JP5011338B2 - Wiring board with built-in capacitor - Google Patents

Wiring board with built-in capacitor Download PDF

Info

Publication number
JP5011338B2
JP5011338B2 JP2009083752A JP2009083752A JP5011338B2 JP 5011338 B2 JP5011338 B2 JP 5011338B2 JP 2009083752 A JP2009083752 A JP 2009083752A JP 2009083752 A JP2009083752 A JP 2009083752A JP 5011338 B2 JP5011338 B2 JP 5011338B2
Authority
JP
Japan
Prior art keywords
capacitor
region
conductor
wiring board
conductor pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009083752A
Other languages
Japanese (ja)
Other versions
JP2010238826A (en
Inventor
晃一郎 下上
康宏 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009083752A priority Critical patent/JP5011338B2/en
Publication of JP2010238826A publication Critical patent/JP2010238826A/en
Application granted granted Critical
Publication of JP5011338B2 publication Critical patent/JP5011338B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コア材に開口された収容穴部にキャパシタを収容したキャパシタ内蔵配線基板に関するものである。   The present invention relates to a capacitor built-in wiring board in which a capacitor is housed in a housing hole opened in a core material.

従来から、半導体素子を載置するためのパッケージの構造として、コア材とその上下に導体層及び絶縁層を交互に積層した配線積層部とからなる配線基板が広く知られている。この種の配線基板には、外部基板から半導体チップに対して電源を供給するための配線構造を設ける必要がある。半導体チップの動作の安定化及び高速化を図るためには、パッケージにキャパシタを配置して電源配線に接続し、半導体素子に供給される電源のノイズを除去することが望ましい。この場合、半導体基板上にキャパシタを搭載する構造は、そのための配置領域を確保する必要があり、かつキャパシタと半導体素子との配線距離が長くなって配線インピーダンスの増大につながる。よって、このような欠点を是正すべく、配線基板の内部にキャパシタを内蔵する構造が提案されている。   2. Description of the Related Art Conventionally, as a package structure for mounting a semiconductor element, a wiring board including a core material and a wiring stacked portion in which conductor layers and insulating layers are alternately stacked on top and bottom of the core material is widely known. This type of wiring board needs to be provided with a wiring structure for supplying power to the semiconductor chip from an external substrate. In order to stabilize and speed up the operation of the semiconductor chip, it is desirable to dispose the capacitor in the package and connect it to the power supply wiring to remove the noise of the power supply supplied to the semiconductor element. In this case, in the structure in which the capacitor is mounted on the semiconductor substrate, it is necessary to secure an arrangement region for that purpose, and the wiring distance between the capacitor and the semiconductor element becomes long, leading to an increase in wiring impedance. Therefore, in order to correct such a defect, a structure in which a capacitor is built in the wiring board has been proposed.

一方、近年の半導体素子は複数の電源を供給する構成が広く採用されている。例えば、プロセッサチップの場合、主要回路であるプロセッサコア部に第1の電源を供給し、周辺のI/O回路等に第2の電源を供給する構成が知られている。複数の異なる電源を半導体素子に供給するために、それぞれの半導体素子に対応する複数のキャパシタを上述のように配線基板に内蔵することも可能であるが、これは配線基板のサイズの増大を招くことから望ましくない。そのため、1つのキャパシタを複数の領域に区分し、それぞれの領域を正極と負極からなる容量として機能させ、複数の電源に接続可能な構造が提案されている(例えば、特許文献1、2参照)。   On the other hand, in recent years, a structure for supplying a plurality of power supplies is widely adopted for semiconductor elements. For example, in the case of a processor chip, a configuration is known in which a first power supply is supplied to a processor core unit which is a main circuit, and a second power supply is supplied to peripheral I / O circuits and the like. In order to supply a plurality of different power supplies to a semiconductor element, it is possible to incorporate a plurality of capacitors corresponding to each semiconductor element in the wiring board as described above, but this leads to an increase in the size of the wiring board. That is undesirable. Therefore, a structure has been proposed in which one capacitor is divided into a plurality of regions, each region functions as a capacitor composed of a positive electrode and a negative electrode, and can be connected to a plurality of power supplies (see, for example, Patent Documents 1 and 2). .

特開2007−96291号公報JP 2007-96291 A 特開2008−270369号公報JP 2008-270369 A

上記従来の構造を採用したパッケージにおいて、例えば、複数の電源に対応して複数の領域に区分されるキャパシタをコア材に収容する場合、アレイ状にビア導体を配置し、その上下の端子電極を介して領域ごとに異なる電源に接続する必要がある。一方、配線基板の上部には、キャパシタの上面の導体層と近距離で対向配置される所定の導体層が形成され、その導体層には多様な導体パターンが含まれる。しかしながら、所定の導体層には、通常、複数の電源を伝送する導体パターンも含まれるものの、それぞれの導体パターンの配置が、その下方のキャパシタの領域区分に一致するとは限らない。例えば、第1の電源の導体パターンが上部の導体層に形成された部分の直下では、キャパシタの第2の電源用の領域と積層方向で重なるという位置関係が想定される。本来、異なる電源同士の干渉を避けるには両者の導体パターンを近接させないことが望ましいにもかかわらず、上記従来の構造では、異なる電源同士が所定の導体層とキャパシタの上面との間で近距離に配置される結果、クロストーク等を発生させる要因となり、半導体素子の動作性能を劣化させる恐れがあった。   In the package employing the above-described conventional structure, for example, when a capacitor divided into a plurality of regions corresponding to a plurality of power supplies is accommodated in a core material, via conductors are arranged in an array, and upper and lower terminal electrodes are arranged. It is necessary to connect to different power sources for each region. On the other hand, a predetermined conductor layer is formed on the upper portion of the wiring board so as to be opposed to the conductor layer on the upper surface of the capacitor at a short distance, and the conductor layer includes various conductor patterns. However, although the predetermined conductor layer usually includes conductor patterns for transmitting a plurality of power supplies, the arrangement of each conductor pattern does not always coincide with the capacitor area section below it. For example, a positional relationship in which the conductor pattern of the first power supply overlaps with the second power supply region of the capacitor in the stacking direction is directly below the portion where the conductor pattern of the first power supply is formed on the upper conductor layer. Originally, in order to avoid interference between different power sources, it is desirable not to make both conductor patterns close to each other, but in the conventional structure, different power sources are close to each other between a predetermined conductor layer and the upper surface of the capacitor. As a result, the crosstalk and the like may be generated, and the operation performance of the semiconductor element may be deteriorated.

本発明はこれらの問題を解決するためになされたものであり、キャパシタ内蔵配線基板に載置される半導体素子に複数の電源を供給する場合、キャパシタとその上面で対向する導体層との間で複数の電源に対応する領域区分を共通にし、異なる電源同士のクロストークを低減して半導体素子の高速かつ安定な動作を実現可能なキャパシタ内蔵配線基板を提供することを目的とする。   The present invention has been made to solve these problems. When a plurality of power supplies are supplied to a semiconductor element mounted on a wiring board with a built-in capacitor, the present invention is provided between a capacitor and a conductor layer facing the upper surface. An object of the present invention is to provide a wiring board with a built-in capacitor that can realize a high-speed and stable operation of a semiconductor element by sharing a region section corresponding to a plurality of power supplies and reducing crosstalk between different power supplies.

上記課題を解決するために、本発明のキャパシタ内蔵配線基板は、コア材と、前記コア材に収容されるキャパシタと、前記コア材の上面側及び下面側に絶縁層及び導体層を交互に積層形成した積層部とを備え、前記積層部の上部に半導体素子を載置可能に構成され、前記積層部のうち前記キャパシタに近接する所定の導体層には、第1の電源の配線を含む第1の導体パターンと、第2の電源の配線を含む第2の導体パターンとが形成され、前記キャパシタは、第1の正極と負極との間の容量を形成する第1の領域と、第2の正極と負極の間の容量を形成する第2の領域とを有し、前記キャパシタのうち前記所定の導体層の側の表面には、前記第1の正極用の端子電極を前記第1の電源に接続する配線を含む第1のキャパシタ側導体パターンと、前記第2の正極用の端子電極を前記第2の電源に接続する配線を含む第2のキャパシタ側導体パターンとが形成され、前記第1の導体パターンと前記第1のキャパシタ側導体パターンとは、互いに同一のパターン形状であって積層方向に直接対向し、前記第2の導体パターンと前記第2のキャパシタ側導体パターンとは、互いに同一のパターン形状であって積層方向に直接対向するように構成されている。   In order to solve the above problems, a wiring board with a built-in capacitor according to the present invention includes a core material, a capacitor accommodated in the core material, and an insulating layer and a conductor layer alternately stacked on the upper surface side and the lower surface side of the core material. A stacked layer portion formed thereon, and configured to be capable of mounting a semiconductor element on top of the stacked portion, and a predetermined conductor layer adjacent to the capacitor in the stacked portion includes a first power supply wiring. A first conductive pattern and a second conductive pattern including a second power supply wiring are formed, and the capacitor includes a first region that forms a capacitance between the first positive electrode and the negative electrode, A second region that forms a capacitance between the positive electrode and the negative electrode of the first capacitor, and the first positive electrode terminal electrode is disposed on the surface of the capacitor on the predetermined conductor layer side. A first capacitor side conductor pattern including wiring connected to a power source; A second capacitor side conductor pattern including a wiring for connecting the second positive terminal electrode to the second power source is formed, and the first conductor pattern and the first capacitor side conductor pattern are The second conductor pattern and the second capacitor side conductor pattern have the same pattern shape and are directly opposed to each other in the stacking direction. It is configured.

本発明の配線基板によれば、半導体素子を載置し、キャパシタを内蔵した配線基板において、複数の異なる電源を半導体素子に供給する場合、複数のキャパシタに応じて領域区分されたキャパシタがその上方の導体層に対向する配置であっても、同一の電源の導体パターン同士を同一のパターン形状として積層方向で対向させる一方、異なる電源の導体パターン同士が積層方向で直接対向する配置を避けることができる。よって、異なる電源の導体パターン同士が近距離で対向する際のクロストークの発生を防止でき、クロストークに起因する電源ノイズを抑制することが可能となる。   According to the wiring board of the present invention, when a plurality of different power supplies are supplied to a semiconductor element in a wiring board on which a semiconductor element is mounted and a capacitor is built in, the capacitor divided into regions according to the plurality of capacitors is located above the capacitor. Even if the arrangement is to face the conductor layers of the same, the conductor patterns of the same power supply are made to face each other in the stacking direction as the same pattern shape, while the arrangement in which the conductor patterns of different power supplies are directly facing each other in the stacking direction is avoided. it can. Therefore, it is possible to prevent occurrence of crosstalk when conductor patterns of different power sources face each other at a short distance, and it is possible to suppress power supply noise caused by crosstalk.

本発明の前記キャパシタとしては、セラミック誘電体層と内部電極層とを交互に積層し、前記内部電極層に接続された複数のビア導体をアレイ状に配置した積層セラミックキャパシタを採用することができる。この場合、前記キャパシタの前記第1の領域に、前記第1の正極用の複数のビア導体と負極用の複数のビア導体をアレイ状に配置し、前記キャパシタの前記第2の領域に、前記第2の正極用の複数のビア導体と負極用の複数のビア導体をアレイ状に配置してもよい。   As the capacitor of the present invention, a multilayer ceramic capacitor in which ceramic dielectric layers and internal electrode layers are alternately stacked and a plurality of via conductors connected to the internal electrode layers are arranged in an array can be employed. . In this case, the plurality of first positive electrode via conductors and the plurality of negative electrode via conductors are arranged in an array in the first region of the capacitor, and the second region of the capacitor includes the A plurality of via conductors for the second positive electrode and a plurality of via conductors for the negative electrode may be arranged in an array.

本発明の前記キャパシタの表面において、前記第1のキャパシタ側導体パターンを中央部に形成し、前記第2のキャパシタ側導体パターンを周囲部に形成してもよい。この場合、前記第1のキャパシタ側導体パターンは、前記中央部から前記周囲部の一部に突出して前記キャパシタの外縁に延設される突出部を形成してもよい。   On the surface of the capacitor according to the present invention, the first capacitor side conductor pattern may be formed in a central portion, and the second capacitor side conductor pattern may be formed in a peripheral portion. In this case, the first capacitor-side conductor pattern may form a protruding portion that protrudes from the central portion to a part of the peripheral portion and extends to the outer edge of the capacitor.

本発明において、前記第1の電源は前記半導体素子の主要回路に供給される主電源とし、前記第2の電源は前記半導体素子のI/O回路に供給されるI/O回路用電源としてもよい。   In the present invention, the first power source may be a main power source supplied to the main circuit of the semiconductor element, and the second power source may be an I / O circuit power source supplied to the I / O circuit of the semiconductor element. Good.

また、上記課題を解決するために、本発明のキャパシタ内蔵配線基板は、コア材と、前記コア材に収容されるキャパシタと、前記コア材の上面側及び下面側に絶縁層及び導体層を交互に積層形成した積層部とを備え、前記積層部の上部に半導体素子を載置可能に構成され、前記積層部のうち所定の導体層には、N個の異なる電源の配線の各々を含むN個の導体パターンが形成され、前記キャパシタは、N個の正極の各々と負極との間の容量をそれぞれ形成するN個の領域を有し、前記キャパシタの上面には、前記N個の正極用の各々の端子電極を前記N個の電源の各々に接続する配線を含むN個のキャパシタ側導体パターンが形成され、前記N個の導体パターンの各々と、これに対応する前記N個のキャパシタ側導体パターンの各々は、互いに同一のパターン形状であって積層方向に直接対向するように構成されている。   In order to solve the above problems, a wiring board with a built-in capacitor according to the present invention includes a core material, a capacitor accommodated in the core material, and an insulating layer and a conductor layer alternately on the upper surface side and the lower surface side of the core material. And a laminated portion formed on the laminated portion so that a semiconductor element can be placed on the laminated portion, and a predetermined conductor layer of the laminated portion includes N wirings of different power sources. Conductor patterns are formed, and the capacitor has N regions each forming a capacitance between each of the N positive electrodes and the negative electrode, and the N positive electrodes are disposed on the upper surface of the capacitor. N capacitor-side conductor patterns including wirings connecting the respective terminal electrodes to each of the N power sources are formed, and each of the N conductor patterns and the corresponding N capacitor side Each of the conductor patterns Identical to a by stacking direction pattern shape is configured so as to face directly.

本発明によれば、複数の異なる電源を供給する必要のある半導体素子を載置したキャパシタ内蔵配線基板において、各々の電源のクロストークに起因する電源ノイズを抑制する場合、キャパシタの上面と上方の導体層との間で領域区分を共通にし、同一の電源の導体パターン同士を積層方向で対向させ、異なる電源の導体パターン同士が直接対向しないような配置を実現することができる。これにより、上記のクロストークを十分に低減し、クロストークに起因するノイズを抑制して半導体素子の高速かつ安定な動作を実現し得るキャパシタ内蔵配線基板を実現することができる。   According to the present invention, in a wiring board with a built-in capacitor on which semiconductor elements that need to supply a plurality of different power supplies are placed, when suppressing power supply noise caused by crosstalk of each power supply, It is possible to realize an arrangement in which the region sections are shared with the conductor layers, the conductor patterns of the same power source are opposed to each other in the stacking direction, and the conductor patterns of different power sources are not directly opposed to each other. Thereby, it is possible to realize a wiring board with a built-in capacitor that can sufficiently reduce the above-described crosstalk and suppress noise caused by the crosstalk and realize high-speed and stable operation of the semiconductor element.

本実施形態の配線基板10の概略の断面構造を示す図である。1 is a diagram showing a schematic cross-sectional structure of a wiring board 10 of the present embodiment. 図1のキャパシタ70の断面図である。It is sectional drawing of the capacitor 70 of FIG. 図1のキャパシタ70の上面図である。It is a top view of the capacitor 70 of FIG. キャパシタ70の導体層71の領域R1における導体パターンの構成を部分的に拡大して示す図である。3 is a diagram showing a partially enlarged configuration of a conductor pattern in a region R1 of a conductor layer 71 of a capacitor 70. FIG. 図1の導体層21のうち、積層方向でキャパシタ70と対向する範囲の領域区分を示す図である。It is a figure which shows the area | region division of the range which opposes the capacitor 70 in the lamination direction among the conductor layers 21 of FIG. 導体層71及びキャパシタ70の領域区分の第1の変形例である。This is a first modification of the region division of the conductor layer 71 and the capacitor 70. 導体層71及びキャパシタ70の領域区分の第2の変形例である。It is the 2nd modification of the area | region division of the conductor layer 71 and the capacitor 70. FIG. 導体層71及びキャパシタ70の領域区分の第3の変形例である。It is the 3rd modification of the area | region division of the conductor layer 71 and the capacitor 70. FIG.

以下、本発明を適用した配線基板の好適な実施形態について、図面を参照しながら説明する。   Hereinafter, a preferred embodiment of a wiring board to which the present invention is applied will be described with reference to the drawings.

図1は、本実施形態の配線基板の概略の断面構造を示す図である。図1に示す配線基板10は、コア材11と、コア材11の上面側の第1配線積層部20と、コア材11の下面側の第2配線積層部30とを含む構造を有している。本実施形態の配線基板10は、上部に半導体素子としての半導体チップ60が載置されるとともに、その下方にキャパシタ70が内蔵されている。   FIG. 1 is a diagram showing a schematic cross-sectional structure of the wiring board of the present embodiment. The wiring board 10 shown in FIG. 1 has a structure including a core material 11, a first wiring laminated portion 20 on the upper surface side of the core material 11, and a second wiring laminated portion 30 on the lower surface side of the core material 11. Yes. In the wiring substrate 10 of the present embodiment, a semiconductor chip 60 as a semiconductor element is placed on an upper portion, and a capacitor 70 is incorporated below the semiconductor chip 60.

コア材11は、例えば、ガラス繊維を含んだエポキシ樹脂からなる。コア材11の上面には樹脂絶縁層12が積層され、コア材11の下面には樹脂絶縁層13が積層されている。コア材11には、中央を矩形状に貫通する収容穴部11aが形成され、この収容穴部11aにキャパシタ70が埋め込まれた状態で収容されている。収容穴部11aとキャパシタ70の側面との間隙部には、樹脂充填材50が充填されている。本実施形態においてキャパシタ70は、平面方向で2つの領域に区分され、2系統の電源系に接続される独立した2つの容量として機能するが、キャパシタ70の詳細な構造については後述する。樹脂充填材50としては、例えば高分子材料からなる熱硬化性樹脂が用いられる。樹脂充填材50はキャパシタ70を固定する役割を有し、キャパシタ70及びコア材11の変形を樹脂充填材50が吸収するように作用する。   The core material 11 is made of, for example, an epoxy resin containing glass fiber. A resin insulation layer 12 is laminated on the upper surface of the core material 11, and a resin insulation layer 13 is laminated on the lower surface of the core material 11. The core material 11 is formed with a housing hole 11a penetrating the center in a rectangular shape, and the capacitor 70 is housed in the housing hole 11a. A resin filler 50 is filled in a gap between the accommodation hole 11 a and the side surface of the capacitor 70. In this embodiment, the capacitor 70 is divided into two regions in the planar direction and functions as two independent capacitors connected to two power supply systems. The detailed structure of the capacitor 70 will be described later. As the resin filler 50, for example, a thermosetting resin made of a polymer material is used. The resin filler 50 has a role of fixing the capacitor 70 and acts so that the resin filler 50 absorbs deformation of the capacitor 70 and the core material 11.

コア材11には、所定箇所を積層方向に貫通する複数のスルーホール導体42が形成されている。スルーホール導体42の内部は、例えばガラスエポキシ等からなる閉塞体43で埋められている。スルーホール導体42及び閉塞体43は上下に延伸され、コア材11の上下の各樹脂絶縁層12、13を貫通し、上部の導体層21と下部の導体層31を積層方向に接続導通している。上部の樹脂絶縁層12には、キャパシタ70の上面に形成された導体層71と、樹脂絶縁層12の上面に形成された導体層21を積層方向に接続導通する複数のビア導体14が形成されている。また、下部の樹脂絶縁層13には、キャパシタ70の下面に形成された導体層72と、樹脂絶縁層13の下面に形成された導体層31を積層方向に接続導通する複数のビア導体15が形成されている。   The core material 11 is formed with a plurality of through-hole conductors 42 penetrating predetermined portions in the stacking direction. The inside of the through-hole conductor 42 is filled with a closing body 43 made of, for example, glass epoxy. The through-hole conductor 42 and the closing body 43 extend vertically, penetrate through the upper and lower resin insulation layers 12 and 13 of the core material 11, and connect and conduct the upper conductor layer 21 and the lower conductor layer 31 in the stacking direction. Yes. The upper resin insulation layer 12 is formed with a plurality of via conductors 14 that connect and connect the conductor layer 71 formed on the upper surface of the capacitor 70 and the conductor layer 21 formed on the upper surface of the resin insulation layer 12 in the stacking direction. ing. The lower resin insulation layer 13 includes a plurality of via conductors 15 that connect and conduct the conductor layer 72 formed on the lower surface of the capacitor 70 and the conductor layer 31 formed on the lower surface of the resin insulation layer 13 in the stacking direction. Is formed.

なお、図1においては、キャパシタ70の上面及び下面の位置がコア材11の上面及び下面の位置と一致している場合を例示しているが、両者の上面及び下面の位置は一致していなくても本発明の適用は可能である。すなわち、コア材11に比べ、キャパシタ70の厚さが大きく収容穴部11aからはみ出す場合、あるいはキャパシタ70の厚さが小さく凹状に収容される場合であってもよい。なお、キャパシタ70の上面及び下面の各導体層71、72の構造については後述する。   1 illustrates the case where the positions of the upper surface and the lower surface of the capacitor 70 coincide with the positions of the upper surface and the lower surface of the core material 11, but the positions of the upper surface and the lower surface of the capacitor 70 do not coincide with each other. However, the present invention can be applied. That is, the capacitor 70 may be thicker than the core material 11 and may protrude from the housing hole 11a, or the capacitor 70 may be thin and accommodated in a concave shape. The structure of the conductor layers 71 and 72 on the upper and lower surfaces of the capacitor 70 will be described later.

第1配線積層部20は、樹脂絶縁層12の上面に形成された導体層21と、導体層21を挟んで樹脂絶縁層12の上面に積層形成された樹脂絶縁層22と、樹脂絶縁層22の上面に形成された複数の端子パッド23と、樹脂絶縁層22の上面を覆うソルダーレジスト層24とからなる構造を有する。樹脂絶縁層22の所定位置には、導体層21と端子パッド23を積層方向に接続導通する複数のビア導体25が設けられている。ソルダーレジスト層24は、複数箇所が開口されて複数の端子パッド23が露出し、そこに複数の半田バンプ40が形成されている。各々の半田バンプ40は、配線基板10に載置される半導体チップ60の各パッド61に接続される。   The first wiring laminated portion 20 includes a conductor layer 21 formed on the upper surface of the resin insulating layer 12, a resin insulating layer 22 formed on the upper surface of the resin insulating layer 12 with the conductor layer 21 interposed therebetween, and a resin insulating layer 22 And a solder resist layer 24 covering the upper surface of the resin insulating layer 22. A plurality of via conductors 25 are provided at predetermined positions of the resin insulating layer 22 to connect the conductive layer 21 and the terminal pads 23 in the stacking direction. The solder resist layer 24 is opened at a plurality of locations to expose a plurality of terminal pads 23, and a plurality of solder bumps 40 are formed there. Each solder bump 40 is connected to each pad 61 of the semiconductor chip 60 placed on the wiring substrate 10.

第2配線積層部30は、樹脂絶縁層13の下面に形成された導体層31と、導体層31を挟んで樹脂絶縁層13の下面に積層形成された樹脂絶縁層32と、樹脂絶縁層32の下面に形成された複数のBGA用パッド33と、樹脂絶縁層32の下面を覆うソルダーレジスト層34とからなる構造を有する。樹脂絶縁層32の所定位置には、導体層31とBGA用パッド33を積層方向に接続導通する複数のビア導体35が設けられている。ソルダーレジスト層34は、複数箇所が開口されて複数のBGA用パッド33が露出し、そこに複数の半田ボール41が接続される。配線基板10をBGAパッケージとして用いる場合、複数の半田ボール41を介して、外部基材(不図示)と配線基板10の各部との電気的接続が可能となる。   The second wiring laminated portion 30 includes a conductor layer 31 formed on the lower surface of the resin insulating layer 13, a resin insulating layer 32 stacked on the lower surface of the resin insulating layer 13 with the conductor layer 31 interposed therebetween, and a resin insulating layer 32. And a solder resist layer 34 covering the lower surface of the resin insulating layer 32. A plurality of via conductors 35 are provided at predetermined positions of the resin insulating layer 32 to connect and connect the conductor layer 31 and the BGA pad 33 in the stacking direction. The solder resist layer 34 is opened at a plurality of locations to expose a plurality of BGA pads 33 to which a plurality of solder balls 41 are connected. When the wiring board 10 is used as a BGA package, an external base material (not shown) and each part of the wiring board 10 can be electrically connected via a plurality of solder balls 41.

次に、図1のキャパシタ70の構造について、図2〜図4を参照して説明する。それぞれ、図2にキャパシタ70の断面図を示し、図3にキャパシタ70の上面図を示している。本実施形態のキャパシタ70は、いわゆるビアアレイタイプのキャパシタであり、例えばチタン酸バリウム等の高誘電率セラミックからなるセラミック焼結体を用いて、複数のセラミック誘電体層73を積層形成した構造を有する。図2に示すように、キャパシタ70は、その平面方向において中央部の領域R1(第1の領域)と周辺部の領域R2(第2の領域)とに区分されている。領域R1には、第1の正極と負極の間に第1の容量が形成され、領域R2には、第2の正極と負極の間に第2の容量が形成される。本実施形態においては、領域R1に形成される第1の容量を後述の電源電圧VDD1(第1の電源)及びグランド(負極)の間に接続し、領域R2に形成される第2の容量を後述の電源電圧VDD2(第2の電源)及びグランドの間に接続することを想定する。   Next, the structure of the capacitor 70 of FIG. 1 will be described with reference to FIGS. FIG. 2 is a sectional view of the capacitor 70, and FIG. 3 is a top view of the capacitor 70, respectively. The capacitor 70 of the present embodiment is a so-called via array type capacitor, and has a structure in which a plurality of ceramic dielectric layers 73 are laminated using a ceramic sintered body made of a high dielectric constant ceramic such as barium titanate. Have. As shown in FIG. 2, the capacitor 70 is divided into a central region R1 (first region) and a peripheral region R2 (second region) in the planar direction. In the region R1, a first capacitor is formed between the first positive electrode and the negative electrode, and in the region R2, a second capacitor is formed between the second positive electrode and the negative electrode. In the present embodiment, a first capacitor formed in the region R1 is connected between a power supply voltage VDD1 (first power supply) and a ground (negative electrode), which will be described later, and a second capacitor formed in the region R2 is connected. It is assumed that a connection is made between a power supply voltage VDD2 (second power supply) described later and the ground.

領域R1において、各々のセラミック誘電体層73の間には、内部電極層101と内部電極層102が交互に配置されている。一方の内部電極層101は第1の正極用の電極として機能し、他方の内部電極層102は負極用の電極として機能し、両電極が各セラミック誘電体層73を挟んで対向することで第1の容量が形成される。また、領域R2において、各々のセラミック誘電体層73の間には、内部電極層201と内部電極層202が交互に配置されている。一方の内部電極層201は第2の正極用の電極として機能し、他方の内部電極層202は負極用の電極として機能し、両電極が各セラミック誘電体層73を挟んで対向することで第2の容量が形成される。なお、第1の容量と第2の容量の間の距離をある程度確保して干渉を抑えるため、キャパシタ70の領域R1、R2の間に所定幅の境界部分を設ける構造になっている。   In the region R1, the internal electrode layers 101 and the internal electrode layers 102 are alternately arranged between the ceramic dielectric layers 73. One internal electrode layer 101 functions as a first positive electrode, the other internal electrode layer 102 functions as a negative electrode, and both electrodes face each other with each ceramic dielectric layer 73 interposed therebetween. A capacity of 1 is formed. In the region R2, the internal electrode layers 201 and the internal electrode layers 202 are alternately arranged between the ceramic dielectric layers 73. One internal electrode layer 201 functions as an electrode for the second positive electrode, the other internal electrode layer 202 functions as an electrode for the negative electrode, and both electrodes face each other with each ceramic dielectric layer 73 interposed therebetween. Two capacitors are formed. In order to secure a certain distance between the first capacitor and the second capacitor to suppress interference, a boundary portion having a predetermined width is provided between the regions R1 and R2 of the capacitor 70.

キャパシタ70には、全てのセラミック誘電体層73を積層方向に貫通する多数のビアホールにニッケル等を埋め込んだ複数のビア導体111、112、211、212が形成されている。領域R1では、各々のビア導体111が内部電極層101に接続され、かつ各々のビア導体112が内部電極層102に接続され、一方のビア導体111と他方のビア導体112が交互に配置されている。領域R2では、各々のビア導体211が内部電極層201に接続され、かつ各々のビア導体212が内部電極層202に接続され、一方のビア導体211と他方のビア導体212が交互に配置されている。   The capacitor 70 is formed with a plurality of via conductors 111, 112, 211, 212 in which nickel or the like is embedded in a large number of via holes penetrating all the ceramic dielectric layers 73 in the stacking direction. In the region R1, each via conductor 111 is connected to the internal electrode layer 101, each via conductor 112 is connected to the internal electrode layer 102, and one via conductor 111 and the other via conductor 112 are alternately arranged. Yes. In the region R2, each via conductor 211 is connected to the internal electrode layer 201, each via conductor 212 is connected to the internal electrode layer 202, and one via conductor 211 and the other via conductor 212 are alternately arranged. Yes.

上述の複数のビア導体111、112、211、212のそれぞれは、その上端が端子電極121、122、221、222に接続され、その下端が端子電極131、132、231、232に接続されている。すなわち、領域R1では、一方のビア導体111が上方の端子電極121と下方の端子電極131を接続導通し、他方のビア導体112が上方の端子電極122と下方の端子電極132を接続導通している。また、領域R2では、一方のビア導体211が上方の端子電極221と下方の端子電極231を接続導通し、他方のビア導体212が上方の端子電極222と下方の端子電極232を接続導通している。   Each of the plurality of via conductors 111, 112, 211, 212 described above has an upper end connected to the terminal electrodes 121, 122, 221, 222 and a lower end connected to the terminal electrodes 131, 132, 231, 232. . That is, in the region R1, one via conductor 111 connects and conducts the upper terminal electrode 121 and the lower terminal electrode 131, and the other via conductor 112 connects and conducts the upper terminal electrode 122 and the lower terminal electrode 132. Yes. In the region R2, one via conductor 211 connects and connects the upper terminal electrode 221 and the lower terminal electrode 231, and the other via conductor 212 connects and connects the upper terminal electrode 222 and the lower terminal electrode 232. Yes.

ここで、図3を参照すると、中央部の領域R1には、その一部が周辺部の領域R2に突出した2箇所の突出部R1aが付随している。すなわち、キャパシタ70の平面内において、領域R1は、図3の2箇所の突出部R1aを介してキャパシタ70の外縁に接し、領域R2は、領域R1を挟んで図3の左側及び右側の2つの対称領域を含んでいる。これらの突出部R1aは、キャパシタ70の作製時に導体層71の領域R1に電解めっきを施す場合、外部に電極を取り出すために設けられている。図3に示すように、導体層71の2方向に突出部R1aを設けたので、多数のキャパシタ70をパネル内に並べて効率的に電解めっきを施すことができる。   Here, referring to FIG. 3, the central region R1 is accompanied by two projecting portions R1a partially projecting into the peripheral region R2. That is, in the plane of the capacitor 70, the region R1 is in contact with the outer edge of the capacitor 70 through the two protrusions R1a in FIG. 3, and the region R2 has two regions on the left and right sides in FIG. Includes a symmetric region. These protrusions R1a are provided to take out electrodes to the outside when electrolytic plating is performed on the region R1 of the conductor layer 71 when the capacitor 70 is manufactured. As shown in FIG. 3, since the projecting portions R1a are provided in the two directions of the conductor layer 71, a large number of capacitors 70 can be arranged in the panel to be efficiently electroplated.

キャパシタ70の導体層71において、領域R1には、第1の正極用の端子電極121と負極用の端子電極122が交互に配置され、領域R2には、第2の正極用の端子電極221と負極用の端子電極222が交互に配置されている。図3では省略しているが、領域R1の端子電極121、122の下方には、ビア導体111、112及び端子電極131、132が重なって配置され、領域R2の端子電極221、222の下方には、ビア導体211、212及び端子電極231、232が重なって配置されている。なお、図3における配置は一例であって、それぞれの端子電極121、122、221、222の形状及び間隔は適宜に設定することができる。   In the conductor layer 71 of the capacitor 70, the first positive terminal electrode 121 and the negative terminal electrode 122 are alternately arranged in the region R1, and the second positive terminal electrode 221 and the region R2. Negative terminal electrodes 222 are alternately arranged. Although omitted in FIG. 3, the via conductors 111 and 112 and the terminal electrodes 131 and 132 are disposed below the terminal electrodes 121 and 122 in the region R1, and are disposed below the terminal electrodes 221 and 222 in the region R2. The via conductors 211 and 212 and the terminal electrodes 231 and 232 are arranged to overlap each other. In addition, arrangement | positioning in FIG. 3 is an example, Comprising: The shape and space | interval of each terminal electrode 121,122,221,222 can be set suitably.

図3では簡単のため、同形状の多数の端子電極121、122、221、222が規則的に配置されている状態を示しているが、実際には、領域R1には各々の端子電極121を電源電圧VDD1に接続する導体パターンが形成され、領域R2には各々の端子電極221を電源電圧VDD2に接続する導体パターンが形成されている。図4は、導体層71の領域R1における導体パターンの構成を部分的に拡大して示す図である。図4に示すように、領域R1において、電源電圧VDD1用の導体パターンP1は、第1の正極用の各々の端子電極121を一体的に接続するように形成される。一方、負極用の各々の端子電極122の外周部分には導体パターンP1が形成されず、各々の端子電極122と導体パターンP1が電気的に非接続の状態になっている。なお、領域R2の場合は、図4の端子電極121、122を端子電極221、222に置き換えれば同様の構成となる。   For the sake of simplicity, FIG. 3 shows a state in which a large number of terminal electrodes 121, 122, 221, and 222 having the same shape are regularly arranged, but in reality, each terminal electrode 121 is provided in the region R1. A conductor pattern connected to the power supply voltage VDD1 is formed, and a conductor pattern connecting each terminal electrode 221 to the power supply voltage VDD2 is formed in the region R2. 4 is a partially enlarged view showing the configuration of the conductor pattern in the region R1 of the conductor layer 71. As shown in FIG. As shown in FIG. 4, in the region R1, the conductor pattern P1 for the power supply voltage VDD1 is formed so as to integrally connect the terminal electrodes 121 for the first positive electrode. On the other hand, the conductor pattern P1 is not formed on the outer peripheral portion of each terminal electrode 122 for negative electrode, and each terminal electrode 122 and the conductor pattern P1 are electrically disconnected. In the case of the region R2, if the terminal electrodes 121 and 122 in FIG.

次に、キャパシタ70と対向する上部の導体層21の構成について図5を参照して説明する。図5は、導体層21のうち、積層方向でキャパシタ70と対向する範囲の領域区分を示している。図5に示すように、導体層21は、中央部の領域R11と周辺部の領域R12とに区分されている。図3と図5を比較すると明らかなように、導体層21の領域区分はキャパシタ70の領域区分に合致し、導体層21の領域R11がキャパシタ70の領域R1と同一のパターン形状であって積層方向で対向配置され、導体層21の領域R12がキャパシタ70の領域R2と同一のパターン形状であって積層方向で対向配置されている。また、領域R11は、キャパシタ70の領域R1の突出部R1aと同様、領域R12に突出して外縁に接する2箇所の突出部R11aが付随している。   Next, the configuration of the upper conductor layer 21 facing the capacitor 70 will be described with reference to FIG. FIG. 5 shows a region section of the conductor layer 21 in a range facing the capacitor 70 in the stacking direction. As shown in FIG. 5, the conductor layer 21 is divided into a central region R11 and a peripheral region R12. As is clear from comparison between FIG. 3 and FIG. 5, the region section of the conductor layer 21 matches the region section of the capacitor 70, and the region R <b> 11 of the conductor layer 21 has the same pattern shape as the region R <b> 1 of the capacitor 70. The region R12 of the conductor layer 21 has the same pattern shape as that of the region R2 of the capacitor 70, and is opposed to each other in the stacking direction. Similarly to the protrusion R1a of the region R1 of the capacitor 70, the region R11 is accompanied by two protrusions R11a protruding to the region R12 and in contact with the outer edge.

導体層21において、領域R11には一方の電源電圧VDD1の配線となる導体パターンが形成され、領域R12には他方の電源電圧VDD2の配線となる導体パターンが形成されている。なお、領域R11、R12には、それぞれ部分的に他の導体パターンを含んでいてもよいが、電源電圧VDD1の導体パターンが領域R11の面積の大部分を占め、かつ電源電圧VDD2の導体パターンが領域R12の面積の大部分を占めることが望ましい。このように、キャパシタ70と導体層21との間では、領域R1と領域R11により電源電圧VDD1の導体パターンが積層方向で対向し、領域R2と領域R12により電源電圧VDD2の導体パターンが積層方向で対向する関係にある。   In the conductor layer 21, a conductor pattern serving as a wiring for one power supply voltage VDD1 is formed in the region R11, and a conductor pattern serving as a wiring for the other power supply voltage VDD2 is formed in the region R12. The regions R11 and R12 may partially include other conductor patterns, but the conductor pattern of the power supply voltage VDD1 occupies most of the area of the region R11, and the conductor pattern of the power supply voltage VDD2 is included in the regions R11 and R12. It is desirable to occupy most of the area of the region R12. Thus, between the capacitor 70 and the conductor layer 21, the conductor pattern of the power supply voltage VDD1 is opposed in the stacking direction by the region R1 and the region R11, and the conductor pattern of the power supply voltage VDD2 is stacked in the stacking direction by the region R2 and the region R12. There is an opposing relationship.

上述の本実施形態の構造により、キャパシタ70と導体層21が同一の領域区分で構成され、異なる電源電圧VDD1、VDD2の導体パターン同士が近距離で積層方向に直接対向する配置を避けることができる。仮に、異なる電源電圧VDD1、VDD2の導体パターン同士が近距離の積層方向で対向配置される場合は、両者の間のクロストークが増大する。これに対し、本実施形態の構造では、異なる電源電圧VDD1、VDD2の間のクロストークを十分に低減させることができ、クロストークに起因する電源ノイズを抑制することができる。半導体チップ60において、例えば、電源電圧VDD1はプロセッサコア部に供給される主電源として利用され、電源電圧VDD2は周辺のI/O回路に供給される電源として利用される。一般にプロセッサ部と周辺のI/O回路との間の干渉が生じると、半導体チップ60の動作に不具合を生じる恐れがあるが、本実施形態の構造を採用してノイズを抑制することにより、半導体チップ60において高速かつ安定な動作を実現可能となる。   With the structure of the present embodiment described above, the capacitor 70 and the conductor layer 21 are configured in the same region section, and it is possible to avoid an arrangement in which conductor patterns of different power supply voltages VDD1 and VDD2 are directly opposed in the stacking direction at a short distance. . If conductor patterns of different power supply voltages VDD1 and VDD2 are arranged to face each other in the short distance stacking direction, crosstalk between the two increases. On the other hand, in the structure of the present embodiment, crosstalk between different power supply voltages VDD1 and VDD2 can be sufficiently reduced, and power supply noise caused by crosstalk can be suppressed. In the semiconductor chip 60, for example, the power supply voltage VDD1 is used as a main power supply supplied to the processor core unit, and the power supply voltage VDD2 is used as a power supply supplied to peripheral I / O circuits. In general, when interference occurs between the processor unit and the peripheral I / O circuit, there is a risk of malfunction in the operation of the semiconductor chip 60. By adopting the structure of this embodiment and suppressing noise, the semiconductor High speed and stable operation can be realized in the chip 60.

以上、本実施形態に基づき本発明の内容を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で多様な変更を施すことができる。特に、キャパシタ70の領域区分と、これに対向する導体層21の領域区分については様々な変形例がある。以下、図6〜図8には、図5に対応する導体層21の領域区分と、それに重なるキャパシタ70の領域区分に関する変形例をそれぞれ示している。なお、図6〜図8は、導体層21及びキャパシタ70の領域区分が同一であることを前提として示した図である。   The contents of the present invention have been specifically described above based on the present embodiment, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. In particular, there are various modified examples of the region division of the capacitor 70 and the region division of the conductor layer 21 facing the capacitor 70. In the following, FIGS. 6 to 8 show modified examples related to the region section of the conductor layer 21 corresponding to FIG. 5 and the region section of the capacitor 70 overlapping therewith. 6 to 8 are diagrams on the assumption that the conductor layer 21 and the capacitor 70 have the same area section.

図6の変形例では、上述の領域R1、R11に付随する突出部R1a、R11aを設けない場合の領域区分を示している。すなわち、中央部に矩形の領域R1、R11が設けられ、その周囲を取り囲む周辺部の領域R2、R12が設けられている。図6においては、中央部の領域R1、R11が島状に配置されるが、キャパシタ70の作製上の制約が特にない場合は図6の変形例の構造を採用することができる。   In the modified example of FIG. 6, the region division in the case where the protrusions R1a and R11a associated with the regions R1 and R11 are not provided is shown. That is, rectangular regions R1 and R11 are provided in the center, and peripheral regions R2 and R12 surrounding the periphery are provided. In FIG. 6, the central regions R <b> 1 and R <b> 11 are arranged in an island shape. However, when there is no particular limitation on the manufacturing of the capacitor 70, the structure of the modified example of FIG.

図7の変形例では、領域R1、R11と領域R2、R12が平面方向の両側に配置される場合の領域区分を示している。すなわち、図7の右半分に領域R1、R11が設けられ、図7の左半分に領域R2、R12が設けられている。例えば、2つの半導体チップ60が載置される配線基板10において、図7の右半分の上方に一方の半導体チップ60を、図7の左半分の上方に他方の半導体チップ60をそれぞれ配置し、両者を別電源にする場合に図7の変形例の構造を採用することができる。   In the modification of FIG. 7, region divisions in the case where the regions R1 and R11 and the regions R2 and R12 are arranged on both sides in the plane direction are shown. That is, regions R1 and R11 are provided in the right half of FIG. 7, and regions R2 and R12 are provided in the left half of FIG. For example, in the wiring substrate 10 on which the two semiconductor chips 60 are placed, one semiconductor chip 60 is disposed above the right half of FIG. 7, and the other semiconductor chip 60 is disposed above the left half of FIG. When both are used as separate power sources, the structure of the modified example of FIG. 7 can be employed.

図8の変形例では、領域R1、R11及び領域R2、R12に加えて、領域R3、R13を含めた3領域が配置される場合の領域区分を示している。すなわち、図8の中央に領域R1、R11が設けられ、図8の左側に領域R2、R12が設けられ、図8の右側に新たに領域R3、R13を設け、それぞれを順に電源電圧VDD1、VDD2、VDD3に接続したものである。例えば、配線基板10上に別電源の3つの半導体チップ60を載置する場合のほか、1つの半導体チップ60の領域ごとに3電源を供給する場合において、図8の変形例の構造を採用することができる。   In the modified example of FIG. 8, region classification is shown in the case where three regions including regions R3 and R13 are arranged in addition to regions R1 and R11 and regions R2 and R12. That is, regions R1 and R11 are provided in the center of FIG. 8, regions R2 and R12 are provided on the left side of FIG. 8, regions R3 and R13 are newly provided on the right side of FIG. 8, and power supply voltages VDD1 and VDD2 are sequentially provided. , Connected to VDD3. For example, in the case where three semiconductor chips 60 of different power sources are mounted on the wiring board 10 and when three power sources are supplied for each region of one semiconductor chip 60, the structure of the modified example of FIG. be able to.

なお、図8の変形例をさらに一般化し、導体層21及びキャパシタ70をそれぞれN個の領域に区分し、各々の領域に異なるN個の電源用の導体パターンを形成する場合であっても、本発明の適用が可能である。   In addition, even when the modification of FIG. 8 is further generalized and the conductor layer 21 and the capacitor 70 are divided into N regions, and different N power source conductor patterns are formed in each region, The present invention can be applied.

10…配線基板
11…コア材
11a…収容穴部
21、31…導体層
12、13、22、32…樹脂絶縁層
14、15、25、35…ビア導体
20…第1配線積層部
23…端子パッド
24、34…ソルダーレジスト層
30…第2配線積層部
33…BGA用パッド
40…半田バンプ
41…半田ボール
42…スルーホール導体
43…閉塞体
50…樹脂充填材
60…半導体チップ
61…パッド
70…キャパシタ
71、72…導体層
73…誘電体層
101、102、201、202…内部電極層
111、112、211、212…ビア導体
121、122、131、132、221、222、231、232…端子電極
DESCRIPTION OF SYMBOLS 10 ... Wiring board 11 ... Core material 11a ... Accommodating hole part 21, 31 ... Conductor layer 12, 13, 22, 32 ... Resin insulating layer 14, 15, 25, 35 ... Via conductor 20 ... 1st wiring laminated part 23 ... Terminal Pads 24, 34 ... solder resist layer 30 ... second wiring laminated portion 33 ... BGA pad 40 ... solder bump 41 ... solder ball 42 ... through-hole conductor 43 ... occlusion body 50 ... resin filler 60 ... semiconductor chip 61 ... pad 70 ... Capacitors 71, 72 ... Conductor layer 73 ... Dielectric layers 101, 102, 201, 202 ... Internal electrode layers 111, 112, 211, 212 ... Via conductors 121, 122, 131, 132, 221, 222, 231, 232 ... Terminal electrode

Claims (7)

コア材と、前記コア材に収容されるキャパシタと、前記コア材の上面側及び下面側に絶縁層及び導体層を交互に積層形成した積層部とを備え、前記積層部の上部に半導体素子を載置可能な配線基板であって、
前記積層部のうち前記キャパシタに近接する所定の導体層には、第1の電源の配線を含む第1の導体パターンと、第2の電源の配線を含む第2の導体パターンとが形成され、
前記キャパシタは、第1の正極と負極との間の容量を形成する第1の領域と、第2の正極と負極の間の容量を形成する第2の領域とを有し、
前記キャパシタのうち前記所定の導体層の側の表面には、前記第1の正極用の端子電極を前記第1の電源に接続する配線を含む第1のキャパシタ側導体パターンと、前記第2の正極用の端子電極を前記第2の電源に接続する配線を含む第2のキャパシタ側導体パターンとが形成され、
前記第1の導体パターンと前記第1のキャパシタ側導体パターンとは、互いに同一のパターン形状であって積層方向に直接対向し、前記第2の導体パターンと前記第2のキャパシタ側導体パターンとは、互いに同一のパターン形状であって積層方向に直接対向する、ことを特徴とするキャパシタ内蔵配線基板。
A core material; a capacitor accommodated in the core material; and a laminated portion in which an insulating layer and a conductor layer are alternately laminated on the upper surface side and the lower surface side of the core material. A wiring board that can be placed,
A first conductor pattern including a first power supply wiring and a second conductor pattern including a second power supply wiring are formed in a predetermined conductor layer adjacent to the capacitor in the stacked portion,
The capacitor has a first region that forms a capacitance between the first positive electrode and the negative electrode, and a second region that forms a capacitance between the second positive electrode and the negative electrode,
On the surface of the capacitor on the side of the predetermined conductor layer, a first capacitor side conductor pattern including a wiring connecting the first positive electrode terminal electrode to the first power source, and the second capacitor A second capacitor side conductor pattern including a wiring for connecting a positive electrode terminal electrode to the second power source is formed;
The first conductor pattern and the first capacitor side conductor pattern have the same pattern shape and are directly opposed in the stacking direction. The second conductor pattern and the second capacitor side conductor pattern are A wiring board with a built-in capacitor, which has the same pattern shape and is directly opposed in the stacking direction.
前記キャパシタは、セラミック誘電体層と内部電極層とを交互に積層し、前記内部電極層に接続された複数のビア導体をアレイ状に配置した積層セラミックキャパシタであることを特徴とする請求項1に記載のキャパシタ内蔵配線基板。   The capacitor is a multilayer ceramic capacitor in which ceramic dielectric layers and internal electrode layers are alternately stacked, and a plurality of via conductors connected to the internal electrode layers are arranged in an array. The wiring board with a built-in capacitor described in 1. 前記キャパシタの前記第1の領域には、前記第1の正極用の複数のビア導体と負極用の複数のビア導体がアレイ状に配置され、
前記キャパシタの前記第2の領域には、前記第2の正極用の複数のビア導体と負極用の複数のビア導体がアレイ状に配置される、
ことを特徴とする請求項2に記載のキャパシタ内蔵配線基板。
In the first region of the capacitor, a plurality of via conductors for the first positive electrode and a plurality of via conductors for the negative electrode are arranged in an array,
A plurality of via conductors for the second positive electrode and a plurality of via conductors for the negative electrode are arranged in an array in the second region of the capacitor;
The wiring board with a built-in capacitor according to claim 2.
前記第1のキャパシタ側導体パターンは、前記キャパシタの表面の中央部に形成され、前記第2のキャパシタ側導体パターンは、前記キャパシタの表面の周囲部に形成される、ことを特徴とする請求項1から3のいずれかに記載のキャパシタ内蔵配線基板。   The first capacitor side conductor pattern is formed at a central portion of the surface of the capacitor, and the second capacitor side conductor pattern is formed at a peripheral portion of the surface of the capacitor. The wiring board with a built-in capacitor according to any one of 1 to 3. 前記第1のキャパシタ側導体パターンは、前記中央部に加えて、前記中央部から前記周囲部の一部に突出して前記キャパシタの外縁に延設される突出部に形成されることを特徴とする請求項4に記載のキャパシタ内蔵配線基板。   The first capacitor-side conductor pattern is formed in a protruding portion that protrudes from the central portion to a part of the peripheral portion and extends to the outer edge of the capacitor, in addition to the central portion. The wiring board with a built-in capacitor according to claim 4. 前記第1の電源は前記半導体素子の主要回路に供給される主電源であり、前記第2の電源は前記半導体素子のI/O回路に供給されるI/O回路用電源であることを特徴とする請求項1から5のいずれかに記載のキャパシタ内蔵配線基板。   The first power source is a main power source supplied to a main circuit of the semiconductor element, and the second power source is an I / O circuit power source supplied to an I / O circuit of the semiconductor element. The wiring board with a built-in capacitor according to any one of claims 1 to 5. コア材と、前記コア材に収容されるキャパシタと、前記コア材の上面側及び下面側に絶縁層及び導体層を交互に積層形成した積層部とを備え、前記積層部の上部に半導体素子を載置可能な配線基板であって、
前記積層部のうち所定の導体層には、N個の異なる電源の配線の各々を含むN個の導体パターンが形成され、
前記キャパシタは、N個の正極の各々と負極との間の容量をそれぞれ形成するN個の領域を有し、
前記キャパシタの上面には、前記N個の正極用の各々の端子電極を前記N個の電源の各々に接続する配線を含むN個のキャパシタ側導体パターンが形成され、
前記N個の導体パターンの各々と、これに対応する前記N個のキャパシタ側導体パターンの各々は、互いに同一のパターン形状であって積層方向に直接対向することを特徴とするキャパシタ内蔵配線基板。
A core material; a capacitor accommodated in the core material; and a laminated portion in which an insulating layer and a conductor layer are alternately laminated on the upper surface side and the lower surface side of the core material, and a semiconductor element is provided above the laminated portion. A wiring board that can be placed,
N conductor patterns including each of N different power supply wirings are formed on a predetermined conductor layer of the laminated portion,
The capacitor has N regions each forming a capacitance between each of the N positive electrodes and the negative electrode,
On the upper surface of the capacitor, N capacitor-side conductor patterns including wirings connecting the N terminal electrodes for the positive electrodes to the N power sources are formed,
Each of the N conductor patterns and the corresponding N capacitor-side conductor patterns have the same pattern shape and are directly opposed to each other in the stacking direction.
JP2009083752A 2009-03-30 2009-03-30 Wiring board with built-in capacitor Expired - Fee Related JP5011338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083752A JP5011338B2 (en) 2009-03-30 2009-03-30 Wiring board with built-in capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083752A JP5011338B2 (en) 2009-03-30 2009-03-30 Wiring board with built-in capacitor

Publications (2)

Publication Number Publication Date
JP2010238826A JP2010238826A (en) 2010-10-21
JP5011338B2 true JP5011338B2 (en) 2012-08-29

Family

ID=43092914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083752A Expired - Fee Related JP5011338B2 (en) 2009-03-30 2009-03-30 Wiring board with built-in capacitor

Country Status (1)

Country Link
JP (1) JP5011338B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374000B2 (en) 2020-03-10 2022-06-28 Taiwan Semiconductor Manufacturing Company, Ltd. Trench capacitor with lateral protrusion structure
US11735624B2 (en) 2021-03-05 2023-08-22 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-lateral recessed MIM structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338571A (en) * 1993-05-28 1994-12-06 Toshiba Corp Semiconductor device
JP4795860B2 (en) * 2006-06-15 2011-10-19 日本特殊陶業株式会社 Capacitor, wiring board
JP4880485B2 (en) * 2007-01-15 2012-02-22 日本特殊陶業株式会社 Capacitor, wiring board
JP4975507B2 (en) * 2007-04-17 2012-07-11 日本特殊陶業株式会社 Wiring board with built-in capacitor

Also Published As

Publication number Publication date
JP2010238826A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5222509B2 (en) Semiconductor device
US8149565B2 (en) Circuit board device and integrated circuit device
US6606237B1 (en) Multilayer capacitor, wiring board, decoupling circuit, and high frequency circuit incorporating the same
JP5145293B2 (en) Semiconductor integrated circuit chip, multilayer chip capacitor, and semiconductor integrated circuit chip package
KR101564070B1 (en) Printed circuit board and semiconductor package using the same
US9648794B2 (en) Wiring board and electronic apparatus
US20140084416A1 (en) Stacked Package and Method of Manufacturing the Same
KR20010039561A (en) Multi-layer capacitor, wiring board, and high-frequency circuit
US7791896B1 (en) Providing an embedded capacitor in a circuit board
US7586756B2 (en) Split thin film capacitor for multiple voltages
KR20060063436A (en) Multilayered chip capacitor and capacitor array
JP2012114395A (en) Multilayer ceramic capacitor
US20100213611A1 (en) Semiconductor device
JP5124150B2 (en) Multilayer printed wiring board
US11037879B2 (en) Semiconductor device
JP2009076815A (en) Semiconductor device
KR20040014473A (en) Integrated circuit package with a capacitor
US8027170B2 (en) Substrate and electronic device using the same
JP5011338B2 (en) Wiring board with built-in capacitor
US20130228895A1 (en) Package substrate and semiconductor and semiconductor package
US20150181708A1 (en) Semiconductor package module
JP4280179B2 (en) Multilayer semiconductor device
JP4817110B2 (en) Multilayer circuit board and IC package
JP2007129046A (en) Mounting structure of capacitor array
JP2006344680A (en) Ic package, its manufacturing method, and integrated circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Ref document number: 5011338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees