JP2013061884A - 加工シミュレーション装置、加工シミュレーション方法、加工制御装置および加工制御方法 - Google Patents

加工シミュレーション装置、加工シミュレーション方法、加工制御装置および加工制御方法 Download PDF

Info

Publication number
JP2013061884A
JP2013061884A JP2011201088A JP2011201088A JP2013061884A JP 2013061884 A JP2013061884 A JP 2013061884A JP 2011201088 A JP2011201088 A JP 2011201088A JP 2011201088 A JP2011201088 A JP 2011201088A JP 2013061884 A JP2013061884 A JP 2013061884A
Authority
JP
Japan
Prior art keywords
cutting
multiplier
simulation
actual
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011201088A
Other languages
English (en)
Other versions
JP5874262B2 (ja
Inventor
Yoshihiko Yamada
良彦 山田
Kenji Hamada
賢治 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011201088A priority Critical patent/JP5874262B2/ja
Publication of JP2013061884A publication Critical patent/JP2013061884A/ja
Application granted granted Critical
Publication of JP5874262B2 publication Critical patent/JP5874262B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Milling Processes (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

【課題】高精度に切削抵抗をシミュレーションにより算出することができる加工シミュレーション装置を提供する。
【解決手段】加工条件から取得される切削長さbおよび切込量hと切削乗数Kとに基づいて、シミュレーションにより切削抵抗Fの推定値を算出するシミュレーション部32と、実加工中の実切削抵抗Fを検出する抵抗検出センサ33と、シミュレーション部32にて予め設定された暫定切削乗数Kを用いて算出された切削抵抗Fの推定値と抵抗検出センサ33により検出された実切削抵抗Fとを比較して、実切削乗数Kを算出する実切削乗数算出部34とを備える。そして、シミュレーション部32は、実切削乗数算出部34にて実切削乗数Kが算出された後に、実切削乗数算出部34により算出された実切削乗数Kを用いて切削抵抗Fの推定値を算出する。
【選択図】図11

