in a very wide range of the surface of the sample 10, and the area capable of analysis and evaluation is greatly enlarged. A highly reliable thinned sample can be obtained. In this embodiment, for example, the sample 10 can be processed and polished flat while preventing cracking until the 1 mm square sample 10 has a thickness of 1 μm or less.

試料台11は、棒状部材であり、先端部位に試料10が設置されるように構成されている。先端部位には、図1(b)に示すように、試料10の一辺を合わせて貼付するためのグリッド11aが形成されている。更に、試料台11の側面には、グリッド11aに対応した設置マーカーとなるノッチ11bが形成されている。   The sample stage 11 is a rod-shaped member and is configured such that the sample 10 is installed at the tip portion. As shown in FIG. 1 (b), a grid 11a for attaching one side of the sample 10 together is formed at the tip portion. Further, a notch 11b serving as an installation marker corresponding to the grid 11a is formed on the side surface of the sample stage 11.

角度調節機構13は、試料台11に隣接して設けられ、研磨方向を基準とした設置角度を視認自在とする角度スケール13aを有しており、角度スケール13aに対して試料台11を適宜回転移動させることにより、設置角度を所望値に設定することができる。
研磨加工時には、試料10をその一辺がグリッド11aと適宜重なるように貼付し、ノッチ11bが角度スケール13aにおける設置角度の基準位置(0°)に調節される。この状態で設置角度を所望値に設定すれば良い。
The angle adjusting mechanism 13 is provided adjacent to the sample stage 11 and has an angle scale 13a that allows the installation angle with respect to the polishing direction to be visible. The sample stage 11 is appropriately rotated with respect to the angle scale 13a. By moving it, the installation angle can be set to a desired value.
At the time of polishing, the sample 10 is stuck so that one side thereof is appropriately overlapped with the grid 11a, and the notch 11b is adjusted to the reference position (0 °) of the installation angle on the angle scale 13a. In this state, the installation angle may be set to a desired value.

なお、角度調節機構13における角度調節は、操作者が手動で行なうようにしても良いが、微小角度の調節を正確に行なうべく、例えば図3に示すように、角度調節機構13に設置角度の自動調節機構21を接続し、自動調節機構21により試料台11を適宜回転移動させ、設置角度を所望値に設定するように構成しても好適である。更には、角度スケール13aを設ける代わりに(或いは角度スケール13aに加えて)、例えばモニター22を自動調節機構22と接続し、モニター22により設置角度の所望値を自動調節機構21に指示し、自動調節機構21の駆動により試料台11の設置角度を設定するように構成しても良い。   The angle adjustment in the angle adjustment mechanism 13 may be performed manually by the operator. However, in order to accurately adjust the minute angle, for example, as shown in FIG. It is also preferable that an automatic adjustment mechanism 21 is connected, the sample stage 11 is appropriately rotated by the automatic adjustment mechanism 21, and the installation angle is set to a desired value. Further, instead of providing the angle scale 13a (or in addition to the angle scale 13a), for example, a monitor 22 is connected to the automatic adjustment mechanism 22, and the monitor 22 instructs the automatic adjustment mechanism 21 to specify a desired value of the installation angle. You may comprise so that the installation angle of the sample stand 11 may be set by the drive of the adjustment mechanism 21. FIG.

水平調節機構14は、研磨表面1aに対して試料台11を支持調節する一対の支持棒14a,14bと、各支持棒14a,14bの研磨表面1aからの高さを調節するマイクロメータ14cとを備えて構成されている。マイクロメータ14cにより各支持棒14a,14bの高さを適宜調節することにより、試料台11に固定された試料10の研磨表面1aへの接触状態を制御する。   The horizontal adjustment mechanism 14 includes a pair of support bars 14a and 14b that support and adjust the sample table 11 with respect to the polishing surface 1a, and a micrometer 14c that adjusts the height of each support bar 14a and 14b from the polishing surface 1a. It is prepared for. By appropriately adjusting the heights of the support rods 14a and 14b with the micrometer 14c, the contact state of the sample 10 fixed to the sample table 11 with the polishing surface 1a is controlled.

本実施形態では、試料10が半導体チップ等の比較的脆く劈開が生じ易い材質のものである場合に、試料10の研磨加工時において、角度調節機構13により、研磨方向に対して試料10の劈開面を傾斜させた状態に設定する。試料台設置機構12により、この状態で試料10を研磨表面1aに対して固定保持し、研磨を開始する。   In the present embodiment, when the sample 10 is made of a material that is relatively brittle and easily cleaved, such as a semiconductor chip, the angle adjusting mechanism 13 cleaves the sample 10 with respect to the polishing direction when the sample 10 is polished. Set the surface to be inclined. In this state, the sample 10 is fixedly held on the polishing surface 1a by the sample stage setting mechanism 12, and polishing is started.

図4(a)に示すように、設置角度が0°である場合、研磨方向と試料10の劈開面とは平行となり、試料10に劈開が発生し易くなる。これは、従来技術のように試料10を研磨表面1aに対して移動自在の状態で研磨加工する際に、試料10が研磨表面1a上でランダムに移動した結果、研磨方向が試料10の劈開面に平行(試料10の一辺10aと垂直)となった場合に相当する。   As shown in FIG. 4A, when the installation angle is 0 °, the polishing direction and the cleavage surface of the sample 10 are parallel to each other, and the sample 10 is likely to be cleaved. This is because when the sample 10 is polished while being movable with respect to the polishing surface 1a as in the prior art, the sample 10 is randomly moved on the polishing surface 1a, so that the polishing direction is the cleavage plane of the sample 10. Corresponds to the case of being parallel to (perpendicular to one side 10a of the sample 10).

これに対して、研磨方向に対して試料10の劈開面を傾斜させた状態で試料10を研磨表面1aに対して固定保持し、研磨する場合、研磨方向と試料10の劈開面とは非平行となり、試料10には劈開が発生し難くなる。
図4(b)に示すように、具体的に本実施形態では、角度調節機構13により、設置角度(試料10の一辺10aの研磨方向に対する垂直状態を0°とする。)を10°以上45°以下の範囲内の値に設定する。このように設置角度を調節して試料10を研磨加工することにより、脆い材質の試料10でも数μm程度の厚みまで割れを生ぜしめることなく、試料10を1μm以下まで薄膜化することができる。
On the other hand, when the sample 10 is fixedly held with respect to the polishing surface 1a with the cleavage surface of the sample 10 inclined with respect to the polishing direction and polished, the polishing direction and the cleavage surface of the sample 10 are not parallel. Thus, the sample 10 is less likely to be cleaved.
As shown in FIG. 4B, specifically, in the present embodiment, the angle adjusting mechanism 13 sets the installation angle (the vertical state with respect to the polishing direction of the one side 10a of the sample 10 is 0 °) from 10 ° to 45 °. Set the value within the following range. By polishing the sample 10 by adjusting the installation angle as described above, the sample 10 can be thinned to 1 μm or less without causing cracking to a thickness of about several μm even in the case of the brittle material 10.

図5(a)に示すように、例えばシリコンの(110)面の劈開を防止するには、試料10を基準位置(劈開面(0°)の位置)から7°程度以上傾斜させれば良いことが経験的に判っている。この方向は結晶学的に見て(110)方向から近いランダム方向である。試料台11への試料10の貼付精度等を考慮してマージンを加えれば、研磨加工時における試料10の劈開を防止できる設置角度の下限値は10°程度であると認められる。なお、上記ではシリコンの(110)面の劈開を例に採って説明したが、他の材料や他の結晶面についても同様の議論が成立する。   As shown in FIG. 5A, for example, in order to prevent cleavage of the (110) plane of silicon, the sample 10 may be tilted by about 7 ° or more from the reference position (the position of the cleavage plane (0 °)). I know from experience. This direction is a random direction close to the (110) direction in crystallographic terms. If a margin is added in consideration of the accuracy of attaching the sample 10 to the sample stage 11, the lower limit value of the installation angle that can prevent the sample 10 from being cleaved during polishing is recognized to be about 10 °. In the above description, the cleaving of the (110) plane of silicon has been described as an example, but the same argument holds for other materials and other crystal planes.

一方、図5(b)の左図に示すように、研磨加工時における試料10の劈開を防止できる設置角度の上限値は45°程度である。これは、試料10の結晶における対称性から得られる値である、即ち、図5(b)の右図に示すように、設置角度を45°より大値(図示の例では60°)とすると、設置角度の劈開面に対する他方の角度が45°未満(図示の例では30°)となるためである。   On the other hand, as shown in the left diagram of FIG. 5B, the upper limit of the installation angle that can prevent the cleavage of the sample 10 during the polishing process is about 45 °. This is a value obtained from symmetry in the crystal of the sample 10, that is, when the installation angle is set to a value larger than 45 ° (60 ° in the illustrated example) as shown in the right diagram of FIG. 5B. This is because the other angle of the installation angle with respect to the cleavage plane is less than 45 ° (30 ° in the illustrated example).

(研磨方法)
以下、上述した研磨装置を用いて試料10を研磨する方法について説明する。
図6は、本実施形態による研磨方法を工程順に示すフロー図である。図7は、本実施形態による研磨方法における研磨加工の様子を示す模式図である。
(Polishing method)
Hereinafter, a method for polishing the sample 10 using the above-described polishing apparatus will be described.
FIG. 6 is a flowchart showing the polishing method according to the present embodiment in the order of steps. FIG. 7 is a schematic view showing a state of polishing in the polishing method according to the present embodiment.

先ず、図7(a)に示すように、複数の素子パターン20が形成された半導体基板30から、例えば1mm角程度のサイズに試料片3を切り出す。そして、所定の接着剤38を用いてガラス板39に試料片3を貼付し、試料10を作製する。試料10を作製する際には、当該研磨が表面研磨であるか裏面研磨であるかにより、ガラス板39への貼付面が異なる。表面研磨を行なう場合を図7(b)に、裏面面研磨を行なう場合を図7(c)にそれぞれ示す。前者の場合には試料10の裏面が貼付面となり、後者の場合には試料10の表面が貼付面となる。   First, as shown in FIG. 7A, the sample piece 3 is cut out to a size of about 1 mm square, for example, from the semiconductor substrate 30 on which the plurality of element patterns 20 are formed. And the sample piece 3 is affixed on the glass plate 39 using the predetermined | prescribed adhesive agent 38, and the sample 10 is produced. When the sample 10 is manufactured, the surface to be attached to the glass plate 39 differs depending on whether the polishing is front surface polishing or back surface polishing. FIG. 7B shows a case where surface polishing is performed, and FIG. 7C shows a case where rear surface polishing is performed. In the former case, the back surface of the sample 10 is the pasting surface, and in the latter case, the surface of the sample 10 is the pasting surface.

試料10においては、素子パターン20として例えばMOSトランジスタが形成されている。このMOSトランジスタは、STI素子分離構造31で活性領域が確定され、当該活性領域にゲート絶縁膜32を介したゲート電極33と、その両側にソース/ドレイン領域34とが形成され、これらを覆うように層間絶縁膜35aが形成され、層間絶縁膜35aに形成されたコンタクト孔36を介してソース/ドレイン領域34と電気的に接続された配線37が形成され、配線37を覆う層間絶縁膜35bが形成されて、概略構成されている。   In the sample 10, for example, a MOS transistor is formed as the element pattern 20. In this MOS transistor, an active region is defined by the STI element isolation structure 31, and a gate electrode 33 through a gate insulating film 32 and source / drain regions 34 are formed on both sides of the active region so as to cover them. An interlayer insulating film 35a is formed on the gate insulating film 35a. A wiring 37 electrically connected to the source / drain region 34 is formed through a contact hole 36 formed in the interlayer insulating film 35a. An interlayer insulating film 35b covering the wiring 37 is formed. It is formed and is roughly configured.

上記のように作製した試料10のガラス板39を、試料台11のグリッド11aに合わせ、例えばワックスを用いて貼付する(ステップS1)。
続いて、試料10が貼付された試料台11を、試料保持部2の本体2aに設置する(ステップS2)。
続いて、試料台11が設置された試料保持部2を試料台設置機構12に設置し、試料保持部2を研磨部1の研磨表面1aに接触させて固定保持する(ステップS3)。
The glass plate 39 of the sample 10 produced as described above is attached to the grid 11a of the sample table 11 and attached using, for example, wax (step S1).
Subsequently, the sample table 11 to which the sample 10 is attached is placed on the main body 2a of the sample holding unit 2 (step S2).
Subsequently, the sample holder 2 on which the sample table 11 is installed is installed on the sample table installation mechanism 12, and the sample holder 2 is brought into contact with the polishing surface 1a of the polishing unit 1 and fixedly held (step S3).

続いて、研磨部1により、研磨板を回転駆動して試料10の試し研磨を行なう(ステップS4)。
続いて、試し研磨の結果に基づき、試料10の表面に生じた研磨痕を例えば光学顕微鏡や走査型電子顕微鏡(SEM)を用いて観察し、当該研磨痕の方向(研磨方向)と劈開方向との角度差を測定する(ステップS5)。
Subsequently, the polishing section 1 drives the polishing plate to perform trial polishing of the sample 10 (step S4).
Subsequently, based on the result of the trial polishing, the polishing mark generated on the surface of the sample 10 is observed using, for example, an optical microscope or a scanning electron microscope (SEM), and the direction of the polishing mark (polishing direction) and the cleavage direction are determined. Is measured (step S5).

続いて、ステップS5において研磨方向と劈開方向との角度差を測定した結果、当該角度差が例えば10°以上45°以下か否かを判定する(ステップS6)。
ステップS6において、当該角度差が例えば10°以上45°以下であると判定されたならば、試料10の設置角度が規定範囲であり、試料10に劈開が生じ難い状態であると認められるため、ステップS8へ進む。
Subsequently, as a result of measuring the angle difference between the polishing direction and the cleavage direction in step S5, it is determined whether or not the angle difference is, for example, not less than 10 ° and not more than 45 ° (step S6).
In step S6, if it is determined that the angle difference is, for example, 10 ° or more and 45 ° or less, the installation angle of the sample 10 is within the specified range, and it is recognized that the sample 10 is not easily cleaved. Proceed to step S8.

一方、ステップS6において、当該角度差が例えば10°より小値(或いは45°より大値)と判定されたならば、試料10の設置角度が規定範囲から外れており、試料10に劈開が生じ易い状態であると認められるため、角度調節機構13により試料10の設置角度が規定値内の所望値となるように、試料台11を回転させて調節する(ステップS7)。そして、再びステップS4の試し研磨を行なう。   On the other hand, if it is determined in step S6 that the angle difference is smaller than, for example, 10 ° (or larger than 45 °), the installation angle of the sample 10 is out of the specified range, and the sample 10 is cleaved. Since it is recognized that the state is easy, the angle adjustment mechanism 13 rotates and adjusts the sample stage 11 so that the installation angle of the sample 10 becomes a desired value within a specified value (step S7). Then, trial polishing in step S4 is performed again.

続いて、設置角度が規定値と判断された試料10において、水平調節機構14により、研磨部1の研磨表面1aとの接触状態、即ち水平度を調節する(ステップS8)。
続いて、粗仕上げ用の研磨液及び研磨板を用い、研磨部1により、研磨板を回転駆動して試料10の粗研磨を行なう(ステップS9)。この粗研磨処理の際に、必要であれば、水平調節機構14により試料10の水平度を微調整しながら当該粗研磨処理を行なう。
Subsequently, in the sample 10 in which the installation angle is determined to be the specified value, the level adjustment mechanism 14 adjusts the contact state with the polishing surface 1a of the polishing unit 1, that is, the level (step S8).
Subsequently, the polishing plate 1 is rotationally driven by the polishing unit 1 using a polishing liquid and a polishing plate for rough finishing, and the sample 10 is roughly polished (step S9). In this rough polishing process, if necessary, the rough polishing process is performed while finely adjusting the level of the sample 10 by the leveling mechanism 14.

続いて、ステップS9において粗研磨を行なった試料10の厚みを測定し、当該厚みが例えば10μm以下か否かを判定する(ステップS10)。
ステップS10において、当該厚みが10μm以下と判定されたならば、試料10の研磨表面1aに対する水平度が許容範囲にあると認められるため、ステップS11へ進む。
一方、ステップS10において、当該厚みが10μmより大値と判定されたならば、試料10の研磨表面1aに対する水平度が許容範囲になく不十分であると認められるため、再びステップS8で試料10の水平度の調節を行なう。
Subsequently, the thickness of the sample 10 subjected to the rough polishing in step S9 is measured, and it is determined whether or not the thickness is, for example, 10 μm or less (step S10).
If it is determined in step S10 that the thickness is 10 μm or less, it is recognized that the level of the sample 10 with respect to the polished surface 1a is within an allowable range, and thus the process proceeds to step S11.
On the other hand, if it is determined in step S10 that the thickness is larger than 10 μm, it is recognized that the level of the sample 10 with respect to the polishing surface 1a is not within the allowable range and is insufficient, and therefore the sample 10 is again in step S8. Adjust the level.

続いて、試料10の水平度が許容範囲にあると認められた場合には、精密仕上げ用の研磨液及び研磨板を用い、研磨部1により、研磨板を回転駆動して試料10の精密研磨を行なう(ステップS11)。この精密研磨処理の際に、必要であれば、水平調節機構14により試料10の水平度を微調整しながら当該精密研磨処理を行なう。   Subsequently, when it is recognized that the level of the sample 10 is within the allowable range, the polishing plate is rotated by the polishing unit 1 using a polishing liquid and a polishing plate for precision finishing, and the sample 10 is precisely polished. Is performed (step S11). During the precision polishing process, if necessary, the leveling mechanism 14 performs the precision polishing process while finely adjusting the level of the sample 10.

続いて、ステップS11において精密研磨を行なった試料10の厚みを測定し、当該厚みが例えば1μm以下か否か、或いは試料1の表面から目的物(例えば配線37の一部等)が露出したか否かを判定する(ステップS12)。   Subsequently, the thickness of the sample 10 subjected to precision polishing in step S11 is measured, and whether the thickness is, for example, 1 μm or less, or whether an object (for example, part of the wiring 37) is exposed from the surface of the sample 1 It is determined whether or not (step S12).

ステップS12において、当該厚みが1μm以下、或いは試料1の表面から目的物が露出したと判定されたならば、試料10の研磨結果が良好であると認められるため、当該研磨処理を終了する。
一方、ステップS12において、当該厚みが1μmより大値、或いは試料1の表面から目的物が未だ露出していないと判定されたならば、試料10の研磨結果が不十分であると認められるため、水平調節機構14により再び研磨部1の水平度を調節する(ステップS13)。そして、再度ステップS11の精密研磨処理を行なう。
If it is determined in step S12 that the thickness is 1 μm or less or the object is exposed from the surface of the sample 1, the polishing result of the sample 10 is recognized as good, and the polishing process is terminated.
On the other hand, if it is determined in step S12 that the thickness is greater than 1 μm, or the object is not yet exposed from the surface of the sample 1, it is recognized that the polishing result of the sample 10 is insufficient. The leveling mechanism 14 adjusts the level of the polishing unit 1 again (step S13). Then, the precision polishing process in step S11 is performed again.

以上説明したように、本実施形態によれば、試料10の研磨面における研磨痕や応力ムラの発生を抑え、試料10の表面の極めて広い範囲において十分な平坦度が得られて分析評価の可能な領域の大幅な拡大化を実現し、信頼性の高い薄膜化された試料を得ることができる。この構成により、AFMやTEM、SIMS等による微細化したデバイスの広範囲且つ正確な評価が可能になり、1つの試料の観察評価によって多くの情報が得ることができる。   As described above, according to the present embodiment, generation of polishing marks and stress unevenness on the polished surface of the sample 10 can be suppressed, and sufficient flatness can be obtained over a very wide range of the surface of the sample 10 to enable analysis evaluation. Therefore, it is possible to obtain a highly reliable thin-film sample. With this configuration, a wide range and accurate evaluation of a miniaturized device by AFM, TEM, SIMS, or the like is possible, and a lot of information can be obtained by observation evaluation of one sample.

本実施形態による研磨装置の概略構成をその動作と共に示す斜視図である。It is a perspective view which shows schematic structure of the grinding | polishing apparatus by this embodiment with the operation | movement. 研磨装置の構成要素である試料保持部の概略構成を示す平面図である。It is a top view which shows schematic structure of the sample holding part which is a component of a grinding | polishing apparatus. 研磨装置における試料保持部の周辺構成の他の例を示す斜視図である。It is a perspective view which shows the other example of the periphery structure of the sample holding part in a grinding | polishing apparatus. 本実施形態における試料の設置角度の適否を説明するための模式図である。It is a schematic diagram for demonstrating the appropriateness | suitability of the installation angle of the sample in this embodiment. 本実施形態における試料の設置角度の適正範囲を説明するための模式図である。It is a schematic diagram for demonstrating the appropriate range of the installation angle of the sample in this embodiment. 本実施形態による研磨方法を工程順に示すフロー図である。It is a flowchart which shows the grinding | polishing method by this embodiment in process order. 本実施形態による研磨方法における研磨加工の様子を示す模式図である。It is a schematic diagram which shows the mode of the grinding | polishing process in the grinding | polishing method by this embodiment.

符号の説明Explanation of symbols

1 研磨部
1a 研磨表面
2 試料保持部
2a 本体
10 試料
11 試料台
11a ノッチ
11b グリッド
12 試料台設置機構
12a チャッキング部材
12b アーム部材
13 角度調節機構
13a 角度スケール
14 水平調節機構
14a,14b 支持棒
DESCRIPTION OF SYMBOLS 1 Polishing part 1a Polishing surface 2 Sample holding part 2a Main body 10 Sample 11 Sample stand 11a Notch 11b Grid 12 Sample stand installation mechanism 12a Chucking member 12b Arm member 13 Angle adjustment mechanism 13a Angle scale 14 Horizontal adjustment mechanisms 14a and 14b Support rod

Claims (4)

試料を研磨して薄膜化する研磨方法であって、
前記試料が固定され、前記試料を研磨する研磨表面内で移動自在とされた試料台が、前記研磨表面内の所定部位で位置固定され、前記試料の前記研磨表面との任意の接触点における研磨方向を一定不変とされた状態で、前記試料を研磨して薄膜化することを特徴とする研磨方法。
A polishing method for polishing a sample to form a thin film,
The sample is fixed, specimen table which is movable in a polishing surface for polishing the sample, at any point of contact with the fixed in position at a predetermined site within the polishing surface, the polishing surface of the sample A polishing method comprising polishing the sample to form a thin film in a state where the polishing direction is constant.
前記試料台に固定された前記試料の前記研磨表面内における研磨方向に対する設置角度が、前記試料の劈開面が前記研磨方向と非平行となるように調節されて前記試料台が位置固定された状態で、前記試料を研磨して薄膜化することを特徴とする請求項に記載の研磨方法。 An installation angle of the sample fixed to the sample stage with respect to the polishing direction in the polishing surface is adjusted so that the cleaved surface of the sample is not parallel to the polishing direction, and the sample stage is fixed in position. in polishing method according to claim 1, characterized in that thinned by polishing the sample. 前記試料台に前記試料の固定部位に形成されたグリッドと、前記グリッドに対応して形成された設置マーカーとが設けられており、前記設置マーカーが前記設置角度の基準位置に調節されて、この状態を基準として前記設置角度が調節された状態で、前記試料を研磨して薄膜化することを特徴とする請求項に記載の研磨方法。 The sample stage is provided with a grid formed at a fixed portion of the sample and an installation marker formed corresponding to the grid, and the installation marker is adjusted to a reference position of the installation angle. The polishing method according to claim 2 , wherein the sample is polished to be a thin film in a state where the installation angle is adjusted with reference to a state. 前記設置角度が10°以上45°以下の範囲内の値に設定されることを特徴とする請求項又はに記載の研磨方法。 The polishing method according to claim 2 or 3, wherein the installation angle is set to a value in the range of 10 ° to 45 °.
JP2007068750A 2007-03-16 2007-03-16 Polishing method Expired - Fee Related JP5040385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068750A JP5040385B2 (en) 2007-03-16 2007-03-16 Polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068750A JP5040385B2 (en) 2007-03-16 2007-03-16 Polishing method

Publications (2)

Publication Number Publication Date
JP2008229734A JP2008229734A (en) 2008-10-02
JP5040385B2 true JP5040385B2 (en) 2012-10-03

Family

ID=39903142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068750A Expired - Fee Related JP5040385B2 (en) 2007-03-16 2007-03-16 Polishing method

Country Status (1)

Country Link
JP (1) JP5040385B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111152072A (en) * 2018-11-08 2020-05-15 无锡华润上华科技有限公司 Method for polishing semiconductor sample

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041082B4 (en) * 2009-09-10 2017-02-23 Brigitte Abele Apparatus and method for the manual production of thin sections for microscopic examination
US8884247B2 (en) * 2012-09-25 2014-11-11 Fei Company System and method for ex situ analysis of a substrate
CN105606416A (en) * 2015-12-23 2016-05-25 芜湖东旭光电装备技术有限公司 Preparation method of glass sample for testing glass solid defects
US20220093446A1 (en) * 2019-01-24 2022-03-24 Tokyo Electron Limited Processing apparatus and processing method
JP7182480B2 (en) * 2019-01-24 2022-12-02 東京エレクトロン株式会社 Processing equipment and processing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192854A (en) * 1992-01-20 1993-08-03 Mitsubishi Heavy Ind Ltd Polishing machine for thin film
JP3935352B2 (en) * 2001-12-25 2007-06-20 シャープ株式会社 Semiconductor chip planar polishing jig, polishing apparatus using the jig, and semiconductor chip analysis sample preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111152072A (en) * 2018-11-08 2020-05-15 无锡华润上华科技有限公司 Method for polishing semiconductor sample
CN111152072B (en) * 2018-11-08 2022-03-11 无锡华润上华科技有限公司 Method for polishing semiconductor sample

Also Published As

Publication number Publication date
JP2008229734A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP5040385B2 (en) Polishing method
US10406635B2 (en) Wafer producing method and processing feed direction detecting method
US7700381B2 (en) Semiconductor wafer with ID mark, equipment for and method of manufacturing semiconductor device from them
CN105914159B (en) Pattern matching using automatic S/TEM acquisition and metrology of thin slices of known shape
JP4699168B2 (en) Electron microscope sample preparation method
US20160297091A1 (en) Method of forming cut groove
JP3805547B2 (en) Sample preparation equipment
CN1162190A (en) Method for preparing integrated circuit plane figure sample for transmission electron microscopy, and observation method thereof
US10068782B2 (en) Device and method for scribing a bottom-side of a substrate while viewing the top side
JP2009521129A (en) Polishing method of semiconductor structure on insulator
CN106289909B (en) The method for preparing example of transmission electron microscope
TW407329B (en) Manual precision micro-cleavage method
JP4048210B2 (en) Sample preparation method
JP5190666B2 (en) Measuring method of rotation angle of bonded wafer
JP4357347B2 (en) Sample processing method and sample observation method
KR100636029B1 (en) Method for forming specimen protecting layer and method for manufacturing transmission electron microscope of specimen for analyzing using the same
JP2003322599A (en) Method of preparing sample for scanning probe microscope
KR100744267B1 (en) specimen manufacturing method for Transmission Electron Microscope
Moyal et al. Cleaving Breakthrough: A New Method Removes Old Limitations
KR20040037958A (en) apparatus for controlling of cutting angle and method for manufacturing Transmission Electron Microscope of Specimen
Chivas et al. Pulsed Laser Assisted Chemical Etch for analytic surface preparation
Teo et al. Targeted Silicon Ultra-Thinning by Contour Milling for Advanced Fault Isolation
KR20150019719A (en) Method for producing samples for transmission electron microscopy using tripod polishing and focused ion beam
KR20040036406A (en) Apparatus for fixing specimen and Apparatus for grinding specimen of including thereof
Beanland Rapid cross-section TEM specimen preparation of III-V materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees