JP2013021269A - Wiring substrate with built-in component - Google Patents

Wiring substrate with built-in component Download PDF

Info

Publication number
JP2013021269A
JP2013021269A JP2011155778A JP2011155778A JP2013021269A JP 2013021269 A JP2013021269 A JP 2013021269A JP 2011155778 A JP2011155778 A JP 2011155778A JP 2011155778 A JP2011155778 A JP 2011155778A JP 2013021269 A JP2013021269 A JP 2013021269A
Authority
JP
Japan
Prior art keywords
component
cavity
wiring board
built
core substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011155778A
Other languages
Japanese (ja)
Inventor
Tetsuji Tsukada
哲司 塚田
Daisuke Yamashita
大輔 山下
Ichiei Higo
一詠 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011155778A priority Critical patent/JP2013021269A/en
Publication of JP2013021269A publication Critical patent/JP2013021269A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wiring substrate with a built-in component capable of suppressing electrical interference among a plurality of components built in a cavity of a core substrate.SOLUTION: This invention relates to a wiring substrate with a built-in component provided with a core substrate and a wiring lamination part. A cavity 50 formed in the core substrate has a shape including more than five corners in planar view, a plurality of components C are disposed in the cavity 50, and a resin filler 20 is filled in a gap part between an inner wall surface of the core substrate in which the cavity 50 is formed and the plurality of components C. Concerning an X direction and a Y direction substantially orthogonal to each other in planar view, a component C (1) having an electric path along the Y direction, a component C (2) having an electric path along the X direction are respectively disposed, and electrical interference between both components can be suppressed.

Description

本発明は、コア基板に形成された空洞部内に複数の部品を配置した部品内蔵配線基板に関するものである。   The present invention relates to a component built-in wiring board in which a plurality of components are arranged in a cavity formed in a core substrate.

従来から、コア基板の両側に導体層及び絶縁層を交互に積層して配線基板を構成し、配線基板上にICチップ等を搭載したパッケージが知られている。近年、ICチップの高速化及び端子数の増加により、外部基板から配線基板を経由してICチップに電源を供給する場合、電源電圧の不安定化やノイズの影響によるICチップの誤動作が問題となる。そのため、配線基板において、電源供給のための電気的経路に沿ってノイズを除去可能なデカップリングコンデンサを配置する対策が有効である。配線基板内に配置されるデカップリングコンデンサとしては、ICチップまでの配線距離の短縮化の観点から、コア基板内に設けた空洞部内にチップコンデンサを配置する構造が提案されている(例えば、特許文献1参照)。このような構造の配線基板において、例えば、電源配線とグランド電位との間にチップコンデンサを接続することにより、電源配線に伝播するノイズを抑制することができる。   Conventionally, a package is known in which a conductor substrate and an insulating layer are alternately laminated on both sides of a core substrate to constitute a wiring substrate, and an IC chip or the like is mounted on the wiring substrate. In recent years, due to the increase in the speed of IC chips and the increase in the number of terminals, when power is supplied to an IC chip from an external board via a wiring board, the malfunction of the IC chip due to the unstable power supply voltage or the influence of noise is a problem. Become. Therefore, it is effective to arrange a decoupling capacitor capable of removing noise along the electrical path for power supply on the wiring board. As a decoupling capacitor arranged in a wiring board, a structure in which a chip capacitor is arranged in a cavity provided in a core board has been proposed from the viewpoint of shortening a wiring distance to an IC chip (for example, a patent Reference 1). In the wiring board having such a structure, for example, by connecting a chip capacitor between the power supply wiring and the ground potential, noise propagating to the power supply wiring can be suppressed.

また、上記従来の配線基板においては、ICチップに対して複数の電源電圧を供給する構成が一般的に採用される。この場合、配線基板には、ICチップに接続される複数の電源配線のそれぞれに対して個別にデカップリングコンデンサを設ける必要がある。例えば、上記特許文献1の図1には、配線基板に設けた空洞部である凹部内に、2つのチップコンデンサを所定方向に並べて配置した構造が開示されている。かかる構造は、チップコンデンサ以外の複数の部品を空洞部内に配置した配線基板に対しても適用することができる。このような構造を有する配線基板においては、所定のサイズを有する空洞部内に複数の部品を効率的に配置することが望ましい。   In the conventional wiring board, a configuration for supplying a plurality of power supply voltages to the IC chip is generally employed. In this case, the wiring board needs to be provided with a decoupling capacitor individually for each of the plurality of power supply wirings connected to the IC chip. For example, FIG. 1 of Patent Document 1 discloses a structure in which two chip capacitors are arranged in a predetermined direction in a concave portion that is a hollow portion provided in a wiring board. Such a structure can also be applied to a wiring board in which a plurality of components other than chip capacitors are arranged in the cavity. In a wiring board having such a structure, it is desirable to efficiently arrange a plurality of components in a cavity having a predetermined size.

特許第3522571号公報Japanese Patent No. 3522571

一般に、配線基板を経由してICチップに複数の電源電圧を供給する場合、それぞれの電源配線の相互間の電気的干渉によってノイズが伝播することに起因して、ICチップの動作に不具合を生じる恐れがある。しかし、上記従来の配線基板の構造を採用すると、空洞部内に配置された複数の部品の間を伝播するノイズの影響が大きくなることは避けられない。すなわち、配線基板の空洞部内において複数の部品が互いに近接配置されるとともに、それぞれの電気的経路が並列した状態であるため電気的干渉が生じやすく、特に高い周波数成分のノイズは複数の部品の電気的経路を介して伝播しやすいという問題がある。また、複数の部品間の距離を広げると、互いの電気的干渉を軽減することは可能であるが、この場合は配線基板に大きな空洞部を設ける必要が生じ、配線基板の小型化に支障を来す。   In general, when a plurality of power supply voltages are supplied to an IC chip via a wiring board, a problem occurs in the operation of the IC chip due to noise being propagated by electrical interference between the power supply wirings. There is a fear. However, if the above-described conventional wiring board structure is adopted, it is inevitable that the influence of noise propagating between a plurality of components arranged in the cavity is increased. In other words, a plurality of components are arranged close to each other in the cavity of the wiring board, and the electrical paths are in parallel with each other, so that electrical interference is likely to occur. There is a problem that it is easy to propagate through a general route. In addition, if the distance between a plurality of components is increased, it is possible to reduce mutual electrical interference. However, in this case, it is necessary to provide a large cavity in the wiring board, which hinders the miniaturization of the wiring board. Come.

そこで、本発明はこれらの問題を解決するためになされたものであり、コア基板の空洞部に複数の部品を内蔵した場合であっても部品相互間の電気的干渉を抑制し、小型で信頼性の高い部品内蔵配線基板を提供することを目的とする。   Therefore, the present invention has been made to solve these problems, and even when a plurality of components are incorporated in the cavity of the core substrate, the electrical interference between the components is suppressed, and the device is small and reliable. An object of the present invention is to provide a wiring board with a built-in component.

上記課題を解決するために、本発明の部品内蔵配線基板は、空洞部が形成されたコア基板と、前記空洞部内に配置された複数の部品と、前記コア基板の一方又は両方の主面側に絶縁層及び導体層を交互に積層形成した配線積層部と、前記空洞部を画定するコア基板の内壁面と前記複数の部品との間隙部に充填された樹脂充填材と、を備えた部品内蔵配線基板において、前記空洞部は、平面視で5個以上の角部を有する形状に形成され、前記複数の部品は、平面視で互いに略直交する第1の方向及び第2の方向に関し、前記第1の方向に沿った電気的経路を有する第1の部品と、前記第2の方向に沿った電気的経路を有する第2の部品とを含むことを特徴としている。   In order to solve the above problems, a component-embedded wiring board according to the present invention includes a core substrate in which a cavity is formed, a plurality of components arranged in the cavity, and one or both main surfaces of the core substrate. A component comprising: a wiring laminate portion in which insulating layers and conductor layers are alternately laminated; and a resin filler filled in a gap portion between the inner wall surface of the core substrate defining the cavity and the plurality of components In the built-in wiring board, the cavity is formed in a shape having five or more corners in a plan view, and the plurality of components are related to a first direction and a second direction substantially orthogonal to each other in a plan view, A first part having an electrical path along the first direction and a second part having an electrical path along the second direction are included.

また、上記課題を解決するため、本発明の部品内蔵配線基板は、前記コア基板、前記複数の部品、前記配線積層部、前記樹脂充填層を備えた部品内蔵配線基板において、前記空洞部は、平面視で互いに略直交する第1の方向及び第2の方向の少なくとも一方に対して非対称な形状に形成され、前記複数の部品は、前記第1の方向に沿った電気的経路を有する第1の部品と、前記第2の方向に沿った電気的経路を有する第2の部品とを含むことを特徴としている。   In order to solve the above problems, the component-embedded wiring board of the present invention is the component-embedded wiring board including the core substrate, the plurality of components, the wiring laminated portion, and the resin-filled layer. A first shape having an electrical path along the first direction is formed in an asymmetric shape with respect to at least one of a first direction and a second direction substantially orthogonal to each other in plan view. And a second part having an electrical path along the second direction.

本発明の部品内蔵配線基板によれば、部品内蔵配線基板のコア基板に空洞部を形成し、その中の複数の部品のうち第1及び第2の部品をそれぞれの電気的経路が略直交するように配置し、空洞部を画定するコア基板の内壁面と各部品との間隙部に樹脂充填材を充填した構造となっている。よって、例えば、近接配置される2つの部品が互いに異なる電源配線に接続される場合であっても、両者の電気的経路を直交させることで、電気的経路が並列する場合に比べると相互の電気的干渉を十分に小さくすることができ、複数の部品相互間のノイズの伝播を防止して電気的信頼性を高めることができる。この場合、空洞部を、平面視で単純な矩形ではなく5個以上の角部を有する複雑な平面形状、あるいは第1の方向又は第2の方向に対して非対称な形状にすることで、電気的経路が直交する第1及び第2の部品の長手方向が異なったとしても、その形状に空洞部の平面形状を適合させることで効率的な配置が可能となる。   According to the component built-in wiring board of the present invention, the cavity is formed in the core substrate of the component built-in wiring board, and the electrical paths of the first and second components among the plurality of components are substantially orthogonal to each other. Thus, the gap between the inner wall surface of the core substrate and each component that defines the cavity is filled with a resin filler. Therefore, for example, even when two components arranged close to each other are connected to different power supply wirings, by making the electrical paths orthogonal to each other, the electrical paths can be compared with each other compared to when the electrical paths are parallel. Interference can be made sufficiently small, and propagation of noise between a plurality of components can be prevented to increase electrical reliability. In this case, the hollow portion is not a simple rectangle in plan view, but has a complicated planar shape having five or more corners, or an asymmetric shape with respect to the first direction or the second direction. Even if the longitudinal directions of the first and second parts whose orthogonal paths are orthogonal to each other are different, efficient arrangement is possible by adapting the planar shape of the cavity to the shape.

前記第1及び第2の部品は、前記コア基板及び前記樹脂充填材よりも剛性が高い材料を用いて形成することが望ましい。この場合、同じ形状の複数の部品を並列に配置すると、特定方向に沿って剛性が低下するが、本発明の構造によれば、空洞部の平面形状も多様な方向性を有し、かつ複数の部品は互いに方向性が異なるので、特定方向に沿って剛性の低下を招くことなく部品内蔵配線基板全体の強度を高めることができる。   The first and second parts are preferably formed using a material having higher rigidity than the core substrate and the resin filler. In this case, if a plurality of parts having the same shape are arranged in parallel, the rigidity decreases along a specific direction. However, according to the structure of the present invention, the planar shape of the cavity has various directions and a plurality of parts are arranged. Since these components have different directions, the overall strength of the component built-in wiring board can be increased without causing a decrease in rigidity along a specific direction.

前記空洞部を平面視した外形は、特に制約されないが、例えば、前記第1の方向の直線群と前記第2の方向の直線群により構成することができる。これにより、通常は平面視で長方形等の形状を有する部品の配置に適合させやすく、コア基板に空洞部を形成する際の加工を簡素化することができる。   The outer shape of the hollow portion in plan view is not particularly limited, and can be constituted by, for example, a straight line group in the first direction and a straight line group in the second direction. Thereby, it is easy to adapt to the arrangement of components having a shape such as a rectangle in a plan view, and the processing for forming the cavity in the core substrate can be simplified.

前記第1及び第2の部品としては、両端に形成された1対の端子電極を有する部品を用いることができる。この場合、1対の端子電極が対向する方向が電気的経路の方向に一致する。このとき、前記第1及び第2の部品の電気的接続は、特に制約されないが、例えば、それぞれの一方の端子電極を互いに異なる電源電圧の配線に接続するとともに、それぞれの他方の端子電極を近接配置させて共通の電位に接続することができる。このような接続形態においては、共通の電位に接続された端子電極同士は電気的ショートによる不具合が生じないため、互いに近接する配置にさせてもよい。   As the first and second components, components having a pair of terminal electrodes formed at both ends can be used. In this case, the direction in which the pair of terminal electrodes face each other matches the direction of the electrical path. At this time, the electrical connection of the first and second components is not particularly limited. For example, each terminal electrode is connected to a wiring having a different power supply voltage, and the other terminal electrode is placed close to each other. They can be placed and connected to a common potential. In such a connection form, terminal electrodes connected to a common potential do not cause a problem due to an electrical short, and may be arranged close to each other.

また、前記第1及び第2の部品としては、例えば、平面視で長方形に形成されたチップ部品を用いることができる。なお、このときの1対の端子電極は長方形の2つの短辺側に形成されるので、電気的経路は長方形の2つの長辺が沿う長手方向に一致する。前記第1及び第2の部品は、例えば、コンデンサを挙げることができ、特に電源電圧に接続されるデカップリング用のチップコンデンサが典型的な例である。   In addition, as the first and second components, for example, chip components formed in a rectangular shape in plan view can be used. Since the pair of terminal electrodes at this time are formed on the two short sides of the rectangle, the electrical path coincides with the longitudinal direction along the two long sides of the rectangle. Examples of the first and second components include a capacitor, and a decoupling chip capacitor connected to a power supply voltage is a typical example.

なお、前記空洞部のうち前記樹脂充填材が充填される間隙部の幅は、平面視で前記第1及び第2の部品のそれぞれの短辺の長さより短く設定することが望ましい。間隙部の幅が広すぎると、空洞部内の剛性が低い領域が拡大して配線基板の強度を低下させるし、逆に間隙部の幅が狭すぎると、部品及びコア基板との熱膨張率の差に起因する変形を吸収するのに支障を来す。   In addition, it is preferable that the width of the gap portion filled with the resin filler in the hollow portion is set to be shorter than the length of each short side of the first and second parts in a plan view. If the width of the gap is too wide, the region with low rigidity in the cavity will expand, reducing the strength of the wiring board. Conversely, if the width of the gap is too narrow, the coefficient of thermal expansion between the component and the core board will be reduced. It interferes with absorbing deformation caused by the difference.

本発明によれば、部品内蔵配線基板のコア基板に形成した空洞部に複数の部品を内蔵する場合、各部品の電気的経路が略直交するように配置し、その配置に適合するように空洞部の平面形状を形成したので、空洞部内で近接する部品同士の間の電気的干渉を抑制することが可能となる。これにより、各部品の電気的経路を介するノイズの伝播や電位の不安定化を有効に防止し、配線基板の電気的信頼性を高めることができる。また、空洞部の平面形状は5個以上の角部を有する形状か、あるいは略直交する2方向のいずれかに対して非対称な形状であるため、空洞部を画定するコア基板の内壁面と各部品との間を樹脂充填材で埋めたときに高い剛性を保ちやすく、配線基板全体の強度を高めることができる。   According to the present invention, when a plurality of components are built in the cavity formed in the core substrate of the component built-in wiring board, the electrical paths of the components are arranged so as to be substantially orthogonal, and the cavity is adapted to the arrangement. Since the planar shape of the part is formed, it is possible to suppress electrical interference between the adjacent parts in the cavity. As a result, it is possible to effectively prevent noise propagation and potential instability through the electrical path of each component, and to increase the electrical reliability of the wiring board. In addition, the planar shape of the hollow portion is a shape having five or more corners or an asymmetric shape with respect to either of two directions substantially orthogonal to each other. When the space between the parts is filled with a resin filler, high rigidity can be easily maintained, and the strength of the entire wiring board can be increased.

本実施形態の部品内蔵配線基板の概略の断面構造図である。1 is a schematic cross-sectional structure diagram of a component built-in wiring board according to an embodiment. 図1の配線基板のコア基板に形成された空洞部の内部を平面視で見た模式的な平面図の例を示す図である。It is a figure which shows the example of the typical top view which looked at the inside of the cavity part formed in the core board | substrate of the wiring board of FIG. 1 by planar view. 図1の半導体チップと2個のチップコンデンサとの電気的接続の部分を含む等価回路の一例を示す図である。It is a figure which shows an example of the equivalent circuit containing the part of the electrical connection of the semiconductor chip of FIG. 1, and two chip capacitors. 本実施形態との対比のため、空洞部内に2個のチップコンデンサを並列に配置したときの平面構造を比較例として示す図である。It is a figure which shows the planar structure when two chip capacitors are arrange | positioned in parallel in a cavity part as a comparative example for contrast with this embodiment. 空洞部内に2個のチップコンデンサを図2と同様に配置したときの平面構造を示す図である。It is a figure which shows the planar structure when two chip capacitors are arrange | positioned similarly to FIG. 2 in a cavity part. 本実施形態とは接続形態が異なる変形例を示す図である。It is a figure which shows the modification from which a connection form differs from this embodiment. 本実施形態とは空洞部の平面形状が異なる変形例を示す図である。It is a figure which shows the modification from which this embodiment differs in the planar shape of a cavity part. 空洞部内に3個のチップコンデンサを配置した変形例を示す図である。It is a figure which shows the modification which has arrange | positioned three chip capacitors in a cavity part. 空洞部内に2個のチップインダクタを配置する場合の図3に対応する等価回路の一例を示す図である。It is a figure which shows an example of the equivalent circuit corresponding to FIG. 3 in the case of arrange | positioning two chip inductors in a cavity part.

以下、本発明の好適な実施形態について、図面を参照しながら説明する。ただし、以下に述べる実施形態は本発明の技術思想を適用した形態の一例であって、本発明が本実施形態の内容により限定されることはない。   Preferred embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below is an example of a form to which the technical idea of the present invention is applied, and the present invention is not limited by the content of the present embodiment.

まず、本発明を具体化した部品内蔵配線基板の構造について説明する。図1は、本実施形態の部品内蔵配線基板10(以下、単に配線基板10と呼ぶ)の概略の断面構造図を示している。図1に示すように、本実施形態の配線基板10は、例えばガラス繊維を含んだエポキシ樹脂からなるコア基板11と、コア基板11の上面側のビルドアップ層12(配線積層部)と、コア基板11の下面側のビルドアップ層13(配線積層部)とを含む構造を有している。コア基板11には、中央領域を貫通する空洞部(キャビティ)50が形成され、この空洞部50の内部に2個のチップコンデンサCが埋め込まれた状態で配置されている。また、コア基板11には、外周領域を積層方向に貫通する複数のスルーホール導体21が形成され、スルーホール導体21の内部が例えばガラスエポキシ等からなる閉塞体22で埋められている。配線基板10の上部には、半導体素子である半導体チップ100が載置されている。   First, the structure of a component built-in wiring board embodying the present invention will be described. FIG. 1 shows a schematic cross-sectional structure diagram of a component built-in wiring board 10 (hereinafter simply referred to as a wiring board 10) of the present embodiment. As shown in FIG. 1, the wiring board 10 of the present embodiment includes a core substrate 11 made of, for example, an epoxy resin containing glass fiber, a buildup layer 12 (wiring laminated portion) on the upper surface side of the core substrate 11, It has a structure including a buildup layer 13 (wiring laminated portion) on the lower surface side of the substrate 11. In the core substrate 11, a cavity portion (cavity) 50 penetrating the central region is formed, and two chip capacitors C are embedded in the cavity portion 50. The core substrate 11 is formed with a plurality of through-hole conductors 21 penetrating the outer peripheral region in the stacking direction, and the inside of the through-hole conductor 21 is filled with a closing body 22 made of, for example, glass epoxy. A semiconductor chip 100 that is a semiconductor element is placed on the wiring substrate 10.

ここで、図2には、図1の配線基板10のコア基板11に形成された空洞部50の内部を平面視で見た模式的な平面図の例を示している。図2の下部には、便宜上、互いに直交するX方向(第1の方向)及びY方向(第2の方向)の座標軸を示している。X方向は図1の紙面横方向に対応し、Y方向は図1の紙面垂直方向に対応する。空洞部50の内部に、第1の部品であるチップコンデンサC(1)と第2の部品であるチップコンデンサC(2)とが配置されている。図2の例においては、2個のチップコンデンサCはいずれも同形状であって、平面視で長さL及び幅W(L>W)の長方形に形成される。また、2個のチップコンデンサCは、長手方向(長さL)の両端に1対の端子電極Tを有している。それぞれの端子電極Tは、チップコンデンサCの一端側の側面から表面及び裏面の各一部にかけて形成されている。一方のチップコンデンサC(1)は長手方向がY方向に沿って配置され、他方のチップコンデンサC(2)は長手方向がX方向に沿って配置されている。以下の説明では、それぞれのチップコンデンサCの電気的経路を、1対の端子電極Tが対向する長手方向と定義する。従って、図2の例では、一方のチップコンデンサC(1)がY方向の電気的経路を有し、他方のチップコンデンサC(2)がX方向の電気的経路を有し、両者の電気的経路が互いに直交する位置関係にある。なお、かかるチップコンデンサCの配置は電気的特性に関連するものであるが、詳細については後述する。   Here, FIG. 2 shows an example of a schematic plan view in which the inside of the cavity 50 formed in the core substrate 11 of the wiring board 10 of FIG. 1 is viewed in plan view. In the lower part of FIG. 2, for convenience, coordinate axes in the X direction (first direction) and the Y direction (second direction) orthogonal to each other are shown. The X direction corresponds to the horizontal direction in FIG. 1, and the Y direction corresponds to the vertical direction in FIG. Inside the cavity 50, a chip capacitor C (1) that is a first component and a chip capacitor C (2) that is a second component are arranged. In the example of FIG. 2, the two chip capacitors C have the same shape, and are formed in a rectangle having a length L and a width W (L> W) in plan view. The two chip capacitors C have a pair of terminal electrodes T at both ends in the longitudinal direction (length L). Each terminal electrode T is formed from the side surface on one end side of the chip capacitor C to each part of the front surface and the back surface. One chip capacitor C (1) has a longitudinal direction arranged along the Y direction, and the other chip capacitor C (2) has a longitudinal direction arranged along the X direction. In the following description, an electrical path of each chip capacitor C is defined as a longitudinal direction in which a pair of terminal electrodes T are opposed to each other. Therefore, in the example of FIG. 2, one chip capacitor C (1) has an electrical path in the Y direction, and the other chip capacitor C (2) has an electrical path in the X direction. The paths are in a positional relationship orthogonal to each other. The arrangement of the chip capacitor C is related to electrical characteristics, and details will be described later.

一方、図2の例においては、空洞部50が平面視で6本の直線で囲まれて6個の角部を含む平面形状を有している。具体的には、X方向にそれぞれ長さX1、X2、X3を有する3本の直線と、Y方向にそれぞれ長さY1、Y2、Y3を有する3本の直線と、X方向及びY方向の各直線が90度で交わる6個の角部が存在する。ここで、X1=X2+X3、Y1=Y2+Y3の関係にあることがわかる。図2からわかるように、空洞部50の平面形状は、X方向とY方向のそれぞれに対して非対称である。なお、空洞部50の平面形状は、コア基板11の内壁面11a(図1)の平面形状に合致する。また、図1に示すように、配線基板10の積層方向において、空洞部50の高さは2個のチップコンデンサCの高さと概ね等しい。空洞部50の内部において、上述の内壁面11aと2個のチップコンデンサCとの幅Gの間隙部、及び2個のチップコンデンサCに挟まれた幅Gの間隙部が樹脂充填材20で埋められている。   On the other hand, in the example of FIG. 2, the cavity 50 has a planar shape including six corners surrounded by six straight lines in plan view. Specifically, three straight lines having lengths X1, X2, and X3 in the X direction, three straight lines having lengths Y1, Y2, and Y3 in the Y direction, and each of the X and Y directions. There are six corners where the straight lines meet at 90 degrees. Here, it can be seen that there is a relationship of X1 = X2 + X3 and Y1 = Y2 + Y3. As can be seen from FIG. 2, the planar shape of the cavity 50 is asymmetric with respect to each of the X direction and the Y direction. The planar shape of the cavity 50 matches the planar shape of the inner wall surface 11a (FIG. 1) of the core substrate 11. As shown in FIG. 1, the height of the cavity 50 is substantially equal to the height of the two chip capacitors C in the stacking direction of the wiring substrate 10. Inside the hollow portion 50, the gap portion having the width G between the inner wall surface 11 a and the two chip capacitors C and the gap portion having the width G sandwiched between the two chip capacitors C are filled with the resin filler 20. It has been.

なお、図2の例における寸法は特に制約されないが、具体例としては、例えば、X1=2.1mm、X2=0.9mm、X3=1.2mm、Y1=1.4mm、Y2=0.5mm、Y3=0.9mm、L=1.0mm、W=0.5mm、G=0.2mmに設定することができる。   The dimensions in the example of FIG. 2 are not particularly limited, but specific examples include, for example, X1 = 2.1 mm, X2 = 0.9 mm, X3 = 1.2 mm, Y1 = 1.4 mm, Y2 = 0.5 mm. Y3 = 0.9 mm, L = 1.0 mm, W = 0.5 mm, and G = 0.2 mm.

樹脂充填材20は、例えばエポキシ樹脂等の熱硬化性樹脂からなる高分子材料からなり、各チップコンデンサCをコア基板11に形成された空洞部50内に固定する役割がある。具体的には、樹脂充填材20の弾性変形により、コア基板11及び各チップコンデンサCとの熱膨張率の差に起因する変形を吸収する作用がある。なお、各チップコンデンサCは樹脂充填材20及びコア基板11よりも剛性が高く、樹脂充填材20はコア基板11よりも剛性が低い。ここで、チップコンデンサC、樹脂充填材20、コア基板11のそれぞれの剛性はヤング率を評価することにより比較することができる。ヤング率の測定方法としては、例えば、ナノインデンテーション法を用いることができる。測定装置としては、例えば、ナノインスツルメント社製の「ナノインデンターII」を用いることができる。図2の例では、空洞部50において樹脂充填材20で埋められた間隙部が共通の幅Gを有している。すなわち、一方のチップコンデンサC(1)の四辺と他方のチップコンデンサC(2)の四辺は全て幅Gの間隙部で囲まれている。本実施形態は、空洞部50内の間隙部を均一な幅Gにすることには制約されないが、樹脂充填材20による上述の変形を吸収する作用を考慮すると、間隙部の幅Gが大き過ぎても小さ過ぎても好ましくない。その場合、空洞部50の平面形状が矩形であると仮定したときは、2個のチップコンデンサCの長手方向を直交させて配置したときに間隙部の幅Gが不均一にならざるを得ないが、図2の平面形状を採用すれば間隙部の幅Gを容易に均一化することができる。   The resin filler 20 is made of, for example, a polymer material made of a thermosetting resin such as an epoxy resin, and has a role of fixing each chip capacitor C in the cavity 50 formed in the core substrate 11. Specifically, the elastic deformation of the resin filler 20 acts to absorb deformation caused by the difference in thermal expansion coefficient between the core substrate 11 and each chip capacitor C. Each chip capacitor C has higher rigidity than the resin filler 20 and the core substrate 11, and the resin filler 20 has lower rigidity than the core substrate 11. Here, the rigidity of each of the chip capacitor C, the resin filler 20, and the core substrate 11 can be compared by evaluating the Young's modulus. As a method for measuring the Young's modulus, for example, a nanoindentation method can be used. As a measuring device, for example, “Nanoindenter II” manufactured by Nano Instruments Inc. can be used. In the example of FIG. 2, the gap portion filled with the resin filler 20 in the hollow portion 50 has a common width G. That is, the four sides of one chip capacitor C (1) and the four sides of the other chip capacitor C (2) are all surrounded by a gap having a width G. In the present embodiment, the gap portion in the hollow portion 50 is not limited to the uniform width G, but the width G of the gap portion is too large in consideration of the action of absorbing the above-described deformation by the resin filler 20. Even if it is too small, it is not preferable. In that case, assuming that the planar shape of the cavity 50 is a rectangle, the width G of the gap must be non-uniform when the longitudinal directions of the two chip capacitors C are arranged orthogonally. However, if the planar shape of FIG. 2 is adopted, the width G of the gap can be easily made uniform.

図1に戻って、一方のビルドアップ層12は、コア基板11の上部の樹脂絶縁層14と、樹脂絶縁層14の上部の樹脂絶縁層15と、樹脂絶縁層15の上部のソルダーレジスト層16とが積層形成されてなる。樹脂絶縁層14の上面には導体層31が形成され、樹脂絶縁層15の上面には複数の端子パッド33が形成されている。樹脂絶縁層14の所定箇所には、スルーホール導体21の上端電極及びチップコンデンサCの端子電極Tの表面部を導体層31と積層方向に接続導通する複数のビア導体30が設けられている。また、樹脂絶縁層15の所定箇所には、導体層31と複数の端子パッド33を積層方向に接続導通する複数のビア導体32が設けられている。ソルダーレジスト層16は、複数箇所が開口されて複数の端子パッド33が露出し、そこに複数の半田バンプ34が形成されている。各々の半田バンプ34は、配線基板10に載置される半導体チップ100の各パッド101に接続される。   Returning to FIG. 1, one build-up layer 12 includes a resin insulating layer 14 above the core substrate 11, a resin insulating layer 15 above the resin insulating layer 14, and a solder resist layer 16 above the resin insulating layer 15. Are laminated. A conductor layer 31 is formed on the upper surface of the resin insulating layer 14, and a plurality of terminal pads 33 are formed on the upper surface of the resin insulating layer 15. A plurality of via conductors 30 are provided at predetermined positions of the resin insulating layer 14 to connect the upper end electrode of the through-hole conductor 21 and the surface portion of the terminal electrode T of the chip capacitor C to the conductor layer 31 in the stacking direction. In addition, a plurality of via conductors 32 that connect and conduct the conductor layer 31 and the plurality of terminal pads 33 in the stacking direction are provided at predetermined positions of the resin insulating layer 15. The solder resist layer 16 is opened at a plurality of locations to expose a plurality of terminal pads 33, and a plurality of solder bumps 34 are formed there. Each solder bump 34 is connected to each pad 101 of the semiconductor chip 100 placed on the wiring substrate 10.

また、他方のビルドアップ層13は、コア基板11の下部の樹脂絶縁層17と、樹脂絶縁層17の下部の樹脂絶縁層18と、樹脂絶縁層18の下部のソルダーレジスト層19とが積層形成されてなる。樹脂絶縁層17の下面には導体層41が形成され、樹脂絶縁層18の下面には複数のBGA用パッド43が形成されている。樹脂絶縁層17の所定箇所には、スルーホール導体21の下端電極及びチップコンデンサCの端子電極Tの裏面部を導体層41と積層方向に接続導通する複数のビア導体40が設けられている。また、樹脂絶縁層18の所定箇所には、導体層41と複数のBGA用パッド43を積層方向に接続導通する複数のビア導体42が設けられている。ソルダーレジスト層19は、複数箇所が開口されて複数のBGA用パッド43が露出し、そこに複数の半田ボール44が接続される。複数の半田ボール44は、外部基材(不図示)と電気的に接続可能な構造を有する。   The other buildup layer 13 is formed by laminating a resin insulation layer 17 below the core substrate 11, a resin insulation layer 18 below the resin insulation layer 17, and a solder resist layer 19 below the resin insulation layer 18. Being done. A conductor layer 41 is formed on the lower surface of the resin insulating layer 17, and a plurality of BGA pads 43 are formed on the lower surface of the resin insulating layer 18. A plurality of via conductors 40 are provided at predetermined positions of the resin insulating layer 17 to connect and connect the lower end electrode of the through-hole conductor 21 and the back surface portion of the terminal electrode T of the chip capacitor C to the conductor layer 41 in the stacking direction. A plurality of via conductors 42 are provided at predetermined positions of the resin insulating layer 18 to connect and connect the conductor layer 41 and the plurality of BGA pads 43 in the stacking direction. The solder resist layer 19 is opened at a plurality of locations to expose a plurality of BGA pads 43 to which a plurality of solder balls 44 are connected. The plurality of solder balls 44 have a structure that can be electrically connected to an external substrate (not shown).

図3は、図1の半導体チップ100と2個のチップコンデンサCとの電気的接続の部分を含む等価回路の一例を示している。図3に示すように、半導体チップ100に対しては、外部基材から配線基板10を介して、電源電圧V1、電源電圧V2、グランド電位GNがそれぞれ供給されている。このうち、2系統の電源電圧V1、V2は、互いに異なる電圧値であってもよいが、互いに等しい電圧値であってもよい。そして、一方のチップコンデンサC(1)は電源電圧V1のデカップリングコンデンサとして用いられ、他方のチップコンデンサC(2)は電源電圧V2のデカップリングコンデンサとして用いられる。   FIG. 3 shows an example of an equivalent circuit including a part of electrical connection between the semiconductor chip 100 of FIG. 1 and two chip capacitors C. As shown in FIG. 3, the power supply voltage V <b> 1, the power supply voltage V <b> 2, and the ground potential GN are supplied to the semiconductor chip 100 via the wiring substrate 10 from the external base material. Among these, the power supply voltages V1 and V2 of the two systems may have different voltage values, or may be equal to each other. One chip capacitor C (1) is used as a decoupling capacitor for the power supply voltage V1, and the other chip capacitor C (2) is used as a decoupling capacitor for the power supply voltage V2.

具体的には、チップコンデンサC(1)の1対の端子電極Tが電源電圧V1及びグランド電位GNに接続され、チップコンデンサC(2)の1対の端子電極Tが電源電圧V2及びグランド電位GNに接続される。また、電源電圧V1、V2、グランド電位GNの各々は、半導体チップ100のパッド101及び半田ボール44と電気的に接続される。この場合の電気的接続は、図1において、パッド101、半田バンプ34、端子パッド33、ビア導体32、導体層31、ビア導体30、チップコンデンサCの端子電極T、ビア導体40、導体層41、ビア導体42、BGA用パッド43、半田ボール44の順に経由してなされる。ここで、上記2系統の電源電圧V1、V2は、半導体チップ100内の異なる回路部分に供給されるので、互いの電気的干渉に起因してノイズの伝播や信号のリークが生じると、回路動作の不具合を招く恐れがある。かかる問題に対し、本実施形態では、以下に述べるように、空洞部50内におけるチップコンデンサCの配置に基づく効果により上記電気的干渉の影響を抑制している。   Specifically, the pair of terminal electrodes T of the chip capacitor C (1) is connected to the power supply voltage V1 and the ground potential GN, and the pair of terminal electrodes T of the chip capacitor C (2) is connected to the power supply voltage V2 and the ground potential. Connected to GN. Each of the power supply voltages V 1 and V 2 and the ground potential GN is electrically connected to the pad 101 and the solder ball 44 of the semiconductor chip 100. In FIG. 1, the electrical connections in this case are as follows: pad 101, solder bump 34, terminal pad 33, via conductor 32, conductor layer 31, via conductor 30, terminal electrode T of chip capacitor C, via conductor 40, conductor layer 41. , Via conductors 42, BGA pads 43, and solder balls 44 in this order. Here, since the two power supply voltages V1 and V2 are supplied to different circuit portions in the semiconductor chip 100, if noise propagation or signal leakage occurs due to mutual electrical interference, circuit operation There is a risk of inconvenience. In order to deal with such a problem, in the present embodiment, as described below, the influence of the electrical interference is suppressed by an effect based on the arrangement of the chip capacitor C in the cavity 50.

以下、図4及び図5を参照して、本実施形態のチップコンデンサCの配置に基づく具体的な効果について説明する。図4は、本実施形態との対比のため、空洞部50内に2個のチップコンデンサCを並列に配置したときの平面構造を比較例として示し、図5は、空洞部50内に2個のチップコンデンサCを図2と同様に配置したときの平面構造を示している。図4及び図5には、図2と同様、X方向及びY方向の座標軸を示している。ここでは、空洞部50がX方向に沿う複数の直線とY方向に沿う複数の直線とからなる平面形状を有することを想定する。   Hereinafter, specific effects based on the arrangement of the chip capacitor C of the present embodiment will be described with reference to FIGS. 4 and 5. 4 shows, as a comparative example, a planar structure when two chip capacitors C are arranged in parallel in the cavity 50 for comparison with the present embodiment, and FIG. 3 shows a planar structure when the chip capacitor C is arranged in the same manner as in FIG. 4 and 5 show the coordinate axes in the X direction and the Y direction, as in FIG. Here, it is assumed that the cavity 50 has a planar shape including a plurality of straight lines along the X direction and a plurality of straight lines along the Y direction.

まず、図4においては、空洞部50の平面形状がX方向の2辺とY方向の2辺からなる矩形であり、従来から採用されている典型的な平面形状となっている。空洞部50内に配置される2個のチップコンデンサC(3)、C(4)は、いずれも長手方向がX方向に沿って配置される。そして、一方のチップコンデンサC(3)の1対の端子電極Tが電源電圧V1とグランド電位GNにそれぞれ接続され、他方のチップコンデンサC(4)の1対の端子電極Tが電源電圧V2とグランド電位GNにそれぞれ接続されている。すなわち、一方のチップコンデンサC(3)の1対の端子電極Tを結ぶ電気的経路P(3)と、他方のチップコンデンサC(4)の1対の端子電極Tを結ぶ電気的経路P(4)は、いずれもX方向に沿っている。なお、それぞれの電気的経路P(3)、P(4)の矢印の向きは電流の流れる方向を示すものとする。   First, in FIG. 4, the planar shape of the cavity 50 is a rectangle composed of two sides in the X direction and two sides in the Y direction, which is a typical planar shape that has been conventionally employed. The two chip capacitors C (3) and C (4) arranged in the cavity 50 are both arranged in the longitudinal direction along the X direction. Then, a pair of terminal electrodes T of one chip capacitor C (3) are connected to the power supply voltage V1 and the ground potential GN, respectively, and a pair of terminal electrodes T of the other chip capacitor C (4) are connected to the power supply voltage V2. Each is connected to the ground potential GN. That is, an electrical path P (3) that connects a pair of terminal electrodes T of one chip capacitor C (3) and an electrical path P (that connects a pair of terminal electrodes T of the other chip capacitor C (4). 4) are all along the X direction. In addition, the direction of the arrow of each electric path | route P (3) and P (4) shall show the direction through which an electric current flows.

図4の平面構造によれば、それぞれの電気的経路P(3)、P(4)が近接した状態で同じ方向に並んだ配置であるため、チップコンデンサC(3)、C(4)の間の電気的干渉が大きくなる。換言すれば、同方向に並ぶ2本の電気的経路P(3)、P(4)の間で相互インダクタンスが強め合うことになり、その影響は周波数が高くなるほど顕著になっていく。そのため、チップコンデンサC(3)、C(4)をそれぞれ異なる電源電圧V1、V2のデカップリングコンデンサとして用いるとき、空洞部内50における電気的干渉(相互インダクタンス)に起因して、電源V1、V2の各配線同士のノイズの伝播や電源電圧の不安定化などを招く恐れがある。   According to the planar structure of FIG. 4, since the electrical paths P (3) and P (4) are arranged in the same direction in a close state, the chip capacitors C (3) and C (4) The electrical interference between them increases. In other words, the mutual inductance increases between the two electrical paths P (3) and P (4) arranged in the same direction, and the effect becomes more noticeable as the frequency increases. Therefore, when the chip capacitors C (3) and C (4) are used as decoupling capacitors for different power supply voltages V1 and V2, respectively, due to electrical interference (mutual inductance) in the cavity 50, the power supplies V1 and V2 There is a risk of noise propagation between the wirings and instability of the power supply voltage.

これに対し、図5においては、空洞部50の平面形状がX方向の3辺とY方向の3辺からなり、図2に示した平面形状となっている。空洞部50内に配置される2個のチップコンデンサC(1)、C(2)は、図2と同様、互いの長手方向が直交して配置される。そして、一方のチップコンデンサC(1)の1対の端子電極Tが電源電圧V1とグランド電位GNの間に接続され、他方のチップコンデンサC(2)の1対の端子電極Tが電源電圧V2とグランド電位GNの間に接続されている。すなわち、一方のチップコンデンサC(1)の1対の端子電極Tを結ぶ電気的経路P(1)がY方向に沿い、他方のチップコンデンサC(2)の1対の端子電極Tを結ぶ電気的経路P(2)がX方向に沿っている。   On the other hand, in FIG. 5, the planar shape of the cavity 50 is composed of three sides in the X direction and three sides in the Y direction, which is the planar shape shown in FIG. The two chip capacitors C (1) and C (2) arranged in the cavity 50 are arranged so that their longitudinal directions are orthogonal to each other as in FIG. The pair of terminal electrodes T of one chip capacitor C (1) is connected between the power supply voltage V1 and the ground potential GN, and the pair of terminal electrodes T of the other chip capacitor C (2) is connected to the power supply voltage V2. And the ground potential GN. That is, the electrical path P (1) connecting the pair of terminal electrodes T of one chip capacitor C (1) is along the Y direction, and the electric path connecting the pair of terminal electrodes T of the other chip capacitor C (2). The target path P (2) is along the X direction.

従って、図5の平面構造によれば、それぞれの電気的経路P(1)、P(2)が近接しているが、互いに直交した配置であるため、図4と比べるとチップコンデンサC(1)、C(2)の間の電気的干渉が相対的に小さくなる。換言すれば、互いに直交する関係にある電気的経路P(1)、P(2)の間の相互インダクタンスは、周波数が高い場合であっても十分に小さくなる。従って、チップコンデンサC(1)、C(2)をそれぞれ異なる電源電圧V1、V2のデカップリングコンデンサとして用いるとき、図4とは異なり、空洞部内50における電気的干渉(相互インダクタンス)が抑制されるため、電源電圧V1、V2の各配線同士のノイズの伝播や電源電圧の不安定化などを有効に防止することができる。   Therefore, according to the planar structure of FIG. 5, the electrical paths P (1) and P (2) are close to each other, but are arranged orthogonal to each other, and therefore, compared to FIG. 4, the chip capacitor C (1 ), And the electrical interference between C (2) becomes relatively small. In other words, the mutual inductance between the electrical paths P (1) and P (2) that are orthogonal to each other is sufficiently small even when the frequency is high. Therefore, when the chip capacitors C (1) and C (2) are used as decoupling capacitors of different power supply voltages V1 and V2, respectively, unlike FIG. 4, electrical interference (mutual inductance) in the cavity 50 is suppressed. Therefore, it is possible to effectively prevent the propagation of noise between the wirings of the power supply voltages V1 and V2 and the instability of the power supply voltage.

また、図5の平面構造によれば、図4の平面構造に比べて、空洞部50内の間隙部に充填された樹脂充填材20の部分による剛性の低下を抑制することができる。すなわち、図4及び図5において、空洞部50と2個のチップコンデンサCとの間隙部に埋められた樹脂充填材20の部分で剛性が低くなるが、図4の空洞部50が矩形であるのに対し、図5の空洞部50が相対的に多くの直線及び角部を有する複雑な平面形状であることから、特に積層方向に応力が加わったときに高い剛性を保つのに有利な構造を実現することができる。これにより、配線基板10の空洞部50の近辺におけるクラックや割れを防止する効果が得られる。図4及び図5における空洞部50の平面形状の相違は、上述したように、2個のチップコンデンサCの長手方向を同方向でなく直交させて配置させることに由来するものである。   Further, according to the planar structure of FIG. 5, it is possible to suppress a decrease in rigidity due to the portion of the resin filler 20 filled in the gap portion in the cavity 50 as compared with the planar structure of FIG. 4. That is, in FIGS. 4 and 5, the rigidity of the resin filler 20 buried in the gap between the cavity 50 and the two chip capacitors C is lowered, but the cavity 50 in FIG. 4 is rectangular. On the other hand, since the cavity 50 in FIG. 5 has a complicated planar shape having a relatively large number of straight lines and corners, the structure is advantageous for maintaining high rigidity particularly when stress is applied in the stacking direction. Can be realized. Thereby, the effect which prevents the crack in the vicinity of the cavity part 50 of the wiring board 10 and a crack is acquired. The difference in the planar shape of the cavity 50 in FIGS. 4 and 5 is derived from the fact that the longitudinal directions of the two chip capacitors C are arranged not in the same direction but perpendicularly as described above.

以上、本発明を適用した配線基板10の特徴的な構造を説明したが、本実施形態において示した平面構造は一例であって、以下に挙げる多様な変形例に対して本発明を適用することができる。図6は、本実施形態とは接続形態が異なる変形例を示している。図6において、空洞部50及び2個のチップコンデンサCの平面形状は図5と共通であるが、各チップコンデンサCに対する電気的接続が変更されている。具体的には、一方のチップコンデンサCの端子電極Taと他方のチップコンデンサCの端子電極Tbのそれぞれをグランド電位GNに接続している。つまり、2個のチップコンデンサCのうち共通のグランド電位GNに接続される側を互いに近接する端子電極Ta、Tbとしたものである。図5の場合とは電気的経路P(1)、P(2)が逆方向になる。端子電極Ta、Tbにそれぞれ接続される配線は、配線基板10内の所定の位置で電気的に接続される。図6の平面構造により、共通電位に接続される側の端子電極Ta、Tbがショートしたとしても動作上の問題がないため、2個のチップコンデンサCの部品間隔を短縮することができる。   The characteristic structure of the wiring board 10 to which the present invention is applied has been described above, but the planar structure shown in the present embodiment is an example, and the present invention is applied to various modifications described below. Can do. FIG. 6 shows a modification in which the connection form is different from the present embodiment. In FIG. 6, the planar shapes of the cavity 50 and the two chip capacitors C are the same as those in FIG. 5, but the electrical connection to each chip capacitor C is changed. Specifically, the terminal electrode Ta of one chip capacitor C and the terminal electrode Tb of the other chip capacitor C are connected to the ground potential GN. That is, the side of the two chip capacitors C that is connected to the common ground potential GN is the terminal electrodes Ta and Tb that are close to each other. The electrical paths P (1) and P (2) are in the opposite direction from the case of FIG. Wirings connected to the terminal electrodes Ta and Tb are electrically connected at predetermined positions in the wiring board 10. With the planar structure of FIG. 6, even if the terminal electrodes Ta and Tb on the side connected to the common potential are short-circuited, there is no problem in operation, so that the interval between two chip capacitors C can be shortened.

また、図7は、本実施形態とは空洞部50の平面形状が異なる変形例を示している。すなわち、図5の空洞部50が6本の直線及び6個の角部を有する平面形状であるのに対し、図7の空洞部50は8本の直線及び8個の角部を有する平面形状となっている。この場合、一方のチップコンデンサC(1)を基準に、他方のチップコンデンサC(2)の長手方向がチップコンデンサC(1)の略中心部に沿うように配置されている。図7の変形例によれば、空洞部50の平面形状の直線及び角部が増えた分だけ高い剛性を保つのに有利な構造を実現できる。   FIG. 7 shows a modification in which the planar shape of the cavity 50 is different from that of the present embodiment. That is, the cavity 50 in FIG. 5 has a planar shape having six straight lines and six corners, whereas the cavity 50 in FIG. 7 has a planar shape having eight straight lines and eight corners. It has become. In this case, with respect to one chip capacitor C (1), the other chip capacitor C (2) is arranged so that the longitudinal direction thereof is along the substantially central portion of the chip capacitor C (1). According to the modified example of FIG. 7, it is possible to realize a structure that is advantageous for maintaining high rigidity by the amount of the straight line and the corners of the planar shape of the cavity 50 increased.

なお、本実施形態の空洞部50は、矩形等の単純な平面形状で形成することなく、5個以上の角部を有するか、あるいはX方向及びY方向のいずれかに対し非対称な平面形状で形成することが条件である。よって、図5や図7に示した平面形状に限られることなく、多様な平面形状で形成することができる。かかる条件を満たす限り、空洞部50を構成する平面形状が、X方向/Y方向以外の方向の直線を含んでいてもよいし、部分的に曲線を含んでいてもよい。また、空洞部50を構成する平面形状の各角部に対し、面取り(R面取り、C面取り)を施してもよい。   Note that the cavity 50 of the present embodiment is not formed in a simple planar shape such as a rectangle, but has five or more corners or a planar shape asymmetric with respect to either the X direction or the Y direction. It is a condition to form. Therefore, the present invention is not limited to the planar shape shown in FIGS. 5 and 7 and can be formed in various planar shapes. As long as this condition is satisfied, the planar shape constituting the cavity 50 may include a straight line in a direction other than the X direction / Y direction, or may partially include a curve. Further, chamfering (R chamfering, C chamfering) may be performed on each of the planar corners forming the cavity 50.

また、図8は、空洞部50内に3個のチップコンデンサCを配置した変形例を示している。すなわち、図5の2個のチップコンデンサC(1)、C(2)に加えて、チップコンデンサC(3)を加えたものである。図8の変形例では、チップコンデンサC(1)を挟んで両側にチップコンデンサC(2)、C(3)が対称的に配置され、それぞれの電気的経路P(2)、P(3)は同一方向に沿っている。ただし、両側のチップコンデンサC(2)、C(3)は隣接せずに距離が離れているので、互いの電気的干渉は小さくなる。この場合、隣接する2個のチップコンデンサC(1)、C(2)同士、あるいは、隣接する2個のチップコンデンサC(1)、C(3)同士は、本実施形態で述べたように電気的経路Pが互いに直交した関係にあるので、電気的干渉を抑える効果を享受することができる。なお、図8の変形例に限らず、さらにチップコンデンサCを増やした場合であっても、隣接するチップコンデンサCの電気的経路Pを直交させる限り、本発明の適用が可能である。   FIG. 8 shows a modification in which three chip capacitors C are arranged in the cavity 50. That is, the chip capacitor C (3) is added to the two chip capacitors C (1) and C (2) in FIG. In the modified example of FIG. 8, chip capacitors C (2) and C (3) are symmetrically arranged on both sides of the chip capacitor C (1), and the electrical paths P (2) and P (3) are respectively arranged. Are in the same direction. However, since the chip capacitors C (2) and C (3) on both sides are not adjacent to each other and are separated from each other, the electrical interference between them is reduced. In this case, the two adjacent chip capacitors C (1) and C (2) or the two adjacent chip capacitors C (1) and C (3) are as described in this embodiment. Since the electrical paths P are orthogonal to each other, the effect of suppressing electrical interference can be enjoyed. Note that the present invention is not limited to the modification of FIG. 8, and even when the chip capacitors C are further increased, the present invention can be applied as long as the electrical paths P of adjacent chip capacitors C are orthogonal.

さらに、空洞部50内に配置される部品は、チップコンデンサCに限られず、例えば、チップインダクタを用いてもよい。図9は、空洞部50内に2個のチップインダクタLを配置する場合の図3に対応する等価回路の一例を示している。図9においては、2系統の電源電圧V1、V2に対し、2個のチップインダクタLをチョークコイルとして用いる場合を示している。すなわち、一方のチップインダクタL(1)は電源電圧V1の配線に直列に挿入され、他方のチップインダクタL(2)は電源電圧V2の配線に直列に挿入されている。この場合の空洞部50の平面図は、図2の2個のチップコンデンサCを2個のチップインダクタLで置き換えればよい。図9の等価回路に対し本発明を適用する場合であっても、空洞部内50のチップインダクタL同士の電気的干渉を抑制する効果については同様である。   Furthermore, the component disposed in the cavity 50 is not limited to the chip capacitor C, and for example, a chip inductor may be used. FIG. 9 shows an example of an equivalent circuit corresponding to FIG. 3 when two chip inductors L are arranged in the cavity 50. FIG. 9 shows a case where two chip inductors L are used as choke coils for two power supply voltages V1 and V2. That is, one chip inductor L (1) is inserted in series with the wiring of the power supply voltage V1, and the other chip inductor L (2) is inserted in series with the wiring of the power supply voltage V2. In the plan view of the cavity 50 in this case, the two chip capacitors C in FIG. Even when the present invention is applied to the equivalent circuit of FIG. 9, the effect of suppressing the electrical interference between the chip inductors L in the cavity 50 is the same.

なお、空洞部50内において、チップコンデンサCとチップインダクタLを混在させる場合であっても、同様の配置に従って本発明を適用することができる。また、空洞部50内に配置される部品は、チップコンデンサCやチップインダクタLに限られることなく、多様な部品を用いることができる。   Even when the chip capacitor C and the chip inductor L are mixed in the cavity 50, the present invention can be applied according to the same arrangement. Further, the components disposed in the cavity 50 are not limited to the chip capacitor C and the chip inductor L, and various components can be used.

以上の構造を有する本実施形態の配線基板10は、空洞部50の構造を除いて周知の手法を用いて作製することができる。なお、空洞部50の形成に関しては、平面形状が矩形である場合と同様、例えば、ルータを用いて加工することができる。この場合、空洞部50の平面形状に適合するようにルータのX方向及びY方向の移動を制御することにより、複雑な平面形状を有する空洞部50を形成することができる。   The wiring board 10 of the present embodiment having the above structure can be manufactured using a known method except for the structure of the cavity 50. In addition, regarding formation of the cavity part 50, it can process using a router like the case where a planar shape is a rectangle. In this case, the cavity 50 having a complicated planar shape can be formed by controlling the movement of the router in the X direction and the Y direction so as to conform to the planar shape of the cavity 50.

以上、本実施形態に基づき本発明の内容を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で多様な変更を施すことができる。例えば、本実施形態では、半導体チップ100を載置した配線基板10に対して本発明を適用する場合を説明したが、空洞部50に複数の部品が内蔵されていれば、半導体チップ100以外の部品を載置した配線基板10に対して本発明を適用することができる。また、本実施形態では、コア基板にガラス繊維を含んだエポキシ樹脂を用いた場合を説明したが、コア基板に金属板や感光性ガラスを用いる場合には、スルーホール導体21が形成される貫通孔と、複数の部品が内蔵される空洞部50とをエッチングによって同時に形成することもできる。その他の点についても上記実施形態により本発明の内容が限定されるものではなく、本発明の作用効果を得られる限り、上記実施形態に開示した内容には限定されることなく適宜に変更可能である。   The contents of the present invention have been specifically described above based on the present embodiment, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, in the present embodiment, the case where the present invention is applied to the wiring substrate 10 on which the semiconductor chip 100 is mounted has been described. However, as long as a plurality of components are built in the cavity 50, other than the semiconductor chip 100. The present invention can be applied to the wiring board 10 on which components are placed. In the present embodiment, the case where an epoxy resin containing glass fiber is used for the core substrate has been described. However, when a metal plate or photosensitive glass is used for the core substrate, the through-hole conductor 21 is formed. It is also possible to simultaneously form the hole and the cavity 50 containing a plurality of components by etching. The contents of the present invention are not limited by the above-described embodiment in other respects, and can be appropriately changed without being limited to the contents disclosed in the above-described embodiment as long as the effects of the present invention can be obtained. is there.

10…部品内蔵配線基板
11…コア基板
12、13…ビルドアップ層
14、15、17、18…樹脂絶縁層
16、19…ソルダーレジスト層
20…樹脂充填材
21…スルーホール導体
22…閉塞体
30、32、40、42…ビア導体
31、41…導体層
33…端子パッド
34…半田バンプ
43…BGA用パッド
44…半田ボール
50…空洞部
100…半導体チップ
C…チップコンデンサ
L…チップインダクタ
DESCRIPTION OF SYMBOLS 10 ... Component built-in wiring board 11 ... Core board | substrates 12, 13 ... Build-up layers 14, 15, 17, 18 ... Resin insulation layers 16, 19 ... Solder resist layer 20 ... Resin filler 21 ... Through-hole conductor 22 ... Closure body 30 , 32, 40, 42 ... via conductors 31, 41 ... conductor layer 33 ... terminal pad 34 ... solder bump 43 ... BGA pad 44 ... solder ball 50 ... cavity 100 ... semiconductor chip C ... chip capacitor L ... chip inductor

Claims (9)

空洞部が形成されたコア基板と、
前記空洞部内に配置された複数の部品と、
前記コア基板の一方又は両方の主面側に絶縁層及び導体層を交互に積層形成した配線積層部と、
前記空洞部を画定する前記コア基板の内壁面と前記複数の部品との間隙部に充填された樹脂充填材と、
を備えた部品内蔵配線基板において、
前記空洞部は、平面視で5個以上の角部を有する形状に形成され、
前記複数の部品は、平面視で互いに略直交する第1の方向及び第2の方向に関し、前記第1の方向に沿った電気的経路を有する第1の部品と、前記第2の方向に沿った電気的経路を有する第2の部品とを含む、
ことを特徴とする部品内蔵配線基板。
A core substrate in which a cavity is formed;
A plurality of components disposed in the cavity;
A wiring laminated portion in which insulating layers and conductor layers are alternately laminated on one or both main surface sides of the core substrate;
A resin filler filled in a gap portion between the inner wall surface of the core substrate and the plurality of components defining the hollow portion;
In the component built-in wiring board with
The cavity is formed in a shape having five or more corners in plan view,
The plurality of parts are related to a first direction and a second direction that are substantially orthogonal to each other in plan view, and a first part having an electrical path along the first direction, and the second direction. A second component having an electrical path
A wiring board with a built-in component.
空洞部が形成されたコア基板と、
前記空洞部内に配置された複数の部品と、
前記コア基板の一方又は両方の主面側に絶縁層及び導体層を交互に積層形成した配線積層部と、
前記空洞部を画定する前記コア基板の内壁面と前記複数の部品との間隙部に充填された樹脂充填材と、
を備えた部品内蔵配線基板において、
前記空洞部は、平面視で互いに略直交する第1の方向及び第2の方向の少なくとも一方に対して非対称な形状に形成され、
前記複数の部品は、前記第1の方向に沿った電気的経路を有する第1の部品と、前記第2の方向に沿った電気的経路を有する第2の部品とを含む、
ことを特徴とする部品内蔵配線基板。
A core substrate in which a cavity is formed;
A plurality of components disposed in the cavity;
A wiring laminated portion in which insulating layers and conductor layers are alternately laminated on one or both main surface sides of the core substrate;
A resin filler filled in a gap portion between the inner wall surface of the core substrate and the plurality of components defining the hollow portion;
In the component built-in wiring board with
The hollow portion is formed in an asymmetric shape with respect to at least one of the first direction and the second direction substantially orthogonal to each other in plan view,
The plurality of parts includes a first part having an electrical path along the first direction and a second part having an electrical path along the second direction.
A wiring board with a built-in component.
前記第1及び第2の部品は、前記コア基板及び前記樹脂充填材よりも剛性が高い材料を用いて形成されることを特徴とする請求項1又は2に記載の部品内蔵配線基板。   The component built-in wiring board according to claim 1, wherein the first and second components are formed using a material having higher rigidity than the core substrate and the resin filler. 前記空洞部は、平面視した外形が前記第1の方向の直線群と前記第2の方向の直線群とにより構成されることを特徴とする請求項1から3のいずれか一項に記載の部品内蔵配線基板。   4. The cavity according to claim 1, wherein an outer shape of the hollow portion is configured by a straight line group in the first direction and a straight line group in the second direction. 5. Component built-in wiring board. 前記第1の部品は、前記第1の方向の両端に形成された1対の端子電極を有し、
前記第2の部品は、前記第2の方向の両端に形成された1対の端子電極を有する、
ことを特徴とする請求項1から4のいずれか一項に記載の部品内蔵配線基板。
The first component has a pair of terminal electrodes formed at both ends in the first direction,
The second component has a pair of terminal electrodes formed at both ends in the second direction.
The component built-in wiring board according to any one of claims 1 to 4, wherein the wiring board has a built-in component.
前記第1の部品の前記1対の端子電極のうちの一方の電極と、前記第2の部品の前記1対の端子電極のうち前記第1の部品と近接する一方の電極とは、共通の電位に接続されることを特徴とする請求項5に記載の部品内蔵配線基板。   One electrode of the pair of terminal electrodes of the first component and one electrode adjacent to the first component of the pair of terminal electrodes of the second component are common. The component built-in wiring board according to claim 5, wherein the component built-in wiring board is connected to a potential. 前記第1の部品は、平面視した外形が前記第1の方向の2つの長辺と前記第2の方向の2つの短辺とを有する長方形に形成され、
前記第2の部品は、平面視した外形が前記第1の方向の2つの短辺と前記第2の方向の2つの長辺とを有する長方形に形成される、
ことを特徴とする請求項6に記載の部品内蔵配線基板。
The first component is formed in a rectangular shape whose outer shape in plan view has two long sides in the first direction and two short sides in the second direction,
The second component is formed in a rectangular shape in which a plan view has two short sides in the first direction and two long sides in the second direction.
The component built-in wiring board according to claim 6.
前記空洞部において、平面視で前記間隙部の幅が前記第1及び第2の部品のそれぞれの短辺の長さより小さいことを特徴とする請求項7に記載の部品内蔵配線基板。   8. The component built-in wiring board according to claim 7, wherein, in the hollow portion, the width of the gap is smaller than the length of each short side of the first and second components in a plan view. 前記第1及び第2の部品は、コンデンサであることを特徴とする請求項1から8のいずれか一項に記載の部品内蔵配線基板。
The component built-in wiring board according to claim 1, wherein the first and second components are capacitors.
JP2011155778A 2011-07-14 2011-07-14 Wiring substrate with built-in component Pending JP2013021269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011155778A JP2013021269A (en) 2011-07-14 2011-07-14 Wiring substrate with built-in component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011155778A JP2013021269A (en) 2011-07-14 2011-07-14 Wiring substrate with built-in component

Publications (1)

Publication Number Publication Date
JP2013021269A true JP2013021269A (en) 2013-01-31

Family

ID=47692382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155778A Pending JP2013021269A (en) 2011-07-14 2011-07-14 Wiring substrate with built-in component

Country Status (1)

Country Link
JP (1) JP2013021269A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5576973B1 (en) * 2013-03-19 2014-08-20 太陽誘電株式会社 Electronic component built-in substrate
JP2016012587A (en) * 2014-06-27 2016-01-21 イビデン株式会社 Printed wiring board
JP2016096339A (en) * 2014-11-13 2016-05-26 サムソン エレクトロ−メカニックス カンパニーリミテッド. Circuit board
JP2016529719A (en) * 2013-08-09 2016-09-23 アップル インコーポレイテッド Fine-grained integrated voltage regulation for multidies

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119271U (en) * 1987-01-29 1988-08-02
JP2001023849A (en) * 1999-07-13 2001-01-26 Hitachi Ltd Circuit with capacitor and wiring board
JP3522571B2 (en) * 1999-03-05 2004-04-26 日本特殊陶業株式会社 Wiring board
JP2005011837A (en) * 2003-06-16 2005-01-13 Nippon Micron Kk Semiconductor device, substrate therefor, and its manufacturing method
JP2005175428A (en) * 2003-12-05 2005-06-30 Optimum Care Internatl Tech Inc Circuit board having sink hole
JP2007067369A (en) * 2005-08-05 2007-03-15 Ngk Spark Plug Co Ltd Wiring board and method of manufacturing the same, and ceramic chip for embedment
WO2011010498A1 (en) * 2009-07-24 2011-01-27 イビデン株式会社 Wiring board and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119271U (en) * 1987-01-29 1988-08-02
JP3522571B2 (en) * 1999-03-05 2004-04-26 日本特殊陶業株式会社 Wiring board
JP2001023849A (en) * 1999-07-13 2001-01-26 Hitachi Ltd Circuit with capacitor and wiring board
JP2005011837A (en) * 2003-06-16 2005-01-13 Nippon Micron Kk Semiconductor device, substrate therefor, and its manufacturing method
JP2005175428A (en) * 2003-12-05 2005-06-30 Optimum Care Internatl Tech Inc Circuit board having sink hole
JP2007067369A (en) * 2005-08-05 2007-03-15 Ngk Spark Plug Co Ltd Wiring board and method of manufacturing the same, and ceramic chip for embedment
WO2011010498A1 (en) * 2009-07-24 2011-01-27 イビデン株式会社 Wiring board and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5576973B1 (en) * 2013-03-19 2014-08-20 太陽誘電株式会社 Electronic component built-in substrate
US8964407B2 (en) 2013-03-19 2015-02-24 Taiyo Yuden Co., Ltd Substrate with built-in electronic component
US9055671B2 (en) 2013-03-19 2015-06-09 Taiyo Yuden Co., Ltd Substrate with built-in electronic component
JP2016529719A (en) * 2013-08-09 2016-09-23 アップル インコーポレイテッド Fine-grained integrated voltage regulation for multidies
US10056384B2 (en) 2013-08-09 2018-08-21 Apple Inc. Multi-die fine grain integrated voltage regulation
US11063046B2 (en) 2013-08-09 2021-07-13 Apple Inc. Multi-die fine grain integrated voltage regulation
JP2016012587A (en) * 2014-06-27 2016-01-21 イビデン株式会社 Printed wiring board
JP2016096339A (en) * 2014-11-13 2016-05-26 サムソン エレクトロ−メカニックス カンパニーリミテッド. Circuit board

Similar Documents

Publication Publication Date Title
US8952262B2 (en) Component-incorporated wiring substrate and method of manufacturing the same
US9192044B2 (en) Printed wiring board, semiconductor package, and printed circuit board
JP4734282B2 (en) Semiconductor chip and semiconductor device
JP5536682B2 (en) Component built-in wiring board
JP2016192568A (en) Electronic component embedded substrate
JP2008004853A (en) Laminated semiconductor device, and module
JP6108887B2 (en) Semiconductor package and printed circuit board
US8441807B2 (en) Electronic circuit
JP2013021269A (en) Wiring substrate with built-in component
JP4854345B2 (en) Capacitor sheet and electronic circuit board
JP6504960B2 (en) Printed board
JP2007250928A (en) Multilayer printed wiring board
US8027170B2 (en) Substrate and electronic device using the same
JP2011155199A (en) Circuit mounting substrate
JP6804261B2 (en) Printed circuit board for relay
JP5011338B2 (en) Wiring board with built-in capacitor
KR101278255B1 (en) Planar transformer and method of mounting planar transformer on mainboard
JP6425632B2 (en) Printed board
JP5742235B2 (en) Connecting parts
JP2020013917A (en) Wiring board
JP6083143B2 (en) Chip inductor built-in wiring board
CN108122856A (en) Mounting semiconductor element substrate
JP2015082524A (en) Wiring board and semiconductor device
JP4183009B2 (en) Multilayer capacitors, wiring boards, decoupling circuits, and high-frequency circuits
JP2020088255A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208