JP2013012496A - リチウムイオン二次電池用負極活物質材料およびその製造方法 - Google Patents

リチウムイオン二次電池用負極活物質材料およびその製造方法 Download PDF

Info

Publication number
JP2013012496A
JP2013012496A JP2012200598A JP2012200598A JP2013012496A JP 2013012496 A JP2013012496 A JP 2013012496A JP 2012200598 A JP2012200598 A JP 2012200598A JP 2012200598 A JP2012200598 A JP 2012200598A JP 2013012496 A JP2013012496 A JP 2013012496A
Authority
JP
Japan
Prior art keywords
active material
titanium composite
lithium
ion secondary
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012200598A
Other languages
English (en)
Inventor
Natsumi Goto
なつみ 後藤
Takashi Takeuchi
崇 竹内
Masaki Hasegawa
正樹 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Publication of JP2013012496A publication Critical patent/JP2013012496A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】電子伝導性に優れたリチウムイオン二次電池用負極活物質材料およびその製造方法を提供する。
【解決手段】本願に開示されたリチウムイオン二次電池用負極活物質材料は、Li4Ti5-xMnx12(式中、xは0<x≦0.3)、で示される組成を有するスピネル型リチウムチタン複合酸化物を含む。
【選択図】なし

Description

本発明はリチウムイオン二次電池の負極活物質として用いられる無機材料およびその製造方法に関する。
近年、種々のリチウムイオン二次電池が開発されている。リチウムイオン二次電池の負極活物質として、従来、炭素材料が主に用いられている。しかし、新たにリチウムチタン複合酸化物材料が開発され、注目されている。例えば、正極活物質にLiCoO2を用い、負極活物質にLi4Ti512を用いたリチウムイオン二次電池が既に実用化されている。
Li4Ti512は、スピネル型の結晶構造を持つ材料であり、Liの吸蔵または放出が繰り返し可能であるため、リチウムイオン二次電池の活物質として用いることができる。Li4Ti512は、リチウムの標準酸化還元電位(Li/Li+)を基準として約1.5Vの電位でLiの吸蔵または放出を行う。このため、Li4Ti512を負極活物質としてリチウムイオン二次電池に用いた場合、急速充電などで反応過電圧が生じても、負極でリチウム金属が析出しにくく、安全性の高いリチウムイオン二次電池が実現すると考えられる。また、また充放電に伴う格子膨張が非常に少ないためサイクル特性が良いという特徴を備える。
しかし、Li4Ti512は電子伝導性が低い。このため、Li4Ti512を用いてリチウム二次電池を構成する場合、出力特性に課題がある。この課題を解決するため、Li4Ti512に異元素を添加し、特性を変化させることが試みられている。例えば特許文献1は、電子伝導性の向上による出力特性の改善を目的とし、Li4Ti512のTi元素の一部がV元素、Nb元素、Mo元素およびP元素から選ばれる異元素で置換された材料を開示している。特許文献1は、Ti元素の一部をV元素、Nb元素、Mo元素およびP元素から選ばれる異元素で置換することで、電子伝導性が向上し、高負荷における放電特性が改善されると報告している。しかしながら、高負荷時における放電容量が低負荷時の放電容量の83%以下であり、放電特性が十分とはいえない。
また、特許文献2は、電解液との副反応の抑制を目的として、Li4Ti512のTi元素の一部がTi元素以外の一種の遷移金属元素で置換された材料を開示している。特許文献2は、Ti元素の一部を種々の遷移金属元素で置換することにより保存性能が向上すると報告しているが、出力特性や電極の容量密度に関しては何ら具体的には記述していない。また、実際に合成を行い、目的のリチウムチタン複合酸化物を得られることおよび得られた材料の特性を報告しているのは、置換する元素がB元素、Co元素、Zn元素の場合のみである。
特許文献3および特許文献4は、Li4Ti512やLi4Ti4.90Mn0.104が正極活物質の被覆材料としても用いることができることを開示している。しかしながら、特許文献3および特許文献4は、負極活物質としての利用可能性や特性に関しては何ら具体的に記述していない。
特開2000−277116号公報 特開2000−156229号公報 特開2005−228706号公報 特開2004−319105号公報
本発明は、上述した従来の課題の少なくとも1つを解決し、電子伝導性に優れたリチウムイオン二次電池用負極活物質材料およびその製造方法を提供することを目的とする。
本発明のリチウムイオン二次電池用負極活物質材料は、Li4Ti5-xMnx12(式中、xは0<x≦0.3を満たす)、Li4Ti5-x-yMnxy12(式中、xは0<x≦0.3、0<y≦0.05を満たす)、または、Li4Ti5-x-zMnxz12(式中、xは0<x≦0.3、0<z≦0.3を満たす)で示される組成を有するリチウムチタン複合酸化物を含む。Li4Ti512のTi元素の一部をMn元素で置換することにより、リチウムチタン複合酸化物の電子伝導性が向上する。
本発明によれば、Li4Ti512のTi元素の一部をMn元素で置換することにより、リチウムチタン複合酸化物の電子伝導性が向上する。このため、本発明のリチウムイオン二次電池用負極活物質材料を用いることにより、出力特性の高いリチウムイオン二次電池を実現することができる。
また、上記組成のTi元素の一部をMn元素に加えてB元素もしくはV元素で置換することにより、リチウムチタン複合酸化物の電子伝導性が向上するとともに一次粒子径を大きくすることができる。このため、出力特性の高く、容量密度の大きいリチウムイオン二次電池を実現することができる。
実施例1〜11および比較例1〜9のリチウムチタン複合酸化物のX線回折パターンを示す。 実施例1〜10のリチウムチタン複合酸化物の平均粒径とMn添加量との関係を示す図である。 比較例1〜3および比較例5〜8のリチウムチタン複合酸化物の平均粒径とBまたはV添加量との関係を示す図である。 実施例1〜10のリチウムチタン複合酸化物の圧縮密度とMn添加量との関係を示す図である。 比較例1〜3および比較例5〜8のリチウムチタン複合酸化物の圧縮密度とBまたはV添加量との関係を示す図である。 実施例1〜10の活物質を含む電池の放電可逆容量とMn添加量との関係を示す図である。 比較例1〜3および比較例5〜8の電池の放電可逆容量とBまたはV添加量との関係を示す図である。 実施例1〜10の活物質を含む電池のレート特性とMn添加量との関係を示す図である。 比較例1〜3および比較例5〜8の電池のレート特性とBまたはV添加量との関係を示す図である。 実施例1〜10の活物質を含む電池の電極容量密度とMn添加量との関係を示す図である。 比較例1〜3および比較例5〜8の電池の電極容量密度とBまたはV添加量との関係を示す図である。
以下、図面を参照しながら、本発明によるリチウムイオン二次電池用負極活物質材料およびその製造方法の実施形態を説明する。
(第1の実施形態)
本発明のリチウムイオン二次電池用負極活物質材料の第1の実施形態を説明する。本実施形態のリチウムイオン二次電池用負極活物質材料は、Li4Ti5-xMnx12(式中、xは0<x≦0.3を満たす)で示される組成を有するリチウムチタン複合酸化物を含む。このリチウムチタン複合酸化物は、Li4Ti512のTi元素の一部がMn元素で置換された化合物である。組成式中、xは置換量を表している。
Li4Ti5-xMnx12(式中、xは0<x≦0.3を満たす)で示される組成を有するリチウムチタン複合酸化物は電子伝導性に優れる。Ti元素の一部をMnで置換することにより電子伝導性が向上する原因は明らかでない。しかし、4価のTi元素を3価のMn元素で置換することにより、電子的な欠陥順位が生じ、リチウムチタン複合酸化物のバンドギャップが変化するためと考えられる。このリチウムチタン複合酸化物は電子伝導性に優れるため、リチウムイオン二次電池の負極活物質材料と用いることにより、リチウムイオン二次電池の出力特性が向上する。
Li4Ti5-xMnx12(式中、xは0<x≦0.3を満たす)で示される組成を有するリチウムチタン複合酸化物は、スピネル型の結晶構造を有し、これにより、リチウムを可逆的に吸蔵および放出をすることができる。結晶構造は、例えば、X線回折(XRD)測定により確認することができる。
Li4Ti5-xMnx12におけるxは、0<x≦0.3を満たしていることが好ましい。本願発明者の詳細な検討の結果、Ti元素のごく一部がMnで置換されれば、リチウムチタン複合酸化物は優れた電子伝導性を発揮することが分かった。このため、xは0よりも大きければよい。一方、xが増大すると、本実施形態の負極活物質材料を用いたリチウムイオン二次電池の放電可能容量が減少する傾向にあり、xが0.3を超えると、放電可能容量の減少が顕著であることが分かった。実施例で説明するように、電極容量密度の観点からは、Mn元素の添加量xが0<x≦0.1を満たすことがより好ましい。
Li4Ti5-xMnx12(式中、xは0<x≦0.3を満たす)で示される組成を有するリチウムチタン複合酸化物は一次粒子であってもよいし、一次粒子が凝集した2次粒子を構成していてもよい。いずれの場合であっても一次粒子の平均粒子径d(μm)に特に制限はなく、例えば、0.1μm以上1mm以下であってもよい。ここで平均粒子径dとは、リチウムチタン複合酸化物を走査型電子顕微鏡(SEM)によって撮影し、SEM写真から任意に30粒子を選び、一次粒子径を計測し、その平均を算出した値である。上記組成式で表される本実施形態のリチウムチタン複合酸化物は、比較的小さな平均粒子径dを有するものとして製造するのが容易である。製造が容易であるという観点では、平均粒子径dは0.5μm以上1.5μm以下であることが好ましい。
本実施形態のリチウムイオン二次電池用負極活物質材料に含まれるリチウムチタン複合酸化物は、構成元素を含む化合物を混合し、焼成することによって合成できる。具体的には、例えば、Li源と、酸化チタンと、Mn源とをLi、Ti、Mnが上記組成式で示される比率となるような割合で秤量し、秤量した原料を合わせて均一に混合する工程と、混合物を焼成する工程によって製造することができる。
Li源には、LiOHまたはその水和物、Li2CO3、Li2SO4、LiF、Li2O等を用いることができる。LiOHの水和物としては、一水和物(LiOH・H2O)が一般的であるが、他の含水量のLiOH水和物を用いてもよい。反応温度と不純物の残存可能性の観点から、LiOHまたはその水和物あるいはLi2CO3を用いることが好ましい。酸化チタンには、ルチル型およびアナターゼ型の結晶構造のものを用いることができる。反応の進みやすさの観点から、アナターゼ型の結晶構造のものを用いることが好ましい。Mn源としては、MnO、Mn34、MnO2、Mn(OH)2、MnCO3、MnSO4等を用いることができる。反応温度の観点から、MnO2あるいはMnCO3を用いることが好ましい。
焼成は、大気雰囲気中で行ってもよいし、酸素雰囲気中、あるいは窒素やアルゴンなどの不活性ガス雰囲気中で行ってもよい。焼成温度は、用いるLi源、酸化チタンおよびMn源に依存する。上述した好ましい材料をそれぞれLi源、酸化チタンおよびMn源として用いる場合には、700℃以上1000℃以下程度の温度で混合物を焼成することによって、Li4Ti5-xMnx12(式中、xは0<x≦0.3)で示される組成を有するリチウムチタン複合酸化物が得られる。
本実施形態のリチウムイオン二次電池用負極活物質材料によれば、リチウムチタン複合酸化物は、Li4Ti512に比べて優れた電子伝導性を備える。このため、リチウムイオン二次電池の負極活物質材料として用いた場合、優れた高出力特性を備えたリチウムイオン二次電池が実現する。
(第2の実施形態)
本発明のリチウムイオン二次電池用負極活物質材料の第2の実施形態を説明する。本実施形態のリチウムイオン二次電池用負極活物質材料は、Li4Ti5-x-yMnxy12(式中、xは0<x≦0.3、0<y≦0.05を満たす)で示される組成を有するリチウムチタン複合酸化物を含む。本実施形態のリチウムチタン複合酸化物は、第1の実施形態のリチウムチタン複合酸化物のTi元素の一部をさらにV元素で置換した化合物である。x、yは、それぞれMn元素、V元素の置換量を表している。
V元素は、リチウムチタン複合酸化物の粒径を増大させる効果を有する。従来のリチウムチタン複合酸化物材料は、典型的には1μm以下の一次粒子径を有していた。このため、リチウムチタン複合酸化物材料を用いて電極を構成する場合に充填密度を大きくできないという課題があった。
これに対し、本願発明者は、Ti元素の一部をV元素で置換することにより、一次粒子径を増大させ、リチウムイオン二次電池の電極としての充填性を向上させることができることを見出した。このため、第1の実施形態のリチウムチタン複合酸化物である、Li4Ti5-xMnx12(式中、xは0<x≦0.3を満たす)で示される組成を有するリチウムチタン複合酸化物において、Ti元素をさらにV元素で置換することにより、高い電子伝導性を備え、かつ、一次粒子径の大きなリチウムチタン複合酸化物が実現する。よって、本実施形態のリチウムチタン複合酸化物をリチウムイオン二次電池の負極活物質材料として用いた場合、優れた高出力特性を備え、高容量のリチウムイオン二次電池が実現する。
本実施形態のリチウムチタン複合酸化物は、第1の実施形態と同様、スピネル型の結晶構造を有する。結晶構造は、X線回折(XRD)により確認することができる。
本実施形態のリチウムチタン複合酸化物は、Mn元素の添加量xが0<x≦0.3を満たすことが好ましい。より好ましくは、Mn元素の添加量xが0<x≦0.1を満たしている。これは、第1の実施形態と同様の理由による。
V元素の添加量yは、0<y≦0.05であることが好ましい。Tiの一部がV元素で置換されることにより、一次粒子径増大の効果を得ることができる。一次粒子径が増大する原因は明らかでないが、V源であるV25の融点が690℃と比較的低く、焼成時に融解状態にあるため、V源の拡散が非常に速く、リチウムチタン複合酸化物の粒子を成長させやすいためではないかと推測される。一方、V元素の添加量が0.05を超えると、Ti元素を含まない酸化物相が生成し、スピネル型結晶構造のリチウムチタン複合酸化物の単相を得ることが困難となる。これは、X線回折(XRD)測定により確認することができる。
Mn元素およびV元素の置換量x、yが多い本実施形態の負極活物質材料を用いたリチウムイオン二次電池は、放電可能容量が減少する傾向を示す。つまり、Mn元素とV元素の置換量に応じて放電可能容量が減少する。しかし、リチウムイオン二次電池の負極活物質として本実施形態のリチウムチタン複合酸化物を用いる場合、上述の置換量x、yの範囲において、一次粒子径増大の効果により、電極中の充填密度が高められ、電極としての容量密度が向上する。
本実施形態のリチウムチタン複合酸化物は、一次粒子であってもよいし、一次粒子が凝集した二次粒子を構成していてもよい。いずれの場合であっても一次粒子の平均粒子径d(μm)が1≦d≦5であることが好ましい。
一次粒子の平均粒子径はV元素の置換量が増大するにつれ、大きくなる傾向を示す。また、用途によっては、リチウムチタン複合酸化物の平均粒子径dは5μm以上であってもよい。
第1の実施形態と同様に、本実施形態のリチウムイオン二次電池用負極活物質材料に含まれるリチウムチタン複合酸化物も、構成元素を含む化合物を混合し、焼成することによって合成できる。具体的には、例えば、Li源と、酸化チタンと、Mn源とV源とを、Li、Ti、Mn、Vが上記組成式で示される比率となるような割合で秤量し、秤量した原料を合わせて均一に混合する工程と、混合物を焼成する工程によって製造することができる。ここで「均一」とは、原料を構成する粒子のレベルで分布に大きな偏りがないことを意味する。
Li源には、LiOHまたはその水和物、Li2CO3、Li2SO4、LiF、Li2O等を用いることができる。LiOHの水和物としては、一水和物(LiOH・H2O)が一般的であるが、他の含水量のLiOH水和物を用いてもよい。反応温度と不純物の残存可能性の観点から、LiOHまたはその水和物あるいはLi2CO3を用いることが好ましい。酸化チタンには、ルチル型およびアナターゼ型の結晶構造のものを用いることができる。反応の進みやすさの観点から、アナターゼ型の結晶構造のものを用いることが好ましい。Mn源としては、MnO、Mn34、MnO2、Mn(OH)2、MnCO3、MnSO4等を用いることができる。反応温度の観点から、MnO2あるいはMnCO3を用いることが好ましい。V源には、V25を用いることが好ましい。
焼成は、大気雰囲気中で行ってもよいし、酸素雰囲気中、あるいは窒素やアルゴンなどの不活性ガス雰囲気中で行ってもよい。焼成温度は、用いるLi源、酸化チタン、Mn源およびV源に依存する。上述した好ましい材料をそれぞれLi源、酸化チタン、Mn源およびV源として用いる場合には、700℃以上1000℃以下程度の温度で混合物を焼成することによって、Li4Ti5-x-yMnxy12(式中、xは0<x≦0.3、yは0<x≦0.05を満たす)で示される組成を有するリチウムチタン複合酸化物が得られる。
本実施形態のリチウムイオン二次電池用負極活物質材料によれば、リチウムチタン複合酸化物は、Li4Ti512に比べて優れた電子伝導性を備える。このため、リチウムイオン二次電池の負極活物質材料として用いた場合、優れた高出力特性を備えたリチウムイオン二次電池が実現する。さらに、負極における負極活物質材料の充填密度を高められるため、高容量のリチウムイオン二次電池が実現する。
(第3の実施形態)
本発明のリチウムイオン二次電池用負極活物質材料の第2の実施形態を説明する。本実施形態のリチウムイオン二次電池用負極活物質材料は、Li4Ti5-x-zMnxz12(式中、xは0<x≦0.3、0<z≦0.3を満たす)で示される組成を有するリチウムチタン複合酸化物を含む。本実施形態のリチウムチタン複合酸化物は、第1の実施形態のリチウムチタン複合酸化物のTi元素の一部をさらにB元素で置換した化合物である。x、zは、それぞれMn元素、B元素の置換量を表している。
B元素は、V元素と同様にリチウムチタン複合酸化物の粒径を増大させる効果を有する。本願発明者は、Ti元素の一部をB元素で置換することにより、V元素と同様にリチウムチタン複合酸化物の一次粒子径を増大させ、リチウムイオン二次電池の電極としての充填性が向上させることができることを見出した。第1の実施形態のリチウムチタン複合酸化物である、Li4Ti5-xMnx12(式中、xは0<x≦0.3を満たす)で示される組成を有するリチウムチタン複合酸化物において、Ti元素をさらにB元素で置換することにより、高い電子伝導性を備え、かつ、一次粒子径の大きなリチウムチタン複合酸化物が実現する。よって、本実施形態のリチウムチタン複合酸化物をリチウムイオン二次電池の負極活物質材料として用いた場合、優れた高出力特性を備え、高容量のリチウムイオン二次電池が実現する。
本実施形態のリチウムチタン複合酸化物は、第1の実施形態と同様、スピネル型の結晶構造を有する。結晶構造は、X線回折(XRD)により確認することができる。
本実施形態のリチウムチタン複合酸化物は、Mn元素の添加量が0<x≦0.3であることが好ましい。これは、第1の実施形態と同様の理由による。
B元素の添加量zは、0<z≦0.3であることが好ましい。Tiの一部がB元素で置換されることにより、一次粒子径増大の効果を得ることができる。一次粒子径が増大する原因は明らかでないが、B源であるB23の融点が480℃と比較的低く、焼成時に融解状態にあるため、B源の拡散が非常に速く、リチウムチタン複合酸化物の粒子を成長させやすいためではないかと推測される。B源としてHBO3を用いた場合も、HBO3が169℃付近でB23に分解するため、同様にリチウムチタン複合酸化物の粒子を成長させやすいと考えられる。
一方、B元素の添加量が0.3を超えると、Ti元素を含まない酸化物相が生成し、スピネル型結晶構造のリチウムチタン複合酸化物の単相を得ることが困難となる。これは、X線回折(XRD)測定により確認することができる。
Mn元素およびB元素の置換量x、zが多い本実施形態の負極活物質材料を用いたリチウムイオン二次電池は、放電可能容量が減少する傾向を示す。つまり、Mn元素とB元素の置換量に応じて放電可能容量が減少する。しかし、リチウムイオン二次電池の負極活物質として本実施形態のリチウムチタン複合酸化物を用いる場合、上述の置換量x、zの範囲において、一次粒子径増大の効果により、電極中の充填密度が高められ、電極としての容量密度が向上する。
本実施形態のリチウムチタン複合酸化物は、一次粒子であってもよいし、一次粒子が凝集した2次粒子を構成していてもよい。いずれの場合であっても一次粒子の平均粒子径d(μm)が1≦d≦11であることが好ましい。一次粒子の平均粒子径はV元素の置換量が増大するにつれ、大きくなる傾向を示す。また、用途によっては、リチウムチタン複合酸化物の平均粒子径dは11μm以上であってもよい。
第1の実施形態と同様に、本実施形態のリチウムイオン二次電池用負極活物質材料に含まれるリチウムチタン複合酸化物も、構成元素を含む化合物を混合し、焼成することによって合成できる。具体的には、例えば、Li源と、酸化チタンと、Mn源とB源とを、Li、Ti、Mn、Bが上記組成式で示される比率となるような割合で秤量し、秤量した原料を合わせて均一に混合する工程と、混合物を焼成する工程によって製造することができる。
Li源には、LiOHまたはその水和物、Li2CO3、Li2SO4、LiF、Li2O等を用いることができる。LiOHの水和物としては、一水和物(LiOH・H2O)が一般的であるが、他の含水量のLiOH水和物を用いてもよい。反応温度と不純物の残存可能性の観点から、LiOHまたはその水和物あるいはLi2CO3を用いることが好ましい。酸化チタンには、ルチル型およびアナターゼ型の結晶構造のものを用いることができる。反応の進みやすさの観点から、アナターゼ型の結晶構造のものを用いることが好ましい。Mn源としては、MnO、Mn34、MnO2、Mn(OH)2、MnCO3、MnSO4等を用いることができる。反応温度の観点から、MnO2あるいはMnCO3を用いることが好ましい。B源には、H3BO3、B23を用いることが好ましい。
焼成は、大気雰囲気中で行ってもよいし、酸素雰囲気中、あるいは窒素やアルゴンなどの不活性ガス雰囲気中で行ってもよい。焼成温度は、用いるLi源、酸化チタン、Mn源およびV源に依存する。上述した好ましい材料をそれぞれLi源、酸化チタン、Mn源およびV源として用いる場合には、700℃以上1000℃以下程度の温度で混合物を焼成することによって、Li4Ti5-x-zMnxz12(式中、xは0<x≦0.3、zは0<x≦0.3を満たす)で示される組成を有するリチウムチタン複合酸化物が得られる。
本実施形態のリチウムイオン二次電池用負極活物質材料によれば、リチウムチタン複合酸化物は、Li4Ti512に比べて優れた電子伝導性を備える。このため、リチウムイオン二次電池の負極活物質材料として用いた場合、優れた高出力特性を備えたリチウムイオン二次電池が実現する。さらに、負極における負極活物質材料の充填密度を高められるため、高容量のリチウムイオン二次電池が実現する。
以下、本発明のリチウムイオン二次電池用負極活物質材料を合成し、種々の特性を調べた結果を説明する。
1.合成
(実施例1)
LiOH・H2O、TiO2、MnO2の原料粉末を、Li/Ti/Mnのモル混合比が4/(5−x)/x、x=0.01となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例2)
LiOH・H2O、TiO2、MnO2の原料粉末を、Li/Ti/Mnのモル混合比が4/(5−x)/x、x=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例3)
LiOH・H2O、TiO2、MnO2の原料粉末を、Li/Ti/Mnのモル混合比が4/(5−x)/x、x=0.1となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例4)
LiOH・H2O、TiO2、MnO2の原料粉末を、Li/Ti/Mnのモル混合比が4/(5−x)/x、x=0.3となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例5)
LiOH・H2O、TiO2、MnO2、V25の原料粉末を、Li/Ti/Mn/Vのモル混合比が4/(5−x−y)/x/y、x=0.01、y=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例6)
LiOH・H2O、TiO2、MnO2、V25の原料粉末を、Li/Ti/Mn/Vのモル混合比が4/(5−x−y)/x/y、x=0.05、y=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例7)
LiOH・H2O、TiO2、MnO2、V25の原料粉末を、Li/Ti/Mn/Vのモル混合比が4/(5−x−y)/x/y、x=0.3、y=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例8)
LiOH・H2O、TiO2、MnO2、HBO3の原料粉末を、Li/Ti/Mn/Bのモル混合比が4/(5−x−z)/x/z、x=0.01、z=0.3となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例9)
LiOH・H2O、TiO2、MnO2、HBO3の原料粉末を、Li/Ti/Mn/Bのモル混合比が4/(5−x−z)/x/z、x=0.05、z=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例10)
LiOH・H2O、TiO2、MnO2、HBO3の原料粉末を、Li/Ti/Mn/Bのモル混合比が4/(5−x−z)/x/z、x=0.3、z=0.3となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(実施例11)
LiOH・H2O、TiO2、MnCO3の原料粉末を、Li/Ti/Mnのモル混合比が4/(5−x)/x、x=0.3となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例1)
LiOH・H2O、TiO2の原料粉末を、Li/Tiのモル混合比が4/5となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例2)
LiOH・H2O、TiO2、VO5の原料粉末を、Li/Ti/Vのモル混合比が4/(5−y)/y、y=0.01となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例3)
LiOH・H2O、TiO2、VO5の原料粉末を、Li/Ti/Vのモル混合比が4/(5−y)/y、y=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例4)
LiOH・H2O、TiO2、VO5の原料粉末を、Li/Ti/Vのモル混合比が4/(5−y)/y、y=0.1となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例5)
LiOH・H2O、TiO2、HBO3の原料粉末を、Li/Ti/Bのモル混合比が4/(5−z)/z、z=0.01となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例6)
LiOH・H2O、TiO2、HBO3の原料粉末を、Li/Ti/Bのモル混合比が4/(5−z)/z、z=0.05となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例7)
LiOH・H2O、TiO2、HBO3の原料粉末を、Li/Ti/Bのモル混合比が4/(5−z)/z、z=0.1となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例8)
LiOH・H2O、TiO2、HBO3の原料粉末を、Li/Ti/Bのモル混合比が4/(5−z)/z、z=0.3となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
(比較例9)
LiOH・H2O、TiO2、HBO3の原料粉末を、Li/Ti/Bのモル混合比が4/(5−z)/z、z=0.75となるように秤量し、これらを乳鉢に入れ混合した。原料のTiO2には、アナターゼ型の結晶構造を有し、平均粒径が約0.3μmのものを用いた。
混合後の原料粉末をAl23製のるつぼに入れ、大気雰囲気の電気炉内で焼成した。焼成温度は850℃、焼成温度の保持時間は12時間とした。
焼成後の材料をるつぼから取り出し、乳鉢にて粉砕し、目的のリチウムチタン複合酸化物を得た。
2.結晶構造の確認
実施例1〜11および比較例1〜9のリチウムチタン複合酸化物の結晶構造を確認するため、粉末X線回折(XRD)測定を行った。測定には、リガク社製のXRD測定装置を使用した。
XRD測定結果のプロファイルを図1に示す。また、表1に各実施例および比較例におけるMn、V、Bの添加量x、y、zをまとめて示す。
Figure 2013012496
この結果から、実施例1〜11、比較例1〜3および比較例5〜8のリチウムチタン複合酸化物はスピネル型構造の単相であることが確認できた。比較例4のリチウムチタン複合酸化物は、スピネル型構造の相に加えて、少量のLi3VO4相を含む。また、比較例9のリチウムチタン複合酸化物は、スピネル型構造の相に加えて、少量のLi247相を含む。
これらのことから、実施例1〜11、比較例1〜3および比較例5〜8のリチウムチタン複合酸化物の組成の範囲内、つまり、0<x≦0.3、0<y≦0.05、0<z≦0.3の範囲において、スピネル型構造の単相からなるリチウムチタン複合酸化物が得られることがわかった。また、比較例4のようにVの添加量yが多すぎる場合や、比較例9のようにBの添加量zが多すぎる場合はスピネル型構造単相が得られないことが明らかになった。
また、実施例4および実施例11における測定結果がほぼ同じであることから、Mn源にMnO2あるいはMnCO3のどちらを使用しても、同じリチウムチタン複合酸化物が得られることが明らかになった。
3.平均粒径の確認
本発明では一次粒子の平均粒径を、以下に定義する「平均粒径d」で評価した。SEM写真から任意に30粒子を選び、一次粒子径を計測し、その平均を算出して「平均粒径d」を見積もった。
平均粒径として、一般に粒度分布測定における「累積平均粒径d50」がよく用いられる。しかしながら、粒度分布測定は一次粒子の大きさではなく凝集粒子(2次粒子)の大きさを計測するものである。一次粒子の大きさと二次粒子の大きさには相関がない。したがって、本発明の効果を示すためには、一次粒子の大きさを示す単位である「平均粒径d」が適当である。
スピネル型構造単相の得られた実施例1〜10、比較例1〜3および比較例5〜8のリチウムチタン複合酸化物の「平均粒径d」を調べるため、走査電子顕微鏡(SEM)で観察を行った。日立ハイテクノロジーズ社製の装置を使用した。
SEM写真から算出した、実施例1〜10、比較例1〜3および比較例5〜8のリチウムチタン複合酸化物の平均粒径dを表2に示す。また実施例1〜10のリチウムチタン複合酸化物の平均粒径dとMn添加量との関係を図2Aに、比較例1〜3および比較例5〜8のリチウムチタン複合酸化物の平均粒径dとVまたはB添加量との関係を図2Bにそれぞれ示す。
Figure 2013012496
実施例1〜4および比較例1のリチウムチタン複合酸化物の平均粒径dは約0.8μmであるのに比べ、実施例5〜10、比較例2〜3および比較例5〜8のリチウムチタン複合酸化物の平均粒径dは約1〜10μmであり、平均粒径dが大きい。これらの結果から、Ti元素をMn元素のみで置換しても1次粒子径にはあまり変化が起こらないが、Ti元素をB元素あるいはV元素で置換した場合は1次粒子径を増大させる効果があることが明らかになった。
4.圧縮密度の測定
実施例1〜10、比較例1〜3および比較例5〜8のリチウムチタン複合酸化物について、電極にした際の充填性の指標として、圧縮密度を測定した。測定には三菱化学アナリテック社製の粉体抵抗測定システムを使用した。64MPaの圧力を印加したときの密度を圧縮密度とした。
測定結果を表2に示す。また、実施例1〜10の圧縮密度の測定結果と、Mn添加量との関係を図3Aに示す。比較例1〜3および比較例5〜8の圧縮密度の測定結果と、VまたはB添加量との関係を図3Bに示す。
実施例1〜4および比較例1の圧縮密度が2.1g/cm3から2.2g/cm3程度であるのに比べ、実施例5〜10の圧縮密度は2.6g/cm3から2.8g/cm3程度、比較例2、3および5〜8の圧縮密度は2.3g/cm3から2.7g/cm3程度と大きい値であった。
平均粒径および圧縮密度の結果より、平均粒径が大きいものは圧縮密度も大きい傾向があることが明らかになった。
5.電極の作製
実施例1〜10、比較例1〜3および比較例5〜8のリチウムチタン複合酸化物を活物質として用いて、電極を作製した。活物質/導電材/バインダーを85/10/5の重量比になるよう秤量し、乳鉢で混合した。導電材にはアセチレンブラック、バインダーにはPTFEを用いた。混合後、ローラーで圧延し、打ち抜いてペレット状の電極にした。
6.電池の作製
リチウムイオン二次電池の負極活物質としての特性を調べるために上記電極を用いて、電池を作製した。一般にリチウムイオン二次電池では、正極活物質にLiCoO2などのリチウム遷移金属複合酸化物(Co、Mn、Niなどの遷移金属を含むものが一般的である)を用いる。しかしながら、本発明では、正極活物質に依存しない、負極活物質そのものの特性を調べるために、対極に一般の正極活物質ではなく、金属Liを用いた。このような方法は、活物質の評価をするのによく用いられる。
コイン形の電池を作製した。本実施例および比較例を用いて作製した上記電極と、電解液を含浸させたセパレータ、金属Li板の順に重ね、コイン形のケースに入れ、封止して、電池とした。セパレータは旭化成イーマテリアルズ社製のPE微多孔膜と、タピルス社製のPP不織布を、PP/PE/PPの順で3枚重ねて使用した。電解液には、EC/EMC=1/3となるように混合した溶媒に、1mol/LのLiPF6を溶解させたものを用いた。
実施例1〜10、比較例1〜3および比較例5〜8のリチウムチタン複合酸化物を活物質として用いて作製した電池をそれぞれ実施例1〜10、比較例1〜3および比較例5〜8の活物質を含む電池と呼ぶ。
7.放電可能容量の評価
放電可能容量を調べるために、作製した上記電池を、一度充電させた後に、放電させた。充放電試験には、ナガノ社製の充放電システムを使用した。充放電の電圧範囲は1Vから3V、電流レートは、0.02Cレートとなるようにした。ここで、1Cレートは1時間放電率を表す電流値と定義され、0.02Cレートは、1Cレートの0.02倍の電流値、すなわち50時間放電率を表す電流値である。
放電可能容量の測定結果を表2に示す。また、実施例1〜10による測定結果と、Mn添加量との関係を図4Aに示す。比較例1〜3および比較例5〜8による測定結果と、VまたはB添加量との関係を図4Bに示す。
表2から分かるように、比較例1の放電可能容量が最も高い。実施例1〜4および比較例1の活物質を含む電池の測定結果から、Ti元素をMn元素で置換する量xが増加すればするほど、放電可能容量が減少することが分かる。また、比較例1〜3および比較例5〜8の電池の結果から、Ti元素をV元素もしくはB元素で置換する量y、zが増加すればするほど、放電可能容量が減少することが分かる。さらに、実施例5〜10の活物質を含む電池の測定結果から、Mn元素に加えてV元素もしくはB元素でTi元素を置換したものは、Mn置換による減少分に加えてV、B置換によりさらに放電可能容量が減少することが分かった。
8.レート特性の評価
出力特性を調べるために、作製した上記電池を用いてレート特性の評価を行った。ナガノ社製の充放電システムを使用し、充放電の電圧範囲は1Vから3Vとした。1Cレートでの定電流放電の後に、3Vの定電圧で0.02Cレートの電流値になるまで充電した。充電後の放電時の電流レートは、0.02Cもしくは1Cとしてそれぞれ測定した。1Cレートでの放電可能容量を0.02Cレートでの放電可能容量と比較した。
レート特性の測定結果を表2に示す。また、実施例1〜10による測定結果と、Mn添加量との関係を図5Aに示す。比較例1〜3および比較例5〜8による測定結果と、VまたはB添加量との関係を図5Bに示す。
実施例1〜10および比較例1の活物質を含む電池の測定結果から、Ti元素の一部をMn元素で置換すると、レート特性が大きく向上することが分かる。また、比較例2〜3および比較例5〜9の活物質を含む電池の測定結果から分かるように、Ti元素の一部をV元素、B元素のみで置換した場合、レート特性は悪化する。これは、V元素もしくはB元素で置換することにより、電子伝導性が大きく改善しないにも関わらず粒径が急激に大きくなるため、粒子内においてLiイオンの拡散に時間がかかり、高負荷でのレート特性が悪化していると考えられる。
これに対し、Ti元素の一部をMn元素で置換した場合、リチウムチタン複合酸化物の電子伝導性が十分に高くなる。よって、Ti元素の一部をさらにB元素やV元素を置換することによりリチウムチタン複合酸化物の粒径が大きくなっても、粒子内のLiイオンの拡散が十分に速く、レート特性が向上すると考えられる。
9.電極容量密度の評価
電極の体積あたりの容量密度は、電池のエネルギー密度に直接寄与するため、向上が望まれている。電極の容量密度は、電極中の活物質の密度と活物質の重量容量密度と放電平均電圧との積で表される。電極中の活物質の密度、すなわち充填性を表すひとつの指標として、活物質の圧縮密度を用いることができる。また、活物質の重量容量密度は、上記で測定した放電可能容量である。したがって、本実施例では、電極の容量密度の評価指標として「電極容量密度ρ」を、圧縮密度と放電可能容量の積として定義し、算出した。
上記の方法で求めた実施例1〜10、比較例1〜3および5〜8の活物質を含む電池の「電極容量密度ρ」の結果を表2に示す。また、実施例1〜10の活物質を含む電池の算出結果と、Mn添加量との関係を図6Aに示す。比較例1〜3および比較例5〜8による電池の算出結果と、VまたはB添加量との関係を図6Bに示す。
図6Aから、Mn元素の添加量xが0より大きく0.1以下である場合には、比較例1の電池よりも「電極容量密度ρ」が大きくなっていることが分かる。また、Mn元素の添加量xが0.3である場合、実施例の活物質を含む電池の「電極容量密度ρ」が低下してしまうことが分かる。これは、Mn元素の添加量xが0.3である場合、放電可逆容量が大きく低下するためであると考えられる(図4A)。したがって、Mn元素の添加量xは0<x≦0.1を満たすことがより好ましいことが分かる。
また、B元素もしくはV元素を添加した実施例5、6、8、9の活物質を含む電池の「電極容量密度ρ」は実施例1〜4の活物質を含む電池に比べて大きいことが分かった。これは、B元素、V元素の添加量に応じて放電可能容量が減少するものの、圧縮密度が増大した効果が大きく寄与するためと考えられる。比較例1に対する比較例2、3、5〜8の結果も同様の傾向が見られる。
本発明によるリチウムイオン二次電池用負極活物質材料は、電極として用いる場合に高い出力特性と高い容量密度を、モバイル用のリチウムイオン二次電池の負極活物質として有用である。また大型電池や電気自動車等の用途にも応用できる。

Claims (4)

  1. Li4Ti5-xMnx12(式中、xは0<x≦0.3)で示される組成を有するスピネル型リチウムチタン複合酸化物を含むリチウムイオン二次電池用負極活物質材料。
  2. 前記xは0<x≦0.1を満たす請求項1に記載のリチウムイオン二次電池用負極活物質材料。
  3. LiOH、LiOH水和物またはLi2CO3から選ばれるリチウム源と、アナターゼ型の結晶構造を有する酸化チタンと、MnO2またはMnCO3から選ばれる1種以上のMn源とを、Li、Ti、MnがLi4Ti5-xMnx12(式中、xは0<x≦0.3)で示される比率となるような割合で混合する工程と、
    前記混合物を700℃以上1000℃以下の温度で焼成する工程と
    を包含するリチウムイオン二次電池用負極活物質材料の製造方法。
  4. 前記xは0<x≦0.1を満たす請求項3に記載のリチウムイオン二次電池用負極活物質材料の製造方法。
JP2012200598A 2011-02-15 2012-09-12 リチウムイオン二次電池用負極活物質材料およびその製造方法 Pending JP2013012496A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161442966P 2011-02-15 2011-02-15
US61/442,966 2011-02-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012524987A Division JP5148781B2 (ja) 2011-02-15 2012-02-10 リチウムイオン二次電池用負極活物質材料およびその製造方法

Publications (1)

Publication Number Publication Date
JP2013012496A true JP2013012496A (ja) 2013-01-17

Family

ID=46653009

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012524987A Active JP5148781B2 (ja) 2011-02-15 2012-02-10 リチウムイオン二次電池用負極活物質材料およびその製造方法
JP2012200598A Pending JP2013012496A (ja) 2011-02-15 2012-09-12 リチウムイオン二次電池用負極活物質材料およびその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012524987A Active JP5148781B2 (ja) 2011-02-15 2012-02-10 リチウムイオン二次電池用負極活物質材料およびその製造方法

Country Status (5)

Country Link
US (1) US9065148B2 (ja)
EP (1) EP2677575B1 (ja)
JP (2) JP5148781B2 (ja)
CN (1) CN102834956B (ja)
WO (1) WO2012111293A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201322B2 (en) 2017-08-03 2021-12-14 Tokyo Institute Of Technology Electrode active material for nonaqueous secondary battery, and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5456218B2 (ja) * 2012-02-10 2014-03-26 パナソニック株式会社 リチウムイオン二次電池用負極活物質材料
WO2015045254A1 (ja) * 2013-09-25 2015-04-02 三洋電機株式会社 リチウムチタン複合酸化物
EP3544105B1 (en) * 2016-11-18 2023-06-07 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156229A (ja) * 1998-11-20 2000-06-06 Yuasa Corp 非水電解質リチウム二次電池
JP2001126728A (ja) * 1999-10-26 2001-05-11 Toyota Motor Corp リチウムイオン2次電池用負極
JP2001196061A (ja) * 2000-01-11 2001-07-19 Yuasa Corp 非水電解質リチウム二次電池
JP2003217583A (ja) * 2002-01-18 2003-07-31 Hitachi Maxell Ltd 複合電極およびそれを用いた電気化学素子
JP2003297433A (ja) * 2002-03-28 2003-10-17 Hitachi Maxell Ltd 電気化学素子

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251020A (ja) * 1997-03-11 1998-09-22 Ishihara Sangyo Kaisha Ltd 金属置換チタン酸リチウムおよびその製造方法ならびにそれを用いてなるリチウム電池
JP3625680B2 (ja) * 1999-03-25 2005-03-02 三洋電機株式会社 リチウム二次電池
CA2327370A1 (fr) * 2000-12-05 2002-06-05 Hydro-Quebec Nouvelle methode de fabrication de li4ti5o12 pur a partir du compose ternaire tix-liy-carbone: effet du carbone sur la synthese et la conductivite de l'electrode
JP4061648B2 (ja) * 2003-04-11 2008-03-19 ソニー株式会社 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
JP2005135775A (ja) * 2003-10-30 2005-05-26 Yuasa Corp リチウムイオン二次電池
JP4237074B2 (ja) 2004-02-16 2009-03-11 ソニー株式会社 非水電解質二次電池用の正極活物質および非水電解質二次電池
US7682745B2 (en) 2004-10-29 2010-03-23 Medtronic, Inc. Medical device having lithium-ion battery
US7337010B2 (en) 2004-10-29 2008-02-26 Medtronic, Inc. Medical device having lithium-ion battery
WO2006050117A2 (en) 2004-10-29 2006-05-11 Medtronic, Inc. Method of charging lithium-ion battery
JP5066831B2 (ja) 2006-05-12 2012-11-07 株式会社Gsユアサ 非水電解質二次電池
US7879493B2 (en) * 2006-06-05 2011-02-01 A123 Systems, Inc. Alkali metal titanates and methods for their synthesis
JP5459757B2 (ja) * 2008-10-17 2014-04-02 Necエナジーデバイス株式会社 二次電池用正極活物質およびそれを使用した二次電池
JP4728385B2 (ja) * 2008-12-10 2011-07-20 ナミックス株式会社 リチウムイオン二次電池、及び、その製造方法
CN101877407B (zh) * 2009-04-30 2013-06-19 比亚迪股份有限公司 一种负极活性物质以及制备方法及电池
KR20120017991A (ko) * 2010-08-20 2012-02-29 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US20120045696A1 (en) * 2010-08-23 2012-02-23 Herle P Subramanya Negative electrode materials for non-aqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156229A (ja) * 1998-11-20 2000-06-06 Yuasa Corp 非水電解質リチウム二次電池
JP2001126728A (ja) * 1999-10-26 2001-05-11 Toyota Motor Corp リチウムイオン2次電池用負極
JP2001196061A (ja) * 2000-01-11 2001-07-19 Yuasa Corp 非水電解質リチウム二次電池
JP2003217583A (ja) * 2002-01-18 2003-07-31 Hitachi Maxell Ltd 複合電極およびそれを用いた電気化学素子
JP2003297433A (ja) * 2002-03-28 2003-10-17 Hitachi Maxell Ltd 電気化学素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012020479; Pierre Kubiak et al.: 'Phase transition in the spinel Li4Ti5O12 induced by lithium insertion Influence of the substitutions' Journal of Power Sources Vol.119-121, 2003, Page.626-630 *
JPN6015024762; Wanmei Long et al.: 'Electrochemical properties of Li4Ti5-2xNixMnxO12 compounds synthesized by sol-gel process' Materials Chemistry and Physics Vol.131, 2011, pp.431-435, ELSEVIER *
JPN6015024763; V.D.Nithya et al.: 'Molten salt synthesis and characterization of Li4Ti5-xMnxO12(x=0.0,0.05 and 0.1) as anodes for Li-io' Applied Surface Science Vol.261, 2012, pp.515-519, ELSEVIER *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201322B2 (en) 2017-08-03 2021-12-14 Tokyo Institute Of Technology Electrode active material for nonaqueous secondary battery, and method for manufacturing same
US11677068B2 (en) 2017-08-03 2023-06-13 Tokyo Institute Of Technology Electrode active material for nonaqueous secondary battery, and method for manufacturing same

Also Published As

Publication number Publication date
CN102834956B (zh) 2016-06-01
EP2677575A4 (en) 2015-08-19
US20120214069A1 (en) 2012-08-23
CN102834956A (zh) 2012-12-19
JP5148781B2 (ja) 2013-02-20
US9065148B2 (en) 2015-06-23
WO2012111293A1 (ja) 2012-08-23
JPWO2012111293A1 (ja) 2014-07-03
EP2677575A1 (en) 2013-12-25
EP2677575B1 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
EP3537521B1 (en) Lithium cobalt oxide positive electrode material and preparation method therefor and lithium ion secondary battery
JP5903956B2 (ja) 非水電解質二次電池用リチウム複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
US9601772B2 (en) Cathode active material for a nonaqueous electrolyte secondary battery and manufacturing method thereof, and a nonaqueous electrolyte secondary battery that uses cathode active material
KR101443996B1 (ko) 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
TWI433382B (zh) 充電電池用高密度鋰鈷氧化物
KR101450421B1 (ko) 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
JP2018063951A (ja) 非水系電解質二次電池用正極活物質
JP2012043794A (ja) Li蓄電池内での高い安全性と高出力とを兼備する正電極材料
JP2011113885A (ja) 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2015072800A (ja) 非水系電解質二次電池用正極活物質とその製造方法、およびこれを用いた非水系電解質二次電池
JP7102973B2 (ja) リチウムイオン二次電池用の正極活物質とその製造方法、およびチウムイオン二次電池
JP5148781B2 (ja) リチウムイオン二次電池用負極活物質材料およびその製造方法
JP5456218B2 (ja) リチウムイオン二次電池用負極活物質材料
JP2020027700A (ja) リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池
JP2014167873A (ja) リチウムイオン二次電池用負極活物質、その製造方法及びリチウムイオン二次電池
KR102498355B1 (ko) 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 단입자의 고상합성방법, 이로부터 형성된 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 단입자 및 이를 포함하는 양극 및 리튬 이차전지
JP2010108603A (ja) リチウムイオン電池用負極活物質の製造方法
WO2020026687A1 (ja) リチウムイオン二次電池用正極活物質の製造方法
JP5070366B2 (ja) リチウムイオン二次電池用負極活物質材料およびその製造方法
JP6428192B2 (ja) 非水電解質二次電池用正極活物質粒子粉末とその製造方法、および非水電解質二次電池
KR102602699B1 (ko) Al 도핑 전극활물질의 제조방법
JP2020167014A (ja) リチウムイオン二次電池正極材料、リチウムイオン二次電池正極材料添加剤、リチウムイオン二次電池及びリチウムイオン二次電池正極材料の製造方法
JP2019192373A (ja) 正極活物質

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104