Description

本発明は、切削抵抗をシミュレーションにより算出する加工シミュレーション装置、その加工シミュレーション方法、並びに、加工シミュレーション装置を用いた加工制御装置および加工制御方法に関するものである。
特許文献1には、試し削り中の工具に加わる切削抵抗と切削抵抗の予測値との比較結果に基づいて、送り速度を補正することが記載されている。また、特許文献2には、算出した切削抵抗の予測値が適正値となるように、工具の送り経路および送り速度を決定することが記載されている。
特開2002-366212号公報 特開2003-263208号公報
ところで、一般に、特許文献1,2などのように切削抵抗の予測値の算出に際しては、加工条件や工具の切削乗数を用いる。この切削乗数は、予め設定した値である。ここで、切削乗数は、工具の摩耗などの種々の要因により変化する。しかし、従来は、切削乗数は予め設定した値を用いているため、算出した切削抵抗の予測値に誤差が生じている。
本発明は、このような事情に鑑みてなされたものであり、高精度に切削抵抗をシミュレーションにより算出することができる加工シミュレーション装置、加工シミュレーション方法、加工制御装置および加工制御方法を提供することを目的とする。
(加工シミュレーション装置)
(請求項1)本発明に係る加工シミュレーション装置は、加工条件から取得される切削長さおよび切込量と切削乗数とに基づいて、シミュレーションにより切削抵抗の推定値を算出するシミュレーション手段と、実加工中の実切削抵抗を検出する抵抗検出センサと、前記シミュレーション手段にて予め設定された暫定切削乗数を用いて算出された前記切削抵抗の推定値と前記抵抗検出センサにより検出された前記実切削抵抗とを比較して、実切削乗数を算出する実切削乗数算出手段と、を備え、前記シミュレーション手段は、前記実切削乗数算出手段にて前記実切削乗数が算出された後に、前記実切削乗数算出手段により算出された前記実切削乗数を用いて前記切削抵抗の推定値を算出する。
(請求項2)また、前記加工シミュレーション装置は、外周側に周方向に1以上の刃部を備える回転工具を用いて、当該回転工具を軸回りに回転しながら被加工物に対して相対移動することにより行う断続的な切削加工に適用し、前記加工シミュレーション装置は、前記シミュレーション手段にて前記実切削乗数を用いて算出された前記切削抵抗の推定値に基づいて、前記回転工具の回転中心の変位量を算出する工具中心変位量算出手段と、前記回転工具の回転中心の変位量に基づいて、前記被加工物の加工後形状を算出する加工後形状算出手段と、を備え、前記シミュレーション手段は、前記加工後形状をフィードバックして、過去の前記加工後形状に基づいて次の前記切込量を算出し、当該切込量を用いてシミュレーションを行うようにしてもよい。
(請求項3)また、前記実切削乗数算出手段は、荒加工工程または中仕上げ加工工程において前記抵抗検出センサにより検出された前記実切削抵抗を用いて前記実切削乗数を算出し、前記シミュレーション手段は、前記荒加工工程または中仕上げ加工工程の後工程である仕上げ加工工程において前記実切削乗数を用いて前記切削抵抗の推定値を算出するようにしてもよい。
(請求項4)また、前記加工シミュレーション装置は、前記切削乗数を記憶する切削乗数記憶手段を備え、前記実切削乗数算出手段は、前記切削乗数記憶手段に記憶されている前記切削乗数を、算出した前記実切削乗数に更新し、前記シミュレーション手段は、前記切削乗数記憶手段に記憶され更新された前記切削乗数を用いて前記切削抵抗の推定値を逐次算出するようにしてもよい。
(請求項5)また、前記加工シミュレーション装置は、前記切削乗数を記憶する切削乗数記憶手段と、前記シミュレーション手段により算出された前記切削抵抗の推定値に基づいて工具の摩耗量を推定する摩耗量推定手段と、を備え、前記実切削乗数算出手段は、前記切削乗数記憶手段に記憶されている前記切削乗数を、算出した前記実切削乗数に更新し、前記シミュレーション手段は、前記切削乗数記憶手段に記憶され更新された前記切削乗数を用いて前記切削抵抗の推定値を逐次算出し、前記摩耗量推定手段は、逐次算出された前記切削抵抗の推定値に基づいて前記工具の摩耗量を推定するようにしてもよい。
(加工制御装置)
(請求項6)本発明に係る加工制御装置は、上述した加工シミュレーション装置と、前記加工シミュレーション装置により算出された前記切削抵抗の推定値に基づいて加工条件を補正する補正手段とを備える。
(加工シミュレーション方法)
(請求項7)本発明に係る加工シミュレーション方法は、加工条件から取得される切削長さおよび切込量と予め設定された暫定切削乗数とに基づいて、シミュレーションにより切削抵抗の推定値を算出する暫定シミュレーション工程と、抵抗検出センサにより実加工中の実切削抵抗を検出する実切削抵抗検出工程と、前記シミュレーション工程にて算出された前記切削抵抗の推定値と前記実切削抵抗検出工程にて検出された前記実切削抵抗とを比較して、実切削乗数を算出する実切削乗数算出工程と、加工条件から取得される切削長さおよび切込量と前記実切削乗数算出工程にて算出された前記実切削乗数とに基づいて、シミュレーションにより切削抵抗の推定値を算出する実シミュレーション工程とを備える。
(加工制御方法)
(請求項8)本発明に係る加工制御方法によれば、上述した加工シミュレーション方法と、前記加工シミュレーション方法の前記実シミュレーション工程にて算出された前記切削抵抗の推定値に基づいて加工条件を補正する補正工程とを備える。
(請求項1)本発明によれば、予め設定された暫定切削乗数を用いて切削抵抗の暫定推定値を算出しておく。さらに、実加工中の実切削抵抗を抵抗検出センサにより検出する。仮に、暫定切削乗数が適正値であれば、切削抵抗の暫定推定値と実切削抵抗とが一致もしくは近似する。しかし、暫定切削乗数が適正値でなければ、切削抵抗の暫定推定値と実切削抵抗とは一致しない。そこで、両者を比較して、切削抵抗の推定値が実切削抵抗に一致もしくは近似するような実切削乗数を算出する。そして、その後のシミュレーションによる切削抵抗の推定値の算出に際しては、実切削乗数を用いることで、高精度に切削抵抗の推定値を算出することができる。
(請求項2)回転工具による断続的な切削加工においては、回転工具が1回転している間に、回転工具の刃部の位相によって、切削している瞬間と、切削していない空転している瞬間とが存在する。そのため、回転工具が1回転している間であって切削している間においても、切削抵抗が変動することがある。そして、切削抵抗により回転工具の回転中心は変位する。回転工具が変位した次の瞬間においては、当該変位に起因して切削抵抗が変化する。変化した切削抵抗に応じて、回転工具の回転中心がさらに変位する。変位した回転工具の回転中心に応じて、次の瞬間の切込量が変化する。このように、回転工具の切削抵抗と切込量とは、相互に関連している。そこで、本発明によれば、切削抵抗の推定値を算出する際に、切込量をフィードバックしている。つまり、切込量の算出と切削抵抗の推定値の算出との連成解析を行っている。これにより、高精度に切削抵抗の推定値を算出できる。
(請求項3)仕上げ加工工程の前加工としての荒加工工程または中仕上げ加工工程にて実切削乗数を算出しておき、この実切削乗数を用いて仕上げ加工工程にて切削抵抗の推定値を算出している。従って、仕上げ加工工程において算出される切削抵抗の推定値は、高精度にできる。
(請求項4)逐次更新された切削乗数を用いて、シミュレーションにより切削抵抗の推定値を逐次算出する。従って、高精度に切削抵抗の推定値を算出できる。例えば、工具が摩耗した場合に実切削抵抗が変化したとしても、切削抵抗の推定値は、実切削抵抗の変化に追従できる。
(請求項5)一般に、工具が摩耗すると切削抵抗は増大する。つまり、切削抵抗の変化から、工具の摩耗量を推定できる。そこで、逐次、切削乗数および切削抵抗の推定値を更新することで、過去の切削抵抗と現在の切削抵抗とを比較することにより、工具の摩耗量を推定することができる。
(請求項6)切削抵抗の推定値に基づいて加工条件を補正することにより、例えば切削抵抗が適正範囲となるような加工条件とすることができる。その結果、加工精度を向上することができる。
(請求項7)本発明に係る加工シミュレーション方法によれば、上述した加工シミュレーション装置と同様に、高精度に切削抵抗の推定値を算出できる。
(請求項8)本発明に係る加工制御方法によれば、上述した加工制御装置と同様に、加工精度を高精度にできる。
本実施形態における加工システムの適用対象の工作機械の構成を示す図である。 加工誤差の発生メカニズムを説明するための図であって、回転工具が変形している状態を示す。 加工誤差の発生メカニズムを説明するための図であって、回転工具に生じる切削抵抗を示す。 加工誤差の発生メカニズムを説明するための図であって、回転工具に生じる切削抵抗および回転工具の回転中心の変位量の経過時間に対する挙動を示す。 加工誤差の発生メカニズムを説明するための図であって、図4の各時刻における回転工具と被加工物との位置関係を示す。 加工誤差の発生メカニズムを説明するための図であって、回転工具の回転中心の変位量と加工誤差との関係を示す。(a)は、回転工具の回転位相に対する刃部の相対刃先位置を示す。(b)は、回転工具の回転位相に対する回転中心の変位量を示す。(c)は、回転工具の回転位相に対する刃部の絶対刃先位置を示す。 本実施形態の加工システムの詳細な機能ブロック図である。 図7の刃先形状記憶部に記憶される刃先形状に関する図である。 実切込量hおよび切削長さbを示す図である。 (a)は、図7の加工後形状算出部にて算出される第一の加工後形状に関する図である。(b)は、図7の加工後形状算出部にて算出される第二の加工後形状に関する図である。 図7の切削抵抗算出部による第一の算出処理を示すフローチャートである。 図7の切削抵抗算出部による第二の算出処理を示すフローチャートである。 回転工具の振動位相に関する説明図である。 回転工具の回転中心の振動状態と被加工物との断続的な切削抵抗との関係を示す図である。 回転工具の振動位相に対する回転工具の回転中心の変位量および実切込量の関係を示す。 回転主軸の回転速度と加工誤差との関係を示す。 回転主軸の回転速度と回転工具の最大振幅との関係を示す。
(1.加工システムの概要)
加工システムの概要について説明する。加工システムは、回転工具により被加工物Wを切削加工する場合に、加工誤差を極めて小さくすることを目的とする。その具体的な手段として、以下のことを行う。
(a1)切削抵抗の推定値をシミュレーションにより高精度に算出すること
(a2)算出した切削抵抗の推定値を用いて、加工誤差が小さくなるように工作機械を制御する際に補正を行うこと
(b1)加工誤差の推定値をシミュレーションにより高精度に算出すること
(b2)算出した加工誤差の推定値を用いて、加工誤差が小さくなる加工条件(特に回転工具の回転速度)を決定し、その加工条件に従ってNCデータを作成すること
(b3)算出した加工誤差の推定値を用いて、加工誤差が小さくなるように工作機械を制御する際に補正を行うこと
(c1)工具摩耗量の推定値をシミュレーションにより高精度に算出すること
(c2)工具摩耗量の推定値を用いて、加工誤差が小さくなるように工作機械を制御する際に補正を行うこと
つまり、加工システムは、切削抵抗の推定値および工具摩耗量の推定値をシミュレーションにより算出する加工シミュレーション装置、加工誤差の推定値を算出する加工誤差算出装置、切削抵抗の推定値や加工誤差の推定値や工具摩耗量の推定値を考慮して工作機械を制御する加工制御装置として機能する。ここで、加工シミュレーション装置、加工誤差算出装置および加工制御装置は、それぞれ別個の機能ではなく、相互に関連し合いながら機能する。
(2.対象工作機械の構成)
加工システムの適用対象の工作機械の構成について説明する。対象の工作機械は、被加工物Wを回転工具により切削加工する工作機械である。その工作機械の一例としての横型マシニングセンタについて、図1を参照して説明する。図1に示すように、当該工作機械は、ベッド1と、ベッド1上にてX軸方向に移動可能なコラム2と、コラム2の前面(図1の左面)にてY軸方向に移動可能なサドル3と、サドル3に回転可能に支持され回転工具5を保持する回転主軸4と、ベッド1上にてZ軸方向に移動可能であり被加工物Wを載置するテーブル6とを備える。
ここで、回転工具5は、外周側に周方向に1以上の刃部5a,5bを備える。回転工具5は、例えば、ボールエンドミル、スクエアエンドミル、フライスなどを含む。つまり、当該工作機械は、回転工具5を軸回りに回転しながら、被加工物Wに対して相対移動することにより、断続的な切削加工を行う。なお、図示しないが、当該工作機械は、コラム2、サドル3およびテーブル6を移動するためのモータや、クーラントを供給するクーラントノズル、クーラントポンプなどを備える。
(3.加工誤差の発生メカニズム)
次に、加工誤差の発生メカニズムについて、図2〜図6を参照して説明する。加工誤差とは、被加工物Wの実加工後形状と、被加工物Wの目標形状(設計値)との誤差である。
図2に示すように、回転工具5が変形することにより、回転工具5における各Z軸方向断面の回転中心座標が指令座標からずれることが、加工誤差の原因の一つである。Z軸方向とは、回転主軸4の回転軸方向である。特に、L/D(=長さ/直径)の大きな回転工具5(細長い回転工具)を用いる場合には、当該回転工具5の剛性が低いため、切削抵抗Fyによって当該回転工具5の先端側が撓み変形しやすい。ここで、回転工具5の先端外周面に周方向に1以上の刃部5a,5bを備える。つまり、切削抵抗Fyによって、回転工具5の先端側(刃部5a,5bの部位)の回転中心Cが変位することにより、被加工物Wの加工後形状が変化する。その結果、加工誤差を生じる。ここで、回転中心Cとは、回転工具5が変形していない状態での回転工具5の軸方向(回転主軸4の回転軸方向)の各断面の回転中心、すなわち、回転工具5における各Z軸方向断面の回転中心を意味する。ただし、説明を分かりやすくするために、以下においては、回転中心Cは、あるZ軸座標における1箇所の回転中心として説明する。
ここで、回転工具5に生じる切削抵抗Fyが一定であれば、回転工具5の先端側の撓み量は一定となる。しかし、回転工具5による断続的な切削加工においては、回転工具5に生じる切削抵抗Fyは逐次変化する。そのため、回転工具5の先端側の回転中心Cの変位量は、主としてY方向に逐次変化する。このときの回転工具5の先端側の回転中心Cの変位量と切削抵抗Fyとは、回転工具5の動特性に依存する。工具の動特性とは、入力された力に対する変形の挙動を示すものであり、伝達関数(コンプライアンスおよび位相遅れ)もしくはそれから算出される質量(M)、粘性減衰係数(C)、バネ定数(K)、共振周波数(ω)、減衰比(ζ)などにより表される。図2において往復矢印は、回転工具5の先端側の回転中心Cが主としてY方向に往復移動することを意味する表示である。
図2には、Y方向の切削抵抗Fyによる加工誤差について説明した。ただし、実際には、図3に示すように、回転工具5には、反切込方向の切削抵抗Fyの他に、反送り方向の切削抵抗Fxおよび軸方向の切削抵抗Fzが生じる場合がある。つまり、回転工具5の先端側の回転中心Cは、各方向の切削抵抗Fx,Fy、Fzの合成抵抗Fxyz(図示せず)の方向に変位する。なお、図3には、スクエアエンドミルを図示しているが、図2に示すようなボールエンドミルの場合も同様である。
次に、回転工具5を回転しかつ送りながら被加工物Wの断続的な切削加工を行う際において、回転工具5に生じる切削抵抗Fyおよび回転工具5の先端側の回転中心Cの変位量Yaの経過時間tに対する挙動について、図4および図5を参照して説明する。ここでは、反切込方向(Y方向)における切削抵抗Fyおよび先端側の回転中心Cの変位量Yaについて取り上げて説明する。これは、反切込方向(Y方向)が加工誤差に対して最も影響が大きいためである。
図4と図5(a)〜(e)を参照して、切削抵抗Fyの経過時間tに対する挙動について説明する。図4に示すように、切削抵抗Fyは、ゼロ付近から時刻t1にて大きな値に変化し、時刻t2に再びゼロ付近に変化している。図5(a)(b)が、それぞれ図4の時刻t1,t2に対応する。図5(a)に示すように、時刻t1は、一方の刃部5aが被加工物Wに接触開始した瞬間である。つまり、時刻t1は、一方の刃部5aにより切削加工を開始した瞬間である。一方、図5(b)に示すように、時刻t2は、一方の刃部5aによる被加工物Wの切削加工を終了した瞬間である。このように、t1〜t2の間において、一方の刃部5aが切削加工している。
その後、図4に示すように、t2〜t4の間は、切削抵抗Fyがゼロ付近となっている。この間は、時刻t3に対応する図5(c)に示すように、両方の刃部5a,5bが被加工物Wに接触していない。つまり、回転工具5は空転している。
その後、図4に示すように、切削抵抗Fyが時刻t4に再び大きな値に変化し、時刻t5に再びゼロ付近に変化している。図4の時刻t4には、対応する図5(d)に示すように、他方の刃部5bが被加工物Wに接触開始している。つまり、他方の刃部5bにより切削加工を開始している。また、図4の時刻t5には、対応する図5(e)に示すように、他方の刃部5bによる切削加工を終了している。このように、t4〜t5の間において、他方の刃部5bが切削加工している。
ここで、図5における今回の切削領域より、t1〜t2、t4〜t5の各瞬間において、実切込量(瞬間的な切込量)が異なることが分かる。つまり、実切込量は、切削開始から一気に多くなり、ピークに達した後に徐々に少なくなっている。より詳細には、前回切削されていない部位と前回切削された部位との境界の前後で変化している。そして、図4の切削抵抗Fyのうち急激に大きくなっている部分に示すように、切削加工中の切削抵抗Fyは、略三角形状になっており、実切込量に応じて変化していることが分かる。
また、回転工具5は、時刻t1,t4において切削加工を開始するということは、換言すると、時刻t1,t4において被加工物Wに衝突するということになる。つまり、回転工具5が空転状態から切削加工を開始する瞬間には、回転工具5には、被加工物Wとの衝突による断続的な切削抵抗が発生する。
つまり、回転工具5の先端側の回転中心Cは、切削加工している間の切削抵抗Fyの変動によって、少なくとも反切込方向(Y方向)への加速度を生じる。さらに、断続切削であることによって、回転工具5の先端側の回転中心Cは、切削加工している間の切削抵抗Fy(衝撃力のような力)に起因して、少なくとも反切込方向(Y方向)に振動する。
従って、回転工具5の先端側の回転中心Cの変位量Yaは、図4に示すように、回転工具5の固有値に応じて振動している。特に、切削加工中に変動する切削抵抗Fyが発生した直後に、回転中心Cの変位量Yaが最も大きくなり、その後に減衰している。そして、再び、切削抵抗Fyにより変位量Yaが大きくなり、繰り返す。
次に、回転工具5の先端側の回転中心Cの変位量Yaが、加工誤差にどのように影響を与えるかについて図6(a)〜図6(c)を参照して説明する。回転工具5の回転位相φのそれぞれにおいて、回転工具5の先端側の回転中心Cに対する刃部5aの刃先の相対位置(相対刃先位置)は、図6(a)に示すようになる。つまり、刃部5aが被加工物Wを切削加工している回転位相φは、約30°〜90°の位相範囲となる。
そして、先端側の回転中心Cの変位量Yaとして、3種類について示す。ただし、これらはいずれも模式的に示しており、図6(b)の縦軸は、図6(a)の縦軸に対する縮尺は同一ではない。第一番(No.1)の変位量Yaは、図4に示したような切込量に応じた挙動とする。第二番(No.2)の変位量Yaは、図4にて示したような振動する挙動とする。第三番(No.3)の変位量Yaは、一定である場合とする。
このように、第一番(No.1)〜第三番(No.3)の変位量Yaの場合に、被加工物Wに対する刃部5aの刃先位置(絶対刃先位置)は、図6(c)に示すようになる。つまり、図6(a)の挙動に、図6(b)のそれぞれの挙動を合算した状態となる。ここで、図6(c)において、ハッチングを付した回転位相φの範囲が、刃部5aにより切削加工を行っている。さらに、実加工においては、回転工具5の回転速度は、回転工具5の送り速度に対して非常に大きい。従って、今回の切削加工における切削面の大部分は、次の切削加工により削り取られる。そうすると、今回の切削加工における切削面のうち、最終加工後形状に表れる部分は、図6(c)のハッチングを付した回転位相φのうち90°付近となる。つまり、少なくとも、ハッチングを付した回転位相φのうち最深位置が、最終加工後形状に表れる。
このことを鑑みると、図6(c)において、第一番(No.1)の変位量Yaの場合には、工具回転位相φが90°付近において最深位置となり、目標値に一致する。従って、第一番(No.1)の変位量Yaの場合には、加工誤差がほぼゼロとなる。第二番(No.2)の変位量Yaの場合には、工具回転位相φが90°より僅かに手前において最深位置となり、目標値を下回る。従って、第二番(No.2)の変位量Yaの場合には、削りすぎとなる加工誤差が生じる。ただし、第二番(No.2)の変位量Yaによっては、削り残しとなる加工誤差を生じる場合や、加工誤差がゼロとなる場合がある。第三番(No.3)の変位量Yaの場合には、工具回転位相φが90°付近において最深位置となり、目標値より上回る。従って、第三番(No.3)の変位量Yaの場合には、常に削り残しとなる加工誤差が生じる。
このように、刃部5aの絶対刃先位置の最深位置およびその付近が、加工後形状を形成する。つまり、回転工具5の先端側の回転中心Cの変位量Yaのみならず、刃部5aの刃先位置が回転中心Cに対してどの位置に位置しているかが、加工誤差に影響を及ぼすことが分かる。
(4.加工システムの機能構成)
次に、加工システムの機能構成についての詳細を図7〜図17を参照して説明する。加工システムは、図7の機能ブロック図に示すように構成される。以下に、図7に示す加工システムの機能構成について説明する。
機械情報記憶部10は、適用対象の工作機械に関する各種情報を記憶している。各種情報には、例えば、工作機械の機械構成、コーナー部減速パラメータ、回転主軸4の回転速度上限値、各送り軸の移動速度の上限値などの制御パラメータが含まれる。指令値算出部11は、既に作成されているNCデータおよび機械情報記憶部10に記憶されている機械情報に基づいて、回転工具5の中心位置指令値C0と、回転主軸4の位相指令値とを算出する。回転工具5の中心位置指令値C0は、機械座標系にて表される。
工具中心座標算出部12は、指令値算出部11により算出された回転工具5の中心位置指令値C0と、工具中心変位量算出部42により算出された回転工具5の先端側の回転中心Cの変位量とに基づいて、回転工具5の先端側の回転中心Cの座標を算出する。つまり、シミュレーションを続けることによって先端側の回転中心Cの変位量が変化した場合には、その変化を逐次反映させて先端側の回転中心Cの座標を算出する。刃先形状記憶部13は、1または複数の回転工具5の刃先形状を記憶している。この刃先形状について図8を参照して説明する。刃先形状記憶部13には、例えば、図8に示すボールエンドミルの場合には、Aで囲まれた部分の刃部5aの形状が記憶されている。
相対刃先位置算出部14は、回転工具5の先端側の回転中心Cに対する刃部5a,5bの相対刃先位置を算出する。ここでは、相対刃先位置算出部14は、指令値算出部11により算出された回転主軸4の位相指令値と、刃先形状記憶部13に記憶されている刃先形状とに基づいて、相対刃先位置を算出する。つまり、相対刃先位置算出部14は、回転工具5の回転位相φのそれぞれについて、刃部5a,5bの相対刃先位置を算出する。相対刃先位置は、例えば、図6(a)に示すような情報である。
絶対刃先位置算出部15は、回転工具5の先端側の回転中心Cの座標と相対刃先位置とに基づいて被加工物Wに対する刃部5a,5bの絶対刃先位置を算出する。この絶対刃先位置算出部15は、回転工具5の1回転中において経過時間tに応じて変化する絶対刃先位置を算出することができる。絶対刃先位置は、例えば、図6(c)に示すような情報である。また、シミュレーションを続けることによって刃部5a,5bの相対刃先位置が変化した場合には、絶対刃先位置算出部15は、その変化を逐次反映させて絶対刃先位置を算出する。
素材形状算出部21は、CADにて作成された形状データに基づいて、被加工物Wの素材形状を算出する。加工形状記憶部22は、素材形状算出部21にて算出された被加工物Wの素材形状、および、加工後形状算出部24にて算出された被加工物Wの加工形状の履歴を記憶する。つまり、記憶される情報には、最終加工後形状のみならず、加工途中において逐次変化する被加工物Wの形状が含まれる。
実切込量算出部23は、加工の各瞬間において、刃部5a,5bによる実切込量hをシミュレーションにより算出する。実切込量hについて、図9(a)を参照して説明する。図9(a)には、回転工具5の回転位相φが約45°の瞬間の状態を示している。この瞬間において、刃部5aが被加工物Wに接触している部分のうち回転工具5の径方向長さが、実切込量hとなる。図9(a)に示す状態から回転工具5が右回りに回転するとき、実切込量hは、徐々に少なくなっていく。そして、シミュレーションを続けることによって刃部5a,5bの絶対刃先位置が変化した場合には、実切込量算出部23は、その変化を逐次反映させて実切込量hを算出する。つまり、実切込量算出部23は、絶対刃先位置算出部15により算出された絶対刃先位置と加工形状記憶部22に記憶されているその時点の被加工物Wの形状とに基づいて、実切込量hを算出する。なお、図9(a)において、Rdは、切込方向(−Y方向)の削り代である。
加工後形状算出部24は、逐次移動していく絶対刃先位置を被加工物Wに転写させることにより、被加工物Wの加工後形状を算出する。そして、加工後形状算出部24により算出された被加工物Wの加工後形状は、加工形状記憶部22に記憶される。そして、シミュレーションを続けることによって絶対刃先位置が変化した場合には、加工後形状算出部24は、その変化を逐次反映させて新たな加工後形状を算出する。ここで、加工後形状算出部24により算出される加工後形状として、以下の2通りの何れかを採用できる。これらについて、図10(a)(b)を参照して説明する。
第一の加工後形状として、図10(a)に示すように、加工後形状算出部24は、回転工具5の刃部5a,5bのそれぞれの1回転中において絶対刃先位置のうち切込方向(−Y方向)の最深位置P(n)を抽出し、当該最深位置P(n)を被加工物Wの加工後形状として算出する。そして、これを繰り返す。この場合、被加工物Wの加工後形状は、過去の最深位置P(1)〜P(n-1)および今回の最深位置P(n)としての点データとなる。ここで、隣り合う最深位置P(n-1)、P(n)の距離は微小であるため、最深位置P(n)を加工後形状とした場合であっても、十分高精度に加工後形状を認識することができる。
第二の加工後形状として、加工後形状算出部24は、刃部5a,5bの絶対刃先位置の軌跡を被加工物Wに転写させることにより被加工物Wの加工後形状を算出する。そして、これを繰り返す。この場合、図10(a)に示す最深位置P(n)のみではなく、その前後の位置についても加工後形状として記憶することになる。そして、今回切削により過去の形状履歴として記憶されている部分Qb(n-1)を削り取る場合には、削り取られた部分Qb(n-1)の形状情報を新たに形成された形状情報Q(n)に更新する。このようにして、最新の加工後形状が逐次形成されていく。最新の加工後形状としては、過去の形状情報Q(n-1)のうち削り取られていない部分Qa(n-1)と今回形成された部分Q(n)とにより構成される。このようにして形成された第二の加工後形状は、上述した第一の加工後形状に比べてより微細な点データ、もしくは、連続線として記憶される。従って、第二の加工後形状は、面粗さなどを把握することができる。
切削乗数記憶部31は、式(1)〜(3)に示すように切削抵抗Fp,Ft,Ffの推定値を算出するために用いる切削乗数Kpc,Kpe,Ktc,Kte,Kfc,Kfeを記憶する。ここで、切削抵抗のそれぞれの成分主分力Fp、背分力Ftおよび送り分力Ffは、図9(a)に示す。また、切削乗数記憶部31には、予め設定された暫定切削乗数Kpc,・・・が記憶されている。ただし、実切削乗数算出部34により実切削乗数Kpc,・・・が算出されると、切削乗数記憶部31に記憶される切削乗数Kpc,・・・は、更新される。なお、過去の切削乗数Kpc,・・・は、記憶し続けることもできるし、削除することもできる。
Figure 2013061884
Figure 2013061884
Figure 2013061884
ここで、切削抵抗Fp,Ft,Ffの推定値を算出するために用いられる式(1)〜(3)において、実切込量hは上述において図9(a)を参照して説明した。ここでは、切削長さbについて、図9(b)を参照して説明する。図9(b)は、図9(a)のA−A断面図、すなわち刃部5aの面に沿った断面図である。このとき、図9(b)に示すように、切削長さbは、送り分力方向(図9(a)に示す)における刃部5aによる被加工物Wとの接触長さである。
切削抵抗算出部32は、実切込量算出部23により算出された実切込量hと、加工条件から取得される切削長さbと、切削乗数記憶部31に記憶されている切削乗数Kpc,Kpe,Ktc,Kte,Kfc,Kfeとに基づいて、式(1)〜式(3)に従って切削抵抗Fp,Ft,Ffの推定値を算出する。ここで、上述したように、最初は、切削乗数記憶部31には、予め設定した暫定切削乗数Kpc・・・が記憶されている。従って、最初に算出される切削抵抗Fp,Ft,Ffの推定値は、暫定値となる。しかし、切削乗数記憶部31に更新された実切削乗数Kpc・・・が記憶されると、算出される切削抵抗Fp,Ft,Ffの推定値は、実切削乗数Kpc・・・を用いて算出された値となる。さらに、シミュレーションを続けることによって加工後形状および切込量hが変化した場合には、切削抵抗算出部32は、その変化を逐次反映させて次の瞬間における切削抵抗Fp,Ft,Ffの推定値を算出する。ここで、主分力Fp,背分力Ftおよび送り分力Ffと、XYZ方向の切削抵抗Fx,Fy,Fzとは、相互に座標変換することにより算出できる関係にある。
切削抵抗検出センサ33は、実加工中の実切削抵抗Fx,Fy,Fzを検出する。例えば、切削抵抗検出センサ33は、荷重センサ、変位センサ、送り軸の駆動モータの消費電力検出器、供給電流センサなどを適用できる。つまり、荷重センサにより実切削抵抗Fx,Fy,Fzそのものを直接検出することもできるし、変位センサやその他により間接的に実切削抵抗Fx,Fy,Fzを検出することもできる。
実切削乗数算出部34は、切削乗数記憶部31に最初に記憶されている予め設定された暫定切削乗数Kpc・・・を用いて算出された暫定切削抵抗Fp,Ft,Ffの推定値と、切削抵抗検出センサ33により検出された実切削抵抗Fx,Fy,Fzを座標変換して求めた実切削抵抗Fp,Ft,Ffとを比較して、実切削乗数Kpc・・・を算出する。ここで、切削乗数Kpc・・・は、回転工具5の刃部5a,5bの摩耗などの種々の要因により変化する。しかし、実切削抵抗Fp,Ft,Ffを用いて実切削乗数Kpc・・・を算出するため、算出された実切削乗数Kpc・・・は、現在の状況に応じた適正値となる。
つまり、切削抵抗算出部32は、更新された切削乗数Kpc・・・を用いて切削抵抗Fp,Ft,Ffの推定値を算出する。この切削抵抗Fp,Ft,Ffの推定値を用いて、実切削乗数算出部34は、さらに実切削乗数Kpc・・・を算出することができる。このように、切削乗数記憶部31に記憶されている切削乗数Kpc・・・は逐次更新されていき、適正値となる。
ここで、切削抵抗算出部32による切削抵抗Fp,Ft,Ffの推定値の算出処理は、以下の2通りの何れかを採用できる。これらについて、図11および図12を参照して説明する。第一の算出処理として、図11に示すように、現在行っているシミュレーションが荒加工工程または中仕上げ加工工程であるか否かを判定する(S1)。荒加工工程または中仕上げ加工工程である場合には(S1:Y)、暫定切削乗数Kpc・・・を用いて暫定的な切削抵抗Fp,Ft,Ffの推定値を算出する(S2)。続いて、切削抵抗検出センサ33により検出された実切削抵抗Fx,Fy,Fzを取得する(S3)。続いて、暫定的な切削抵抗Fp,Ft,Ffの推定値と実切削抵抗Fx,Fy,Fzから算出して得られた実切削抵抗Fp,Ft,Ffとを比較して、実切削乗数Kpc・・・を算出する(S4)。
続いて、現在行っているシミュレーションが仕上げ加工工程であるか否かを判定する(S5)。S1の判定において、現在行っているシミュレーションが荒加工工程および中仕上げ加工工程でない場合にもこの判定を行う(S5)。ここで、仕上げ加工工程は、荒加工工程の後工程、または、中仕上げ加工工程の後工程である。そして、現在行っているシミュレーションが仕上げ加工工程である場合には(S5:Y)、算出された実切削乗数Kpc・・・を用いて切削抵抗Fp,Ft,Ffの推定値を算出する。そして処理を終了する。この算出処理を採用した場合には、仕上げ加工工程において算出される切削抵抗の推定値を高精度にできる。また、逐次実切削乗数Kpc・・・を算出しないため、計算負荷が大きくならない。
第二の算出処理について、図12を参照して説明する。図12に示すように、現在切削乗数記憶部31に記憶されている切削乗数Kpc・・・を用いて切削抵抗Fp,Ft,Ffの推定値を算出する(S11)。最初は、暫定切削乗数Kpc・・・を用いる。続いて、切削抵抗検出センサ33により検出された実切削抵抗Fx,Fy,Fzを取得する(S12)。続いて、算出した切削抵抗Fp,Ft,Ffの推定値と実切削抵抗Fx,Fy,Fzから算出して得られた実切削抵抗Fp,Ft,Ffとを比較して、切削乗数Kpc・・・を算出する(S13)。
続いて、算出した切削乗数Kpc・・・と切削乗数記憶部31に記憶されている切削乗数Kpc・・・とを比較して、両者が異なるか否かを判定する(S14)。両者が異なる場合には(S14:Y)、切削乗数記憶部31に記憶されている切削乗数Kpc・・・を、S13にて算出した切削乗数Kpc・・・に更新する(S15)。一方、両者が一致する場合には(S14:N)、更新処理を行わない。そして、切削抵抗の推定値の算出処理を終了するか否かを判定し(S16)、終了しない場合には、S11に戻り処理を繰り返す。
このように、逐次更新された切削乗数Kpc・・・を用いて、シミュレーションにより切削抵抗Fp,Ft,Ffの推定値を逐次算出する。従って、高精度に切削抵抗Fp,Ft,Ffの推定値を算出できる。例えば、回転工具5の刃部5a,5bが摩耗した場合に実切削抵抗Fp,Ft,Ffが変化したとしても、切削抵抗Fp,Ft,Ffの推定値は、実切削抵抗Fp,Ft,Ffの変化に追従できる。
工具動特性記憶部41は、回転工具5の動特性係数を記憶する。動特性係数には、質量係数M、粘性抵抗係数Cおよびばね定数Kが含まれる。これら動特性係数M,C,Kは、予め回転工具5に対してハンマリング試験を行ったり、シミュレーションを行ったり、機械に設置したセンサにより実際に測定したりすることにより、取得することができる。
工具中心変位量算出部42は、切削抵抗算出部32により算出された切削抵抗Fp,Ft,Ffの推定値と、工具動特性記憶部41に記憶されている動特性係数M,C,Kとに基づいて、回転中心Cの変位量を算出する。回転中心Cの変位量の算出に用いる基本式は、式(4)である。そして、工具中心変位量算出部42は、算出した回転中心Cの変位量を、工具中心座標算出部12にフィードバックする。従って、シミュレーションを続けることによって切削抵抗Fp,Ft,Ffが変化した場合には、工具中心変位量算出部42は、その変化を逐次反映させて回転中心Cの変位量を算出する。ここで、工具中心変位量算出部42は、回転中心Cの変位量に基づいて回転工具5の振動の振幅を算出する。
Figure 2013061884
ここで、回転工具5に生じる切削抵抗Fp,Ft,Ffが変動することによって、回転中心Cの変位量が変化する。また、回転中心Cの変位量は、回転工具5による切削加工中の切削抵抗Fyを受けるときの回転工具5の振動位相θによって変化する。より詳細には、回転工具5が第1回目の切削抵抗を受ける時を振動位相0°と定義した場合に、回転工具5が第2回目の切削抵抗を受ける時における回転工具5の振動位相θによって、回転中心Cの変位量が変化する。そこで、切削抵抗Fyを受けるときの回転工具5の振動位相θと反切込方向(Y方向)の回転中心Cの変位量(Ya)との関係について、図13〜図15を参照して説明する。なお、以下の説明において、回転工具5が第2回目の切削抵抗を受ける時における回転工具5の振動位相θを、単に「振動位相θ」と称する。
まず、図13に示すように、回転工具5は、X方向に送り移動されながら、反切込方向(Y方向に)に振動する状態とする。そして、当該振動の振動位相θ=0°〜360°を図13に示すように定義する。つまり、振動位相θ=0°,360°は、回転工具5が反切込方向に移動しかつ反切込方向の移動速度が最大となる振動位相である。振動位相θ=90°は、回転工具5が反切込方向から切込方向に切り替わる瞬間の振動位相である。振動位相θ=180°は、回転工具5が切込方向に移動しかつ切込方向の移動速度が最大となる振動位相である。振動位相θ=270°は、回転工具5が切込方向から反切込方向に切り替わる瞬間の振動位相である。
つまり、振動位相θ=0°〜90°の範囲は、回転工具5が反切込方向に移動し、かつ、反切込方向の移動速度が低減している振動位相となる。振動位相θ=90°〜180°の範囲は、回転工具5が切込方向に移動し、かつ、切込方向の移動速度が増加している振動位相となる。振動位相θ=180°〜270°の範囲は、回転工具5が切込方向に移動し、かつ、切込方向の移動速度が低減している振動位相となる。振動位相θ=270°〜360°の範囲は、回転工具5が反切込方向に移動し、かつ、反切込方向の移動速度が増加している振動位相となる。
そして、振動位相θ=180°の場合およびθ=0°の場合において、回転工具5が受ける切削抵抗Fyの方向と、回転工具5の振動による変位方向との関係について、図14(a)(b)を参照して説明する。図14(a)に示すように、振動位相θ=180°の場合には、切削抵抗Fyの方向が、回転工具5の振動による変位方向に対して逆方向となる。一方、図14(b)に示すように、振動位相θ=0°の場合には、切削抵抗Fyの方向が、回転工具5の振動による変位方向に対して同方向となる。つまり、図14(a)の場合には、切削抵抗Fyが回転工具5の振動の振幅を低減するように作用するのに対して、図14(b)の場合には、切削抵抗Fyが回転工具5の振動の振幅を増大するように作用する。
より詳細に、振動位相θ=0°、90°、170°、180°、190°、270°のそれぞれについて、工具回転位相φと、実切込量hおよび回転中心Cの変位量Yaとの関係について検討した。それぞれの結果を図15(a)〜図15(f)に示す。ここで、振動位相θは、回転工具5が第1回目の切削抵抗を受けた時刻から第2回目の切削抵抗を受ける時刻までの時間に相当する。そこで、回転工具5の回転速度S(回転主軸4の回転速度)を変化させることで振動位相θを変化させることとしている。
また、図15(a)〜図15(f)の変位量Yaにおいて、実線は刃部5aが切削抵抗を受け得る状態から刃部5bが切削抵抗を受け得る状態となるまでの挙動を示し、破線は刃部5bが切削抵抗を受け得る状態から刃部5aが切削抵抗を受け得る状態となるまでの挙動を示す。そして、横軸を時間として、「0」が、回転工具5が第1回目の切削抵抗を受けた時刻を示し、T2が、回転工具5が第2回目の切削抵抗を受けた時刻を示す。T3以降は、回転工具5が第3回目以降の切削抵抗を受けた時刻を示す。
図15(a),(c),(f)に示すように、振動位相θ=0°,170°,270°の場合には、回転中心Cの変位量Yaが発散している。これは、回転工具5の受ける第2回目以降の切削抵抗が、回転工具5の変位を助長しているためであると考えられる。一方、振動位相θ=180°、190°の場合には、回転工具5が切削抵抗を受けるたびに、切削抵抗Fyが回転工具5の振動の変位方向を変更していることが分かる。
特に、振動位相θ=180°においては、回転工具5が切削抵抗を受ける瞬間において、回転工具5の変位量Yaがゼロに非常に近い状態となっていることが分かる。振動位相θ=190°においては、θ=180°に比べると、回転工具5が切削抵抗を受ける瞬間において、回転工具5の変位量Yaがゼロからに非常に僅かにずれていることが分かる。ただし、振動位相θ=190°においても、回転工具5の振動を十分に抑制できている。また、振動位相θ=90°においては、刃部5bが切削抵抗を受け得る瞬間において回転工具5の変位量Yaが大きいために、刃部5bによって切削が行われていない。つまり、二枚刃の回転工具5であるにも関わらず、1枚刃としてしか機能しておらず、加工面精度に悪影響を及ぼすおそれがある。
工具摩耗量推定部51は、切削抵抗算出部32により逐次算出された切削抵抗Fp,Ft,Ffの推定値に基づいて、回転工具5の刃部5a,5bの摩耗量を推定する。ここで、一般に、回転工具5の刃部5a,5bが摩耗すると切削抵抗Fp,Ft,Ffは増大する。つまり、切削抵抗Fp,Ft,Ffの変化から、回転工具5の刃部5a,5bの摩耗量を推定できる。そこで、逐次、切削乗数Kpc・・・および切削抵抗Fp,Ft,Ffの推定値を更新することで、過去の切削抵抗Fp,Ft,Ffと現在の切削抵抗Fp,Ft,Ffとを比較することにより、回転工具5の刃部5a,5bの摩耗量を推定することができる。上記の他、工具摩耗量推定部51は、切削抵抗検出センサ33により検出された切削抵抗Fx,Fy,Fzに基づいて、回転工具5の刃部5a,5bの摩耗量を推定することもできる。
加工誤差算出部61は、加工後形状算出部24により算出された被加工物Wの加工後形状と被加工物Wの目標形状との差に基づいて、被加工物Wの加工誤差を算出する。ここで、加工後形状算出部24が図10(a)に示すような最深位置P(n)を加工後形状として算出する場合には、加工誤差算出部61は、削り残しとしての加工誤差を算出できる。一方、加工後形状算出部24が図10(b)に示すような軌跡を加工後形状として算出する場合には、加工誤差算出部61は、削り残しとしての加工誤差に加えて、面粗さを算出できる。
回転速度決定処理部71は、回転工具5の振動状態と回転工具5が第2回目の切削抵抗Fyを受ける時の回転工具5の振動位相θとに基づいて、回転工具5の振幅を小さくするように回転工具5の回転速度S(回転主軸4の回転速度)を決定する。回転速度決定処理部71により回転速度Sを決定して、NCデータそのものを変更することもできるし、加工中に回転速度Sを補正することもできる。また、回転工具5の振幅を低減できることにより、びびりが発生することを防止できるという効果を奏する。
図16および図17を参照して、回転速度決定処理部71による回転速度Sの決定処理について説明する。図16は、回転主軸4の回転速度Sと加工誤差Δyとの関係について示し、図17は、回転主軸4の回転速度Sと回転工具5の最大振幅Amaxとの関係について示す。また、図16および図17において、振動位相θについても図示している。
図16に示すように、振動位相θ=180°以上で、θ=270°未満の範囲で、削り残しの加工誤差Δyが小さくなっている。この理由は、上述したように、切削抵抗Fyが回転工具5の振動の振幅を低減させるように作用するためである。
例えば、加工誤差Δyの上限閾値をTh1とし、下限閾値をTh2とした場合には、振動位相θ=180°〜約200°の範囲にすれば良いことが分かる。ただし、上下限閾値内に含まれる範囲は、回転工具5の剛性などによって変化するため、回転工具5の剛性などを高くすることで、θ=270°に近い振動位相であっても、加工誤差Δyを小さくすることができる場合がある。
そして、回転主軸4の回転速度Sとして、当該振動位相θに対応する回転速度Sとする。ここで、加工誤差Δyがゼロとなる振動位相θに対応する回転速度Sを採用することは当然であるが、その他の振動位相θであっても加工誤差Δyは上下限範囲内であれば十分に採用できる。従って、回転速度Sを適切に設定することで、加工誤差Δyそのものの発生を低減できる。
さらに、図17に示すように、回転工具5の最大振幅Amaxが設定閾値Th3以下となるような回転速度Sとするようにもできる。回転工具5の最大振幅Amaxが大きくなると、回転工具5が折損するおそれがある。しかし、最大振幅Amaxが設定閾値Th3以下となるように回転速度Sを決定することで、回転工具5の折損を確実に防止しつつ、加工誤差Δyを低減できる。図17によれば、最大振幅Amaxが設定閾値Th3以下となる振動位相は、θ=180°〜約200°の範囲であることが分かる。ただし、設定閾値Th3以下に含まれる範囲は、回転工具5の剛性などによって変化するため、回転工具5の剛性などを高くすることで、θ=270°に近い振動位相であっても、最大振幅Amaxを小さくすることができる場合がある。
機械制御部73は、NCデータに基づいて、各駆動部74を制御する。特に、機械制御部73は、回転速度決定処理部71にて決定されたNCデータの回転速度Sにより、回転主軸4の回転速度を制御する。
補正部72は、加工誤差算出部61により算出された加工誤差Δyに基づいて加工条件を補正する。また、補正部72は、加工中において回転速度決定処理部71にて回転速度Sが決定された場合には、当該回転速度Sとなるように補正する。さらに、補正部72は、工具中心変位量算出部42にて回転工具5の振動の最大振幅Amaxが設定閾値Th3を超えた場合には、設定閾値Th2となるような回転速度Sに補正する。
さらに、補正部72は、上記の他、切込方向の削り代Rdまたは送り速度を変更するように指令値を補正することもできる。例えば、切込方向の削り代Rdを小さくまたは送り速度を低くすることで、回転工具5の回転中心Cの変位量を低減させる。その結果、加工誤差を低減できる。また、補正部72は、指令位置の軌跡そのものを変更して、加工誤差を低減できるようにすることもできる。
上述した加工システムによれば、以下のような効果を奏する。回転工具5による断続的な切削加工においては、回転工具5が1回転している間に、回転工具5の刃部5a,5bの位相によって、切削している瞬間と、切削していない空転している瞬間とが存在する。そのため、回転工具5の回転中心Cの変位量が、そのまま加工誤差となるとは限らない。さらに、回転工具5が1回転している間であって切削している間においても、切削抵抗Fp,Ft,Ffが変動することがある。
そこで、回転工具5の回転中心Cの変位量に加えて、刃部5a,5bの相対刃先位置を考慮することにより、被加工物Wに対する刃部5a,5bの絶対刃先位置を算出している。つまり、回転工具5が1回転している間において、絶対刃先位置の動きを高精度に把握できる。そして、絶対刃先位置を被加工物Wに転写させることにより、被加工物Wの加工後形状を算出しているため、加工後形状を高精度に算出することができる。このようにして算出した加工後形状と目標形状との差により、加工誤差を算出している。従って、加工誤差を高精度に解析により算出することができる。
また、回転工具5の刃部5a,5bにより被加工物Wを切削加工している位相範囲において、刃部5a,5bの絶対刃先位置を連続的に把握することができる。これにより、切削加工している位相範囲のそれぞれにおいて、刃部5a,5bの絶対刃先位置がどこに位置するかを把握することができる。これにより、より高精度に加工誤差を算出できる。なお、刃部5a,5bの絶対刃先位置を連続的に把握せずに、簡易的に、例えば回転工具5の回転位相φ=90°の瞬間のみにおける刃部5a,5bの絶対刃先位置を把握することもできる。通常、回転位相φ=90°が最深位置付近となるため、簡易的ではあるが、十分に適用可能である。
また、回転工具5の動特性を考慮することで、回転工具5に生じる切削抵抗Fp,Ft,Ffの変動に伴って回転工具5の回転中心Cの変位量を高精度に算出できる。その結果、高精度に加工後形状を算出でき、高精度に加工誤差を算出できる。さらに、断続的な切削加工であるため、刃部5a,5bによる切削開始の瞬間に生じる断続的な切削抵抗Fyによって回転工具が振動する。このとき、回転工具5の動特性を考慮することで、回転工具5の振動状態を把握できる。そして、把握できた回転工具5の振動状態に基づいて回転工具5の回転中心Cの変位量を算出するため、高精度に回転工具5の回転中心Cの変位量を算出できる。その結果、高精度に加工後形状を算出でき、高精度に加工誤差を算出できる。
また、回転工具5の回転中心Cの反切込方向の変位量Yaは、他の方向の変位量に比べて大きくなりやすい。さらに、回転工具5の回転中心Cの反切込方向の変位量Yaは、加工後形状に最も影響を与える。そこで、少なくとも、反切込方向の回転工具5の回転中心Cの変位量を把握することで、高精度に加工後形状を算出でき、高精度に加工誤差を算出できる。ここで、上記実施形態においては、反切込方向(Y方向)、送り方向(X方向)および軸方向(Z方向)の全てについての回転中心Cの変位量を算出して、加工誤差を算出することとした。従って、高精度に加工誤差を算出できる。ただし、この他に、影響度の観点から、反切込方向(Y方向)のみを適用することもできる。
また、切削抵抗Fp,Ft,Ffを算出する際に、回転工具5の回転中心Cの変位量をフィードバックしている。つまり、回転工具5の回転中心Cの変位量の算出と切削抵抗Fp,Ft,Ffの算出との連成解析を行っている。ここで、回転工具5が変位した次の瞬間においては、当該変位に起因して切削抵抗Fp,Ft,Ffが変化する。変化した切削抵抗Fp,Ft,Ffに応じて、回転工具5の回転中心Cがさらに変位する。このように、回転工具5の切削抵抗Fp,Ft,Ffと回転工具5の回転中心Cの変位とは、相互に関連している。そこで、連成解析を行うことで、高精度に回転工具5の回転中心Cの変位量を算出できる。その結果、加工誤差を高精度に算出できる。
また、現在の切削抵抗Fp,Ft,Ffの算出に際して、過去の加工後形状の形状履歴を用いている。これにより、高精度に現在の切削抵抗Fp,Ft,Ffを算出でき、結果として現在の回転工具5の回転中心Cの変位量を高精度に算出できる。つまり、加工誤差を高精度に算出できる。
また、上記実施形態においては、加工システムの一部として機能する加工シミュレーション装置は、切削抵抗算出部32およびそれに関係する機能部により構成される。また、加工システムの他の一部として機能する加工誤差算出装置は、加工誤差算出部61およびそれに関係する機能部により構成される。また、加工システムの他の一部として機能する加工制御装置は、機械制御部73およびそれに関係する機能部により構成される。
また、上記実施形態では、実際の工作機械の制御の際に補正を行うようにした場合、および、NCデータの作成の場合との両者について、適用可能となるように説明した。この他に、NCデータの作成を行わずに、実際の工作機械の制御の際に補正を行うようにしてもよい。この場合、当該工作機械が切削抵抗検出センサ33を備え、補正部72により、回転速度S、切込方向の削り代Rd、送り速度などを補正する。また、NCデータの作成のみに適用することもできる。
なお、上記実施形態において、加工システムの機能の構成部として説明したが、各構成部による処理を工程として把握することもできる。この場合、加工システムによる処理方法として把握することができる。すなわち、加工シミュレーション装置として機能する構成部による処理を加工シミュレーション方法として把握できる。また、加工誤差算出装置として機能する各構成部による処理を加工誤差算出方法として把握できる。また、加工制御装置として機能する構成部による処理を加工制御方法として把握できる。
5:回転工具、 5a,5b:刃部、 24:加工後形状算出部、 31:切削乗数記憶部、 32:切削抵抗算出部(シミュレーション手段)、 33:切削抵抗検出センサ、 34:実切削乗数算出部、 42:工具中心変位量算出部、 51:工具摩耗量推定部、72:補正部、 C:回転中心、 W:被加工物

Claims (8)

  1. 加工条件から取得される切削長さおよび切込量と切削乗数とに基づいて、シミュレーションにより切削抵抗の推定値を算出するシミュレーション手段と、
    実加工中の実切削抵抗を検出する抵抗検出センサと、
    前記シミュレーション手段にて予め設定された暫定切削乗数を用いて算出された前記切削抵抗の推定値と前記抵抗検出センサにより検出された前記実切削抵抗とを比較して、実切削乗数を算出する実切削乗数算出手段と、
    を備え、
    前記シミュレーション手段は、前記実切削乗数算出手段にて前記実切削乗数が算出された後に、前記実切削乗数算出手段により算出された前記実切削乗数を用いて前記切削抵抗の推定値を算出する加工シミュレーション装置。
  2. 請求項1において、
    前記加工シミュレーション装置は、外周側に周方向に1以上の刃部を備える回転工具を用いて、当該回転工具を軸回りに回転しながら被加工物に対して相対移動することにより行う断続的な切削加工に適用し、
    前記加工シミュレーション装置は、
    前記シミュレーション手段にて前記実切削乗数を用いて算出された前記切削抵抗の推定値に基づいて、前記回転工具の回転中心の変位量を算出する工具中心変位量算出手段と、
    前記回転工具の回転中心の変位量に基づいて、前記被加工物の加工後形状を算出する加工後形状算出手段と、
    を備え、
    前記シミュレーション手段は、前記加工後形状をフィードバックして、過去の前記加工後形状に基づいて次の前記切込量を算出し、当該切込量を用いてシミュレーションを行う加工シミュレーション装置。
  3. 請求項1または2において、
    前記実切削乗数算出手段は、荒加工工程または中仕上げ加工工程において前記抵抗検出センサにより検出された前記実切削抵抗を用いて前記実切削乗数を算出し、
    前記シミュレーション手段は、前記荒加工工程または中仕上げ加工工程の後工程である仕上げ加工工程において前記実切削乗数を用いて前記切削抵抗の推定値を算出する加工シミュレーション装置。
  4. 請求項1または2において、
    前記加工シミュレーション装置は、前記切削乗数を記憶する切削乗数記憶手段を備え、
    前記実切削乗数算出手段は、前記切削乗数記憶手段に記憶されている前記切削乗数を、算出した前記実切削乗数に更新し、
    前記シミュレーション手段は、前記切削乗数記憶手段に記憶され更新された前記切削乗数を用いて前記切削抵抗の推定値を逐次算出する加工シミュレーション装置。
  5. 請求項1または2において、
    前記加工シミュレーション装置は、前記切削乗数を記憶する切削乗数記憶手段と、前記シミュレーション手段により算出された前記切削抵抗の推定値に基づいて工具の摩耗量を推定する摩耗量推定手段と、を備え、
    前記実切削乗数算出手段は、前記切削乗数記憶手段に記憶されている前記切削乗数を、算出した前記実切削乗数に更新し、
    前記シミュレーション手段は、前記切削乗数記憶手段に記憶され更新された前記切削乗数を用いて前記切削抵抗の推定値を逐次算出し、
    前記摩耗量推定手段は、逐次算出された前記切削抵抗の推定値に基づいて前記工具の摩耗量を推定する加工シミュレーション装置。
  6. 請求項1〜5の加工シミュレーション装置と、
    前記加工シミュレーション装置により算出された前記切削抵抗の推定値に基づいて加工条件を補正する補正手段と、
    を備える加工制御装置。
  7. 加工条件から取得される切削長さおよび切込量と予め設定された暫定切削乗数とに基づいて、シミュレーションにより切削抵抗の推定値を算出する暫定シミュレーション工程と、
    抵抗検出センサにより実加工中の実切削抵抗を検出する実切削抵抗検出工程と、
    前記シミュレーション工程にて算出された前記切削抵抗の推定値と前記実切削抵抗検出工程にて検出された前記実切削抵抗とを比較して、実切削乗数を算出する実切削乗数算出工程と、
    加工条件から取得される切削長さおよび切込量と前記実切削乗数算出工程にて算出された前記実切削乗数とに基づいて、シミュレーションにより切削抵抗の推定値を算出する実シミュレーション工程と、
    を備える加工シミュレーション方法。
  8. 請求項7の加工シミュレーション方法と、
    前記加工シミュレーション方法の前記実シミュレーション工程にて算出された前記切削抵抗の推定値に基づいて加工条件を補正する補正工程と、
    を備える加工制御方法。
JP2011201088A 2011-09-14 2011-09-14 加工シミュレーション装置、加工シミュレーション方法、加工制御装置および加工制御方法 Expired - Fee Related JP5874262B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201088A JP5874262B2 (ja) 2011-09-14 2011-09-14 加工シミュレーション装置、加工シミュレーション方法、加工制御装置および加工制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201088A JP5874262B2 (ja) 2011-09-14 2011-09-14 加工シミュレーション装置、加工シミュレーション方法、加工制御装置および加工制御方法

Publications (2)

Publication Number Publication Date
JP2013061884A true JP2013061884A (ja) 2013-04-04
JP5874262B2 JP5874262B2 (ja) 2016-03-02

Family

ID=48186484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201088A Expired - Fee Related JP5874262B2 (ja) 2011-09-14 2011-09-14 加工シミュレーション装置、加工シミュレーション方法、加工制御装置および加工制御方法

Country Status (1)

Country Link
JP (1) JP5874262B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039480A1 (ja) * 2014-09-12 2016-03-17 株式会社Kmc 加工装置
JP2018086712A (ja) * 2016-11-30 2018-06-07 株式会社日立製作所 工具摩耗予測装置およびその方法
CN109732404A (zh) * 2018-12-28 2019-05-10 哈尔滨理工大学 一种基于后刀面磨损的球头铣刀铣削力确定方法及系统
JP2020082225A (ja) * 2018-11-16 2020-06-04 株式会社小松製作所 解析装置、解析方法及び加工システム
JP2020089924A (ja) * 2018-12-03 2020-06-11 株式会社日立製作所 切削加工システム、加工誤差測定方法、および加工誤差測定装置
DE112017007995T5 (de) 2017-08-30 2020-06-18 Mitsubishi Electric Corporation Numerisches steuersystem und motorantriebssteuerung
WO2023135796A1 (ja) * 2022-01-17 2023-07-20 ファナック株式会社 産業機械の変化の推定装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254649A (ja) * 1985-06-21 1987-03-10 ギディングス アンド ルイス インコーポレーテッド 数値制御工作機械の操作方法
JP2006338625A (ja) * 2005-06-06 2006-12-14 Yoshiaki Kakino Nc工作機械の加工制御システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254649A (ja) * 1985-06-21 1987-03-10 ギディングス アンド ルイス インコーポレーテッド 数値制御工作機械の操作方法
JP2006338625A (ja) * 2005-06-06 2006-12-14 Yoshiaki Kakino Nc工作機械の加工制御システム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039480A1 (ja) * 2014-09-12 2016-03-17 株式会社Kmc 加工装置
CN106687238A (zh) * 2014-09-12 2017-05-17 株式会社Kmc 加工装置
JPWO2016039480A1 (ja) * 2014-09-12 2017-05-25 株式会社Kmc 加工装置
JP2018086712A (ja) * 2016-11-30 2018-06-07 株式会社日立製作所 工具摩耗予測装置およびその方法
DE112017007995T5 (de) 2017-08-30 2020-06-18 Mitsubishi Electric Corporation Numerisches steuersystem und motorantriebssteuerung
US11630437B2 (en) 2017-08-30 2023-04-18 Mitsubishi Electric Corporation Numerical control system and motor drive controller
US11733673B2 (en) 2017-08-30 2023-08-22 Mitsubishi Electric Corporation Numerical control system and motor drive controller
JP2020082225A (ja) * 2018-11-16 2020-06-04 株式会社小松製作所 解析装置、解析方法及び加工システム
JP7177669B2 (ja) 2018-11-16 2022-11-24 株式会社小松製作所 解析装置、解析方法及び加工システム
JP2020089924A (ja) * 2018-12-03 2020-06-11 株式会社日立製作所 切削加工システム、加工誤差測定方法、および加工誤差測定装置
CN109732404A (zh) * 2018-12-28 2019-05-10 哈尔滨理工大学 一种基于后刀面磨损的球头铣刀铣削力确定方法及系统
WO2023135796A1 (ja) * 2022-01-17 2023-07-20 ファナック株式会社 産業機械の変化の推定装置

Also Published As

Publication number Publication date
JP5874262B2 (ja) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5163838B1 (ja) 加工誤差算出装置、加工誤差算出方法、加工制御装置および加工制御方法
JP5299582B1 (ja) 加工制御装置および加工制御方法
JP5874262B2 (ja) 加工シミュレーション装置、加工シミュレーション方法、加工制御装置および加工制御方法
JP5258921B2 (ja) 工作機械及びその加工制御装置
JP5160980B2 (ja) 振動抑制方法及び装置
WO2011122621A1 (ja) 工具軌跡生成装置、工具軌跡算出方法および工具軌跡生成プログラム
CN111052015B (zh) 数控系统及电动机控制装置
JP5942423B2 (ja) 加工面性状算出装置、加工面性状算出方法、加工条件決定装置および加工条件決定方法
US20180307200A1 (en) Method for compensating milling cutter deflection
JP2012213830A5 (ja)
WO2006016420A1 (ja) ワークを加工する加工方法
US20180364684A1 (en) Motor controller
JP5734131B2 (ja) 回転速度表示装置
KR20190112773A (ko) 공구 경로 생성 방법 및 장치
JP5838680B2 (ja) 加工誤差算出装置、加工誤差算出方法、加工制御装置および加工制御方法
JP5874261B2 (ja) 加工誤差算出装置、加工誤差算出方法、加工制御装置および加工制御方法
EP1536302B1 (en) Method and apparatus for controlling a machine tool
JP5631779B2 (ja) 工作機械の振動抑制方法及び装置
JP6038331B2 (ja) 工具経路生成方法および工具経路生成装置
JP5929065B2 (ja) Ncデータ補正装置
JP5862111B2 (ja) 加工データ修正方法
CA2834126C (en) Methods and systems for calculation of feedrate
EP3447592B1 (en) Milling machine feed rate control
JP6844772B2 (ja) 研削装置及び、研削方法
JP2006007363A (ja) Ncプログラム修正装置及びこれを備えたncプログラム生成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R150 Certificate of patent or registration of utility model

Ref document number: 5874262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees