JP3522571B2 - Wiring board - Google Patents
Wiring boardInfo
- Publication number
- JP3522571B2 JP3522571B2 JP05942499A JP5942499A JP3522571B2 JP 3522571 B2 JP3522571 B2 JP 3522571B2 JP 05942499 A JP05942499 A JP 05942499A JP 5942499 A JP5942499 A JP 5942499A JP 3522571 B2 JP3522571 B2 JP 3522571B2
- Authority
- JP
- Japan
- Prior art keywords
- chip capacitor
- main surface
- chip
- core substrate
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003990 capacitor Substances 0.000 claims description 92
- 239000000758 substrate Substances 0.000 claims description 51
- 239000004020 conductor Substances 0.000 claims description 44
- 238000010030 laminating Methods 0.000 claims description 2
- 239000011347 resin Substances 0.000 description 13
- 229920005989 resin Polymers 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910000679 solder Inorganic materials 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000003822 epoxy resin Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000000873 masking effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- -1 BT Resin Substances 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229910020674 Co—B Inorganic materials 0.000 description 1
- 229910017888 Cu—P Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- 229910020922 Sn-Pb Inorganic materials 0.000 description 1
- 229910008783 Sn—Pb Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
Landscapes
- Ceramic Capacitors (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、コア基板の両主面
に多層配線部を有する配線基板に関し、特にコア基板に
チップキャパシタを内蔵した配線基板に関する。
【0002】
【従来の技術】近年、集積回路技術の進歩によりICチ
ップの動作がますます高速化されている。これに伴い、
電源配線等にノイズが重畳されて、誤動作を引き起こす
ことがある。そこで、係るノイズを除去するため、例え
ば配線基板の上面又は下面に、別途チップキャパシタを
搭載し、このチップキャパシタにおける2つの端子電極
(第1及び第2の端子電極)とそれぞれ接続するチップキ
ャパシタ配線を配線基板の内部に設けている。これによ
り、チップキャパシタ配線およびIC接続端子を経由し
てチップキャパシタをICチップに接続することができ
る。
【0003】しかしながら、上記構造の配線基板では、
その完成後に別途チップキャパシタを搭載する必要があ
るため、工数を要しコスト高になる。また、チップキャ
パシタの接続の良否により配線基板全体の良否に影響が
出るなど、チップキャパシタの接続信頼性に依拠して配
線基板の信頼性が低下する場合もある。更に、チップキ
ャパシタを搭載する領域を上・下面において予め確保し
ておく必要があり、他の電子部品の搭載や配線基板を補
強するための補強部材(スティフナ)の固着の自由度を低
下させることもある。加えて、他の配線等に制限され
て、ICチップとチップキャパシタとを接続するチップ
キャパシタ接続配線が長くなり且つ細くなり易い。この
ため、係るチップキャパシタ接続配線自体が持つ抵抗や
インダクタンスが過大になりがちで、低抵抗及び低イン
ダクタンス化の要求に十分応えられていない、という問
題点があった。
【0004】
【発明が解決すべき課題】本発明は、上述した各問題点
を解決し、ノイズを低減でき且つチップキャパシタに接
続する配線の抵抗やインダクタンスを低くし得る配線基
板、更にはチップキャパシタが不具合を生じても損失コ
ストが少なく、安価に製造でき且つ大静電容量のチップ
キャパシタを内蔵した配線基板を提供することを課題と
する。
【0005】
【課題を解決するための手段】本発明は、上記した課題
を解決するため、コア基板に静電容量の大きなチップキ
ャパシタを内蔵し且つその2つの端子電極を基板の上・
下面とそれぞれ接続することに着想して成されたもので
ある。即ち、本発明の配線基板は、第1主面と第2主面
とを有するコア基板と、このコア基板の第1主面に形成
された凹部と、この凹部に収容されたチップキャパシタ
と、このチップキャパシタを収容したコア基板の第1主
面上に導体層と絶縁層とを交互に積層して形成された第
1多層配線部と、この第1多層配線部の上面に形成さ
れ、ICチップと接続するためのIC接続端子と、上記
第1多層配線部に設けられ、上記IC接続端子と接続さ
れるIC接続配線と、上記チップキャパシタを収容した
コア基板の第2主面上に導体層と絶縁層とを交互に積層
して形成された第2多層配線部と、この第2多層配線部
の上面に形成される外部接続端子と、上記第2多層配線
部および上記凹部の底面部に設けられ、上記外部接続端
子と接続される外部接続配線と、を備えた配線基板であ
って、上記チップキャパシタは、上記第1主面側におい
て第1のIC接続配線と接続され、且つ、上記第2主面
側において第1の外部接続配線と接続される第1の端子
電極と、上記第1主面側において第2のIC接続配線と
接続され、且つ、上記第2主面側において第2の外部接
続配線と接続される第2の端子電極と、を備える、こと
を特徴とする。
【0006】上記配線基板は、コア基板にチップキャパ
シタ収容用の凹部を形成し、その中にチップキャパシタ
を内蔵し、コア基板の両面に第1多層配線部および第2
層配線部を形成し、チップキャパシタにおける第1の端
子電極及び第2の端子電極とIC接続端子とをそれぞれ
第1主面側においてIC接続と接続している。また、チ
ップキャパシタの第1の端子電極及び第2の端子電極
は、第2主面側においてそれぞれ外部接続配線と接続さ
れる。このため、チップキャパシタの両方の端子電極を
それぞれ第1主面側(上方)及び第2主面側(下方)に取出
すことができる。
【0007】即ち、ICチップと接続するIC接続端子
などから極く近い距離にチップキャパシタを配置するこ
とができる。これにより、第1のIC接続配線および第
2のIC接続配線を極く短くして形成することが可能と
なる。従って、ノイズを低減でき且つチップキャパシタ
に接続する配線の抵抗やインダクタンスを低くすること
ができる。しかも、配線基板内にチップキャパシタ自体
を内蔵しているので、係る配線基板の完成後に別途チッ
プキャパシタを取付ける必要がなくなるか、或いは取付
けるチップキャパシタの数量を減らすことができる。
【0008】尚、特に、複数のIC接続端子のうち少な
くとも一部がチップキャパシタの上方で且つこれと重複
する位置にあることを特徴とする配線基板とすることが
望ましい。例えば、フリップチップパッドのIC接続端
子がチップキャパシタの上方に位置すると、IC接続端
子とチップキャパシタにおける第1の端子電極及び第2
の端子電極とを接続する第1のIC接続配線および第2
のIC接続配線の長さを特に短くすることができる。従
って、第1のIC接続配線および第2のIC接続配線が
持つ抵抗やインダクタンスを一層低く抑えることができ
るので、ノイズ低減能力(効果)を更に向上させることが
できる。
【0009】
【発明の実施の形態】以下において本発明の実施に好適
な形態を図面と共に説明する。図1は本発明による配線
基板1における主要部の断面を示す。配線基板1は、ガ
ラス−エポキシ樹脂の複合材からなり第1主面2a及び
第2主面2bを有するコア基板2を厚み方向の略中央に
有し、このコア基板2の第1主面2aに平面視で略矩形
の凹部4を形成している。この凹部4には複数のチップ
キャパシタ10が収容され、各チップキャパシタ10は
図示で左右両端に第1の端子電極12及び第2の端子電
極14を有する。係るチップキャパシタ10には、例え
ば静電容量が1000〜10000pF(ヒ゜コファラット゛)程度で、チタン
酸バリウム等を誘電体とする積層型セラミックチップキ
ャパシタ(コンデンサ)が用いられ、そのサイズ例は1.0×
0.5×0.5mm程度である。尚、凹部4内の空所には絶縁
材(層)4bが充填されている。
【0010】上記端子電極12,14は、コア基板2の
凹部4における底面部4aを貫通するスルーホール導体
6,6の上端とハンダ16,18によりそれぞれ接続され
ている。尚、コア基板2で凹部4のない厚めの部分に
は、これを貫通するスルーホール導体8が複数形成さ
れ、且つそれらの上下端にはコア基板2の第1・第2主
面2a,2b上に延びるランド9が形成されている。ま
た、スルーホール導体6及びスルーホール導体8内の中
空部には、それぞれ樹脂5又は樹脂7が充填されてい
る。更に、スルーホール導体8の上端部8aと上側のラ
ンド9は、次述する第1の導体層20aの一部を形成
し、スルーホール導体6,8の下端部6a,8aと下側の
ランド9は後述する第1の導体層30aの一部を形成す
る。
【0011】また、コア基板2の凹部4を形成した第1
主面2a上には、第1〜第3の導体層20a,22,24
と第1・第2の絶縁層21,23及びソルダーレジスト
(絶縁)層25とが交互に積層された第1多層配線部20
が形成されている。第2・第3の導体層22,24内に
は、絶縁層21,23を貫通し導体層間の導通を取るビ
ア導体22a,24bが形成されている。第3の導体層
24の適所には、ソルダーレジスト層25を貫通してそ
の表面から突出するIC接続端子28が複数個形成され
ている。IC接続端子28は、配線基板1の上面に搭載
されるICチップ29の底面における図示しない外部接
続端子とロウ付けによって接続されている。ICチップ
29とチップキャパシタ10の第1・第2の端子電極1
2,14とを接続する導体層20a,22,24部分は、
第1・第2のIC接続配線26,27を形成している。
【0012】更に、コア基板2の第2主面2b上には、第
1〜第3の導体層30a,32,34と第1・第2の絶縁
層31,33及びソルダーレジスト(絶縁)層35とが交
互に積層された第2多層配線部30が形成されている。
導体層32,34内には、絶縁層31,33を貫通し導体
層間の導通を取るビア導体32a,34aが形成されて
いる。第3の導体層34の適所には、ソルダーレジスト
層35に形成した複数の開口部39内にそれぞれ露出す
る外部接続端子38が形成されている。係る外部接続端
子38とチップキャパシタ10の第1・第2の端子電極
12,14とを接続する導体層30a,32,34部分
は、第1・第2の外部接続配線36,37を形成してい
る。尚、外部接続端子38の表面には薄いAu及びNi
メッキが施されている。また、前記ICチップ29とチ
ップキャパシタ10を経ずに配線基板1内の導体層2
4,22,20a,30a,32,34を介して外部接続端
子38に接続する導体部分は、信号接続配線を形成す
る。
【0013】以上の如く配線基板1は、コア基板2の凹
部4に複数のチップキャパシタ10を内蔵し、その第1
・第2の端子電極12,14とIC接続端子28とを第1
多層配線部20内の第1・第2のIC接続配線26,27
により接続する。また、チップキャパシタ10の第1・
第2の端子電極12,14と外部接続端子38とを第2
多層配線部30内の第1・第2の外部接続配線36,37
により接続する。このため、チップキャパシタ10の第
1・第2の端子電極12,14は、基板1の上面(第1主面
2a側)及び下面(第2主面2b側)にそれぞれ接続され
導通している。即ち、ICチップ29と接続するIC接
続端子28から至近距離でチップキャパシタ10を配置
できると共に、第1・第2のIC接続配線26,27も極
く短くして配設することができる。
【0014】従って、配線基板1によれば、ノイズを低
減でき且つチップキャパシタ10に接続するIC接続配
線26,27の抵抗やインダクタンスを低くでき、IC
チップ29とチップキャパシタ10との導通が高速且つ
正確に取れ、且つICチップ29と第1・第2多層配線
部20,30との導通も確実に取ることができる。ま
た、外部接続端子38を介して配線基板1が接続される
図示しないマザーボード内の回路素子とチップキャパシ
タ10等との導通も確実に取ることができる。しかも、
チップキャパシタ10をコア基板2の凹部4内に内蔵し
ているので、基板1の上面に別途チップキャパシタを搭
載する必要がなく全体の厚みを抑制でき、或いは別途に
搭載するチップキャパシタの数量を低減することができ
る。更に、配線基板1では、チップキャパシタ10の上
方に各IC接続端子28が位置しているので、上記第1
・第2のIC接続配線26,27を最も短くでき、これら
のインダクタンスや抵抗を一層低く抑えられるため、ノ
イズ低減特性が著しく向上する。
【0015】以下において上述した配線基板1の製造方
法を説明する。尚、次述する図2以降では図1中におけ
る左側のチップキャパシタ10を中心にして説明する。
図2(A)は、両面に銅箔cを貼り付けたガラス−エポキ
シ樹脂からなるコア基板素板2cの断面を示し、図2
(B)に示すように、所定の位置にドリルでスルーホール
3を穿設する。そして、素板2cの両面及びスルーホー
ル3内に銅メッキを施し、且つスルーホール3の中心付
近の中空部内に樹脂を充填して硬化する。その後、素板
2cの両面に更に銅メッキを施し、且つマスキングして
不要な位置における銅メッキ層及び銅箔cをエッチング
により除去する。その結果、図2(C)に示すように、各
スルーホール3内にはスルーホール導体6とその中心付
近に埋設された樹脂5が形成され、且つスルーホール導
体6の上下端には略円形のフランジ6aが形成される。
上記マスキングによってフランジ6aの一部からはラン
ド6bが延在して形成される。下端のフランジ6aとラ
ンド6bは、前記第1の導体層30aの一部を形成す
る。
【0016】次に、図2(D)に示すように、コア基板素
板2cの上面にフィルム状の接着シート2eを介して厚
肉のコア基板素板2dを積層し熱圧着する。素板2dに
は予め略矩形の開口部2fが形成され、素板2c,2d
を接合することによりコア基板2が形成されると共に、
その第1主面2a側に凹部4が形成される。尚、コア基
板2の下面は第2主面2bとなる。更に、図3(A)に示
すように、凹部4内にチップキャパシタ10を装入し、凹
部4の底面部4aを貫通する各スルーホール導体6にお
ける上端のフランジ6a上にチップキャパシタ10の第
1・第2端子電極12,14を近接する。図3(B)に示す
ように、この状態でハンダ16,18を施し上記第1・第
2端子電極12,14とスルーホール導体6,6とを接合
する。その結果、チップキャパシタ10の左右両端に設
けた断面略コ形の端子電極12,14は、それぞれハン
ダ16,18を介してスルーホール導体6,6と導通す
る。
【0017】次いで、コア基板2及びチップキャパシタ
10の上方にエポキシ系樹脂を塗布した後、その表面を
研削して平坦化する。その結果、図3(C)に示すよう
に、チップキャパシタ10における第1・第2の端子電
極12,14の各上端面を露出させ、且つチップキャパ
シタ10を凹部4内に内蔵して埋設する樹脂(絶縁)層4
bが形成される。尚、以下においては樹脂層4bの上面
を説明の便宜上コア基板2の第1主面2aとする。
【0018】引き続いて、図4(A)に示すように、コア
基板2で凹部4のない厚肉部分における所定の位置にド
リルでスルーホール3を穿設する。次に、コア基板2の
両面及びスルーホール3内に銅メッキを施し、且つスル
ーホール3の中心付近の中空部内に樹脂を充填して硬化
する。更に、マスキングを施して不要な位置における銅
メッキ層をエッチングにより除去する。その結果、図示
のように、各スルーホール3内にはスルーホール導体8
とその中心付近に埋設された樹脂7が形成され、且つス
ルーホール導体8の上下端には略円形のフランジ8aが
形成される。上記マスキングによってフランジ8aの一
部からはランド9が延在して形成される。上下端のフラ
ンジ8aとランド9は、それぞれ前記第1の導体層20
a,30aの一部を形成する。
【0019】尚、この間においてチップキャパシタ10
の第1・第2端子電極12,14の各上端部も上記フラン
ジ8aと同じレベルになるよう厚肉化される。次に、コ
ア基板2及びチップキャパシタ10の上方にエポキシ系
樹脂を塗布した後、その表面を研削して平坦化する。そ
の結果、図4(B)に示すように、チップキャパシタ10
の第1・第2端子電極12,14の各上端面を露出させ
た樹脂(絶縁)層19が形成される。また、コア基板2の
第2主面2b上にもエポキシ系樹脂が塗布され且つその
表面を研削して平坦化した樹脂層19が形成される。
尚、第2主面2b上の樹脂層19の表面には、前記導体
層30aを形成するフランジ6a,8aやランド6b,9
が露出している。
【0020】そして、図5(A)に示すように、コア基板
2の第1主面2a及び第2主面2bの上方に、フィルム
状で感光性のエポキシ系樹脂シートを貼り付けて第1の
絶縁層21,31を形成する。係る絶縁層21,31にお
ける所定の位置に公知のフォトリソグラフィー技術によ
りビアホール21a,31aを形成する。係るビアホー
ル21a,31a内と第1の絶縁層21,31の上に銅メ
ッキをそれぞれ形成した後、所定のパターンにエッチン
グ(パターニング)を施す。その結果、図5(B)に示すよ
うに、ビア導体22a,32a及び第2の導体層22,3
2が形成される。
【0021】同様にして第1の絶縁層21,31及び第
2の導体層22,32の上方に、エポキシ系樹脂シート
を貼り付けて第2の絶縁層23,33を形成し、所定の
位置にビアホールを形成した後、ビア導体24a,34
aと第3の導体層24,34を形成する。最後に、両面
にソルダーレジスト層25,35を形成し、レジスト層2
5の所定の位置からIC接続端子28を貫通して突設
し、レジスト層35に設けた複数の開口部39内に外部
接続端子38をそれぞれ露出させることにより、前記図
1に示した配線基板1を得ることができる。尚、IC接
続端子28は概ねチップキャパシタ10の上方に位置し
ている。
【0022】そして、図1に示したように、各IC接続
端子28にロウ材を介してICチップ29の底面に設け
た外部接続端子を接続することにより、配線基板1の上
にICチップ29が搭載される。係るICチップ29と
チップキャパシタ10の第1・第2の端子電極12,1
4とを接続する導体層20a,22,24部分は、第1・
第2のIC接続配線26,27を形成する。また、前記
外部接続端子38とチップキャパシタ10の第1・第2
の端子電極12,14とを接続する導体層30a,32,
34部分は、第1・第2の外部接続配線36,37を形成
する。この結果、チップキャパシタ10の第1・第2の
端子電極12,14は、基板1の第1主面2a側及び第
2主面2b側にそれぞれ接続されて導通し、ICチップ
29と接続するIC接続端子28から至近距離でチップ
キャパシタ10を配置できるので、第1・第2のIC接
続配線26,27も極く短くして配線できる。
【0023】従って、係る配線基板1によれば、前述し
たように、ノイズを低減でき且つチップキャパシタ10
に接続するIC接続配線26,27の抵抗やインダクタ
ンスを低くでき、ICチップ29とチップキャパシタ1
0との導通が高速且つ正確に取れる。また、外部接続端
子38を介して配線基板1が接続されるマザーボード内
の回路素子とチップキャパシタ10との導通も確実に取
ることができる。しかも、チップキャパシタ10をコア
基板2の凹部4に内蔵しているので、基板1の上面に別
途チップキャパシタを搭載する必要がなく、配線基板1
全体の厚みを抑制でき、或いは上面への搭載する数量を
低減することができる。
【0024】尚、本発明は以上において説明した形態に
限定されるものではない。例えば、コア基板の第1主面
に複数の凹部を形成し、各凹部にチップキャパシタを個
別に内蔵しても良い。或いは、凹部は単一のコア基板に
おける第1主面側を切削等により部分的に除去して形成
することも可能である。また、チップキャパシタには、
前記形態の他、半導体型セラミックチップキャパシタ等
各種のものが適用可能である。更に、搭載するICチッ
プには、半導体を集積したモノシリックIC(バイポーラ
形、MOS形、Bi−CMOS)チップの他、半導体と共
にコンデンサや抵抗をも集積したハイブリッドICチッ
プ等も適用可能である。
【0025】尚、前記コア基板2には、前記形態で使用
したガラス−エポキシ複合材の他、BT樹脂−ガラス
材、ガラス−PPE材や、紙−エポキシ等の複合樹脂
材、或いはエポキシ、BTレジン、ポリイミド、PP
E、PTFE等の樹脂を用いることも可能である。ま
た、前記導体層22,24等は銅に限らず、Ni及びその
合金(Ni−P,Ni−B,Ni−Cu−P)、Co及びそ
の合金(Co−P,Co−B,Co−Ni−P)、Sn及び
その合金(Sn−Pb,Sn−Pb−Pd)、又はAu,A
g,Pd,Pt,Rh,Ru等、及びこれらをベースとする
合金を用いることも可能である。
【0026】
【発明の効果】以上において説明した本発明の配線基板
は、コア基板の凹部にチップキャパシタを内蔵し、その
第1・第2の端子電極とIC接続端子とを第1多層配線
部の第1・第2のIC接続配線により接続し、チップキ
ャパシタの第1・第2の端子電極と外部接続端子とを第
2多層配線部の第1・第2の外部接続配線により接続し
ている。これにより、チップキャパシタの第1・第2の
端子電極は、配線基板の上面(第1主面側)及び下面(第
2主面側)にそれぞれ接続され導通しているので、IC
チップと接続するIC接続端子から至近距離でチップキ
ャパシタを配置できると共に、第1・第2のIC接続配
線も極く短くして配設することができる。
【0027】従って、係る配線基板によれば、ノイズを
低減でき且つチップキャパシタに接続するIC接続配線
の抵抗やインダクタンスを低くでき、ICチップとチッ
プキャパシタとの導通が高速且つ正確に取れ、且つIC
チップと第1・第2多層配線部2との導通も確実に取る
ことができる。また、外部接続端子を介して本配線基板
が接続されるマザーボード内の回路素子とチップキャパ
シタとの導通も確実に取ることができる。しかも、チッ
プキャパシタをコア基板の凹部に内蔵しているので、配
線基板の上面に別途チップキャパシタを搭載する必要が
なく全体の厚みを抑制でき、或いは、上面に別途搭載す
るチップキャパシタの数量を低減することができる。
【0028】更に、配線基板で、チップキャパシタの上
方にIC接続端子を位置させた形態では、第1・第2の
IC接続配線を最も短くでき、これらのインダクタンス
や抵抗を一層低く抑えられるため、ノイズ低減特性が一
段と向上する。加えて、チップキャパシタに不具合を生
じても損失コストが少なく、安価に製造可能であると共
に、大静電容量のチップキャパシタを内蔵した配線基板
を提供できる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring substrate having a multilayer wiring portion on both main surfaces of a core substrate, and more particularly to a wiring substrate having a chip substrate built in the core substrate. 2. Description of the Related Art In recent years, the operation of IC chips has been increasingly accelerated due to the progress of integrated circuit technology. Along with this,
Noise may be superimposed on the power supply wiring and the like, causing a malfunction. Therefore, in order to remove such noise, for example, a chip capacitor is separately mounted on the upper or lower surface of the wiring board, and two terminal electrodes of the chip capacitor are mounted.
(First and second terminal electrodes) are provided inside the wiring board with chip capacitor wirings respectively connected thereto. Thereby, the chip capacitor can be connected to the IC chip via the chip capacitor wiring and the IC connection terminal. However, in the wiring board having the above structure,
After completion, it is necessary to separately mount a chip capacitor, which requires man-hours and increases costs. In addition, the reliability of the wiring board may be reduced depending on the connection reliability of the chip capacitor, for example, the quality of the connection of the chip capacitor affects the quality of the entire wiring board. Furthermore, it is necessary to secure the area for mounting the chip capacitor on the upper and lower surfaces in advance, which reduces the degree of freedom in mounting other electronic components and fixing a reinforcing member (stiffener) for reinforcing the wiring board. There is also. In addition, it is limited to other wirings and the like, and the chip capacitor connecting wiring connecting the IC chip and the chip capacitor tends to be long and thin. For this reason, the resistance and inductance of the chip capacitor connection wiring itself tend to be excessive, and there has been a problem that the demand for low resistance and low inductance has not been sufficiently satisfied. [0004] The present invention solves the above-mentioned problems, reduces the noise, and reduces the resistance and inductance of the wiring connected to the chip capacitor. It is an object of the present invention to provide a wiring board which has a low loss cost even if a problem occurs, can be manufactured at low cost, and has a built-in chip capacitor having a large capacitance. According to the present invention, in order to solve the above-mentioned problems, a chip capacitor having a large capacitance is built in a core substrate, and two terminal electrodes thereof are mounted on the substrate.
This is made in connection with the connection with the lower surface. That is, the wiring board of the present invention includes a core substrate having a first main surface and a second main surface, a concave portion formed on the first main surface of the core substrate, a chip capacitor accommodated in the concave portion, A first multilayer wiring portion formed by alternately laminating conductor layers and insulating layers on a first main surface of the core substrate accommodating the chip capacitor, and an IC formed on the upper surface of the first multilayer wiring portion, An IC connection terminal for connecting to the chip, an IC connection line provided in the first multilayer wiring portion and connected to the IC connection terminal, and a conductor on the second main surface of the core substrate containing the chip capacitor A second multilayer wiring portion formed by alternately stacking layers and insulating layers; an external connection terminal formed on an upper surface of the second multilayer wiring portion; a bottom portion of the second multilayer wiring portion and the concave portion And an external connection line connected to the external connection terminal. Wherein the chip capacitor is connected to the first IC connection wiring on the first main surface side, and is connected to the first external connection wiring on the second main surface side. A first terminal electrode connected to the second IC connection wiring on the first main surface side and a second terminal electrode connected to a second external connection wiring on the second main surface side And the following. In the wiring board, a recess for accommodating a chip capacitor is formed in a core substrate, a chip capacitor is built therein, and a first multilayer wiring portion and a second multilayer wiring portion are formed on both surfaces of the core substrate.
A layer wiring portion is formed, and the first terminal electrode and the second terminal electrode of the chip capacitor and the IC connection terminal are respectively connected to the IC connection on the first main surface side. Further, the first terminal electrode and the second terminal electrode of the chip capacitor are respectively connected to the external connection wiring on the second main surface side. For this reason, both terminal electrodes of the chip capacitor can be respectively taken out to the first main surface side (upper) and the second main surface side (lower). That is, the chip capacitor can be arranged at a very short distance from an IC connection terminal or the like connected to the IC chip. This makes it possible to form the first IC connection wiring and the second IC connection wiring extremely short. Accordingly, noise can be reduced and the resistance and inductance of the wiring connected to the chip capacitor can be reduced. In addition, since the chip capacitor itself is built in the wiring board, it is not necessary to separately install a chip capacitor after completion of the wiring board, or the number of chip capacitors to be mounted can be reduced. In particular, it is desirable to provide a wiring board characterized in that at least a part of the plurality of IC connection terminals is located above the chip capacitor and at a position overlapping with the chip capacitor. For example, when the IC connection terminal of the flip chip pad is located above the chip capacitor, the IC connection terminal and the first terminal electrode and the second
A first IC connection wiring for connecting to a terminal electrode of
Can be particularly shortened. Therefore, the resistance and inductance of the first IC connection wiring and the second IC connection wiring can be further reduced, so that the noise reduction ability (effect) can be further improved. Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross section of a main part of a wiring board 1 according to the present invention. The wiring board 1 has a core substrate 2 made of a composite material of glass-epoxy resin and having a first main surface 2a and a second main surface 2b at substantially the center in the thickness direction, and the first main surface 2a of the core substrate 2 A concave portion 4 having a substantially rectangular shape is formed in a plan view. A plurality of chip capacitors 10 are accommodated in the recess 4, and each chip capacitor 10 has a first terminal electrode 12 and a second terminal electrode 14 at both left and right ends in the drawing. As such a chip capacitor 10, for example, a multilayer ceramic chip capacitor (capacitor) having a capacitance of about 1000 to 10,000 pF (Picofarat) and using barium titanate or the like as a dielectric is used.
It is about 0.5 × 0.5 mm. The space inside the recess 4 is filled with an insulating material (layer) 4b. The terminal electrodes 12 and 14 are connected to the upper ends of through-hole conductors 6 and 6 passing through the bottom surface 4a of the recess 4 of the core substrate 2 by solders 16 and 18, respectively. A plurality of through-hole conductors 8 penetrating through the thick portion of the core substrate 2 without the concave portion 4 are formed, and the first and second main surfaces 2a, 2b of the core substrate 2 are formed at the upper and lower ends thereof. An upwardly extending land 9 is formed. The hollow portions in the through-hole conductor 6 and the through-hole conductor 8 are filled with a resin 5 or a resin 7, respectively. Further, the upper end 8a and the upper land 9 of the through-hole conductor 8 form a part of a first conductor layer 20a described below, and the lower end 6a, 8a of the through-hole conductor 6, 8 and the lower land 9a. 9 forms a part of a first conductor layer 30a described later. Further, the first substrate having the concave portion 4 of the core substrate
On the main surface 2a, the first to third conductor layers 20a, 22, 24
And first and second insulating layers 21 and 23 and solder resist
First multi-layer wiring section 20 in which (insulating) layers 25 are alternately stacked
Is formed. Via conductors 22a and 24b are formed in the second and third conductor layers 22 and 24 to penetrate the insulating layers 21 and 23 and establish conduction between the conductor layers. A plurality of IC connection terminals 28 that penetrate the solder resist layer 25 and protrude from the surface thereof are formed at appropriate places of the third conductor layer 24. The IC connection terminal 28 is connected to an external connection terminal (not shown) on the bottom surface of the IC chip 29 mounted on the upper surface of the wiring board 1 by brazing. IC chip 29 and first and second terminal electrodes 1 of chip capacitor 10
The conductor layers 20a, 22 and 24 connecting the second and the second 14 are
First and second IC connection wirings 26 and 27 are formed. Further, on the second main surface 2b of the core substrate 2, first to third conductor layers 30a, 32, 34, first and second insulating layers 31, 33, and a solder resist (insulating) layer 35 are alternately stacked to form a second multilayer wiring portion 30.
Via conductors (32a, 34a) are formed in the conductor layers (32, 34) and penetrate the insulating layers (31, 33) to establish conduction between the conductor layers. External connection terminals 38 that are respectively exposed in a plurality of openings 39 formed in the solder resist layer 35 are formed in appropriate places of the third conductor layer 34. The conductor layers 30a, 32, and 34 connecting the external connection terminals 38 to the first and second terminal electrodes 12, 14 of the chip capacitor 10 form first and second external connection wirings 36, 37. ing. The surface of the external connection terminal 38 is made of thin Au and Ni.
Plated. The conductor layer 2 in the wiring board 1 without passing through the IC chip 29 and the chip capacitor 10
The conductor portion connected to the external connection terminal 38 via 4, 22, 20a, 30a, 32, 34 forms a signal connection wiring. As described above, the wiring board 1 has a plurality of chip capacitors 10 built in the recesses 4 of the core board 2 and the first
The first terminal electrodes 12 and 14 and the IC connection terminal 28
First and second IC connection wirings 26 and 27 in multilayer wiring section 20
Connect with In addition, the first capacitor of the chip capacitor 10
The second terminal electrodes 12, 14 and the external connection terminal 38 are
First and second external connection wirings 36 and 37 in the multilayer wiring part 30
Connect with For this reason, the first and second terminal electrodes 12 and 14 of the chip capacitor 10 are connected to the upper surface (the first main surface 2a side) and the lower surface (the second main surface 2b side) of the substrate 1, respectively, and are conductive. . That is, the chip capacitor 10 can be disposed at a short distance from the IC connection terminal 28 connected to the IC chip 29, and the first and second IC connection wirings 26 and 27 can be disposed to be extremely short. Therefore, according to the wiring board 1, noise can be reduced, and the resistance and inductance of the IC connection wirings 26 and 27 connected to the chip capacitor 10 can be reduced.
The connection between the chip 29 and the chip capacitor 10 can be taken at high speed and accurately, and the connection between the IC chip 29 and the first and second multilayer wiring sections 20 and 30 can be taken reliably. In addition, it is possible to reliably ensure continuity between a circuit element in a motherboard (not shown) to which the wiring board 1 is connected via the external connection terminal 38 and the chip capacitor 10 and the like. Moreover,
Since the chip capacitor 10 is built in the recess 4 of the core substrate 2, it is not necessary to separately mount a chip capacitor on the upper surface of the substrate 1, so that the overall thickness can be suppressed or the number of chip capacitors separately mounted can be reduced. can do. Further, in the wiring board 1, since each IC connection terminal 28 is located above the chip capacitor 10, the first
The second IC connection wirings 26 and 27 can be made the shortest and their inductance and resistance can be further reduced, so that the noise reduction characteristics are significantly improved. Hereinafter, a method of manufacturing the above-described wiring board 1 will be described. Note that, in FIG. 2 et seq. Described below, the description will focus on the left chip capacitor 10 in FIG.
FIG. 2A shows a cross section of a core substrate base plate 2c made of a glass-epoxy resin having copper foils affixed to both surfaces thereof.
As shown in (B), a through hole 3 is formed at a predetermined position by a drill. Then, copper plating is applied to both surfaces of the base plate 2c and the inside of the through-hole 3, and a resin is filled in a hollow portion near the center of the through-hole 3 and hardened. Thereafter, copper plating is further performed on both surfaces of the base plate 2c, and masking is performed to remove the copper plating layer and the copper foil c at unnecessary positions by etching. As a result, as shown in FIG. 2C, a through-hole conductor 6 and a resin 5 buried near the center thereof are formed in each through-hole 3, and a substantially circular shape is formed at the upper and lower ends of the through-hole conductor 6. Is formed.
The land 6b extends from a part of the flange 6a by the masking. The lower flange 6a and the land 6b form part of the first conductor layer 30a. Next, as shown in FIG. 2D, a thick core substrate 2d is laminated on the upper surface of the core substrate 2c via a film-like adhesive sheet 2e, and thermocompression-bonded. A substantially rectangular opening 2f is formed in the base plate 2d in advance, and the base plates 2c and 2d are formed.
To form the core substrate 2 and
A concave portion 4 is formed on the first main surface 2a side. Note that the lower surface of the core substrate 2 becomes the second main surface 2b. Further, as shown in FIG. 3A, the chip capacitor 10 is inserted into the recess 4 and the chip capacitor 10 is placed on the upper end flange 6a of each through-hole conductor 6 penetrating the bottom 4a of the recess 4. The first and second terminal electrodes 12 and 14 are brought close to each other. As shown in FIG. 3B, solder 16 and 18 are applied in this state, and the first and second terminal electrodes 12 and 14 and the through-hole conductors 6 and 6 are joined. As a result, the terminal electrodes 12 and 14 provided at the left and right ends of the chip capacitor 10 and having substantially U-shaped cross sections are electrically connected to the through-hole conductors 6 and 6 via the solders 16 and 18, respectively. Next, after an epoxy resin is applied above the core substrate 2 and the chip capacitor 10, the surface is ground and flattened. As a result, as shown in FIG. 3C, the upper end surfaces of the first and second terminal electrodes 12 and 14 of the chip capacitor 10 are exposed, and the chip capacitor 10 is embedded and embedded in the recess 4. Resin (insulation) layer 4
b is formed. In the following, the upper surface of the resin layer 4b is referred to as the first main surface 2a of the core substrate 2 for convenience of description. Subsequently, as shown in FIG. 4A, a through-hole 3 is drilled at a predetermined position in a thick portion of the core substrate 2 having no recess 4. Next, copper plating is applied to both surfaces of the core substrate 2 and the inside of the through hole 3, and a resin is filled in a hollow portion near the center of the through hole 3 and cured. Further, masking is performed to remove the copper plating layer at unnecessary positions by etching. As a result, as shown in FIG.
And a resin 7 embedded near the center thereof, and a substantially circular flange 8a is formed at the upper and lower ends of the through-hole conductor 8. The land 9 extends from a part of the flange 8a by the masking. The upper and lower flanges 8a and lands 9 are respectively connected to the first conductor layer 20.
a, 30a are formed. During this time, the chip capacitor 10
The upper ends of the first and second terminal electrodes 12 and 14 are also thickened so as to be at the same level as the flange 8a. Next, an epoxy resin is applied above the core substrate 2 and the chip capacitor 10, and the surface is ground and flattened. As a result, as shown in FIG.
A resin (insulation) layer 19 exposing the upper end surfaces of the first and second terminal electrodes 12 and 14 is formed. Also, an epoxy resin is applied on the second main surface 2b of the core substrate 2 and the surface thereof is ground to form a resin layer 19 which is flattened.
In addition, on the surface of the resin layer 19 on the second main surface 2b, the flanges 6a, 8a and the lands 6b, 9 forming the conductor layer 30a are formed.
Is exposed. Then, as shown in FIG. 5A, a film-shaped photosensitive epoxy-based resin sheet is attached above the first main surface 2a and the second main surface 2b of the core substrate 2 to form the first substrate. The insulating layers 21 and 31 are formed. Via holes 21a and 31a are formed at predetermined positions in the insulating layers 21 and 31 by a known photolithography technique. After copper plating is formed in the via holes 21a and 31a and on the first insulating layers 21 and 31, respectively, a predetermined pattern is etched (patterned). As a result, as shown in FIG. 5B, the via conductors 22a, 32a and the second conductor layers 22, 3,
2 are formed. Similarly, an epoxy resin sheet is pasted on the first insulating layers 21 and 31 and the second conductive layers 22 and 32 to form second insulating layers 23 and 33. After forming a via hole in the via conductors 24a, 34
a and the third conductor layers 24 and 34 are formed. Finally, solder resist layers 25 and 35 are formed on both sides,
5 by projecting through the IC connection terminals 28 from predetermined positions and exposing the external connection terminals 38 in a plurality of openings 39 provided in the resist layer 35, respectively. 1 can be obtained. Note that the IC connection terminal 28 is generally located above the chip capacitor 10. Then, as shown in FIG. 1, by connecting external connection terminals provided on the bottom surface of the IC chip 29 to each IC connection terminal 28 via a brazing material, the IC chip 29 is placed on the wiring board 1. Is mounted. The IC chip 29 and the first and second terminal electrodes 12, 1 of the chip capacitor 10.
4 are connected to the first and second conductor layers 20a, 22, 24.
The second IC connection wirings 26 and 27 are formed. In addition, the external connection terminal 38 and the first and second
Conductor layers 30a, 32,
The portion 34 forms first and second external connection wirings 36 and 37. As a result, the first and second terminal electrodes 12 and 14 of the chip capacitor 10 are connected to the first main surface 2 a and the second main surface 2 b of the substrate 1, respectively, and are electrically connected to the IC chip 29. Since the chip capacitor 10 can be arranged at a short distance from the IC connection terminal 28, the first and second IC connection wirings 26 and 27 can be extremely short. Therefore, according to the wiring board 1, as described above, noise can be reduced and the chip capacitor 10
The resistance and inductance of the IC connection wires 26 and 27 connected to the IC chip 29 and the chip capacitor 1 can be reduced.
Conduction with 0 can be taken quickly and accurately. In addition, conduction between the circuit element in the motherboard to which the wiring board 1 is connected via the external connection terminal 38 and the chip capacitor 10 can be ensured. Moreover, since the chip capacitor 10 is built in the recess 4 of the core substrate 2, there is no need to separately mount a chip capacitor on the upper surface of the substrate 1, and the wiring substrate 1
The total thickness can be suppressed, or the number of components mounted on the upper surface can be reduced. The present invention is not limited to the embodiment described above. For example, a plurality of recesses may be formed in the first main surface of the core substrate, and chip capacitors may be individually incorporated in the respective recesses. Alternatively, the recess may be formed by partially removing the first main surface side of the single core substrate by cutting or the like. In addition, chip capacitors include:
In addition to the above embodiments, various types such as a semiconductor type ceramic chip capacitor can be applied. Further, as a mounted IC chip, a monolithic IC (bipolar type, MOS type, Bi-CMOS) chip in which a semiconductor is integrated, a hybrid IC chip in which a capacitor and a resistor are integrated together with the semiconductor, and the like are also applicable. In addition to the glass-epoxy composite material used in the above embodiment, the core substrate 2 may be made of a BT resin-glass material, a glass-PPE material, a composite resin material such as paper-epoxy, or epoxy, BT Resin, polyimide, PP
It is also possible to use resins such as E and PTFE. Further, the conductor layers 22, 24 and the like are not limited to copper, but Ni and its alloys (Ni-P, Ni-B, Ni-Cu-P), Co and its alloys (Co-P, Co-B, Co- Ni-P), Sn and its alloys (Sn-Pb, Sn-Pb-Pd), or Au, A
It is also possible to use g, Pd, Pt, Rh, Ru, etc., and alloys based on these. According to the wiring board of the present invention described above, a chip capacitor is built in the recess of the core substrate, and the first and second terminal electrodes and the IC connection terminal are connected to the first multilayer wiring section. And the first and second terminal electrodes of the chip capacitor and the external connection terminals are connected by the first and second external connection wires of the second multilayer wiring portion. I have. As a result, the first and second terminal electrodes of the chip capacitor are connected to the upper surface (the first main surface side) and the lower surface (the second main surface side) of the wiring board, respectively, and are electrically connected.
The chip capacitor can be arranged at a short distance from the IC connection terminal connected to the chip, and the first and second IC connection wirings can be arranged to be extremely short. Therefore, according to the wiring board, the noise can be reduced, the resistance and the inductance of the IC connection wiring connected to the chip capacitor can be reduced, the continuity between the IC chip and the chip capacitor can be obtained at high speed and accurately, and
Conduction between the chip and the first and second multilayer wiring portions 2 can be reliably ensured. In addition, conduction between the circuit element in the motherboard to which the present wiring board is connected via the external connection terminal and the chip capacitor can be ensured. Moreover, since the chip capacitors are built into the recesses of the core substrate, there is no need to separately mount the chip capacitors on the upper surface of the wiring board, thereby reducing the overall thickness, or reducing the number of chip capacitors separately mounted on the upper surface. can do. Further, in the form in which the IC connection terminals are located above the chip capacitors on the wiring board, the first and second IC connection wirings can be made the shortest, and their inductance and resistance can be further reduced. The noise reduction characteristics are further improved. In addition, even if a defect occurs in the chip capacitor, the wiring board can be manufactured at low cost with low loss cost, and can incorporate the chip capacitor having a large capacitance.
【図面の簡単な説明】
【図1】本発明の配線基板における主要部を示す断面
図。
【図2】(A)乃至(D)は本発明の配線基板を得るための
各製造工程の概略を示す部分断面図。
【図3】(A)乃至(C)は図2に続く各製造工程の概略を
示す部分断面図。
【図4】(A)及び(B)は図3に続く各製造工程の概略を
示す部分断面図。
【図5】(A)及び(B)は図4に続く各製造工程の概略を
示す部分断面図。
【符号の説明】
1……………………配線基板
2……………………コア基板
2a…………………第1主面
2b…………………第2主面
4……………………凹部
4a…………………底面部
10…………………チップキャパシタ
12…………………第1の端子電極
14…………………第2の端子電極
20…………………第1多層配線部
20a,22,24…導体層
21,23,25……絶縁層
26…………………第1のIC接続配線
27…………………第2のIC接続配線
28…………………IC接続端子
29…………………ICチップ
30…………………第2多層配線部
30a,32,34…導体層
31,33,35……絶縁層
36…………………第1の外部接続配線
37…………………第2の外部接続配線
38…………………外部接続端子BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a main part of a wiring board according to the present invention. FIGS. 2A to 2D are partial cross-sectional views schematically showing respective manufacturing steps for obtaining a wiring board of the present invention. 3 (A) to 3 (C) are partial cross-sectional views schematically showing respective manufacturing steps following FIG. 2; FIGS. 4A and 4B are partial cross-sectional views schematically showing respective manufacturing steps following FIG. FIGS. 5A and 5B are partial cross-sectional views schematically showing respective manufacturing steps following FIG. [Explanation of Signs] 1... Wiring board 2... Core substrate 2a... First main surface 2b. Surface 4 Depressed portion 4a Bottom portion 10 Chip capacitor 12 First terminal electrode 14 First terminal electrode 14 ... Second terminal electrode 20... First multilayer wiring portions 20 a, 22, 24, conductor layers 21, 23, 25, insulating layer 26, first IC connection Wiring 27 Second IC connection wiring 28 IC connection terminal 29 IC chip 30 Second multilayer wiring part 30a , 32, 34 ... conductor layers 31, 33, 35 ... insulating layer 36 ... first external connection wiring 37 ... second external connection wiring 38 ... …… External connection terminal
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開2000−243873(JP,A) 特開 平6−302714(JP,A) 特開 平2−168662(JP,A) 特開 平9−8459(JP,A) 特開 平9−321408(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 23/12 - 23/15 H05K 1/18,3/46 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2000-243873 (JP, A) JP-A-6-302714 (JP, A) JP-A-2-168662 (JP, A) JP-A-9-8459 (JP, A) JP-A-9-321408 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 23/12-23/15 H05K 1/18, 3/46
Claims (1)
と、 上記コア基板の第1主面に形成された凹部と、 上記凹部に収容されたチップキャパシタと、 上記チップキャパシタを収容したコア基板の第1主面上
に導体層と絶縁層とを交互に積層して形成された第1多
層配線部と、 上記第1多層配線部の上面に形成され、ICチップと接
続するためのIC接続端子と、 上記第1多層配線部に設けられ、上記IC接続端子と接
続されるIC接続配線と、 上記チップキャパシタを収容したコア基板の第2主面上
に導体層と絶縁層とを交互に積層して形成された第2多
層配線部と、 上記第2多層配線部の上面に形成される外部接続端子
と、 上記第2多層配線部および上記凹部の底面部に設けら
れ、上記外部接続端子と接続される外部接続配線と、を
備えた配線基板であって、 上記チップキャパシタは、上記第1主面側において第1
のIC接続配線と接続され、且つ、上記第2主面側にお
いて第1の外部接続配線と接続される第1の端子電極
と、 上記第1主面側において第2のIC接続配線と接続さ
れ、且つ、上記第2主面側において第2の外部接続配線
と接続される第2の端子電極と、を備える、 ことを特徴とする配線基板。(57) Claims 1. A core substrate having a first main surface and a second main surface, a concave portion formed on the first main surface of the core substrate, and a concave portion accommodated in the concave portion. A chip capacitor, a first multilayer wiring portion formed by alternately stacking conductor layers and insulating layers on a first main surface of a core substrate accommodating the chip capacitor, and an upper surface of the first multilayer wiring portion An IC connection terminal for connecting to an IC chip, an IC connection line provided in the first multilayer wiring portion and connected to the IC connection terminal, and a second of a core substrate accommodating the chip capacitor. A second multilayer wiring portion formed by alternately laminating conductor layers and insulating layers on the main surface; an external connection terminal formed on an upper surface of the second multilayer wiring portion; It is provided on the bottom of the recess and is connected to the external connection terminal. An external connection wiring, wherein the chip capacitor is provided on the first main surface side in a first state.
And a first terminal electrode connected to the first external connection wiring on the second main surface side, and connected to a second IC connection wiring on the first main surface side. And a second terminal electrode connected to a second external connection wiring on the second main surface side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05942499A JP3522571B2 (en) | 1999-03-05 | 1999-03-05 | Wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05942499A JP3522571B2 (en) | 1999-03-05 | 1999-03-05 | Wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000260902A JP2000260902A (en) | 2000-09-22 |
JP3522571B2 true JP3522571B2 (en) | 2004-04-26 |
Family
ID=13112880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05942499A Expired - Fee Related JP3522571B2 (en) | 1999-03-05 | 1999-03-05 | Wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3522571B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013021269A (en) * | 2011-07-14 | 2013-01-31 | Ngk Spark Plug Co Ltd | Wiring substrate with built-in component |
US8952262B2 (en) | 2011-08-31 | 2015-02-10 | Ngk Spark Plug Co., Ltd. | Component-incorporated wiring substrate and method of manufacturing the same |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1990833A3 (en) | 2000-02-25 | 2010-09-29 | Ibiden Co., Ltd. | Multilayer printed circuit board and multilayer printed circuit board manufacturing method |
EP1321980A4 (en) * | 2000-09-25 | 2007-04-04 | Ibiden Co Ltd | Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board |
JP5066311B2 (en) * | 2000-10-27 | 2012-11-07 | 日本特殊陶業株式会社 | Wiring board |
JP4869488B2 (en) * | 2000-12-15 | 2012-02-08 | イビデン株式会社 | Manufacturing method of multilayer printed wiring board |
JP4771608B2 (en) * | 2000-12-15 | 2011-09-14 | イビデン株式会社 | Printed wiring board |
JP4778148B2 (en) * | 2001-01-26 | 2011-09-21 | 日本特殊陶業株式会社 | Multilayer wiring board |
JP4863560B2 (en) * | 2001-03-13 | 2012-01-25 | イビデン株式会社 | Printed wiring board and printed wiring board manufacturing method |
JP4863562B2 (en) * | 2001-03-13 | 2012-01-25 | イビデン株式会社 | Printed wiring board and printed wiring board manufacturing method |
JP4863564B2 (en) * | 2001-03-13 | 2012-01-25 | イビデン株式会社 | Printed wiring board and printed wiring board manufacturing method |
JP4869486B2 (en) * | 2001-03-13 | 2012-02-08 | イビデン株式会社 | Printed wiring board and printed wiring board manufacturing method |
JP4863559B2 (en) * | 2001-03-13 | 2012-01-25 | イビデン株式会社 | Printed wiring board and printed wiring board manufacturing method |
JP4863561B2 (en) * | 2001-03-13 | 2012-01-25 | イビデン株式会社 | Method for manufacturing printed wiring board |
JP4863563B2 (en) * | 2001-03-13 | 2012-01-25 | イビデン株式会社 | Printed wiring board and printed wiring board manufacturing method |
TW586205B (en) * | 2001-06-26 | 2004-05-01 | Intel Corp | Electronic assembly with vertically connected capacitors and manufacturing method |
TW557521B (en) * | 2002-01-16 | 2003-10-11 | Via Tech Inc | Integrated circuit package and its manufacturing process |
CN100389494C (en) * | 2002-05-23 | 2008-05-21 | 威盛电子股份有限公司 | IC package and its preparing process |
JP3709882B2 (en) | 2003-07-22 | 2005-10-26 | 松下電器産業株式会社 | Circuit module and manufacturing method thereof |
JP2005129899A (en) * | 2003-08-28 | 2005-05-19 | Kyocera Corp | Wiring board and semiconductor device |
JP2007201197A (en) * | 2006-01-26 | 2007-08-09 | Matsushita Electric Works Ltd | Rugged multilayer circuit module and its manufacturing method |
KR100916697B1 (en) | 2007-08-30 | 2009-09-11 | 트리포드 테크놀로지 코포레이션 | Method for preparation of circuit board wherein the passive components are embedded directly |
WO2011121993A1 (en) | 2010-03-30 | 2011-10-06 | 株式会社村田製作所 | Component assembly |
JP2016012587A (en) * | 2014-06-27 | 2016-01-21 | イビデン株式会社 | Printed wiring board |
JP7358760B2 (en) * | 2019-03-27 | 2023-10-11 | Tdk株式会社 | Multilayer ceramic electronic components |
CN112151457A (en) * | 2020-09-22 | 2020-12-29 | 维沃移动通信有限公司 | Packaging structure, manufacturing method thereof and electronic equipment |
-
1999
- 1999-03-05 JP JP05942499A patent/JP3522571B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013021269A (en) * | 2011-07-14 | 2013-01-31 | Ngk Spark Plug Co Ltd | Wiring substrate with built-in component |
US8952262B2 (en) | 2011-08-31 | 2015-02-10 | Ngk Spark Plug Co., Ltd. | Component-incorporated wiring substrate and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2000260902A (en) | 2000-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3522571B2 (en) | Wiring board | |
US6914322B2 (en) | Semiconductor device package and method of production and semiconductor device of same | |
KR101329931B1 (en) | Wiring Board | |
US5260518A (en) | Multilayer circuit board for mounting ICs and method of manufacturing the same | |
US8179689B2 (en) | Printed circuit board, method of fabricating printed circuit board, and semiconductor device | |
JP3610339B2 (en) | High density electronic package and manufacturing method thereof | |
JP3878663B2 (en) | Wiring board manufacturing method and wiring board | |
JP4248761B2 (en) | Semiconductor package, manufacturing method thereof, and semiconductor device | |
US7376318B2 (en) | Circuit board and its manufacturing method | |
US7358591B2 (en) | Capacitor device and semiconductor device having the same, and capacitor device manufacturing method | |
KR20030088357A (en) | Metal core substrate and process for manufacturing same | |
KR20060044472A (en) | Capacitor-mounted wiring board and method of manufacturing the same | |
JP2003264253A (en) | Semiconductor device and method of manufacturing the same | |
JP5020671B2 (en) | Wiring board with built-in capacitor | |
JP2007524254A (en) | Interconnect structure and method for connecting embedded signal lines to electrical devices | |
JPH08330736A (en) | Multilayer board and manufacture thereof | |
JP2529987B2 (en) | Method for manufacturing multilayer printed wiring board device | |
JP4814129B2 (en) | Wiring board with built-in components, Wiring board built-in components | |
JP2008244029A (en) | Wiring board with built-in component, and component used therefor | |
CN112566390B (en) | Multilayer flexible circuit board and preparation method thereof | |
JPH10163632A (en) | Printed wiring board and its manufacture | |
JPH01183195A (en) | Manufacture of multilayer printed wiring board device | |
JP5122846B2 (en) | Wiring board with built-in capacitor | |
JP4176283B2 (en) | Manufacturing method of flexible fine multilayer circuit board | |
JP4084728B2 (en) | Package for semiconductor device and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040121 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040204 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090220 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100220 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110220 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140220 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |