WO2012137776A1 - 気相化学成長装置 - Google Patents

気相化学成長装置 Download PDF

Info

Publication number
WO2012137776A1
WO2012137776A1 PCT/JP2012/059078 JP2012059078W WO2012137776A1 WO 2012137776 A1 WO2012137776 A1 WO 2012137776A1 JP 2012059078 W JP2012059078 W JP 2012059078W WO 2012137776 A1 WO2012137776 A1 WO 2012137776A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flow path
flow rate
ratio
reaction chamber
Prior art date
Application number
PCT/JP2012/059078
Other languages
English (en)
French (fr)
Inventor
加奈子 若狭
古川 和彦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012137776A1 publication Critical patent/WO2012137776A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas

Definitions

  • the present invention relates to a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus having a shower head disposed on the side facing a substrate to be processed, for example.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • organometallic gases such as trimethylgallium (TMG) or trimethylaluminum (TMA) and hydrogen compounds such as ammonia (NH 3 ), phosphine (PH 3 ), or arsine (AsH 3 )
  • TMG trimethylgallium
  • TMA trimethylaluminum
  • hydrogen compounds such as ammonia (NH 3 ), phosphine (PH 3 ), or arsine (AsH 3 )
  • An MOCVD method is used in which a compound semiconductor crystal layer is grown by supplying a gas as a source gas (a gas contributing to film formation) to a reaction chamber.
  • an MOCVD apparatus vapor phase chemical growth apparatus
  • a source gas of an organometallic gas and a hydrogen compound gas is supplied to a reaction chamber together with an inert gas such as hydrogen or nitrogen and heated, and the source gas is subjected to a gas phase reaction on a predetermined substrate to be processed.
  • a compound semiconductor crystal layer is grown on the substrate to be processed.
  • FIG. 7 is a schematic view of a conventional vapor phase chemical growth apparatus.
  • the vapor phase chemical growth apparatus shown in FIG. 7 includes a shower plate 75 that constitutes the bottom surface of the upper electrode 73.
  • a gas G such as a raw material gas is supplied from a gas supply source 77 to a gas introduction unit 81 through a gas supply system 76 including a primary side valve 78, a mass flow controller (flow rate adjustment unit) 79, and a secondary side valve 80. Supplied.
  • the gas G supplied to the gas introduction part 81 is diffused in the gas space 82 and supplied into the reaction furnace 71 from a number of gas blowing holes 74 formed in the shower plate 75.
  • a lower electrode 83 is provided on the bottom surface of the reaction furnace 71.
  • a substrate 84 to be processed is set on the electrode stage which is the upper surface of the lower electrode 83.
  • plasma is generated between the upper electrode 73 and the lower electrode 83.
  • a desired plasma process is performed on the surface of the substrate 84 to be processed.
  • Such a vapor phase chemical growth apparatus is required to form a film having a uniform film thickness or a uniform composition ratio on the entire film formation surface of the substrate to be processed. Therefore, it is required to strictly adjust the gas flow rate or the mixing ratio of gas species on the film formation surface of the substrate to be processed.
  • the vapor phase chemical growth apparatus becomes larger in response to the mass production of light emitting diodes and the like, it is necessary to adjust the gas flow rate or the mixing ratio of gas species.
  • the vapor phase chemical growth apparatus is increased in size, the area of the film formation surface of the substrate to be processed increases, and it becomes difficult to control the gas flow rate or the mixing ratio of the gas species on the film formation surface of the substrate to be processed. .
  • the temperature distribution in the reaction furnace or the shape error of the substrate to be processed increases, it is necessary to appropriately set the gas flow rate or the mixing ratio of the gas species according to the situation. Therefore, an increasingly complicated control is required for the vapor phase chemical growth apparatus.
  • the gas is supplied from a plurality of gas supply systems each having a mass flow controller (flow rate adjusting unit), and the gas supply system
  • the gas is supplied to the inside of the vacuum chamber through a gas space separated every time.
  • the gas flow rate to be supplied can be adjusted for each gas supply system, it is described that a film can be formed with a uniform film thickness over the entire surface of the substrate to be processed.
  • a shower head for supplying gas to a film formation surface of a substrate to be processed is divided into a plurality of blocks along the radial direction from the center.
  • the gas flow rate is controlled independently for each block.
  • the gas concentration distribution can be adjusted in units of blocks, it is possible to form a film with a uniform film thickness over the entire film formation surface of the substrate to be processed.
  • a gas ejection hole is located at a position opposite to the surface on which the gas ejection hole is formed and corresponding to the gas ejection hole.
  • a hole for inserting a plug is provided.
  • each gas ejection hole is in an open state in which gas is supplied to the film formation surface of the substrate to be processed, or a sealed state in which gas is not supplied to the film formation surface of the substrate to be processed Can be changed. Accordingly, it is described that the gas concentration distribution can be adjusted, and thus the film can be formed with a uniform film thickness over the entire film formation surface of the substrate to be processed.
  • the shower head has an umbrella shape in which the distance between the gas ejection surface and the film formation surface of the substrate to be processed is gradually narrowed from the center toward the periphery.
  • the semiconductor manufacturing apparatus is described as being capable of forming a film with a uniform film thickness over the entire film-forming surface of the substrate to be processed because the gas flow area can be suppressed from expanding from the center to the periphery. Yes.
  • the distance to the exhaust part 72 is as follows.
  • the peripheral edge of the deposition surface of the substrate 84 is shorter than the center of the deposition surface. Therefore, in the center of the film formation surface of the substrate 84 to be processed, a pressure loss is generated for the path to the periphery of the film formation surface of the substrate 84 to be processed, and the gas is processed by the difference in pressure loss. It becomes difficult to flow at the center of the deposition surface 84.
  • the periphery of the film formation surface of the substrate 84 (position closer to the exhaust part 72) than the flow rate of the gas supplied to the center (position far from the exhaust part 72) of the film formation surface of the substrate 84 to be processed.
  • the flow rate of the gas supplied to is increased. That is, as the film forming range becomes wider, a difference in gas supply amount is likely to occur between the center side of the reaction furnace 71 and the peripheral side of the reaction furnace 71, and thus film formation with a uniform film thickness becomes more difficult. Become.
  • the region to be subjected to film formation is partitioned into regions where film formation can be performed with a uniform film thickness, and independent of each partitioned region.
  • a gas supply system is provided, and the gas flow rate supplied to each gas supply system is adjusted.
  • Patent Document 2 describes a semiconductor manufacturing apparatus capable of changing each gas ejection hole to an open state in which gas is supplied or a sealed state in which no gas is supplied.
  • the semiconductor manufacturing apparatus is increased in size, the number of gas ejection holes will exceed several thousand. It is cumbersome and time-consuming to determine whether each gas ejection hole is in an open state or a sealed state so that the film is formed with a uniform film thickness over the entire surface of the substrate to be processed. Will take.
  • Patent Document 2 describes a semiconductor manufacturing apparatus in which a shower head has an umbrella shape.
  • a high processing technique is required to process the gas ejection surface of the shower head symmetrically while maintaining a desired inclination angle.
  • the gas ejection surface is also widened. Therefore, it is very difficult to form the shower head by tilting the gas ejection surface of the shower head at a desired angle so that the film is formed with a uniform film thickness over the entire film formation surface of the substrate to be processed. It becomes a thing.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a vapor phase chemical growth apparatus capable of forming a film having a uniform film thickness on a substrate to be processed, with simple apparatus design and apparatus assembly. It is to provide.
  • a film forming process is performed on the substrate to be processed placed in the reaction furnace using the first gas and the second gas introduced into the reaction furnace.
  • the vapor phase chemical growth apparatus includes a first gas flow path for supplying a first gas into the reaction furnace, a second gas flow path for supplying a second gas into the reaction furnace, and a substrate to be processed. It is arranged on the opposite side, connected to the first gas flow path, and connected to the plurality of first ejection holes for ejecting the first gas into the reaction furnace and the second gas flow path to react the second gas.
  • a shower head formed with a plurality of second ejection holes that are ejected into the furnace, and a first flow path resistance and a second gas that are generated when the first gas flows through the first gas flow path.
  • a control mechanism for controlling the ratio between the first flow path resistance and the second flow path resistance is provided so that the second flow path resistance generated when flowing in the second gas flow path is different.
  • the control mechanism controls the ratio between the first flow rate of the first gas flowing in the first gas flow path and the second flow rate of the second gas flowing in the second gas flow path, It is preferable to control the ratio between the first flow path resistance and the second flow path resistance.
  • the control mechanism controls the ratio between the first flow path resistance and the second flow path resistance based on the result of the flow velocity distribution of at least one of the first gas and the second gas in the reaction furnace.
  • the ratio between the first flow path resistance and the second flow path resistance may be controlled based on the film thickness distribution of the film formed on the substrate to be processed, or the first gas may be the first gas.
  • the first flow path resistance and the second flow rate are based on the condition that the first flow rate in the gas flow path is 1/4 times the second flow rate in which the second gas flows in the second gas flow path.
  • the ratio to the flow path resistance may be controlled.
  • the cross-sectional area of the first ejection hole is preferably smaller than the cross-sectional area of the second ejection hole, and more preferably 1 ⁇ 4 or less of the cross-sectional area of the second ejection hole.
  • the first gas contains a source gas and the second gas is a carrier gas.
  • the first gas contains trimethyl gallium gas
  • the second gas contains ammonia gas
  • a gallium nitride film is formed on the substrate to be processed.
  • the vapor phase chemical growth apparatus of the present invention further includes a third gas flow path for supplying the third gas into the reaction furnace.
  • the shower head is preferably formed with a plurality of third ejection holes connected to the third gas flow path.
  • the control mechanism is configured so that the third flow path resistance and the third flow path resistance generated when the third gas flows in the third gas flow path are different from each other. It is preferable to control the ratio with the channel resistance.
  • the first gas is the first source gas
  • the second gas is the carrier gas
  • the third gas is the second source gas.
  • control mechanism is configured such that the second gas flows in the second gas flow path and the third gas flows in the third gas flow. It is preferable to control the ratio between the second flow path resistance and the third flow path resistance by controlling the ratio with the third flow rate flowing through the gas flow path.
  • device design and device assembly are simple, and a film having a uniform thickness can be formed on a substrate to be processed.
  • (A) to (c) show the results of simulation 1
  • (a) is a graph showing the difference ratio of the flow rate of gas A in the reaction chamber
  • (b) is a pressure contour diagram in the reaction chamber
  • (C) is a graph showing the relationship between the pressure near the midpoint in the height direction of the reaction chamber and the distance in the radial direction (distance in the radial direction).
  • (A) to (c) show the results of simulation 2
  • (a) is a graph showing the difference ratio of the flow rate of gas A in the reaction chamber
  • (b) is a pressure contour diagram in the reaction chamber.
  • (C) is the graph which showed the relationship between the pressure in the vicinity of the midpoint in the height direction of a reaction chamber, and the distance in a radial direction.
  • (A) to (c) show the results of simulation 3
  • (a) is a graph showing the difference ratio of the flow rate of gas A in the reaction chamber
  • (b) is a pressure contour diagram in the reaction chamber.
  • (C) is the graph which showed the relationship between the pressure in the vicinity of the midpoint in the height direction of a reaction chamber, and the distance in a radial direction.
  • 6 is a graph showing a difference ratio of a flow rate of gas A in a reaction chamber in simulation 4.
  • (A) to (b) show the results of simulation 5
  • (a) is a graph showing the difference rate of the flow rate of gas A in the reaction chamber
  • (b) is the flow rate of gas B in the reaction chamber. It is a graph which shows the difference ratio of. It is the schematic of the conventional vapor-phase chemical growth apparatus.
  • FIG. 1 is a schematic diagram showing the configuration of a vapor phase chemical growth apparatus 100 according to an embodiment of the present invention.
  • FIG. 1 different hatchings are given to paths through which the first gas, the second gas, and the refrigerant pass.
  • the broken line in FIG. 1 represents that the mutual component is electrically connected.
  • a mechanism for flowing the first gas from the first gas supply source 1a to the first gas introduction port 14a, and the second gas from the second gas supply source 1b to the second gas introduction port is simplified.
  • the vapor phase chemical growth apparatus 100 is an apparatus for performing a film forming process on the substrate to be processed 31 using a first gas and a second gas, and includes a substantially cylindrical shower head 10 and a reaction furnace 20. I have.
  • the shower head 10 is provided at a position facing a target substrate 31 provided in the reaction chamber 21 of the reaction furnace 20 so that the first gas and the second gas can be separately introduced into the reaction furnace 20. Specifically, it has a first gas distribution space 13a and a second gas distribution space 13b. Furthermore, the shower head 10 has a shower plate 17 on the downstream side of the first gas distribution space 13a and the second gas distribution space 13b.
  • the first gas distribution space 13a diffuses and distributes the first gas.
  • the first gas flows from the first gas supply source 1a to the first gas introduction port 14a, and is supplied from the first gas introduction port 14a into the first gas distribution space 13a.
  • a plurality of first gas flow paths 15a are connected to the first gas distribution space 13a.
  • Each first gas flow path 15a is provided so as to penetrate the shower plate 17, and a first ejection hole 16a is connected to each first gas flow path 15a.
  • Each first ejection hole 16 a is an opening of the first gas flow path 15 a on the lower surface of the shower plate 17 and is an opening for ejecting the first gas into the reaction furnace 20.
  • the first gas supplied from the first gas supply source 1a into the first gas distribution space 13a passes through any one of the first gas flow paths 15a to form the first ejection holes. 16a is ejected into the reaction furnace 20.
  • the second gas distribution space 13b diffuses and distributes the second gas.
  • the second gas flows from the second gas supply source 1b to the second gas introduction port 14b, and is supplied from the second gas introduction port 14b into the second gas distribution space 13b.
  • a plurality of second gas flow paths 15b are connected to the second gas distribution space 13b.
  • Each second gas flow path 15b is provided so as to penetrate through the shower plate 17, and a second ejection hole 16b is connected to each second gas flow path 15b.
  • Each second ejection hole 16 b is an opening of the second gas flow path 15 b on the lower surface of the shower plate 17 and is an opening for ejecting the second gas into the reaction furnace 20.
  • the second gas supplied from the second gas supply source 1b into the second gas distribution space 13b passes through any one of the second gas flow paths 15b, and is thus in the second ejection hole. 16b is ejected into the reaction furnace 20.
  • the amount of the first gas ejected into the reaction furnace 20 is preferably larger on the central side of the reaction furnace 20 than on the peripheral side of the reaction furnace 20.
  • the amount of the second gas ejected into the reaction furnace 20 is preferably larger at the center side of the reaction furnace 20 than at the peripheral side of the reaction furnace 20.
  • the shower plate 17 may be configured such that the number of the first ejection holes 16 a and the second ejection holes 16 b is larger on the center side of the reaction furnace 20 than on the peripheral side of the reaction furnace 20. Further, the amount ejected into the reaction furnace 20 from the first ejection hole 16 a located at the center of the shower plate 17 is ejected into the reaction furnace 20 from the first ejection hole 16 a located at the peripheral edge of the shower plate 17. The amount may be larger than the amount, or the amount ejected into the reaction furnace 20 from the second ejection hole 16 b located at the center of the shower plate 17 may be increased from the second ejection hole 16 b located at the periphery of the shower plate 17. The amount may be larger than the amount ejected into the reaction furnace 20.
  • first gas distribution space 13a and the second gas distribution space 13b may be devised.
  • the peripheral portion of the first gas distribution space 13a or the second gas distribution space 13b may be tapered, or the first gas distribution space 13a or the second gas distribution space 13b may be centered and peripheral.
  • the supply amount from each may be controlled by a mass flow controller.
  • the coolant channel 18 is formed in the shower plate 17.
  • the refrigerant flow path 18 is a flow path for flowing the refrigerant in a direction perpendicular to the gas ejection direction.
  • the refrigerant flowing through the refrigerant flow path 18 adjusts the temperature of the first gas passing through each first gas flow path 15a and the temperature of the second gas passing through each second gas flow path 15b. To do.
  • the reaction chamber 21 of the reaction furnace 20 is a space in which film formation processing is performed on the substrate to be processed 31, and the reaction chamber 21 includes a disk-shaped substrate holding member 30, a rotating shaft 32, and a heater 33. Is provided.
  • the substrate holding member 30 is disposed so as to face the shower plate 17, and a plurality of substrates to be processed 31 are placed on the upper surface of the substrate holding member 30.
  • the rotating shaft 32 is connected to the lower surface of the substrate holding member 30 and can be rotated by an actuator (not shown).
  • the heater 33 is provided below the reaction chamber 21 with respect to the substrate holding member 30 and is a heater for heating the substrate holding member 30.
  • a gas discharge unit 25 is provided below the side wall of the reaction furnace 20.
  • the gas discharge unit 25 communicates with the reaction chamber 21 and is an opening for discharging the gas in the reaction chamber 21 to the outside of the reaction chamber 21.
  • the control mechanism 45 controls the ratio between the first flow path resistance and the second flow path resistance so that the first flow path resistance and the second flow path resistance are different.
  • the first flow path resistance is a resistance generated when the first gas flows through the first gas flow path 15a, and depends on, for example, the first flow rate.
  • the second flow path resistance is a resistance generated when the second gas flows through the second gas flow path 15b, and depends on, for example, the second flow rate. Therefore, the control mechanism 45 can control the ratio between the first flow path resistance and the second flow path resistance by controlling the ratio between the first flow rate and the second flow rate.
  • the ratio between the first flow rate and the second flow rate is preferably controlled so that the flow rate is different from the second flow rate, and this ratio is controlled so that the first flow rate is smaller than the second flow rate. More preferably, it is more preferable to control this ratio so that the first flow rate is 1 ⁇ 4 or less of the second flow rate. More preferably, the control mechanism 45 controls the ratio based on a condition that the first flow rate is 1 ⁇ 4 times the second flow rate.
  • “based on the condition that the first flow rate is 1 ⁇ 4 times the second flow rate” refers to the base condition of the flow rate including the structural factors of the vapor phase chemical growth apparatus, and the first flow rate is the first flow rate. It means that it is 1/4 times the flow rate of 2.
  • the ratio between the first flow rate and the second flow rate is controlled on the basis of the condition that the first flow rate is 1/4 times the second flow rate, the degree of freedom of the adjustment range and the film formation conditions is widened. It is possible to achieve both the improvement of the film thickness distribution and the improvement of the quality of the formed film at a high level.
  • the first flow rate is the supply amount of the first gas supplied from the first gas supply source 1a, the amount of the first gas supplied into the reaction furnace 20, and the first gas. This is the total flow rate of the first gas flowing through each of the flow paths 15a.
  • the first flow rate is controlled by the first control unit 41.
  • the second flow rate is the supply amount of the second gas supplied from the second gas supply source 1b, the amount of the second gas supplied into the reaction furnace 20, and the second gas. This is the total flow rate of the second gas flowing through each of the flow paths 15b.
  • the second flow rate is controlled by the second control unit 43.
  • the first gas flow path 15a is a pipe
  • the second gas flow path 15b is a pipe
  • the gas flow rate is determined by a parameter that determines the first flow path resistance and a parameter that determines the second flow path resistance.
  • the first flow path resistance is proportional to the first flow rate
  • the second flow path resistance is proportional to the second flow rate ( For laminar flow conditions). Therefore, when the control mechanism 45 controls the ratio between the first flow rate and the second flow rate so that the first flow rate is 1 ⁇ 4 or less of the second flow rate, the first flow path resistance is the first flow resistance.
  • the ratio between the first flow path resistance and the second flow path resistance is controlled so as to be equal to or less than 1 ⁇ 4 of the second flow path resistance.
  • the flow path resistance is increased by reducing the cross-sectional area of the ejection hole. Specifically, when the flow path resistance in the distribution space is sufficiently smaller than the flow path resistance in the vicinity of the ejection hole, the flow path resistance is almost determined by the cross-sectional area of the ejection hole, the flow rate, and the flow path length. It becomes.
  • the channel resistance is larger when the cross-sectional area of the ejection hole is smaller.
  • the larger the channel resistance the less likely it is affected by the pressure loss in the reaction chamber, so that the rate of increase in the flow rate can be kept small (the mechanism is described in the simulation described later). Therefore, if the sectional area of the first ejection hole is smaller than the sectional area of the second ejection hole, for example, if the sectional area of the first ejection hole is 1 ⁇ 4 or less of the sectional area of the second ejection hole.
  • the flow rate of the first gas can be made constant in the reaction chamber 21.
  • the diameter of the ejection hole is too small, the ejection hole is clogged, causing problems such as difficulty in performing the film forming process.
  • the control mechanism 45 may control the ratio between the first flow rate and the second flow rate based on the result of the flow velocity distribution of the first gas in the reaction chamber 21, or the film formation surface of the substrate 31 to be processed.
  • the ratio between the first flow rate and the second flow rate may be controlled on the basis of the film thickness distribution of the film formed in the above.
  • the control mechanism 45 does not change the ratio between the first flow rate and the second flow rate.
  • the control mechanism 45 changes the ratio between the first flow rate and the second flow rate so that the flow rate of the first gas is substantially the same at the center of the reaction chamber 21 and the periphery thereof. For example, when a result that the gas flow rate is slow at the periphery of the reaction furnace 20 is obtained, the control mechanism 45 changes the ratio between the first flow rate and the second flow rate so that the first flow rate becomes small. .
  • result of the flow velocity distribution may be a measurement result or a simulation result as shown in an example described later.
  • the control mechanism 45 does not change the ratio between the first flow rate and the second flow rate.
  • the control mechanism 45 forms a film with a uniform film thickness on the film formation surface of the substrate to be processed 31.
  • the ratio between the first flow rate and the second flow rate is changed.
  • the control mechanism 45 sets the film thicknesses of the films formed on the film formation surfaces of the substrates to be processed 31 to be substantially the same. The ratio between the first flow rate and the second flow rate is changed.
  • the control mechanism 45 is based on the result of the flow velocity distribution of the first gas in the reaction chamber 21 or the film thickness of the film formed on the film formation surface of the substrate 31 to be processed. Based on the distribution, the ratio between the first flow rate and the second flow rate is changed.
  • the amount of change in the ratio between the first flow rate and the second flow rate is the film deposition conditions (for example, the type of gas, the gas flow rate, the deposition temperature, or the pressure in the reaction chamber 21 during deposition). Because it depends on, it cannot be said unconditionally.
  • the ratio between the first flow rate and the second flow rate may be changed so that the amount of change in the first flow rate is 10% or less with respect to the total flow rate.
  • the ratio between the center side of the reaction furnace 20 and the peripheral side of the reaction furnace 20 is optimized, the ratio between the center side of the reaction furnace 20 and the peripheral side of the reaction furnace 20 is The difference in the gas supply amount is corrected, the gas flow velocity distribution in the reaction chamber 21 can be made uniform, and in some cases, a desired flow velocity distribution can be realized.
  • the flow rate distribution of the gas in the reaction chamber changes because the parameters (hereinafter referred to as “parameters such as the gas composition ratio”) are changed, the first flow rate and the first flow rate
  • the flow rate distribution can be made uniform by controlling the ratio with the flow rate of 2. Therefore, the uniformity of the film thickness formed on the film formation surface of the substrate to be processed 31 can be improved, and the film thickness formed on the film formation surface of each substrate to be processed 31 can be made substantially the same. can do.
  • the control mechanism 45 may control not only the ratio between the first flow rate and the second flow rate, but also each of the first flow rate and the second flow rate. In this case, the first control unit 41 and the second control unit 43 need not be provided.
  • the ratio between the first flow path resistance and the second flow path resistance is changed by changing the ratio between the first flow rate and the second flow rate. It is conceivable to change the ratio of the first flow path resistance and the second flow path resistance by changing the parameters shown below.
  • the first flow path resistance depends not only on the first gas flow rate but also on the shape, the size of the cross-sectional area, or the length of the first gas flow path 15a. It also depends on physical properties (density, temperature, viscosity, etc.).
  • the second flow path resistance depends not only on the second gas flow rate but also on the shape, the size of the cross-sectional area, or the length of the second gas flow path 15b. Density, temperature, viscosity, etc.). From the above, for example, if the shape of the first gas flow path 15a is changed, the first flow path resistance can be changed, and therefore, the first flow path resistance and the second flow path resistance can be changed. The ratio can be changed. However, in order to change the shape or size of the gas flow path, it is necessary to change the design of the vapor phase chemical growth apparatus. For this reason, it is difficult to finely adjust the channel resistance, and it may take time to optimize the shape of the gas channel.
  • the ratio between the first flow path resistance and the second flow path resistance is controlled by controlling the ratio between the first flow rate and the second flow rate, parameters such as the gas composition ratio are not changed. Therefore, the film quality and the like are maintained even after the control, and the gas flow velocity distribution in the reaction chamber can be controlled relatively easily. Therefore, only the in-plane distribution of film thickness can be improved.
  • the ratio of the first flow path resistance and the second flow path resistance is controlled by controlling the ratio between the first flow rate and the second flow rate, the structure of the vapor phase chemical growth apparatus 100 can be improved.
  • the difference in the gas supply amount between the central side of the reaction furnace 20 and the peripheral side of the reaction furnace 20 is corrected without changing or changing the gas composition or the like. Therefore, a film having a uniform thickness can be formed on the substrate to be processed by a relatively simple method.
  • the shower head may be provided with a plurality of third flow paths penetrating therethrough, and a third ejection hole may be connected to each third flow path.
  • the control mechanism describes not only the ratio between the first flow rate and the second flow rate, but also the flow rate at which the third gas flows in the third flow path (hereinafter referred to as “third flow rate”).
  • the second flow rate is preferably controlled. That is, the control mechanism not only provides the ratio between the first flow path resistance and the second flow path resistance, but also the flow path resistance and the second flow generated when the third gas flows in the third flow path. It is preferable to control the ratio with the road resistance.
  • the ratio of the element derived from the first gas and the element derived from the third gas in the formed film can be set to a desired value. It can be a ratio.
  • TMG gas and NH 3 gas are used as source gas, and hydrogen gas is used as carrier gas.
  • the film thickness of the GaN film substantially depends on the flow rate of the TMG gas. Therefore, the thickness of the GaN film can be adjusted by controlling the flow rate of the TMG gas. Therefore, in the first specific example, a gas containing TMG gas is used as the first gas, and a gas containing NH 3 gas is used as the second gas. At this time, it is preferable that the flow rate of the gas containing TMG gas is sufficiently smaller than the flow rate of the gas containing NH 3 gas. Thereby, the flow volume distribution of TMG gas can be changed greatly by changing the flow volume of TMG gas a little. Therefore, only the flow rate distribution of TMG gas can be changed greatly without changing the flow rate distribution of NH 3 gas. Therefore, the film thickness distribution can be changed so that the film thickness of the GaN film becomes uniform.
  • the film forming process is performed using the shower head in which the first ejection hole, the second ejection hole, and the third ejection hole are formed, and a gas containing TMG gas is used as the first gas.
  • a gas containing a carrier gas used, using a gas containing a carrier gas as a second gas, a gas containing NH 3 gas as the third gas.
  • the control mechanism separately controls (flow rate of TMG gas) / (flow rate of carrier gas) and (flow rate of NH 3 gas) / (flow rate of carrier gas).
  • the flow rate distribution of the NH 3 gas can be significantly changed without changing the flow rate distribution of the carrier gas so much by only changing the flow rate of the NH 3 gas by a small amount.
  • the ratio between the flow rate of TMG gas and the flow rate of NH 3 gas can be changed as appropriate, the ratio between the V element and the III element in the GaN film can be adjusted as appropriate.
  • Simulation 1 In simulation 1, only the gas type was changed as shown below, and the gas flow velocity distribution in the reaction chamber was simulated. In simulation 1, the gas from the gas inlet to the gas outlet was modeled and analyzed.
  • Gas flowing in the first gas flow path Gas A (hydrogen gas)
  • Gas flowing in the second gas flow path Gas B (mixture of hydrogen gas and NH 3 gas)
  • Gas flowing in the first gas flow path Gas A (hydrogen gas)
  • Gas flowing in the second gas flow path Gas C (NH 3 gas)
  • the viscosity of gas B is smaller than the viscosity of gas C (the viscosity of gas B ⁇ the viscosity of gas C).
  • condition a Conditions other than the gas type are common to condition a and condition b.
  • Gas flow rate 100 slm (standard liter / min.)
  • Temperature of substrate to be processed 700 ° C
  • Distance between deposition surface and ejection surface 10mm
  • the material of the substrate to be processed was sapphire.
  • FIG. 2A is a graph showing the difference rate of the flow rate of the gas A supplied from the first gas flow path to the reaction chamber.
  • FIG. 2B is a pressure contour diagram in the reaction chamber.
  • FIG. 2C is a graph showing the relationship between the pressure near the midpoint in the height direction of the reaction chamber (5 mm from the upper surface of the substrate 31 to be processed) and the distance in the radial direction. ) Is a graph created based on the pressure value at “5 mm from the upper surface of the substrate 31 to be processed” shown in FIG.
  • FIGS. 3A to 3C show from the center side of the reaction chamber to the peripheral side (gas exhaust side) of the reaction chamber. The same applies to FIGS. 3A to 3C and FIGS. 4A to 4C.
  • L21 in FIG. 2 (a) is obtained by plotting a value of (Va ⁇ Va) ⁇ Va ⁇ 100 against each radial distance
  • L22 in FIG. 2 (a) Is obtained by plotting a value of (Vb ⁇ Va) ⁇ Va ⁇ 100 for each radial distance.
  • Va is the flow velocity of the gas A obtained when simulating under the condition a, and is the flow velocity of the gas A supplied from the first gas flow path to the reaction chamber at each radial distance
  • Vb is the flow rate of gas A obtained when the simulation was performed under condition b, and is the flow rate of gas A supplied from the first gas flow path to the reaction chamber at each radial distance.
  • the condition a having a small flow rate increase rate (ratio of the gas flow rate at the periphery of the reaction chamber to the gas flow rate at the center of the reaction chamber) was used as a reference for the simulation results. The same applies to simulations 2 to 3 described later.
  • L23 in FIG. 2 (c) is a result obtained when simulation is performed under the condition a
  • L24 in FIG. 2 (c) is a result obtained when simulation is performed under the condition b.
  • the reason why the results shown in FIG. 2 are obtained is that the pressure loss in the reaction chamber has changed due to the change in the viscosity of the gas.
  • the distance from the center of the mounting surface of the substrate holding member to the gas discharge unit is longer than the distance from the periphery of the mounting surface to the gas discharge unit. Therefore, at the center of the mounting surface of the substrate holding member, a pressure loss (that is, a pressure loss in the reaction chamber) occurs along the path from the center of the mounting surface to the periphery thereof, and accordingly, the gas corresponding to the pressure loss is generated. Is difficult to flow at the center of the mounting surface of the substrate holding member. This can also be said in simulations 2 to 3 described later. This will be specifically described below.
  • the vertical axis of L22 shows a positive value. From this, it can be seen that the flow rate of gas at the periphery of the reaction chamber is larger under the condition b. It can be said that this tendency greatly depends on the gas flow rate of the gas C. This is because, for example, when the gas flowing in the second gas flow path is a mixed gas of the gas B and the gas C, the condition b becomes closer as the flow rate of the gas C increases.
  • condition b the pressure showed a high value at the center of the reaction chamber.
  • condition b the pressure difference between the center of the reaction chamber and the periphery of the reaction chamber is larger than that in the condition a, and more gas A is transferred to the periphery of the reaction chamber having a lower pressure than the center of the reaction chamber having a higher pressure. Will be supplied.
  • the difference in the flow rate of the gas A supplied from the first gas flow path to the reaction chamber at the center of the reaction chamber and the periphery of the reaction chamber is larger in the condition b than in the condition a. Therefore, the rate of increase in the flow rate is greater in condition b than in condition a.
  • Simulation 2 In simulation 2, only the temperature of the substrate to be processed was set. [Condition d] Temperature of substrate to be processed: 1300 ° C The gas flow velocity distribution in the reaction chamber was simulated. Conditions other than the temperature of the substrate to be processed are as described in Simulation 1. Gas A was used as the gas.
  • FIG. 3A is a graph showing the difference rate of the flow rate of the gas A supplied from the first gas flow path to the reaction chamber.
  • FIG. 3B is a pressure contour diagram in the reaction chamber.
  • FIG. 3C is a graph showing the relationship between the pressure in the vicinity of the midpoint in the height direction of the reaction chamber and the distance in the radial direction. It is the graph produced based on the pressure value in 5 mm "from the upper surface.
  • L31 in FIG. 3A is obtained by plotting a value of (Vc ⁇ Vc) ⁇ Vc ⁇ 100 with respect to each radial distance
  • L32 in FIG. 3A Is obtained by plotting a value of (Vd ⁇ Vc) ⁇ Vc ⁇ 100 for each radial direction distance.
  • Vc is the flow rate of the gas A obtained when simulating under the condition c, and is the flow rate of the gas A supplied from the first gas flow path to the reaction chamber at each radial distance
  • Vd is the flow rate of gas A obtained when simulation was performed under condition d, and is the flow rate of gas A supplied from the first gas flow path to the reaction chamber at each radial distance.
  • L33 in FIG. 3C is a result obtained when the simulation is performed under the condition c
  • L34 in FIG. 3C is a result obtained when the simulation is performed under the condition d.
  • the vertical axis of L32 indicates a positive value at the periphery of the reaction chamber. From this, it can be seen that the flow rate of gas at the periphery of the reaction chamber is larger under the condition d.
  • the pressure difference between the center of the reaction chamber and the periphery of the reaction chamber was larger in condition d than in condition c.
  • the reason for this is as follows.
  • the room temperature of the reaction chamber rises, the gas flow rate increases, so the flow rate of the gas flowing to the gas discharge unit increases.
  • the pressure loss in the reaction chamber increases in proportion to the gas flow rate, the pressure difference between the center of the reaction chamber and the periphery of the reaction chamber increases. Therefore, as in the simulation 1, the rate of increase in the flow rate is larger in the condition d than in the condition c according to the pressure difference between the center of the reaction chamber and the periphery of the reaction chamber.
  • Simulation 3 In the simulation 3, only the distance between the film formation surface and the ejection surface is [Condition e] The distance between the film formation surface and the ejection surface: 20 mm. [Condition f] Distance between deposition surface and ejection surface: 10 mm The gas flow velocity distribution in the reaction chamber was simulated. Conditions other than the distance between the film formation surface and the ejection surface are as described in Simulation 1. Gas A was used as the gas.
  • FIG. 4A is a graph showing the difference rate of the flow rate of the gas A supplied from the first gas flow path to the reaction chamber.
  • FIG. 4B is a pressure contour diagram in the reaction chamber.
  • FIG. 4C is a graph showing the relationship between the pressure in the vicinity of the midpoint in the height direction of the reaction chamber and the distance in the radial direction.
  • the result of condition e is shown in FIG. A graph created based on the pressure value at “10 mm from the upper surface of the substrate 31 to be processed” is described.
  • the condition f the pressure at “5 mm from the upper surface of the substrate 31 to be processed” shown in FIG.
  • the graph created based on the values is shown.
  • L41 in FIG. 4A is obtained by plotting a value of (Ve ⁇ Ve) ⁇ Ve ⁇ 100 with respect to each radial distance
  • L42 in FIG. 4A Is obtained by plotting a value of (Vf ⁇ Ve) ⁇ Ve ⁇ 100 for each radial distance.
  • Ve is the flow rate of the gas A obtained when the simulation is performed under the condition e, and is the flow rate of the gas A supplied from the first gas flow path to the reaction chamber at each radial distance
  • Vf is the flow rate of gas A obtained when simulation was performed under condition f, and is the flow rate of gas A supplied from the first gas flow path to the reaction chamber at each radial distance.
  • L43 in FIG. 4C is a result obtained when simulation is performed under the condition e
  • L44 in FIG. 4C is a result obtained when simulation is performed under the condition f.
  • the vertical axis of L42 shows a negative value at the center of the reaction chamber, while showing a positive value at the periphery of the reaction chamber. From this, it can be seen that the difference in gas flow velocity between the center of the reaction chamber and its peripheral edge is larger under the condition f.
  • the pressure difference between the center of the reaction chamber and the periphery of the reaction chamber was smaller in condition e than in condition f.
  • the reason for this is as follows. Under the condition e, since the distance between the film formation surface and the ejection surface is longer than the condition f, the flow rate of the gas A in the reaction chamber becomes slow.
  • the pressure loss in the reaction chamber is generally large when the gas flow rate is high and small when the gas flow rate is slow. Therefore, the pressure loss is smaller in the condition e than in the condition f. Therefore, the flow rate increase rate is smaller under the condition e where the pressure loss is small.
  • Simulation 4 In simulation 4, the flow rate was changed as shown below to simulate the gas flow velocity distribution in the reaction chamber. Conditions other than the flow rate are as described in simulation 1.
  • [Condition g] Flow rate of gas A flowing through the first gas flow path 15a: 50 slm Flow rate of gas B flowing through the second gas flow path 15b: 200 slm
  • [Condition h] Flow rate of gas A flowing through the first gas flow path 15a: 100 slm Flow rate of gas B flowing through the second gas flow path 15b: 150 slm.
  • FIG. 5 is a graph showing the difference rate of the flow rate of the gas A supplied from the first gas flow path to the reaction chamber.
  • L51 in FIG. 5 is obtained by plotting a value of (Vh ⁇ Vh) ⁇ Vh ⁇ 100 against each radial direction distance, and L52 in FIG. 5 indicates each radial direction.
  • a value of (Vg ⁇ Vh) ⁇ Vh ⁇ 100 with respect to the distance was obtained as a plot.
  • Vg is the flow rate of the gas A obtained when the simulation is performed under the condition g, and is the flow rate of the gas A supplied from the first gas flow path to the reaction chamber at each radial distance.
  • Vh is the flow rate of gas A obtained when simulation was performed under condition h, and is the flow rate of gas A supplied from the first gas flow path to the reaction chamber at each radial distance.
  • the vertical axis of L52 shows a negative value at the center of the reaction chamber 21, while showing a positive value at the periphery of the reaction chamber 21.
  • the total flow rate of the gas supplied to the reaction chamber 21 is the same (250 slm). Therefore, it is considered that there is no difference in the pressure loss in the reaction chamber 21 between the condition g and the condition h. Therefore, it is difficult to explain the results shown in FIG. 5 based on the difference in pressure loss in the reaction chamber 21 as in simulations 1 to 3.
  • the reason why the result shown in FIG. 5 was obtained is as follows. Under the condition g, the flow rate of the gas A flowing through the first gas flow path 15a is 1 ⁇ 2 times that of the condition h. Therefore, the pressure loss of the gas A in the first gas flow path 15a is approximately 1/5 of the condition h. Doubled (in the case of laminar flow conditions, according to the Hagen-Boiseuille equation). On the other hand, since the total flow rate of the gas supplied to the reaction chamber 21 is the same between the condition g and the condition h, the pressure loss in the reaction chamber 21 is the same. Therefore, the ratio of the pressure loss in the reaction chamber 21 to the pressure loss applied from the first gas flow path 15a to the gas discharge part 25 of the reaction chamber 21 is larger in the condition g than in the condition h.
  • condition g When the ratio is large (condition g), the pressure in the reaction chamber 21 is lower in the periphery of the reaction chamber 21 than in the center of the reaction chamber 21, so the flow rate of the gas A in the first gas flow path 15a is the reaction rate.
  • the peripheral edge of the chamber 21 is faster than the center of the reaction chamber 21.
  • the effect of the pressure loss in the reaction chamber 21 on the flow rate difference of the gas A becomes smaller. Therefore, the flow rate difference of the gas A between the center of the reaction chamber 21 and the peripheral edge of the reaction chamber 21 is reduced.
  • the difference in the flow rate of the gas A between the center of the reaction chamber 21 and the periphery of the reaction chamber 21 is larger under the condition g where the flow rate of the gas A is more susceptible to the pressure loss in the reaction chamber 21.
  • the rate of increase in the flow rate of gas A is greater in condition g than in condition h.
  • the rate of increase in flow velocity is greater in condition g than in condition h.
  • the condition g is changed to the condition h.
  • the ratio between the flow rate of the gas A and the flow rate of the gas B may be changed so that the flow rate of the gas A increases.
  • the condition h is changed to the condition g.
  • the ratio between the flow rate of the gas A and the flow rate of the gas B may be changed so that the flow rate of the gas A is reduced.
  • the flow velocity distribution of gas A can be changed to a desired distribution by changing the ratio of the flow rate of gas A and the flow rate of gas B so that the flow rate of gas A changes.
  • FIG. 6A is a graph showing the difference rate of the flow rate of the gas A supplied from the first gas flow path 15a to the reaction chamber 21 in the reaction chamber 21, and FIG. 6B is the second gas.
  • 4 is a graph showing a difference ratio of flow rates of gas B supplied from a flow path 15b to a reaction chamber 21.
  • L61 in FIG. 6A is obtained by plotting a value of (Vja ⁇ Vja) ⁇ Vja ⁇ 100 with respect to each radial distance
  • L62 in FIG. 6A Is obtained by plotting a value of (Via ⁇ Vja) ⁇ Vja ⁇ 100 for each radial direction distance.
  • Via is the flow velocity of gas A obtained when simulating under condition i, and is the flow velocity of gas A supplied from the first gas flow path to the reaction chamber at each radial distance.
  • Vja is the flow velocity of gas A obtained when the simulation was performed under condition j, and is the flow velocity of gas A supplied from the first gas flow path to the reaction chamber at each radial distance.
  • L63 in FIG. 6B is obtained by plotting a value of (Vjb ⁇ Vjb) ⁇ Vjb ⁇ 100 with respect to each radial distance
  • L64 in FIG. 6B is obtained. Is obtained by plotting a value of (Vib ⁇ Vjb) ⁇ Vjb ⁇ 100 for each radial direction distance.
  • Vib is the flow velocity of gas B obtained when simulating under condition i, and is the flow velocity of gas B supplied from the second gas flow path to the reaction chamber at each radial distance.
  • Vjb is the flow rate of gas B obtained when a simulation is performed under condition j, and is the flow rate of gas B supplied from the second gas flow path to the reaction chamber at each radial distance.
  • FIG. 6A shows that the rate of increase in the flow rate of gas A can be changed by changing the flow rate of gas A, as in simulation 4. Specifically, the flow rate increase rate of the gas A is 9% in the condition i, and 0% in the condition j. Therefore, when the condition i is changed to the condition j, the flow rate increase rate of the gas A is changed by 9%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)

Abstract

 気相化学成長装置(100)では、第1のガスはシャワーヘッド(10)に形成された第1のガス流路(15a)内を通って第1の噴出穴(16a)から反応炉(20)内に噴出され、第2のガスは第2のガス流路(15b)内を通って第2の噴出穴(16b)から反応炉(20)内に噴出される。この気相化学成長装置(100)に設けられた制御機構(45)は、第1のガスが第1のガス流路(15a)内を流れるときに生じる第1の流路抵抗と第2のガスが第2のガス流路(15b)内を流れるときに生じる第2の流路抵抗とが異なるように第1の流路抵抗と第2の流路抵抗との比率を制御する。

Description

気相化学成長装置
 本発明は、例えば被処理基板に対向する側に配置されたシャワーヘッドを有するMOCVD(Metal Organic Chemical Vapor Deposition)装置等に関するものである。
 従来、発光ダイオード及び半導体レーザの製造においては、トリメチルガリウム(TMG)又はトリメチルアルミニウム(TMA)等の有機金属ガスとアンモニア(NH3)、ホスフィン(PH3)又はアルシン(AsH3)等の水素化合物ガスとを原料ガス(成膜に寄与するガス)として反応室に供給して化合物半導体結晶層を成長させるMOCVD法が用いられている。また、化合物半導体結晶層を成長させる装置としては、MOCVD装置(気相化学成長装置)が使用されている。
 MOCVD法では、有機金属ガス及び水素化合物ガスの原料ガスを水素又は窒素等の不活性ガスと共に反応室に供給して加熱し、所定の被処理基板上で原料ガスを気相反応させることにより、その被処理基板上に化合物半導体結晶層を成長させる。このMOCVD法を用いた化合物半導体結晶層の製造においては、成長させる化合物半導体結晶層の品質を向上させながら、製造コストを抑えつつ、製造歩留まりと生産能力とをどのように最大限確保するかということが要求されている。
 図7は、従来の気相化学成長装置の概略図である。図7に示される気相化学成長装置は、上部電極73の底面を構成するシャワープレート75を備えている。この装置では、原料ガスなどのガスGは、ガス供給源77から、一次側バルブ78、マスフローコントローラ(流量調節部)79および二次側バルブ80からなるガス供給系統76を通じて、ガス導入部81に供給される。ガス導入部81に供給されたガスGは、ガス空間82内で拡散されて、シャワープレート75に形成された多数のガス吹出孔74から反応炉71内に供給される。
 反応炉71の底面上には、下部電極83が設けられている。下部電極83の上面である電極ステージ上には、被処理基板84がセットされる。反応炉71の内部空間内にガスGが導入された状態で上部電極73と下部電極83との間に高周波電力が供給されると、上部電極73と下部電極83との間にプラズマが発生して、被処理基板84の表面に対して所望のプラズマ処理が施される。
 このような気相化学成長装置には、被処理基板の被成膜面全体に均一な膜厚又は均一な組成比などからなる膜を形成することが要求されている。そのため、被処理基板の被成膜面上でのガス流量またはガス種の混合比率等を厳密に調節することが求められている。
 さらに、発光ダイオードなどの量産化に対応して気相化学成長装置が大型化するに伴い、ガス流量またはガス種の混合比率などの調節の必要性がより求められる。気相化学成長装置が大型化すると被処理基板の被成膜面の面積も大きくなるため、被処理基板の被成膜面上でガス流量またはガス種の混合比率などを制御することが難しくなる。その上、反応炉内における温度分布または被処理基板の形状誤差も大きくなるため、状況に合わせてガス流量またはガス種の混合比率などを適宜設定する必要がある。よって、気相化学成長装置には、ますます複雑な制御が求められている。
 たとえば、特許文献1(特開2000-294538号公報)に記載の真空処理装置では、ガスは、マスフローコントローラ(流量調節部)が個々に設けられた複数のガス供給系統から供給され、ガス供給系統毎に分離されたガス空間を通じて真空チャンバの内部に供給される。該真空処理装置では、供給するガス流量をガス供給系統毎に調整することができるので、被処理基板の表面全体にわたり均一な膜厚で成膜することができると記載されている。
 特許文献2(特開2003-309075号公報)に記載の半導体製造装置では、被処理基板の被成膜面にガスを供給するためのシャワーヘッドが中心から径方向に沿って複数のブロックに分割されており、ガス流量は各々のブロックごとに独立に制御されている。該半導体製造装置では、ブロック単位でガス濃度分布の調整ができることから、被処理基板の被成膜面全体にわたり均一な膜厚で成膜することができる。なお、特許文献2のシャワーヘッドには、複数のガス噴出穴が形成されていると記載されている。
 特許文献2に記載の別の半導体製造装置では、上記シャワーヘッドにおいて、ガス噴出穴が形成された面とは反対側に位置する面であってそのガス噴出穴に対応する位置に、ガス噴出穴に対して栓を挿入するための穴が設けられている。該半導体製造装置では、それぞれのガス噴出穴に対して、被処理基板の被成膜面にガスを供給する開口状態とするか、被処理基板の被成膜面にガスを供給しない封栓状態とするかを変更することができる。これにより、ガスの濃度分布を調整することができ、よって、被処理基板の被成膜面全体にわたり均一な膜厚で成膜することができると記載されている。
 特許文献2に記載のまた別の半導体製造装置では、シャワーヘッドは、そのガス噴出面と被処理基板の被成膜面との間隔が中心から周縁に向かって徐々に狭くなる傘形状である。該半導体製造装置では、中心から周縁に進むにつれてガス流域面積が拡大されることを抑制できるため、被処理基板の被成膜面全体にわたり均一な膜厚で成膜することができると記載されている。
特開2000-294538号公報 特開2003-309075号公報
 図7に示されるように、導入したガスを外部に排気する排気部72が反応炉71の側壁に数箇所設けられている気相化学成長装置の場合、排気部72までの距離は、被処理基板84の被成膜面の周縁の方が、その被成膜面の中央よりも短い。そのため、被処理基板84の被成膜面の中央では、被処理基板84の被成膜面の周縁に至る経路分だけ圧力損失が生じており、ガスは、その圧力損失の差分だけ被処理基板84の被成膜面の中央で流れ難くなる。よって、被処理基板84の被成膜面の中央(排気部72から遠い位置)に供給されるガスの流量よりも、被処理基板84の被成膜面の周縁(排気部72から近い位置)に供給されるガスの流量の方が多くなる。つまり、成膜される範囲が広域となるほど、反応炉71の中央側と反応炉71の周縁側とでガスの供給量の差が生じ易く、よって、均一な膜厚での成膜が困難となる。
 このことから、特許文献1の真空製造装置および特許文献2の半導体製造装置では、成膜処理する領域を均一な膜厚で成膜可能な領域に区画し、区画された各々の領域に対し独立するガス供給系統を設け、各々のガス供給系統毎に供給するガス流量等を調整するという構成としている。
 しかしながら、複数枚の6インチ基板を一度に成膜処理する大型の気相化学成長装置では、径(φ)が600mm程度の広い領域に対して均一な膜厚での成膜が必要となるため、上記構成とすると区画される領域の数が増大する。マスフローコントローラ(流量調節部)又は配管系部材がその領域の数だけ必要となるため、気相化学成長装置の実装設計が複雑なものとなってしまう。
 また、特許文献2には、各々のガス噴出穴に対し、ガスを供給する開口状態とするかガスを供給しない封栓状態とするかの変更が可能な半導体製造装置が記載されている。しかし、半導体製造装置が大型化すると、ガス噴出穴の数も数千個を超えるものとなる。被処理基板の被成膜面全体にわたって均一な膜厚で成膜されるように1つ1つのガス噴出穴を開口状態とするかまたは封栓状態とするかを定めていくことは煩雑で手間がかかるものとなってしまう。
 さらに、特許文献2には、シャワーヘッドが傘形状である半導体製造装置が記載されている。しかし、シャワーヘッドのガス噴出面を所望の傾斜角度を保ちつつ中心対称に加工することは、高い加工技術が要求される。特に、大型の気相化学成長装置では、ガス噴出面も広くなる。このことから、被処理基板の被成膜面全体にわたり均一な膜厚で成膜されるようにシャワーヘッドのガス噴出面を所望の角度に傾斜させてシャワーヘッドを形成することは非常に困難なものとなってしまう。
 そのうえ、特許文献2に記載の傘形状のシャワーヘッドを有する半導体製造装置では、反応炉内の温度、ガスの組成比や流量、被処理基板の被成膜面と噴出面との距離などのパラメータを変更すると、膜厚の均一性が崩れてしまう恐れがある。なぜなら、噴出面の最適な傾斜角は、上記のパラメータによって異なるからである。上記のパラメータを変更すると、ガス流路における流路抵抗が変わるため、噴出口からのガス噴出量も上記のパラメータを変更する前後で変わってしまう。つまり、上記のパラメータを変更するたびに、均一な膜厚にするためのガス噴出面の最適な傾斜角を変更する必要がある。
 以上のことから、特許文献2に記載の半導体製造装置では、様々なエピタキシャル成長条件に対応することが難しく、装置の適用範囲は限られたものとなってしまう。
 本発明は、上記の問題点に鑑みなされたものであって、その目的は、装置設計や装置組立が簡便で、均一な膜厚の膜を被処理基板に形成可能な気相化学成長装置を提供することにある。
 本発明の気相化学成長装置では、反応炉内に導入された第1のガスおよび第2のガスを用いて、反応炉内に載置された被処理基板に成膜処理を施す。この気相化学成長装置は、第1のガスを反応炉内に供給する第1のガス流路と、第2のガスを反応炉内に供給する第2のガス流路と、被処理基板に対向する側に配置され、第1のガス流路に接続され第1のガスを反応炉内に噴出する複数の第1の噴出穴と第2のガス流路に接続され第2のガスを反応炉内に噴出する複数の第2の噴出穴とが形成されたシャワーヘッドと、第1のガスが第1のガス流路内を流れるときに生じる第1の流路抵抗と第2のガスが第2のガス流路内を流れるときに生じる第2の流路抵抗とが異なるように第1の流路抵抗と第2の流路抵抗との比率を制御する制御機構とを備えている。
 制御機構は、第1のガスが第1のガス流路内を流れる第1の流量と第2のガスが第2のガス流路内を流れる第2の流量との比率を制御することにより、第1の流路抵抗と第2の流路抵抗との比率を制御することが好ましい。
 制御機構は、反応炉内の第1のガスおよび第2のガスの少なくとも一方のガスの流速分布の結果に基づいて第1の流路抵抗と第2の流路抵抗との比率を制御しても良いし、被処理基板に形成された膜の膜厚分布に基づいて第1の流路抵抗と第2の流路抵抗との比率を制御しても良いし、第1のガスが第1のガス流路内を流れる第1の流量が第2のガスが第2のガス流路内を流れる第2の流量の1/4倍となる条件を基準として第1の流路抵抗と第2の流路抵抗との比率を制御しても良い。
 第1の噴出穴の断面積は、第2の噴出穴の断面積よりも小さいことが好ましく、第2の噴出穴の断面積の1/4以下であることがさらに好ましい。
 好ましい形態では、第1のガスが原料ガスを含み、第2のガスがキャリアガスである。好ましい別の形態では、第1のガスがトリメチルガリウムガスを含み、第2のガスがアンモニアガスを含み、被処理基板上に窒化ガリウム膜を形成する。
 本発明の気相化学成長装置は、第3のガスを反応炉内に供給する第3のガス流路をさらに備えることが好ましい。シャワーヘッドには、第3のガス流路に接続された複数の第3の噴出穴が形成されていることが好ましい。制御機構は、第3のガスが第3のガス流路内を流れるときに生じる第3の流路抵抗と第2の流路抵抗とが異なるように、第2の流路抵抗と第3の流路抵抗との比率を制御することが好ましい。好ましい形態では、第1のガスが第1の原料ガスであり、第2のガスがキャリアガスであり、第3のガスが第2の原料ガスである。
 第3のガス流路をさらに備えた本発明の気相化学成長装置では、制御機構は、第2のガスが第2のガス流路内を流れる第2の流量と第3のガスが第3のガス流路内を流れる第3の流量との比率を制御することにより、第2の流路抵抗と第3の流路抵抗との比率を制御することが好ましい。
 本発明によれば、装置設計および装置組立が簡便であり、均一な膜厚の膜を被処理基板に形成可能である。
本発明の一実施形態に係る気相化学成長装置の概略図である。 (a)~(c)はシミュレーション1の結果を示しており、(a)は反応室でのガスAの流速の差分割合を示すグラフであり、(b)は反応室における圧力コンター図であり、(c)は反応室の高さ方向における中点付近での圧力と動径方向における距離(動径方向距離)との関係を示したグラフである。 (a)~(c)はシミュレーション2の結果を示しており、(a)は反応室でのガスAの流速の差分割合を示すグラフであり、(b)は反応室における圧力コンター図であり、(c)は反応室の高さ方向における中点付近での圧力と動径方向における距離との関係を示したグラフである。 (a)~(c)はシミュレーション3の結果を示しており、(a)は反応室でのガスAの流速の差分割合を示すグラフであり、(b)は反応室における圧力コンター図であり、(c)は反応室の高さ方向における中点付近での圧力と動径方向における距離との関係を示したグラフである。 シミュレーション4における反応室でのガスAの流速の差分割合を示すグラフである。 (a)~(b)はシミュレーション5の結果を示しており、(a)は反応室でのガスAの流速の差分割合を示すグラフであり、(b)は反応室でのガスBの流速の差分割合を示すグラフである。 従来の気相化学成長装置の概略図である。
 以下では、図面を参照しながら、本発明の実施形態を説明する。なお、本発明は、以下に示す実施形態に限定されない。
 図1は、本発明の実施の形態に係る気相化学成長装置100の構成を示す概略図である。なお、図1では、第1のガス、第2のガスおよび冷媒が通る経路に互いに異なるハッチングを付している。また、図1における破線は、互いの構成要素が電気的に接続されていることを表わしている。また、図1では、第1のガスを第1のガス供給源1aから第1のガス導入口14aへ流す機構、および第2のガスを第2のガス供給源1bから第2のガス導入口14bへ流す機構を簡略化している。
 (気相化学成長装置100の構成)
 気相化学成長装置100は、第1のガスと第2のガスとを用いて被処理基板31に成膜処理を施すための装置であり、略円筒形状のシャワーヘッド10と反応炉20とを備えている。
 (シャワーヘッド10の構成)
 シャワーヘッド10は、反応炉20の反応室21内に設けられる被処理基板31に対向する位置に設けられており、第1のガスおよび第2のガスを別々に反応炉20に導入できるように構成されており、具体的には、第1のガス分配空間13aと第2のガス分配空間13bとを有している。さらに、シャワーヘッド10は、第1のガス分配空間13aおよび第2のガス分配空間13bよりも下流側に、シャワープレート17を有している。
 第1のガス分配空間13aは、第1のガスを拡散させて分配させる。ここで、第1のガスは、第1のガス供給源1aから第1のガス導入口14aまで流れ、その第1のガス導入口14aから第1のガス分配空間13a内に供給される。
 第1のガス分配空間13aには、複数の第1のガス流路15aが接続されている。各第1のガス流路15aは、シャワープレート17に貫通して設けられており、各第1のガス流路15aには、第1の噴出穴16aが接続されている。各第1の噴出穴16aは、シャワープレート17の下面における第1のガス流路15aの開口であり、第1のガスを反応炉20の内に噴出させるための開口である。このように、第1のガス供給源1aから第1のガス分配空間13a内に供給された第1のガスは、第1のガス流路15aの何れかの内部を通って第1の噴出穴16aから反応炉20内に噴出される。
 同じく、第2のガス分配空間13bは、第2のガスを拡散させて分配させる。ここで、第2のガスは、第2のガス供給源1bから第2のガス導入口14bまで流れ、その第2のガス導入口14bから第2のガス分配空間13b内に供給される。
 第2のガス分配空間13bには、複数の第2のガス流路15bが接続されている。各第2のガス流路15bは、シャワープレート17に貫通して設けられており、各第2のガス流路15bには、第2の噴出穴16bが接続されている。各第2の噴出穴16bは、シャワープレート17の下面における第2のガス流路15bの開口であり、第2のガスを反応炉20の内に噴出させるための開口である。このように、第2のガス供給源1bから第2のガス分配空間13b内に供給された第2のガスは、第2のガス流路15bの何れかの内部を通って第2の噴出穴16bから反応炉20内に噴出される。
 反応炉20内に噴出される第1のガスの噴出量は、反応炉20の中央側の方が反応炉20の周縁側よりも多い方が好ましい。同じく、反応炉20内に噴出される第2のガスの噴出量は、反応炉20の中央側の方が反応炉20の周縁側よりも多い方が好ましい。
 具体的には、第1の噴出穴16aおよび第2の噴出穴16bの個数が反応炉20の周縁側よりも反応炉20の中央側で多くなるようにシャワープレート17を構成しても良い。また、シャワープレート17の中央に位置する第1の噴出穴16aから反応炉20内に噴出される量をシャワープレート17の周縁に位置する第1の噴出穴16aから反応炉20内に噴出される量よりも多くしても良いし、シャワープレート17の中央に位置する第2の噴出穴16bから反応炉20内に噴出される量をシャワープレート17の周縁に位置する第2の噴出穴16bから反応炉20内に噴出される量よりも多くしても良い。
 別の具体例としては、第1のガス分配空間13aおよび第2のガス分配空間13bの各構造を工夫すれば良い。たとえば、第1のガス分配空間13aまたは第2のガス分配空間13bの周縁部分にテーパー加工を施しても良いし、第1のガス分配空間13aまたは第2のガス分配空間13bを中心と周縁とに分離してそれぞれからの供給量をマスフローコントローラで制御しても良い。
 シャワープレート17には、冷媒流路18が形成されている。冷媒流路18は、ガスの噴出方向に対して垂直な方向に冷媒を流すための流路である。冷媒流路18を流れる冷媒は、各第1のガス流路15a内を通る第1のガスの温度を調整するとともに、各第2のガス流路15b内を通る第2のガスの温度を調整する。
 (反応炉20の構成)
 反応炉20の反応室21は、被処理基板31に対して被成膜処理が行なわれる空間であり、反応室21には、円盤状の基板保持部材30と回転軸32と加熱ヒータ33とが設けられている。基板保持部材30は、シャワープレート17に対向するように配置されており、基板保持部材30の上面には、複数の被処理基板31が載置されている。回転軸32は、基板保持部材30の下面に接続されており、不図示のアクチュエータによって回転自在である。加熱ヒータ33は、基板保持部材30よりも反応室21の下方側に設けられており、基板保持部材30を加熱するためのヒータである。
 反応炉20の側壁の下側には、ガス排出部25が設けられている。ガス排出部25は、反応室21に連通されており、反応室21内のガスを反応室21の外部へ排出させるための開口部である。
 (制御機構45)
 制御機構45は、第1の流路抵抗と第2の流路抵抗とが異なるように第1の流路抵抗と第2の流路抵抗との比率を制御する。第1の流路抵抗は、第1のガスが第1のガス流路15a内を流れたときに生じる抵抗であり、たとえば第1の流量に依存する。同じく、第2の流路抵抗は、第2のガスが第2のガス流路15b内を流れたときに生じる抵抗であり、たとえば第2の流量に依存する。よって、制御機構45は、第1の流量と第2の流量との比率を制御することにより第1の流路抵抗と第2の流路抵抗との比率を制御することができ、第1の流量と第2の流量とが異なるように第1の流量と第2の流量との比率を制御することが好ましく、第1の流量が第2の流量よりも少なくなるようにこの比率を制御することがより好ましく、第1の流量が第2の流量の1/4以下となるようにこの比率を制御することがさらに好ましい。さらに好ましくは、制御機構45は、第1の流量が第2の流量の1/4倍となる条件を基準として上記比率を制御することである。ここで、「第1の流量が第2の流量の1/4倍となる条件を基準として」とは、気相化学成長装置の構造要因を含む流量のベース条件を、第1の流量が第2の流量の1/4倍とすることを意味する。第1の流量が第2の流量の1/4倍となる条件を基準として第1の流量と第2の流量との比率を制御すれば、調整幅および成膜条件の自由度が広がるため、高いレベルで膜厚分布の向上と形成された膜の品質の向上との両立を図ることができる。
 なお、第1の流量は、第1のガス供給源1aから供給される第1のガスの供給量であり、第1のガスが反応炉20内に供給される量であり、第1のガス流路15a内のそれぞれを流れる第1のガスの流量の合計である。そして、第1の流量は、第1の制御部41により制御されている。また、第2の流量は、第2のガス供給源1bから供給される第2のガスの供給量であり、第2のガスが反応炉20内に供給される量であり、第2のガス流路15b内のそれぞれを流れる第2のガスの流量の合計である。そして、第2の流量は、第2の制御部43により制御されている。
 第1の流量が第2の流量に比べて十分少ないときには(たとえば第1の流量が第2の流量の1/4以下であるときには)、第1の流量および第2の流量の各変更量が少量となるように第1の流量と第2の流量との比率を制御しても、第1のガスの流速分布を大幅に変えることができる。この理由としては次に示すことが考えられる。第1の流量は第2の流量に比べて十分少ないので、流量の変更割合(流量の変更割合=流量の変更量の絶対値÷変更前の流量)は第1の流量の方が第2の流量よりも大きくなる。後述のように、層流条件の場合、流路抵抗は、流量に比例すると考えることができる(ハーゲン・ボアズイユの式より)。そのため、流路抵抗の変更割合(流路抵抗の変更割合=流路抵抗の変更量の絶対値÷変更前の流路抵抗)は第1の流路抵抗の方が第2の流路抵抗よりも非常に大きくなる。よって、第1のガスの流速分布が大幅に変わると考えられる。以上のことから、膜厚に大きな影響を与えるガスを第1のガスとして用いれば、被処理基板31の表面上に形成される膜の膜厚を制御しやすい。
 なお、第1のガス流路15aが管であり、第2のガス流路15bが管であり、また第1の流路抵抗を決めるパラメータと第2の流路抵抗を決めるパラメータとにおいてガスの流量(第1の流量および第2の流量)以外のパラメータが互いに同じときには、第1の流路抵抗は第1の流量に比例し、第2の流路抵抗は第2の流量に比例する(層流条件の場合)。そのため、制御機構45は、第1の流量が第2の流量の1/4以下となるように第1の流量と第2の流量との比率を制御するときには、第1の流路抵抗が第2の流路抵抗の1/4以下となるように第1の流路抵抗と第2の流路抵抗との比率を制御することとなる。
 また、第1の噴出穴の断面積を第2の噴出穴の断面積よりも小さくすれば、第1のガスの流速分布の調整感度は小さくなるものの、第1のガスの流速上昇率(下記シミュレーション1参照)を小さく抑えることができる。よって、第1のガスの流速分布は良くなる傾向にある。一般に、噴出穴の断面積を小さくすることにより、流路抵抗が大きくなる。詳細には、分配空間での流路抵抗が噴出穴付近での流路抵抗よりも十分小さい場合、流路抵抗は、噴出穴の断面積、流量および流路長さにより、ほぼ決定されることとなる。このとき、流量と流路長さとがほぼ同じであれば、噴出穴の断面積が小さいものの方が流路抵抗が大きくなる。流路抵抗が大きいほど、反応室での圧力損失の影響を受けにくいため、流速上昇率を小さく抑えることができる(メカニズムについては、後述のシミュレーションにて記載)。そのため、第1の噴出穴の断面積が第2の噴出穴の断面積よりも小さければ、例えば第1の噴出穴の断面積が第2の噴出穴の断面積の1/4以下であれば、第1のガスの流速を反応室21において一定することができる。ただし、噴出穴の径が小さすぎると、噴出穴が目詰まりを起こし、成膜処理を行ない難くなるなどの問題が生じてくる。このことを考慮して第1の噴出穴の径を決定し、第1の流路抵抗と第2の流路抵抗との比率を制御することが好ましい。
 制御機構45は、反応室21における第1のガスの流速分布の結果に基づいて第1の流量と第2の流量との比率を制御しても良いし、被処理基板31の被成膜面に形成された膜の膜厚分布に基づいて第1の流量と第2の流量との比率を制御しても良い。
 たとえば第1のガスの流速が反応室21において一定であるという流速分布の結果が得られたとき、被処理基板31の被成膜面には均一な膜厚の膜が形成される、または各被処理基板31の被成膜面には膜厚がほぼ同一の膜が形成されると考えられる。そのため、制御機構45は第1の流量と第2の流量との比率を変更しない。
 一方、第1のガスの流速が反応室21において一定でないという流速分布の結果が得られたとき、被処理基板31の被成膜面には均一な膜厚の膜が形成されにくい、または被処理基板31毎に形成される膜の膜厚が異なると考えられる。そのため、制御機構45は、第1のガスの流速が反応室21の中央とその周縁とにおいてほぼ同一となるように第1の流量と第2の流量との比率を変更する。たとえば、ガスの流速が反応炉20の周縁において遅いという結果が得られたときには、制御機構45は、第1の流量が小さくなるように第1の流量と第2の流量との比率を変更する。
 なお、流速分布の結果としては、測定結果であっても良いし、後述の実施例で示すようにシミュレーション結果であっても良い。
 また、均一な膜厚の膜が被処理基板31の被成膜面に形成されたとき、または、各被処理基板31の被成膜面に形成された膜の膜厚がほぼ同一であるときには、制御機構45は第1の流量と第2の流量との比率を変更しない。
 一方、不均一な膜厚の膜が被処理基板31の被成膜面に形成されたときには、制御機構45は、均一な膜厚の膜が被処理基板31の被成膜面に形成されるように第1の流量と第2の流量との比率を変更する。また、被処理基板31毎に膜厚が異なる膜が形成されたときには、制御機構45は、各被処理基板31の被成膜面に形成された膜の膜厚がほぼ同一となるように第1の流量と第2の流量との比率を変更する。
 このように、本実施の形態では、制御機構45は、反応室21における第1のガスの流速分布の結果に基づいて、または被処理基板31の被成膜面に形成された膜の膜厚分布に基づいて、第1の流量と第2の流量との比率を変更する。ここで、第1の流量と第2の流量との比率の変更量は、膜の成膜条件(たとえばガスの種類、ガスの流量、成膜温度または成膜時の反応室21の圧力)などに依存するため、一概には言えない。たとえば、第1の流量が第1の流量と第2の流量との合計流量に対して1/4倍以下であるときに反応室21におけるガスの流速分布が所望の流速分布とは大きく異なる場合には、第1の流量の変化量がその合計流量に対して10%以下となるように第1の流量と第2の流量との比率を変更すれば良い。
 以上説明したように、本実施の形態では、第1の流路抵抗と第2の流路抵抗との比率が最適化されるので、反応炉20の中央側と反応炉20の周縁側とにおけるガスの供給量の差が是正され、反応室21におけるガスの流速分布を均一にすることができ、場合によっては所望の流速分布を実現することができる。
 また、本実施の形態では、ガスの組成比、ガスの流量、被処理基板の温度、または被成膜面と噴出面との距離(噴出面はたとえばシャワーヘッドの表面のうち噴出穴が形成された面である)などのパラメータ(以下では「ガスの組成比などのパラメータ」と記す)を変更したために反応室でのガスの流速分布が変わった場合であっても、第1の流量と第2の流量との比率を制御してその流速分布を均一にすることができる。したがって、被処理基板31の被成膜面に形成される膜の膜厚の均一性を高めることができ、各被処理基板31の被成膜面に形成される膜の膜厚をほぼ同一にすることができる。
 なお、制御機構45は、第1の流量と第2の流量との比率を制御するだけでなく、第1の流量および第2の流量のそれぞれを制御しても良い。この場合、第1の制御部41および第2の制御部43を設けなくて良い。
 また、上記実施の形態では、第1の流量と第2の流量との比率を変えることにより第1の流路抵抗と第2の流路抵抗との比率を変えることを例に挙げたが、以下に示すパラメータを変えることにより第1の流路抵抗と第2の流路抵抗との比率を変えることが考えられる。
 詳細には、第1の流路抵抗は、第1のガス流量だけでなく、第1のガス流路15aの形状、断面積の大きさ、または長さにも依存し、第1のガスの物性(密度、温度、粘度など)にも依存する。同じく、第2の流路抵抗は、第2のガス流量だけでなく、第2のガス流路15bの形状、断面積の大きさ、または長さにも依存し、第2のガスの物性(密度、温度、粘度など)にも依存する。以上のことから、たとえば第1のガス流路15aの形状を変更すれば、第1の流路抵抗を変更することができ、よって、第1の流路抵抗と第2の流路抵抗との比率を変更することができる。しかし、ガス流路の形状または大きさを変更するためには、気相化学成長装置の設計変更が必要となる。そのため、流路抵抗の微調整などを行なうことが難しく、また、ガス流路の形状の最適化に時間を要することがある。
 また、ガスの物性またはガスの流量(絶対量)を制御することも考えられる。一般に、気相化学成長装置を用いて膜厚が均一な膜を被処理基板の被成膜面上に形成するためには、ガスの供給量を被成膜面全体にわたって均一にすることが求められる。そのためには、反応室でのガスの流速を一定にすることが好ましい。通常、気相化学成長装置の構造やガスの供給方法を工夫して、反応室でのガスの流速を一定にしている。しかし、ガスの組成比などのパラメータを変更すると、反応室に供給されるガスの流速分布を制御することが難しく、よって、膜厚や組成比、結晶の品質において所望のものが得られない恐れがある。
 一方、第1の流量と第2の流量との比率を制御することにより第1の流路抵抗と第2の流路抵抗との比率を制御すれば、ガスの組成比などのパラメータは変更されないため、制御後においても膜質などは維持され、反応室におけるガスの流速分布を比較的簡便に制御することができる。よって、膜厚の面内分布のみを改善することができる。このように第1の流量と第2の流量との比率を制御することにより第1の流路抵抗と第2の流路抵抗との比率を制御すれば、気相化学成長装置100の構造の変更またはガスの組成などを変更することなく反応炉20の中央側と反応炉20の周縁側とにおけるガスの供給量の差が是正される。よって、比較的簡便な方法で均一な膜厚の膜を被処理基板に形成することができる。
 また、シャワーヘッドには、複数の第3の流路が貫通して設けられており、且つ各第3の流路には第3の噴出穴が接続していても良い。この場合には、制御機構は、第1の流量と第2の流量との比率だけでなく、第3のガスが第3の流路内を流れる流量(以下では「第3の流量」と記す)と第2の流量との比率を制御することが好ましい。つまり、制御機構は、第1の流路抵抗と第2の流路抵抗との比率だけでなく、第3のガスが第3の流路内を流れるときに生じる流路抵抗と第2の流路抵抗との比率を制御することが好ましい。これにより、第1の流量と第3の流量とを別々に制御することができるので、形成された膜中における第1のガス由来の元素と第3のガス由来の元素との比率を所望の比率にすることができる。
 以下では、図1に示される気相化学成長装置100を用いて被処理基板31の被成膜面にGaN膜を形成する場合を具体的に説明する。
 (第1の具体例)
 GaN膜を形成する場合、通常、原料ガスとしてTMGガスおよびNH3ガスを用い、キャリアガスとして水素ガスを用いる。このとき、GaN膜の膜厚は、ほぼ、TMGガスの流量に依存する。そのため、TMGガスの流量を制御すれば、GaN膜の膜厚を調節することができる。そこで、第1の具体例では、第1のガスとしてTMGガスを含むガスを用い、第2のガスとしてNH3ガスを含むガスを用いる。このとき、TMGガスを含むガスの流量をNH3ガスを含むガスの流量よりも十分少なくすることが好ましい。これにより、TMGガスの流量を少量変化させることにより、TMGガスの流量分布を大幅に変化させることができる。よって、NH3ガスの流速分布をほとんど変化させることなくTMGガスの流速分布のみを大きく変化させることができる。したがって、GaN膜の膜厚が均一となるようにその膜厚分布を変更することができる。
 (第2の具体例)
 第2の具体例では、第1のガスとしてTMGガスおよびNH3ガスを含むガスを用い、第2のガスとしてキャリアガスを含むガスを用いる。これにより、第1の具体例で説明した効果を得ることができる。それだけでなく、TMGガスとNH3ガスとを同じ流速で反応炉20内に供給することができるため、GaN膜中におけるV元素とIII元素との比率を一定に保つことができる。
 (第3の具体例)
 第3の具体例では、第1の噴出穴、第2の噴出穴および第3の噴出穴が形成されたシャワーヘッドを用いて成膜処理を行ない、第1のガスとしてTMGガスを含むガスを用い、第2のガスとしてキャリアガスを含むガスを用い、第3のガスとしてNH3ガスを含むガスを用いる。また、制御機構は、(TMGガスの流量)/(キャリアガスの流量)と(NH3ガスの流量)/(キャリアガスの流量)とを別々に制御している。これにより、TMGガスの流量を少量変更しただけで、キャリアガスの流速分布をそれほど変更することなくTMGガスの流速分布を大幅に変更することができる。さらに、NH3ガスの流量を少量変更しただけで、キャリアガスの流速分布をそれほど変更することなくNH3ガスの流速分布を大幅に変更することができる。それだけでなく、TMGガスの流量とNH3ガスの流量との比率を適宜変更することができるので、GaN膜中におけるV元素とIII元素との比率を適宜調節することができる。
 ガスの流速分布を調べるために、流体解析シミュレーションを行った。流体解析ソフトとしてはESI社製CFD-ACEを使用した。シミュレーション1~3では、ガスの組成比などのパラメータを変更することにより反応室でのガスの流速分布が変わることを確認した。また、シミュレーション4~5では、第1の流量と第2の流量との比率を変更することにより反応室でのガスの流速分布がどのように変化するのかを調べた。
 (シミュレーション1)
 シミュレーション1では、ガス種のみを以下に示すように変更して反応室でのガスの流速分布をシミュレーションした。シミュレーション1では、ガス導入口からガス排出部までをモデル化して解析した
  〔条件a〕第1のガス流路に流れるガス:ガスA(水素ガス)
       第2のガス流路に流れるガス:ガスB(水素ガスとNH3ガスとの混合)
  〔条件b〕第1のガス流路に流れるガス:ガスA(水素ガス)
       第2のガス流路に流れるガス:ガスC(NH3ガス)
 なお、ガスBの粘度は、ガスCの粘度よりも小さい(ガスBの粘度<ガスCの粘度)。
 ガス種以外の条件は、条件aと条件bとで共通であり、
  ガスの流量:100slm(standard liter/min.)
  被処理基板の温度:700℃
  被成膜面と噴出面との距離:10mm
  被処理基板の材料:サファイア
であった。
 シミュレーション1の結果を図2に示す。図2(a)は、第1のガス流路から反応室へ供給されるガスAの流速の差分割合を示すグラフである。図2(b)は、反応室における圧力コンター図である。図2(c)は、反応室の高さ方向における中点(被処理基板31の上面から5mm)付近での圧力と動径方向における距離との関係を示したグラフであり、図2(b)中に示す「被処理基板31の上面から5mm」での圧力値に基づいて作成したグラフである。
 なお、図2(a)~(c)には、反応室の中央側から反応室の周縁側(ガス排出部側)までを示している。このことは、図3(a)~(c)および図4(a)~(c)においても同様である。
 また、図2(a)中のL21は、各動径方向距離に対して(Va-Va)÷Va×100の値をプロットして得られたものであり、図2(a)中のL22は、各動径方向距離に対して(Vb-Va)÷Va×100の値をプロットとして得られたものである。ここで、Vaは、条件aでシミュレーションしたときに得られたガスAの流速であり、各動径方向距離での第1のガス流路から反応室へ供給されるガスAの流速である。Vbは、条件bでシミュレーションしたときに得られたガスAの流速であり、各動径方向距離での第1のガス流路から反応室へ供給されるガスAの流速である。流速上昇率(反応室の中央でのガスの流速に対する反応室の周縁でのガスの流速の割合)が小さい条件aをシミュレーション結果の基準にした。このことは、後述のシミュレーション2~3においても同様である。
 また、図2(c)中のL23は、条件aでシミュレーションしたときに得られた結果であり、図2(c)中のL24は、条件bでシミュレーションしたときに得られた結果である。
 図2に示す結果が得られた理由は、ガスの粘度を変更したために反応室における圧力損失が変化したためである。基板保持部材の被載置面の中央からガス排出部までの距離は、その被載置面の周縁からガス排出部までの距離よりも長い。そのため、基板保持部材の被載置面の中央では、その被載置面の中央からその周縁に至る経路分だけ圧力損失(つまり反応室における圧力損失)が生じ、よって、その圧力損失分だけガスは基板保持部材の被載置面の中央で流れ難くなる。このことは、後述のシミュレーション2~3でも言える。以下、具体的に説明する。
 図2(a)に示すように、反応室の周縁では、L22の縦軸は正の値を示している。このことから、反応室の周縁におけるガスの流速は条件bの方が大きいことが分かる。この傾向は、ガスCのガス流量にも大きく依存すると言える。なぜならば、たとえば第2のガス流路に流れるガスをガスBとガスCとの混合ガスとした場合には、ガスCの流量が大きくなればなるほど条件bに近づくからである。
 図2(b)および図2(c)に示すように、条件bでは、圧力は反応室の中央で高い値を示していた。その理由は、反応室のガスの粘度が高くなると(条件b)、反応室の流路抵抗が大きくなり、反応室における圧力損失の増大を招くからである。よって、条件bでは、反応室の中央と反応室の周縁とにおける圧力差が条件aよりも大きくなり、圧力の高い反応室の中央よりも圧力の低い反応室の周縁へ、より多くのガスAが供給されることとなる。以上のことから、反応室の中央と反応室の周縁とにおける第1のガス流路から反応室へ供給されるガスAの流速の差は、条件bの方が条件aよりも大きくなる。したがって、流速上昇率は条件bの方が条件aよりも大きくなる。
 (シミュレーション2)
 シミュレーション2では、被処理基板の温度のみを
  〔条件c〕被処理基板の温度:700℃
  〔条件d〕被処理基板の温度:1300℃
と変更して、反応室でのガスの流速分布をシミュレーションした。被処理基板の温度以外の条件は、シミュレーション1で記した通りである。なお、ガスとしては、ガスAを用いた。
 シミュレーション2の結果を図3に示す。図3(a)は、第1のガス流路から反応室へ供給されるガスAの流速の差分割合を示すグラフである。図3(b)は、反応室における圧力コンター図である。図3(c)は、反応室の高さ方向における中点付近での圧力と動径方向における距離との関係を示したグラフであり、図3(b)中に示す「被処理基板31の上面から5mm」での圧力値に基づいて作成したグラフである。
 なお、図3(a)中のL31は、各動径方向距離に対して(Vc-Vc)÷Vc×100の値をプロットして得られたものであり、図3(a)中のL32は、各動径方向距離に対して(Vd-Vc)÷Vc×100の値をプロットとして得られたものである。ここで、Vcは、条件cでシミュレーションしたときに得られたガスAの流速であり、各動径方向距離での第1のガス流路から反応室へ供給されるガスAの流速である。Vdは、条件dでシミュレーションしたときに得られたガスAの流速であり、各動径方向距離での第1のガス流路から反応室へ供給されるガスAの流速である。
 また、図3(c)中のL33は、条件cでシミュレーションしたときに得られた結果であり、図3(c)中のL34は、条件dでシミュレーションしたときに得られた結果である。
 図3(a)に示すように、反応室の周縁では、L32の縦軸は正の値を示している。このことから、反応室の周縁におけるガスの流速は条件dの方が大きいことが分かる。
 図3(b)および図3(c)に示すように、反応室の中央と反応室の周縁との圧力差は条件dの方が条件cよりも大きかった。この理由として、次に示すことが挙げられる。反応室の室内温度が上昇すると、ガスの流速が大きくなるので、ガス排出部へ流れるガスの流速が大きくなる。ガスの流速に比例して反応室における圧力損失が大きくなると、反応室の中央と反応室の周縁とで圧力差が大きくなる。したがって、シミュレーション1と同様、反応室の中央と反応室の周縁との圧力差に応じて、流速上昇率も条件dの方が条件cよりも大きくなる。
 (シミュレーション3)
 シミュレーション3では、被成膜面と噴出面との距離のみを
  〔条件e〕被成膜面と噴出面との距離:20mm
  〔条件f〕被成膜面と噴出面との距離:10mm
と変更して、反応室でのガスの流速分布をシミュレーションした。被成膜面と噴出面との距離以外の条件は、シミュレーション1で記した通りである。なお、ガスとしては、ガスAを用いた。
 シミュレーション3の結果を図4に示す。図4(a)は、第1のガス流路から反応室へ供給されるガスAの流速の差分割合を示すグラフである。図4(b)は、反応室における圧力コンター図である。図4(c)は、反応室の高さ方向における中点付近での圧力と動径方向における距離との関係を示したグラフであり、条件eの結果としては図4(b)中に示す「被処理基板31の上面から10mm」での圧力値に基づいて作成したグラフを記し、条件fの結果としては図4(b)中に示す「被処理基板31の上面から5mm」での圧力値に基づいて作成したグラフを記している。
 なお、図4(a)中のL41は、各動径方向距離に対して(Ve-Ve)÷Ve×100の値をプロットして得られたものであり、図4(a)中のL42は、各動径方向距離に対して(Vf-Ve)÷Ve×100の値をプロットとして得られたものである。ここで、Veは、条件eでシミュレーションしたときに得られたガスAの流速であり、各動径方向距離での第1のガス流路から反応室へ供給されるガスAの流速である。Vfは、条件fでシミュレーションしたときに得られたガスAの流速であり、各動径方向距離での第1のガス流路から反応室へ供給されるガスAの流速である。
 また、図4(c)中のL43は、条件eでシミュレーションしたときに得られた結果であり、図4(c)中のL44は、条件fでシミュレーションしたときに得られた結果である。
 図4(a)に示すように、L42の縦軸は、反応室の中央では負の値を示している一方、反応室の周縁では正の値を示している。このことから、反応室の中央とその周縁とのガスの流速の差は条件fの方が大きいことがわかる。
 図4(b)および図4(c)に示すように、反応室の中央と反応室の周縁との圧力差は条件eの方が条件fよりも小さかった。この理由は、次に示す通りである。条件eでは、被成膜面と噴出面との距離が条件fよりも長いので、反応室でのガスAの流速が遅くなる。反応室における圧力損失は、一般に、ガスの流速が速ければ大きく、ガスの流速が遅ければ小さい。そのため、条件eでは、条件fに比べて、圧力損失が小さいことになる。したがって、圧力損失の小さい条件eの方が、流速上昇率は小さくなる。
 以上シミュレーション1~3で示したように、ガス組成などのパラメータを変更すれば反応室でのガスの流速分布を変更できることが確認できた。
 (シミュレーション4)
 シミュレーション4では、流量を以下に示すように変更して反応室でのガスの流速分布をシミュレーションした。流量以外の条件は、シミュレーション1で記した通りである
  〔条件g〕第1のガス流路15aに流れるガスAの流量:50slm
       第2のガス流路15bに流れるガスBの流量:200slm
  〔条件h〕第1のガス流路15aに流れるガスAの流量:100slm
       第2のガス流路15bに流れるガスBの流量:150slm。
 このように、流量比(=ガスAの流量÷ガスBの流量)は、条件gでは1/4であり、条件hでは2/3であった。ここで、第1のガス流路15aおよび第2のガス流路15bを管としてシミュレーション4を行なったため、流路抵抗比(=ガスAの流路抵抗÷ガスBの流路抵抗)は、条件gでは1/4であり、条件fでは2/3であった。
 シミュレーション4の結果を図5に示す。図5は、第1のガス流路から反応室へ供給されるガスAの流速の差分割合を示すグラフである。なお、図5中のL51は、各動径方向距離に対して(Vh-Vh)÷Vh×100の値をプロットして得られたものであり、図5中のL52は、各動径方向距離に対して(Vg-Vh)÷Vh×100の値をプロットとして得られたものである。ここで、Vgは、条件gでシミュレーションしたときに得られたガスAの流速であり、各動径方向距離での第1のガス流路から反応室へ供給されるガスAの流速である。Vhは、条件hでシミュレーションしたときに得られたガスAの流速であり、各動径方向距離での第1のガス流路から反応室へ供給されるガスAの流速である。
 図5に示すように、L52の縦軸は、反応室21の中央では負の値を示している一方、反応室21の周縁では正の値を示している。条件gと条件hとでは、反応室21に供給されるガスの総流量が同じである(250slm)。そのため、条件gと条件hとでは、反応室21における圧力損失に差はないと考えられる。よって、シミュレーション1~3のように、反応室21における圧力損失の相違に基づいて図5に示す結果を説明することは難しい。
 図5に示す結果が得られた理由は、次の通りである。条件gでは、第1のガス流路15aに流れるガスAの流量が条件hの1/2倍であるので、第1のガス流路15a内におけるガスAの圧力損失は条件hの約1/2倍となる(層流条件の場合、ハーゲン・ボアズイユの式に従うため)。一方、条件gと条件hとでは、反応室21に供給されるガスの総流量が同じであるため、反応室21における圧力損失は同じである。よって、第1のガス流路15aから反応室21のガス排出部25までにかかる圧力損失に対する反応室21における圧力損失の割合は、条件gの方が条件hよりも大きくなる。
 上記割合が大きいとき(条件g)、反応室21での圧力は反応室21の周縁の方が反応室21の中央よりも低いため、第1のガス流路15aでのガスAの流速は反応室21の周縁の方が反応室21の中央よりも速くなる。ところが、反応室21における圧力損失よりも各第1のガス流路15aでのガスAの圧力損失が大きくなればなるほど、ガスAの流速差に対する反応室21での圧力損失の影響が小さくなり、よって、反応室21の中央と反応室21の周縁とにおけるガスAの流速差は小さくなる。別の言い方をすると、ガスAの流速が反応室21における圧力損失の影響を受け易い条件gの方が、反応室21の中央と反応室21の周縁とにおけるガスAの流速差は大きくなる。以上より、図5に示すように、ガスAの流速上昇率は条件gの方が条件hよりも大きくなる。このように、反応室21でのガスの流速分布を大きく変更可能な要因には、反応室における圧力損失という要因以外の要因が存在することがわかった。
 流速上昇率は、条件gの方が条件hよりも大きい。例えばシミュレーションを行なった結果、流速上昇率が正であった場合(ガスの流速が反応室21の中央に比べて反応室21の周縁の方が速い場合)、条件gから条件hへ変更するように、つまりガスAの流量が多くなるように、ガスAの流量とガスBの流量との比率を変更すれば良い。逆に、シミュレーションを行なった結果、流速上昇率が負であった場合(ガスの流速が反応室21の周縁に比べて反応室21の中央の方が速い場合)、条件hから条件gへ変更するように、つまりガスAの流量が少なくなるように、ガスAの流量とガスBの流量との比率を変更すれば良い。以上より、ガスAの流量が変更するようにガスAの流量とガスBの流量との比率を変更すれば、ガスAの流速分布を所望の分布に変更できることが分かる。このようにガスAの流量とガスBの流量との比率を変更すれば、ガスの粘性、被処理基板の温度、または被成膜面と噴出面との距離を変更しなくてもガスAの流速分布を変更することができる。よって、比較的簡便な方法でガスAの流速分布を所望の分布に変更することができる。
 (シミュレーション5)
 シミュレーション5では、流量を
  〔条件i〕第1のガス流路15aに流れるガスAの流量:20slm
       第2のガス流路15bに流れるガスBの流量:180slm
  〔条件j〕第1のガス流路15aに流れるガスAの流量:40slm
       第2のガス流路15bに流れるガスBの流量:160slm
と変更して、反応室21でのガスの流速分布をシミュレーションした。流量以外の条件は、シミュレーション1で記した通りである。
 シミュレーション5では、シミュレーション4と同様に、第1のガス流路15aにおけるガスAの流量が少ない条件iの方が流速上昇率は高くなる。シミュレーション5では、第1のガス流路15aから反応室21へ供給されるガスAの流速だけでなく、第2のガス流路15bから反応室21へ供給されるガスBの流速についても調べた。この結果を図6に示す。図6(a)は、反応室21における第1のガス流路15aから反応室21へ供給されるガスAの流速の差分割合を示すグラフであり、図6(b)は、第2のガス流路15bから反応室21へ供給されるガスBの流速の差分割合を示すグラフである。
 なお、図6(a)中のL61は、各動径方向距離に対して(Vja-Vja)÷Vja×100の値をプロットして得られたものであり、図6(a)中のL62は、各動径方向距離に対して(Via-Vja)÷Vja×100の値をプロットとして得られたものである。ここで、Viaは、条件iでシミュレーションしたときに得られたガスAの流速であり、各動径方向距離での第1のガス流路から反応室へ供給されるガスAの流速である。Vjaは、条件jでシミュレーションしたときに得られたガスAの流速であり、各動径方向距離での第1のガス流路から反応室へ供給されるガスAの流速である。
 また、図6(b)中のL63は、各動径方向距離に対して(Vjb-Vjb)÷Vjb×100の値をプロットして得られたものであり、図6(b)中のL64は、各動径方向距離に対して(Vib-Vjb)÷Vjb×100の値をプロットとして得られたものである。ここで、Vibは、条件iでシミュレーションしたときに得られたガスBの流速であり、各動径方向距離での第2のガス流路から反応室へ供給されるガスBの流速である。Vjbは、条件jでシミュレーションしたときに得られたガスBの流速であり、各動径方向距離での第2のガス流路から反応室へ供給されるガスBの流速である。
 図6(a)より、シミュレーション4と同様に、ガスAの流量を変更することによりガスAの流速上昇率を変更できることが分かった。具体的には、ガスAの流速上昇率は、条件iでは9%であるのに対して、条件jでは0%である。よって、条件iから条件jへ変更すると、ガスAの流速上昇率が9%変更されることになる。
 一方、図6(b)より、条件iと条件jとでは、ガスBの流速上昇率はほとんど差がなく、条件iでは、ガスBの流速上昇率が2%であるに過ぎなかった。このように、ガスBの流速分布を変更せずにガスAの流量が少量変化するようにガスAの流量とガスBの流量との比率を変更すればガスAの流速分布を容易に制御できることが分かった。
 さらに、ガスA、ガスB、およびガスCの3種類のガスを用いてガスCの流量を多くすれば、ガスCの流速分布をほとんど変えずにガスAとガスBとの流速分布を変更することが可能となる。
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1a 第1のガス供給源、1b 第2のガス供給源、10 シャワーヘッド、13a 第1のガス分配空間、13b 第2のガス分配空間、14a 第1のガス導入口、14b 第2のガス導入口、15a 第1のガス流路、15b 第2のガス流路、16a 第1の噴出穴、16b 第2の噴出穴、17 シャワープレート、18 冷媒流路、20 反応炉、21 反応室、25 ガス排出部、30 基板保持部材、31,84 被処理基板、32 回転軸、33 加熱ヒータ、41 第1の制御部、43 第2の制御部、45 制御機構、100 気相化学成長装置。

Claims (11)

  1.  反応炉(20)内に導入された第1のガスおよび第2のガスを用いて、前記反応炉(20)内に載置された被処理基板(31)に成膜処理を施す気相化学成長装置(100)であって、
     前記第1のガスを前記反応炉(20)内に供給する第1のガス流路(15a)と、
     前記第2のガスを前記反応炉(20)内に供給する第2のガス流路(15b)と、
     前記被処理基板(31)に対向する側に配置され、前記第1のガス流路(15a)に接続され前記第1のガスを前記反応炉(20)内に噴出する複数の第1の噴出穴(16a)と前記第2のガス流路(15b)に接続され前記第2のガスを前記反応炉(20)内に噴出する複数の第2の噴出穴(16b)とが形成されたシャワーヘッド(10)と、
     前記第1のガスが前記第1のガス流路(15a)内を流れるときに生じる第1の流路抵抗と前記第2のガスが前記第2のガス流路(15b)内を流れるときに生じる第2の流路抵抗とが異なるように、前記第1の流路抵抗と前記第2の流路抵抗との比率を制御する制御機構(45)とを備えている気相化学成長装置(100)。
  2.  前記制御機構(45)は、前記第1のガスが前記第1のガス流路(15a)内を流れる第1の流量と前記第2のガスが前記第2のガス流路(15b)内を流れる第2の流量との比率を制御することにより、前記第1の流路抵抗と前記第2の流路抵抗との比率を制御する請求項1に記載の気相化学成長装置(100)。
  3.  前記制御機構(45)は、前記反応炉(20)内の前記第1のガスおよび前記第2のガスの少なくとも一方のガスの流速分布の結果に基づいて、前記第1の流路抵抗と前記第2の流路抵抗との比率を制御する請求項1に記載の気相化学成長装置(100)。
  4.  前記制御機構(45)は、前記被処理基板(31)に形成された膜の膜厚分布に基づいて、前記第1の流路抵抗と前記第2の流路抵抗との比率を制御する請求項1に記載の気相化学成長装置(100)。
  5.  前記制御機構(45)は、前記第1のガスが前記第1のガス流路(15a)内を流れる第1の流量が前記第2のガスが前記第2のガス流路(15b)内を流れる第2の流量の1/4倍となる条件を基準として、前記第1の流路抵抗と前記第2の流路抵抗との比率を制御する請求項1に記載の気相化学成長装置(100)。
  6.  前記第1の噴出穴(16a)の断面積は、前記第2の噴出穴(16b)の断面積よりも小さい請求項1に記載の気相化学成長装置(100)。
  7.  前記第1の噴出穴(16a)の断面積は、前記第2の噴出穴(16b)の断面積の1/4以下である請求項6に記載の気相化学成長装置(100)。
  8.  前記第1のガスが原料ガスを含み、前記第2のガスがキャリアガスである請求項1に記載の気相化学成長装置(100)。
  9.  前記第1のガスがトリメチルガリウムガスを含み、前記第2のガスがアンモニアガスを含み、前記被処理基板(31)上に窒化ガリウム膜を形成する請求項1に記載の気相化学成長装置(100)。
  10.  第3のガスを前記反応炉(20)内に供給する第3のガス流路をさらに備え、
     前記シャワーヘッド(10)には、前記第3のガス流路に接続された複数の第3の噴出穴が形成されており、
     前記制御機構(45)は、前記第3のガスが前記第3のガス流路内を流れるときに生じる第3の流路抵抗と前記第2の流路抵抗とが異なるように、前記第2の流路抵抗と前記第3の流路抵抗との比率を制御し、
     前記第1のガスが第1の原料ガスであり、前記第2のガスがキャリアガスであり、前記第3のガスが第2の原料ガスである請求項1に記載の気相化学成長装置(100)。
  11.  前記制御機構(45)は、前記第2のガスが前記第2のガス流路内を流れる第2の流量と前記第3のガスが前記第3のガス流路内を流れる第3の流量との比率を制御することにより、前記第2の流路抵抗と前記第3の流路抵抗との比率を制御する請求項10に記載の気相化学成長装置(100)。
PCT/JP2012/059078 2011-04-05 2012-04-03 気相化学成長装置 WO2012137776A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-083771 2011-04-05
JP2011083771 2011-04-05

Publications (1)

Publication Number Publication Date
WO2012137776A1 true WO2012137776A1 (ja) 2012-10-11

Family

ID=46969172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059078 WO2012137776A1 (ja) 2011-04-05 2012-04-03 気相化学成長装置

Country Status (2)

Country Link
TW (1) TW201250055A (ja)
WO (1) WO2012137776A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10529542B2 (en) * 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043022A (ja) * 2005-08-05 2007-02-15 Sharp Corp 半導体処理装置および半導体処理方法
WO2009057583A1 (ja) * 2007-10-31 2009-05-07 Tohoku University プラズマ処理システム及びプラズマ処理方法
JP2010059520A (ja) * 2008-09-05 2010-03-18 Sharp Corp 気相成長装置及び気相成長方法
JP2010062383A (ja) * 2008-09-04 2010-03-18 Sharp Corp 気相成長装置及び気相成長方法
JP2011049595A (ja) * 2010-11-08 2011-03-10 Advanced Lcd Technologies Development Center Co Ltd 絶縁膜の形成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043022A (ja) * 2005-08-05 2007-02-15 Sharp Corp 半導体処理装置および半導体処理方法
WO2009057583A1 (ja) * 2007-10-31 2009-05-07 Tohoku University プラズマ処理システム及びプラズマ処理方法
JP2010062383A (ja) * 2008-09-04 2010-03-18 Sharp Corp 気相成長装置及び気相成長方法
JP2010059520A (ja) * 2008-09-05 2010-03-18 Sharp Corp 気相成長装置及び気相成長方法
JP2011049595A (ja) * 2010-11-08 2011-03-10 Advanced Lcd Technologies Development Center Co Ltd 絶縁膜の形成装置

Also Published As

Publication number Publication date
TW201250055A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
US20180209043A1 (en) Epitaxial chamber with customizable flow injection
US9624603B2 (en) Vapor phase growth apparatus having shower plate with multi gas flow passages and vapor phase growth method using the same
US20020170484A1 (en) Method and system for manufacturing III-V Group compound semiconductor and III-V Group compound semiconductor
US11124894B2 (en) Vapor phase growth apparatus and vapor phase growth method
JP4699545B2 (ja) 気相成長装置及び気相成長方法
WO2011011532A2 (en) Hollow cathode showerhead
US6994887B2 (en) Chemical vapor deposition apparatus and film deposition method
JP2009277730A (ja) 薄膜の気相成長方法および気相成長装置
JP7274729B2 (ja) Iii族窒化物半導体の製造方法
JP5015085B2 (ja) 気相成長装置
JP2003309075A (ja) 半導体製造装置および半導体装置の製造方法
TWI409359B (zh) 氣相成長裝置
JP2024073388A (ja) エピタキシャル成長装置及びそれに使用されるガス供給調節モジュール
WO2012137776A1 (ja) 気相化学成長装置
JP4879693B2 (ja) Mocvd装置およびmocvd法
TWI502096B (zh) 用於化學氣相沉積的反應裝置及反應製程
US11879171B2 (en) Semiconductor manufacturing device
TW201317385A (zh) 氣相成長裝置
TW202027138A (zh) 氣相成長裝置
US20240093365A1 (en) Systems and methods for pulse width modulated dose control
JPH11131233A (ja) 窒化チタン薄膜の作製方法及びcvd装置
JPH01257321A (ja) 気相成長装置
TW202407127A (zh) 供應模組及包含該供應模組的基板處理裝置
JP2020064978A (ja) 気相成膜装置
WO2013061659A1 (ja) 気相成長装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12767646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP