JP2013093514A - 気相成長装置 - Google Patents

気相成長装置 Download PDF

Info

Publication number
JP2013093514A
JP2013093514A JP2011236002A JP2011236002A JP2013093514A JP 2013093514 A JP2013093514 A JP 2013093514A JP 2011236002 A JP2011236002 A JP 2011236002A JP 2011236002 A JP2011236002 A JP 2011236002A JP 2013093514 A JP2013093514 A JP 2013093514A
Authority
JP
Japan
Prior art keywords
gas
mass flow
group
flow controller
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011236002A
Other languages
English (en)
Inventor
Kiyoshi Yasufuku
喜代志 安福
Hidekazu Sakagami
英和 坂上
Hiromutsu Kojima
弘睦 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011236002A priority Critical patent/JP2013093514A/ja
Priority to PCT/JP2012/068314 priority patent/WO2013061660A1/ja
Priority to TW101127505A priority patent/TW201317385A/zh
Publication of JP2013093514A publication Critical patent/JP2013093514A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】サセプタ上の複数の領域毎に材料ガスの混合比および流量を調整する。
【解決手段】被処理基板10が載置されるサセプタ120と、サセプタ120と対向し、被処理基板10上に複数の材料ガスを供給するシャワーヘッド130と、シャワーヘッド130に複数の材料ガスのうちの所定の複数の材料ガスを混合してそれぞれ導入する複数の混合配管と、複数の材料ガスの各々において流量を調整しつつ分岐してそれぞれを、複数の混合配管のいずれかに送る複数のガス分岐機構とを備える。シャワーヘッド130は、複数の混合配管のそれぞれで混合された複数の混合ガスをサセプタ上の複数の領域にそれぞれ噴き付ける。複数の混合ガスの各々においては、上記所定の複数の材料ガスの各々の濃度および流量が調節されている。
【選択図】図1

Description

本発明は、複数の材料ガスを用いて被処理基板上に成膜する気相成長装置に関する。
化合物半導体材料を用いたMOCVD(Metal Organic Chemical Vapor Deposition)法により、発光ダイオード、半導体レーザ、宇宙用ソーラーパワーデバイス、および、高速デバイスなどが製造されている。
MOCVD法においては、トリメチルガリウム(TMG)またはトリメチルアルミニウム(TMA)などの有機金属ガスと、アンモニア(NH3)、ホスフィン(PH3)またはアルシン(AsH3)などの水素化合物ガスとを成膜に寄与する材料ガスとして用いる。
MOCVD法は、上記の材料ガスをキャリアガスと共に成膜室内に導入して加熱し、被処理基板上で気相反応させることにより、被処理基板上に化合物半導体結晶を成長させる方法である。
MOCVD法によって所望の薄膜を形成する際、反応性を有する材料ガスによって被処理基板表面で生起される表面反応は、極めて複雑なメカニズムを有することが知られている。すなわち、材料ガスの温度、流速、圧力、材料ガスに含まれる活性化学種の種類、反応系における残留ガス成分、および、被処理基板の温度など、多数のパラメータが、上記表面反応に寄与する。そのため、MOCVD法でこれらのパラメータを制御して所望の薄膜を形成させることは極めて難しい。
MOCVD法に用いられる反応器の構成を開示した先行文献として、特表2007−521633号公報(特許文献1)がある。特許文献1に記載された反応器においては、回転ディスクの回転軸から異なる半径方向距離にある基板に向かうガスが、実質的に同一の速度を有する。軸から離れたディスクの部分に向かうガスは、軸に近い部分に向かうガスよりも高濃度の反応ガスを含む。
化合物半導体製造装置を開示した先行文献として、特開平6−295862号公報(特許文献2)がある。特許文献2に記載された化合物半導体製造装置においては、V族ガス、III族ガス、不純物ガスをそれぞれ独立した配管を用いて反応管に導入するとともに、ニードルバルブによってその流量を制御している。
特表2007−521633号公報 特開平6−295862号公報
MOCVD法により処理する気相成長装置には、化合物半導体結晶の品質を向上しつつ製造コストを抑えるために、材料の歩留まりおよび処理能力を向上することが求められる。そのため、可能な限り多くの大口径の被処理基板を一括して高品質に処理可能なように、気相成長装置の大型化が図られている。
大型の気相成長装置においては、大口径の被処理基板を多く処理するために、被処理基板を載置するサセプタが大型となる。また、処理能力を向上するために、大型のサセプタの中心部から端部まで被処理基板が敷き詰められて処理される。そのため、大型のサセプタ上に載置された複数の被処理基板の各々において、均一な膜厚および膜特性を有する化合物半導体結晶を成長させる必要がある。
均一な膜厚および膜特性を有する化合物半導体結晶を成長させるためには、大型のサセプタ上の複数の領域毎に材料ガスの混合比および流量を調整することが必要である。
本発明は上記の問題点に鑑みなされたものであって、サセプタ上の複数の領域毎に材料ガスの混合比および流量を調整できる気相成長装置を提供することを目的とする。
本発明に基づく気相成長装置は、被処理基板が載置されるサセプタと、サセプタと対向し、被処理基板上に複数の材料ガスを供給するガス供給部と、ガス供給部に複数の材料ガスのうちの所定の複数の材料ガスを混合してそれぞれ導入する複数の混合配管と、複数の材料ガスの各々において流量を調整しつつ分岐してそれぞれを、複数の混合配管のいずれかに送る複数のガス分岐機構とを備える。ガス供給部は、複数の混合配管のそれぞれで混合された複数の混合ガスをサセプタ上の複数の領域にそれぞれ噴き付ける。複数の混合ガスの各々においては、上記所定の複数の材料ガスの各々の濃度および流量が調節されている。
本発明の一形態においては、複数のガス分岐機構の各々は、複数の材料ガスの各々の分岐比率を個別に調節する。
本発明の一形態においては、ガス分岐機構は、フロースプリッタまたはマスフローコントローラを含む。
本発明の一形態においては、上記複数の領域は、サセプタ上の中心側領域と縁側領域とを含む。
本発明によれば、サセプタ上の複数の領域毎に材料ガスの混合比および流量を調整できる。
本発明の一実施形態に係るMOCVD装置の構成の一部を示す断面図である。 シャワープレートを下方から見た図である。 同実施形態に係るMOCVD装置の混合配管およびガス分岐機構の構成を示す系統図である。
以下、本発明の一実施形態に係る気相成長装置について説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。また、気相成長装置の一例として、縦型シャワーヘッド型のMOCVD装置について説明する。
図1は、本発明の一実施形態に係るMOCVD装置の構成の一部を示す断面図である。図2は、シャワープレートを下方から見た図である。図3は、本実施形態に係るMOCVD装置の混合配管およびガス分岐機構の構成を示す系統図である。
図1に示すように、本発明の一実施形態に係るMOCVD装置100は、被処理基板10が内部で処理される成膜室110を備えている。成膜室110内には、被処理基板10が載置される平面視円形状のサセプタ120が配置されている。
サセプタ120上は、複数の領域に規定される。本実施形態においては、後述するシャワーヘッド130から図1の矢印20で示すように混合ガスを噴き付けられるサセプタ120の中心側領域と、矢印30で示すように混合ガスを噴き付けられるサセプタ120の縁側領域との2つの領域が規定されている。
ただし、複数の領域はこれに限られず、サセプタ120の大きさ、サセプタ120に載置される複数の被処理基板10の配置、および、後述するガス排気部141の位置などの種々の条件により、被処理基板10上における化合物半導体の結晶成長を考慮して適宜規定される。
サセプタ120の下方には、平面視円形状のヒータ121が配置されている。ヒータ121は、平面視円形状の支持台151上に配置されている。支持台151の中心の下部に回転軸150の一端が接続されている。回転軸150の他端には、図示しないアクチュエータが接続されており、回転軸150は軸中心に回転可能にされている。回転軸150の中心軸上に、サセプタ120、ヒータ121および支持台151の中心が位置している。
サセプタ120、ヒータ121および支持台151の周側面を覆うように、ヒータカバー152が設けられている。MOCVD装置100は、サセプタ120、ヒータ121、支持台151およびヒータカバー152を含む。
成膜室110の上部には、サセプタ120と対向し、被処理基板10上に複数の材料ガスを供給するガス供給部であるシャワーヘッド130が設けられている。シャワーヘッド130は、シャワープレート131、水冷部132および中空部133を含む。
図2に示すように、シャワープレート131は、被処理基板10上に混合ガスを噴き付けるための複数の開口131aを有している。複数の開口131aのうち、シャワープレート131の中心側領域20aに位置する開口131aから、上述したサセプタ120上の中心側領域に混合ガスが噴き付けられる。また、複数の開口131aのうち、シャワープレート131の縁側領域30aに位置する開口131aから、上述したサセプタ120上の縁側領域に混合ガスが噴き付けられる。図1に示すように、シャワープレート131の下面は、サセプタ120の上面と平行に対向している。
水冷部132は、シャワーヘッド130を水冷するための冷却水が循環する部位である。水冷部132には、ポンプ、水供給源および冷却源を含む水冷装置160から冷却用配管161を通じて冷却水が供給される。
中空部133には、後述する複数の混合配管が接続されている。中空部133の内部は、複数の混合配管内およびシャワープレート131の複数の開口131aと連通している。MOCVD装置100は、シャワーヘッド130を含む。
また、MOCVD装置100は、成膜室110の内部を排気するためのガス排気部141と、ガス排気部141に接続されたパージライン142と、パージライン142に接続された排ガス処理装置140とを含む。
これらにより、成膜室110の内部に導入された混合ガスはガス排気部141によって成膜室110の外部に排気され、排気された混合ガスはパージライン142を通って排ガス処理装置140に送られ、排ガス処理装置140において無害化される。
本実施形態に係るMOCVD装置100により被処理基板10に薄膜を形成する際には、混合ガスをシャワーヘッド130から成膜室110内へ供給する。このとき、回転しているサセプタ120を介してヒータ121により被処理基板10を加熱する。加熱された被処理基板10上で化学反応が起こることにより、被処理基板10上に薄膜が形成される。被処理基板10上を通過した混合ガスは、ガス排気部141から排気される。
以下、MOCVD装置100に含まれる、シャワーヘッド130に複数の混合ガスを送る配管系統について説明する。
本実施形態に係るMOCVD装置100においては、被処理基板10上に化合物半導体の薄膜を形成するための複数の材料ガスとして、III族元素を含むIII族材料ガス、V族元素を含むV族材料ガス、および、不純物元素を含むドーピング材料ガスを用いる。ただし、複数の材料ガスはこれに限られず、たとえば、II族元素を含むII族材料ガス、VI族元素を含むVI族材料ガス、および、不純物元素を含むドーピング材料ガスを用いてもよい。
III族元素としては、たとえば、Ga(ガリウム)、Al(アルミニウム)またはIn(インジウム)などがある。III族材料ガスとしては、たとえば、トリメチルガリウム(TMG)またはトリメチルアルミニウム(TMA)などの有機金属ガスを用いることができる。
V族元素としては、たとえば、N(窒素)、P(リン)またはAs(ヒ素)などがある。V族材料ガスとしては、たとえば、アンモニア(NH3)、ホスフィン(PH3)またはアルシン(AsH3)などの水素化合物ガスを用いることができる。
不純物元素としては、Mg(マグネシウム)またはSi(シリコン)などがある。ドーピング材料ガスとしては、Cp2Mg(bis-cyclopentadienyl Mg)ガスまたはSiH4ガスなどを用いることができる。
図1に示すように、MOCVD装置100は、サセプタ120の縁側領域にIII族材料ガスを含むIII族系混合ガスの供給源となるIII族系混合ガス縁側供給源170を備えている。また、MOCVD装置100は、サセプタ120の縁側領域にV族材料ガスを含むV族系混合ガスの供給源となるV族系混合ガス縁側供給源171を備えている。
また、MOCVD装置100は、サセプタ120の中心側領域にIII族材料ガスを含むIII族系混合ガスの供給源となるIII族系混合ガス縁側供給源172を備えている。また、MOCVD装置100は、サセプタ120の中心側領域にV族材料ガスを含むV族系混合ガスの供給源となるV族系混合ガス縁側供給源173を備えている。
III族系混合ガス縁側供給源170は、流量調節機構であるマスフローコントローラ170cが接続されたIII族系縁側混合配管170aによりシャワーヘッド130に接続されている。V族系混合ガス縁側供給源171は、マスフローコントローラ171cが接続されたV族系縁側混合配管171aによりシャワーヘッド130に接続されている。
III族系混合ガス中心側供給源172は、マスフローコントローラ172cが接続されたIII族系中心側混合配管172aによりシャワーヘッド130に接続されている。V族系混合ガス中心側供給源173は、マスフローコントローラ173cが接続されたV族系中心側混合配管173aによりシャワーヘッド130に接続されている。
MOCVD装置100は、MOCVD装置100に含まれる全てのマスフローコントローラを制御する制御部190を備えている。制御部190は、配線191によりIII族系混合ガス縁側供給源170と接続され、配線192によりV族系混合ガス縁側供給源171と接続され、配線193によりIII族系混合ガス中心側供給源172と接続され、配線194によりV族系混合ガス中心側供給源173と接続されている。
III族系混合ガス縁側供給源170における混合ガスの流量を調整する全てのマスフローコントローラは、III族系混合ガス縁側供給源170を介して図示しない配線により制御部190と接続されている。
V族系混合ガス縁側供給源171における混合ガスの流量を調整する全てのマスフローコントローラは、V族系混合ガス縁側供給源171を介して図示しない配線により制御部190と接続されている。
III族系混合ガス中心側供給源172における混合ガスの流量を調整する全てのマスフローコントローラは、III族系混合ガス中心側供給源172を介して図示しない配線により制御部190と接続されている。
V族系混合ガス中心側供給源173における混合ガスの流量を調整する全てのマスフローコントローラは、V族系混合ガス中心側供給源173を介して図示しない配線により制御部190と接続されている。
図3に示すように、MOCVD装置100は、キャリアガス供給源180、第1III族材料ガス供給源181、第2III族材料ガス供給源182、第1V族材料ガス供給源183、第2V族材料ガス供給源184、第1ドーピング材料ガス供給源185、および、第2ドーピング材料ガス供給源186を備えている。
キャリアガス供給源180は、キャリアガスとして、たとえば、H2ガスを供給する。キャリアガス供給源180は、キャリアライン180aに接続されている。キャリアライン180aは、マスフローコントローラA1,A2,B1,B2,C2,D2,G1,G2,H1,H2と接続されている。
また、キャリアライン180aは、キャリアライン180bおよびキャリアライン180cと接続されている。キャリアライン180bは、マスフローコントローラE1が接続されたIII族系縁側混合配管170bと、マスフローコントローラE2が接続されたIII族系中心側混合配管172bとに分岐されている。
キャリアライン180cは、マスフローコントローラF1が接続されたV族系縁側混合配管171bと、マスフローコントローラF2が接続されたV族系中心側混合配管173bとに分岐されている。
第1III族材料ガス供給源181は、たとえば、TMGガスを供給する。第1III族材料ガス供給源181は、バブリング装置に接続されている。このバブリング装置の導入側は、バルブを介して、マスフローコントローラA1が接続されたキャリアラインと接続されている。このバブリング装置の導出側は、バルブを介して、マスフローコントローラA2が接続されたキャリアラインと接続されている。
マスフローコントローラA2が接続されたキャリアラインは、微差圧仕様のマスフローコントローラA3およびマスフローコントローラA4を備えたガス分岐機構A5により分岐されている。マスフローコントローラA3が接続されている側は、III族系縁側混合配管170bに接続されている。マスフローコントローラA4が接続されている側は、III族系中心側混合配管172bに接続されている。
第2III族材料ガス供給源182は、たとえば、TMAガスを供給する。第2III族材料ガス供給源182は、バブリング装置に接続されている。このバブリング装置の導入側は、バルブを介して、マスフローコントローラB1が接続されたキャリアラインと接続されている。このバブリング装置の導出側は、バルブを介して、マスフローコントローラB2が接続されたキャリアラインと接続されている。
マスフローコントローラB2が接続されたキャリアラインは、微差圧仕様のマスフローコントローラB3およびマスフローコントローラB4を備えたガス分岐機構B5により分岐されている。マスフローコントローラB3が接続されている側は、III族系縁側混合配管170bに接続されている。マスフローコントローラB4が接続されている側は、III族系中心側混合配管172bに接続されている。
第1ドーピング材料ガス供給源185は、たとえば、Cp2Mgガスを供給する。第1ドーピング材料ガス供給源185は、バブリング装置に接続されている。このバブリング装置の導入側は、バルブを介して、マスフローコントローラG1が接続されたキャリアラインと接続されている。このバブリング装置の導出側は、バルブを介して、マスフローコントローラG2が接続されたキャリアラインと接続されている。
マスフローコントローラG2が接続されたキャリアラインは、微差圧仕様のマスフローコントローラG3およびマスフローコントローラG4を備えたガス分岐機構G5により分岐されている。マスフローコントローラG3が接続されている側は、III族系縁側混合配管170bに接続されている。マスフローコントローラG4が接続されている側は、III族系中心側混合配管172bに接続されている。
第2ドーピング材料ガス供給源186は、たとえば、SiH4ガスを供給する。第2ドーピング材料ガス供給源186は、バブリング装置に接続されている。このバブリング装置の導入側は、バルブを介して、マスフローコントローラH1が接続されたキャリアラインと接続されている。このバブリング装置の導出側は、バルブを介して、マスフローコントローラH2が接続されたキャリアラインと接続されている。
マスフローコントローラH2が接続されたキャリアラインは、微差圧仕様のマスフローコントローラH3およびマスフローコントローラH4を備えたガス分岐機構H5により分岐されている。マスフローコントローラH3が接続されている側は、III族系縁側混合配管170bに接続されている。マスフローコントローラH4が接続されている側は、III族系中心側混合配管172bに接続されている。
第1V族材料ガス供給源183は、たとえば、NH3ガスを供給する。第1V族材料ガス供給源183は、マスフローコントローラC1が接続された配管の一端と接続されている。この配管の他端側は、マスフローコントローラC2が接続されたキャリアラインに接続されている。
マスフローコントローラC2が接続されたキャリアラインは、微差圧仕様のマスフローコントローラC3およびマスフローコントローラC4を備えたガス分岐機構C5により分岐されている。マスフローコントローラC3が接続されている側は、V族系縁側混合配管171bに接続されている。マスフローコントローラC4が接続されている側は、V族系中心側混合配管173bに接続されている。
第2V族材料ガス供給源184は、たとえば、AsH3ガスを供給する。第2V族材料ガス供給源184は、マスフローコントローラD1が接続された配管の一端と接続されている。この配管の他端側は、マスフローコントローラD2が接続されたキャリアラインに接続されている。
マスフローコントローラD2が接続されたキャリアラインは、微差圧仕様のマスフローコントローラD3およびマスフローコントローラD4を備えたガス分岐機構D5により分岐されている。マスフローコントローラD3が接続されている側は、V族系縁側混合配管171bに接続されている。マスフローコントローラD4が接続されている側は、V族系中心側混合配管173bに接続されている。
以下に、各材料ガスの供給方法について説明する。
マスフローコントローラA1にてキャリアガスをバブリング装置内に導入し、シリンダ内でバブリングしてTMGガスを発生させる。マスフローコントローラA1から導入されるキャリアガスの流量により、TMGガスの発生量が決定される。
発生したTMGガスは、マスフローコントローラA2から送られたキャリアガスと混合される。マスフローコントローラA2から送られるキャリアガスの流量により、TMGガスの濃度および総流量が決定される。
キャリアガスと混合されたTMGガスの一部は、マスフローコントローラA3にて流量制御されてIII族系縁側混合配管170bに送られる。キャリアガスと混合されたTMGガスの残部は、マスフローコントローラA4にて流量制御されてIII族系中心側混合配管172bに送られる。
同様に、キャリアガスと混合されたTMAガスの一部は、マスフローコントローラB3にて流量制御されてIII族系縁側混合配管170bに送られる。キャリアガスと混合されたTMAガスの残部は、マスフローコントローラB4にて流量制御されてIII族系中心側混合配管172bに送られる。
キャリアガスと混合されたCp2Mgガスの一部は、マスフローコントローラG3にて流量制御されてIII族系縁側混合配管170bに送られる。キャリアガスと混合されたCp2Mgガスの残部は、マスフローコントローラG4にて流量制御されてIII族系中心側混合配管172bに送られる。
キャリアガスと混合されたSiH4ガスの一部は、マスフローコントローラH3にて流量制御されてIII族系縁側混合配管170bに送られる。キャリアガスと混合されたSiH4ガスの残部は、マスフローコントローラH4にて流量制御されてIII族系中心側混合配管172bに送られる。
このように、III族系縁側混合配管170bおよびIII族系中心側混合配管172bの各々において、複数のIII族系材料ガスおよび複数のドーピング材料ガスが混合される。
さらに、マスフローコントローラE1にてキャリアガスが流量制御されてIII族系縁側混合配管170bに送られる。マスフローコントローラE1から送られるキャリアガスの流量により、III族系混合ガス縁側供給源170に到達する混合ガスの総流量が決定される。
マスフローコントローラE2にてキャリアガスが流量制御されてIII族系中心側混合配管172bに送られる。マスフローコントローラE2から送られるキャリアガスの流量により、III族系混合ガス中心側供給源172に到達する混合ガスの総流量が決定される。
同様に、マスフローコントローラC1にて流量を調整して第1V族材料ガス供給源183からNH3ガスを送出する。NH3ガスは、マスフローコントローラC2から送られたキャリアガスと混合される。マスフローコントローラC2から送られるキャリアガスの流量により、NH3ガスの濃度および総流量が決定される。
キャリアガスと混合されたNH3ガスの一部は、マスフローコントローラC3にて流量制御されてV族系縁側混合配管171bに送られる。キャリアガスと混合されたNH3ガスの残部は、マスフローコントローラC4にて流量制御されてV族系中央側混合配管173bに送られる。
同様に、キャリアガスと混合されたAsH3ガスの一部は、マスフローコントローラD3にて流量制御されてV族系縁側混合配管171bに送られる。キャリアガスと混合されたAsH3ガスの残部は、マスフローコントローラD4にて流量制御されてV族系中央側混合配管173bに送られる。
このように、V族系縁側混合配管171bおよびV族系中央側混合配管173bの各々において、複数のV族系材料ガスが混合される。
さらに、マスフローコントローラF1にてキャリアガスが流量制御されてV族系縁側混合配管171bに送られる。マスフローコントローラF1から送られるキャリアガスの流量により、V族系混合ガス縁側供給源171に到達する混合ガスの総流量が決定される。
マスフローコントローラF2にてキャリアガスが流量制御されてV族系中心側混合配管173bに送られる。マスフローコントローラF2から送られるキャリアガスの流量により、V族系混合ガス中心側供給源173に到達する混合ガスの総流量が決定される。
上記のように、MOCVD装置100は、シャワーヘッド130に複数の材料ガスのうちの所定の複数の材料ガスを混合してそれぞれ導入する複数の混合配管を備えている。また、MOCVD装置100は、複数の材料ガスの各々において流量を調整しつつ分岐してそれぞれを、複数の混合配管のいずれかに送る複数のガス分岐機構A5,B5,C5,D5,G5,H5を備えている。
複数のガス分岐機構A5,B5,C5,D5,G5,H5の各々は、複数の材料ガスの各々の分岐比率を個別に調節する。すなわち、制御部190により複数のガス分岐機構A5,B5,C5,D5,G5,H5の各々が互いに独立して制御される。
本実施形態においては、複数のガス分岐機構A5,B5,C5,D5,G5,H5の各々は、2つの微差圧仕様のマスフローコントローラにより構成されているが、ガス分岐機構はフロースプリッタで構成されていてもよい。
シャワーヘッド130は、複数の混合配管のそれぞれで混合された複数の混合ガスをサセプタ120上の複数の領域にそれぞれ噴き付ける。複数の混合ガスの各々においては、所定の複数の材料ガスの各々の濃度および流量が調節されている。
具体的には、たとえば、マスフローコントローラA3とマスフローコントローラA4との流量比と、マスフローコントローラB3とマスフローコントローラB4との流量比とを、異なるように設定することにより、III族系混合ガス縁側供給源170とIII族系混合ガス中心側供給源172とにおける複数のIII族材料ガスの混合比を調整できる。同様に、V族系混合ガス縁側供給源171とV族系混合ガス中心側供給源173とにおける複数のV族材料ガスの混合比を調整できる。
また、複数のIII族材料ガスの混合比を一定にした状態で、サセプタ120の縁側領域に噴き付けられる混合ガス中のIII族系混合ガスとV族系混合ガスとの流量比と、中心側領域に噴き付けられる混合ガス中のIII族系混合ガスとV族系混合ガスとの流量比とを調整することができる。
具体的には、たとえば、マスフローコントローラA3,A4,B3,B4,C3,C4の流量をそれぞれ、LA3,LA4,LB3,LB4,LC3,LC4とする。LA3:LA4=LB3:LB4を満たしつつ、LC3/(LA3+LB3)=LC4/(LA4+LB4)を満たすようにすれば、サセプタ120の縁側領域と中心側領域とにおいて、噴き付けられるIII族系混合ガスとV族系混合ガスとの流量比を同一にすることができる。
逆に、LC3およびLC4が上記の関係を満たさないように設定することにより、サセプタ120の縁側領域と中心側領域とにおいて、噴き付けられるIII族系混合ガスとV族系混合ガスとの流量比を異なるようにすることができる。なお、上記の関係式は、V族材料ガスを一種類のみ使用している場合を規定している。
上記のように、本実施形態に係るMOCVD装置100においては、サセプタ120上の複数の領域毎に材料ガスの混合比および流量を調整できる。その結果、多数枚、大面積の被処理基板10を処理する場合に、成長した結晶の層厚、組成、不純物添加量の均一性の全てを被処理基板10上で充分なものとすることができる。すなわち、複数の被処理基板10の各々において、均一な膜厚および膜特性を有する化合物半導体結晶を成長させることができる。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10 被処理基板、20a 中心側領域、30a 縁側領域、100 MOCVD装置、110 成膜室、120 サセプタ、121 ヒータ、130 シャワーヘッド、131 シャワープレート、131a 開口、132 水冷部、133 中空部、140 排ガス処理装置、141 ガス排気部、142 パージライン、150 回転軸、151 支持台、152 ヒータカバー、160 水冷装置、161 冷却用配管、170 III族系混合ガス縁側供給源、171 V族系混合ガス縁側供給源、172 III族系混合ガス中心側供給源、173 V族系混合ガス中心側供給源、170a,170b III族系縁側混合配管、171a,171b V族系縁側混合配管、170c,171c,172c,173c,A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4,E1,E2,F1,F2,G1,G2,G3,G4,H1,H2,H3,H4 マスフローコントローラ、172a,172b III族系中心側混合配管、173a,173b V族系中心側混合配管、180 キャリアガス供給源、180a,180b,180c キャリアライン、181 第1III族材料ガス供給源、182 第2III族材料ガス供給源、183 第1V族材料ガス供給源、184 第2V族材料ガス供給源、185 第1ドーピング材料ガス供給源、186 第2ドーピング材料ガス供給源、190 制御部、191,192,193,194 配線、A5,B5,C5,D5,G5,H5 ガス分岐機構。

Claims (4)

  1. 被処理基板が載置されるサセプタと、
    前記サセプタと対向し、被処理基板上に複数の材料ガスを供給するガス供給部と、
    前記ガス供給部に前記複数の材料ガスのうちの所定の複数の材料ガスを混合してそれぞれ導入する複数の混合配管と、
    前記複数の材料ガスの各々において流量を調整しつつ分岐してそれぞれを、前記複数の混合配管のいずれかに送る複数のガス分岐機構と
    を備え、
    前記ガス供給部は、前記複数の混合配管のそれぞれで混合された複数の混合ガスを前記サセプタ上の複数の領域にそれぞれ噴き付け、
    前記複数の混合ガスの各々においては、前記所定の複数の材料ガスの各々の濃度および流量が調節されている、気相成長装置。
  2. 前記複数のガス分岐機構の各々は、前記複数の材料ガスの各々の分岐比率を個別に調節する、請求項1に記載の気相成長装置。
  3. 前記ガス分岐機構は、フロースプリッタまたはマスフローコントローラを含む、請求項1または2に記載の気相成長装置。
  4. 前記複数の領域は、前記サセプタ上の中心側領域と縁側領域とを含む、請求項1から3のいずれかに記載の気相成長装置。
JP2011236002A 2011-10-27 2011-10-27 気相成長装置 Pending JP2013093514A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011236002A JP2013093514A (ja) 2011-10-27 2011-10-27 気相成長装置
PCT/JP2012/068314 WO2013061660A1 (ja) 2011-10-27 2012-07-19 気相成長装置
TW101127505A TW201317385A (zh) 2011-10-27 2012-07-30 氣相成長裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236002A JP2013093514A (ja) 2011-10-27 2011-10-27 気相成長装置

Publications (1)

Publication Number Publication Date
JP2013093514A true JP2013093514A (ja) 2013-05-16

Family

ID=48167504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236002A Pending JP2013093514A (ja) 2011-10-27 2011-10-27 気相成長装置

Country Status (3)

Country Link
JP (1) JP2013093514A (ja)
TW (1) TW201317385A (ja)
WO (1) WO2013061660A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170103654A (ko) 2016-03-04 2017-09-13 도쿄엘렉트론가부시키가이샤 혼합 가스 복수 계통 공급 시스템 및 이것을 사용한 기판 처리 장치
JP2018082064A (ja) * 2016-11-16 2018-05-24 株式会社ニューフレアテクノロジー 成膜装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6180208B2 (ja) * 2013-07-08 2017-08-16 株式会社ニューフレアテクノロジー 気相成長装置および気相成長方法
CN110164757A (zh) * 2019-05-31 2019-08-23 中国科学院半导体研究所 化合物半导体及其外延方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110567A (ja) * 2000-10-03 2002-04-12 Mitsubishi Electric Corp 化学気相成長装置および該装置による半導体ウエハの成膜方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439921A (ja) * 1990-06-05 1992-02-10 Fujitsu Ltd 気相エピタキシャル成長装置のガス流量制御方法
JPH09289170A (ja) * 1996-04-23 1997-11-04 Sony Corp 半導体製造装置
JP3856730B2 (ja) * 2002-06-03 2006-12-13 東京エレクトロン株式会社 流量制御装置を備えたガス供給設備からのチャンバーへのガス分流供給方法。

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110567A (ja) * 2000-10-03 2002-04-12 Mitsubishi Electric Corp 化学気相成長装置および該装置による半導体ウエハの成膜方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170103654A (ko) 2016-03-04 2017-09-13 도쿄엘렉트론가부시키가이샤 혼합 가스 복수 계통 공급 시스템 및 이것을 사용한 기판 처리 장치
US10550471B2 (en) 2016-03-04 2020-02-04 Tokyo Electron Limited Mixed gas multiple line supply system and substrate processing apparatus using same
JP2018082064A (ja) * 2016-11-16 2018-05-24 株式会社ニューフレアテクノロジー 成膜装置
US10745824B2 (en) 2016-11-16 2020-08-18 Nuflare Technology, Inc. Film forming apparatus

Also Published As

Publication number Publication date
TW201317385A (zh) 2013-05-01
WO2013061660A1 (ja) 2013-05-02

Similar Documents

Publication Publication Date Title
JP4840832B2 (ja) 気相成長装置、気相成長方法、および半導体素子の製造方法
US9982362B2 (en) Density-matching alkyl push flow for vertical flow rotating disk reactors
US20180209043A1 (en) Epitaxial chamber with customizable flow injection
US11814727B2 (en) Systems and methods for atomic layer deposition
CN100582298C (zh) 利用其之一被预处理的两处理气体来沉积半导体层的方法和设备
US20020170484A1 (en) Method and system for manufacturing III-V Group compound semiconductor and III-V Group compound semiconductor
WO2012024033A2 (en) Showerhead assembly with gas injection distribution devices
JP4699545B2 (ja) 気相成長装置及び気相成長方法
WO2013061660A1 (ja) 気相成長装置
JP6812961B2 (ja) エピタキシャル成長装置およびそれを用いた半導体エピタキシャルウェーハの製造方法
TW201234518A (en) Substrate support seat for III-V group thin film growth reaction chamber, reaction chamber thereof and process treatment method
US20150000596A1 (en) Mocvd gas diffusion system with gas inlet baffles
JP4879693B2 (ja) Mocvd装置およびmocvd法
JP2007109685A (ja) 化合物半導体製造装置および化合物半導体製造方法
WO2013061659A1 (ja) 気相成長装置
JP2010238810A (ja) Iii−v族化合物半導体薄膜結晶の気相成長方法および気相成長装置
JP2012009752A (ja) 気相成長装置、及びガス吐出装置
JP2002212735A (ja) 有機金属気相成長装置及び材料ガス供給方法
KR20120090349A (ko) 화학기상증착장치
KR101062457B1 (ko) 화학기상증착장치와 이를 위한 가스 공급방법
JP2023141258A (ja) エピタキシャル成長装置
WO2012137776A1 (ja) 気相化学成長装置
KR20240069619A (ko) 산화갈륨용 하이브리드 증착 장치 및 이를 이용한 하이브리드 증착 방법
JP2006344615A (ja) 化合物半導体製造装置および製造方法
US20150329969A1 (en) Uniformity and selectivity of low gas flow velocity processes in a cross flow epitaxy chamber with the use of alternative highly reactive precursors though an alternative path

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910