JP2013009011A - 積層型冷却器 - Google Patents

積層型冷却器 Download PDF

Info

Publication number
JP2013009011A
JP2013009011A JP2012223738A JP2012223738A JP2013009011A JP 2013009011 A JP2013009011 A JP 2013009011A JP 2012223738 A JP2012223738 A JP 2012223738A JP 2012223738 A JP2012223738 A JP 2012223738A JP 2013009011 A JP2013009011 A JP 2013009011A
Authority
JP
Japan
Prior art keywords
cooling
fins
fin
stacking direction
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012223738A
Other languages
English (en)
Other versions
JP5382185B2 (ja
Inventor
Naomi Sugimoto
尚規 杉本
Akira Yamanaka
章 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012223738A priority Critical patent/JP5382185B2/ja
Publication of JP2013009011A publication Critical patent/JP2013009011A/ja
Application granted granted Critical
Publication of JP5382185B2 publication Critical patent/JP5382185B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L23/4012Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws for stacked arrangements of a plurality of semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

【課題】優れた冷却能力を有する積層型冷却器を提供すること。
【解決手段】複数の電子部品を両面から冷却するための積層型冷却器。積層型冷却器は、冷却媒体を流通させる冷媒流路21を設けた複数の冷却管と、複数の冷却管を連通する連通部とを有している。冷却管は、冷媒流路21中に積層方向に重ねた複数のインナフィン7を配設してなる。複数のインナフィン7のうち、少なくとも一つのインナフィン7は、積層方向に直交する断面の形状が波型形状となるウェーブフィンである。積層方向に隣接したインナフィン7は、積層方向から見たときに互いの形状が重なり合わないように配設されている。
【選択図】図10

Description

本発明は、複数の電子部品を両面から冷却するための積層型冷却器に関する。
従来より、図13にその一部を示すごとく、半導体素子を内蔵した半導体モジュール91の放熱を行うために、該半導体モジュール91を両面から挟持するように冷却管92を配設してなる積層型冷却器9がある(特許文献1)。
この積層型冷却器9においては、上記半導体モジュール91と上記冷却管92とが交互に積層された構成となっている(図3参照)。そして、積層された複数の冷却管92は、連通部によって連通され、冷却媒体が各冷却管92に流通するよう構成されている。
上記積層型冷却器9の冷却管92は、積層方向に2つに分割された冷媒流路を有している。これにより、冷却管92の一方の面に接触配置された半導体モジュール91と他方の面に接触配置された半導体モジュール91との間の発熱量が異なる場合に、両者の熱の影響を互いに受けることを防ぐことができる。
また、各冷媒流路921にそれぞれ断面凹凸形状のインナフィン97を配設してなる。これにより、冷却媒体と冷却管92との伝熱面積を大きくして、放熱効率の向上を図っている。
特開2004−252886号公報
しかしながら、近年のインバータ等の小型化、高性能化に伴い、各半導体モジュール91の発熱密度が大きくなる傾向にあり、より冷却性能に優れた積層型冷却器が求められている。
インナフィン97による伝熱面積の拡大という観点では、冷媒流路921中にインナフィン97がなるべく密に配設されていることが好ましいが、配設密度が高すぎると、目詰まり等によって冷却媒体の流通抵抗が大きくなりすぎて、却って冷却効率が低下してしまうという問題がある。それゆえ、冷却媒体の流通抵抗と伝熱面積とが適度なバランスとなるよう設計することにより、冷却効率の向上を図ることが考えられる。そこで、発明者らは、冷媒流路921がインナフィン7によって区切られる小流路923の断面が直径0.9mmの円以上の大きさであれば、流通抵抗が低下し難いことを見出した。
これに対して、従来の積層型冷却器9は、冷媒流路921がインナフィン7によって区切られる小流路923は、積層方向の高さL3が大きく、例えばL3=1.89mmとした積層型冷却器9が用いられている。その分、伝熱面積を大きくする余地があり、冷却効率の向上を図る余地がある。
本発明は、かかる従来の問題点に鑑みてなされたもので、優れた冷却能力を有する積層型冷却器を提供しようとするものである。
参考発明として、複数の電子部品を両面から冷却するための積層型冷却器であって、
該積層型冷却器は、冷却媒体を流通させる冷媒流路を設けた複数の冷却管と、該複数の冷却管を連通する連通部とを有しており、
上記冷却管は、中間プレートによって積層方向に仕切られた複数の上記冷媒流路を有し、
該複数の冷媒流路の少なくとも一つには、積層方向に重ねた複数のインナフィンを配設してあり、
互いに重ねられた上記インナフィンの間には、両者に接触する平板状の中間フィンが介在していることを特徴とする積層型冷却器がある。
次に、上記参考発明の作用効果につき説明する。
上記冷却管は、上記複数の冷媒流路の少なくとも一つに、積層方向に重ねた複数のインナフィンを配設してあり、互いに重ねられた上記インナフィンの間には上記中間フィンが介在している。これにより、この冷媒流路における冷却媒体とインナフィンとの間の伝熱面積を大きくすることができる。その結果、電子部品の冷却効率を向上させることができる。
以上のごとく、上記参考発明によれば、優れた冷却能力を有する積層型冷却器を提供することができる。
本発明は、複数の電子部品を両面から冷却するための積層型冷却器であって、
該積層型冷却器は、冷却媒体を流通させる冷媒流路を設けた複数の冷却管と、該複数の冷却管を連通する連通部とを有しており、
上記冷却管は、上記冷媒流路中に積層方向に重ねた複数のインナフィンを配設してなり、
該複数のインナフィンのうち、少なくとも一つのインナフィンは、積層方向に直交する断面の形状が波型形状となるウェーブフィンであり、
積層方向に隣接した上記インナフィンは、積層方向から見たときに互いの形状が重なり合わないように配設されていることを特徴とする積層型冷却器にある(請求項1)。
次に、本発明の作用効果につき説明する。
上記冷却管は、上記冷媒流路中に積層方向に重ねた複数のインナフィンを配設してなり、複数のインナフィンのうち少なくとも一つのインナフィンは上記ウェーブフィンである。ウェーブインナフィンは、冷媒流路における長手方向の長さが同じストレートのインナフィンよりも、その表面積が大きくなる。それゆえ、ウェーブフィンを設けたことにより、冷却媒体との接触面積が大きくなる。すなわち、冷却媒体からの冷却管の伝熱面積を大きくすることができ、伝熱効率を向上させることができる。その結果、電子部品の冷却効率を向上させることができる。
また、ウェーブフィンを設けたことにより、冷媒流路を流れる冷却媒体の少なくとも一部は、冷却管をまっすぐに進むのではなく、ウェーブフィンに沿うように蛇行しながら進むこととなる。それゆえ、冷媒流路において冷却媒体が混合されやすくなり、冷却効率をより向上させることができる。
また、ウェーブフィンは、上記参考発明における中間フィンを用いなくても、積層方向に隣接する他のインナフィンとの間に空間を確保しやすい。そのため、上記中間フィンを設ける必要がない分、それぞれのインナフィンの間の冷媒流路間を冷却媒体が移動し、互いに混合しあうことが可能となるため、一層冷却効率を向上させることができる。
以上のごとく、本発明によれば、優れた冷却能力を有する積層型冷却器を提供することができる。

参考例1における、積層型冷却器の一部の断面図であり、図3のA−A線矢視断面図。 参考例1における、冷却管の一部の断面図。 参考例1における、積層型冷却器の平面図。 図3のB−B線矢視断面図。 参考例1における、金属板の断面図及び平面図。 参考例2における、金属板の断面図及び平面図。 参考例3における、切り曲げによる突出部を設けた中間フィン及びインナフィンの断面図。 参考例3における、盛り上げによる突出部を設けた中間フィン及びインナフィンの断面図。 参考例4における、金属板を折り曲げる過程を説明する断面説明図。 実施例1における、一対のインナフィンの断面図及び平面図。 実施例1における、一対のインナフィンを形成するための金属板の断面図及び平面図。 実施例2における、一対のインナフィンの断面図及び平面図。 従来例における、積層型冷却器の一部の断面図。
参考発明及び本発明において、上記電子部品は、例えば、IGBT等の半導体素子とダイオードとを内蔵した半導体モジュールとすることができる。そして、該半導体モジュールは、自動車用インバータ、産業機器のモータ駆動インバータ、ビル空調用のエアコンインバータ等に用いるものとすることができる。
また、上記電子部品として、上記半導体モジュール以外にも、例えば、パワートランジスタ、パワーFET、IGBT等を用いることもできる。
また、上記冷却媒体としては、例えば、エチレングリコール系の不凍液が混入した水、水やアンモニア等の自然冷媒、フロリナート等のフッ化炭素系冷媒、HCFC123、HFC134a等のフロン系冷媒、メタノール、アルコール等のアルコール系冷媒、アセトン等のケトン系冷媒などを用いることができる。
また、本明細書において、「積層方向」とは、複数の上記電子部品と複数の上記冷却管とが積層された方向をいう。
また、参考発明において、上記冷却管における複数の上記冷媒流路のすべてに、複数のインナフィンを積層配置してあることが好ましい。この場合には、冷却管の全体にわたって伝熱面積を大きくすることができ、積層型冷却器の冷却能力を一層向上させることができる。
上記参考発明において、上記中間フィンには、貫通孔が形成されていることが好ましい。
この場合には、上記貫通孔を通じて、冷却媒体が中間フィンを挟んで隣り合う冷媒流路間を移動することが可能となり、冷却効率を向上させることができる。
また、上記参考発明において、上記中間フィンには、厚み方向に突出した突出部が形成されていることが好ましい。
この場合には、上記突出部において、冷却媒体の流れを乱すことができる。これにより、部分的な温度差が生じた冷却媒体を混合することができ、より冷却効率を向上させることができる。
また、上記参考発明において、上記インナフィンは、上記冷却管の長手方向に直交する断面の形状が連続した凹凸形状となっており、上記中間フィンを介して互いに重ねられた上記インナフィンは、一方のインナフィンの上記凹凸形状の凸部と、他方のインナフィンの凹部とが互いに対向配置されていることが好ましい。
この場合には、冷却媒体とインナフィンとの間の伝熱面積を向上させることができると共に、冷却管の積層方向の耐荷重強度を向上させることができる。
また、上記参考発明において、1枚の上記中間フィンと該中間フィンに隣接する2枚の上記インナフィンは、1枚の金属板を折り返してなることが好ましい。
この場合には、上記冷却管の生産性を向上させることができる。
また、上記参考発明において、上記インナフィンは、上記積層方向に直交する断面の形状が、上記冷却管の長手方向と平行なストレートフィンとすることができる。
この場合には、容易かつ確実に、冷却媒体とインナフィンとの伝熱面積を充分に確保することができる。
また、上記参考発明において、上記インナフィンは、上記積層方向に直交する断面の形状が波型形状となるウェーブフィンであることが好ましい。
この場合には、冷却媒体とインナフィンとの間の伝熱面積をさらに大きくすることができると共に、冷却媒体の流れを蛇行させることができる。これにより、電子部品の冷却効率を効果的に向上させることができる。
次に、本発明において、上記冷却管に配置された複数の上記インナフィンは、すべて上記ウェーブフィンからなることが好ましい(請求項2)。
この場合には、より一層伝熱面積の拡大と、冷却媒体の乱流の形成や混合を図ることができ、電子部品の冷却効率を向上させることができる。
また、上記冷却管には、上記ウェーブフィンが複数枚隣接配置されており、互いに積層方向に隣接した上記ウェーブフィンは、互いの山部と谷部とが、上記冷却管の長手方向の同じ位置に配置されていることが好ましい(請求項3)。
この場合には、一方のウェーブフィンに沿って流れる冷却媒体と、他方のウェーブフィンに沿って流れる冷却媒体とが、互いに反対向きの蛇行の仕方をすることとなるため、効果的に電子部品の冷却効率を向上させることができる。また、冷却媒体との伝熱面積を大きくすることができる。さらには、冷却管の積層方向の耐荷重強度を向上させることができる。
また、上記冷却管には、上記インナフィンが3枚以上積層方向に配設されていることが好ましい(請求項4)。
この場合には、より一層、冷却媒体とインナフィンとの伝熱面積を向上させることができ、冷却効率を向上させることができる。
また、積層方向に互いに隣接した2枚の上記インナフィンは、1枚の金属板を折り返してなることが好ましい(請求項5)。
この場合には、上記冷却管の生産性を向上させることができる。
(参考例1)
本発明の参考例にかかる積層型冷却器につき、図1〜図5を用いて説明する。
本例の積層型冷却器1は、複数の電子部品6を両面から冷却する。
積層型冷却器1は、図3に示すごとく、冷却媒体5を流通させる冷媒流路21を設けた複数の冷却管2と、該複数の冷却管2を連通する連通部3とを有する。
冷却管2は、中間プレート26によって積層方向に仕切られた2つの冷媒流路21を有する。各冷媒流路21には、積層方向に重ねた複数のインナフィン7を配設してなる。隣り合うインナフィン7の間には、両者に接触する平板状の中間フィン25が介在している。
中間プレート26は、冷却管2の長手方向の全体にわたって形成されている。ただし、連通部3を形成する部分に対応する位置においては、中間プレート26に開口部が形成されている。この中間プレート26により、冷却管21の一方の面に接触配置された電子部品6と他方の面に接触配置された電子部品6との間の発熱量が異なる場合に、両者の熱の影響を互いに受けることを防ぐことができる。
中間フィン25は、図4に示すごとく、冷却管3の長手方向の2個所において、互いに間隔をあけて配置してある。そして、この中間フィン25の配置されている部分と同じ領域に、インナフィン7が配設されている。
インナフィン7が配設されている領域は、上記電子部品6と冷却管2とが接触する領域を含み、それよりも広い領域である。
また、図1、図2に示すごとく、インナフィン7は、冷却管2の長手方向に直交する断面の形状が連続した凹凸形状となっている。そして、中間フィン25を介して隣り合うインナフィン7は、一方のインナフィン7の凹凸形状の凸部74と、他方のインナフィン7の凹部75とが互いに対向配置されている。すなわち、隣り合うインナフィン7の凹凸形状は、互いに逆位相となっている。
また、図4に示すごとく、インナフィン7は、積層方向に直交する断面の形状が、冷却管2の長手方向と平行なストレートフィンである。
また、図2に示すごとく、冷媒流路21がインナフィン7によって区切られる小流路211は、積層方向の高さをL1、積層方向及び長手方向に直交する方向の幅をL2としたとき、L1及びL2のいずれもが0.9mm以上である。L1とL2との少なくとも一方が0.9mm未満となると、目詰まりを防止することが困難となるためである。ここで、L2は、小流路211における積層方向の中央位置において測定される幅である。
また、1枚の中間フィン25と中間フィン25に隣接する2枚の上記インナフィン7とは、一体物として構成されており、図5に示すごとく、1枚の金属板70を折り返してなる。すなわち、長方形状の1枚の金属板70を、一対の平行な辺に平行な2つの直線を境にして3つの領域に分け、その中央領域701以外の端部領域702を、波型にプレス成形する。このとき、二つの端部領域702に形成する波型形状は、中央領域701の平板部を基準に、互いに反対面側に突出するようにする。
そして、中央領域701と端部領域702との間の境界線にて、金属板70を折り畳む(矢印S)。このとき、端部領域702に形成した凹凸形状の突出側と反対側の面が、中央領域701に対して対向するように折り畳む。
これにより、上記中央領域701が中間フィン25となり、端部領域702がインナフィン7となる。
金属板70はアルミニウムからなると共にその両面にろう材を配したブレージングシートからなる。そして、上記のごとく金属板70を三つ折りに折り畳んだ後、熱をかけることにより、インナフィン7と中間フィン25との間をろう付け接合する。
また、図1に示すごとく、この中間フィン25と一対のインナフィン7との積層体を、冷却管2の外殻を構成する外殻プレート22と中間プレート26とに挟持させる。外殻プレート22及び中間プレート26はアルミニウムからなる。ただし、本例の場合には、これらは上記金属板70のようなブレージングシートとする必要はない。
中間フィン25と一対のインナフィン7との積層体は、図4に示すごとく、一つの冷却管2の長手方向の二か所において、積層方向に2個配置される。そして、図1に示すごとく、冷却管2の外殻プレート22と中間プレート26との間に、上記積層体がそれぞれ配置されることとなる。
また、隣り合う冷却管2を連通する連通部3は、上記外殻プレート22の一部によって構成される。すなわち、外殻プレート22は、その長手方向の両端部付近に設けた開口部と、開口部の外周部分を積層方向へ突出させた開口突出部31とを有する。この開口突出部31を隣り合う冷却管2の間で嵌合させることにより、連通部3を構成している。
また、積層方向の一端に配された冷却管2における長手方向の両端部付近には、冷却媒体5を積層型冷却器1に導入するための冷媒導入口41と、冷却媒体5を積層型冷却器1から排出するための冷媒排出口42とがそれぞれ接続されている。
上記冷媒導入口41から導入された冷却媒体5は、上記連通部3を通って一方の端部から各冷却管2に流入し、それぞれの冷媒流路21内を他方の端部に向かって流れる。そして、冷却媒体5は、該端部に形成された上記連通部3を通って、上記冷媒排出口42から排出される。
このように、冷却媒体5が冷媒流路21を流通する間に、電子部品6との間で熱交換を行って、該電子部品6を冷却する。
電子部品6は、IGBT等の半導体素子とダイオードとを内蔵した半導体モジュールである。そして、該半導体モジュールは、自動車用インバータの一部を構成する。
また、上記冷却媒体5としては、エチレングリコール系の不凍液が混入した水を用いる。
また、電子部品6は、冷却管2に直接接触させた状態で配設することができる。ただし、場合によっては、電子部品6と冷却管2との間に、セラミック等の絶縁板や、熱伝導性グリス等を介在させることもできる。
次に、本例の作用効果につき説明する。
上記冷却管2は、各冷媒流路21に、積層方向に重ねた複数のインナフィン7を配設してあり、互いに重ねられたインナフィン7の間には中間フィン25が介在している。これにより、この冷媒流路21における冷却媒体とインナフィン7との間の伝熱面積を大きくすることができる。その結果、電子部品6の冷却効率を向上させることができる。
実際に、図2に示すL1、L2の寸法をいずれも0.9mmとした本例の積層型冷却器1を作製した。
一方、図13に示す上述した従来の積層型冷却器9をも作製した。この積層型冷却器9において冷媒流路21がインナフィン7によって区切られる小流路211は、積層方向の高さをL3、積層方向及び長手方向に直交する方向の幅をL4としたとき、L3=1.89mmであり、L4=0.9mmである。
この状態で両者を比較すると、本例の積層型冷却器1におけるインナフィン7の伝熱面積は従来に比べて約40%向上し、熱抵抗を約20%低減することができた。
また、インナフィン7は、冷却管2の長手方向に直交する断面の形状が凹凸形状となっており、中間フィン25を介して隣り合うインナフィン7は、一方のインナフィン7の波型形状の凸部74と、他方のインナフィン7の凹部75とが互いに対向配置されている。そのため、冷却媒体5とインナフィン7との間の伝熱面積を向上させることができると共に、冷却管2の積層方向の耐荷重強度を向上させることができる。
また、図5に示すごとく、1枚の中間フィン25と該中間フィン25に隣接する2枚のインナフィン7は、1枚の金属板70を折り返してなる。そのため、冷却管2の生産性を向上させることができる。すなわち、これらの構成部材を一つの部品として供給することができるため、組み付け作業性を大きく向上させることができる。
以上のごとく、本例によれば、優れた冷却能力を有する積層型冷却器を提供することができる。
(参考例2)
本例は、図6に示すごとく、中間フィン25に貫通孔252を設けた例である。
上記貫通孔252は、冷却管2の長手方向に対して斜めに複数形成されている。
図6に示すごとく、貫通孔252は、金属板70の中央領域701に設けてある。そして、この金属板70を、上記参考例1と同様の方法で折り畳み、中間フィン25とその両面に接触配置される一対のインナフィン7との積層体を形成する。
その他は、参考例1と同様である。
本例の場合には、上記貫通孔252を通じて、冷却媒体5が中間フィン25を挟んで隣り合う冷媒流路21間を移動することが可能となり、冷却効率を向上させることができる。
その他、参考例1と同様の作用効果を有する。
(参考例3)
本例は、図7、図8に示すごとく、中間フィン25に、厚み方向に突出した突出部253を形成した例である。
突出部253の形状やその形成の仕方は、種々考えられる。
例えば、図7に示す突出部253は、中間フィン25の一部を切り曲げすることによって突出させている。この場合は、切り曲げの結果、中間フィン25の一部に貫通孔も形成される。
また、図8に示す突出部253は、中間フィン25の一部を厚み方向に盛り上げて、ディンプル状に形成している。
その他は、参考例1と同様である。
本例の場合には、上記突出部253において、冷却媒体5の流れを乱すことができる。これにより、部分的な温度差が生じた冷却媒体5を混合することができ、より冷却効率を向上させることができる。
その他、参考例1と同様の作用効果を有する。
(参考例4)
本例は、図9に示すごとく、中間フィン25とその両面側のインナフィン7との積層体を、1枚の金属板70によって形成するにあたり、その形成方法を変更した例である。
すなわち、本例における金属板70は、5つの領域に分割され、一つの中央領域703と、その両脇の中間領域704と、両端の端部領域705とを有する。そして、中央領域703及び一対の端部領域705に、インナフィン7を設けている。また、一対の中間領域704は平板状となっている。
そして、中央領域703と中間領域704との間の境界線において、一対の中間領域704を中央領域703に対して同じ面側に重ねるように折り畳むと共に、中間領域704と端部領域705との境界線において、一対の端部領域705が中間領域704を挟んで中央領域703の同じ面側に重なるように折り畳む。
これにより、参考例1と同様の構造の、一般中間フィン25と一対のインナフィン7とからなる積層体を得ることができる。
その他は、参考例1と同様であり、同様の作用効果を得ることができる。
(実施例1)
本例は、本発明にかかる積層型冷却器の実施例であり、図10、図11に示すごとく、インナフィン7として、積層方向に直交する断面の形状が波型形状となるウェーブフィンを用いた例である。
図10に示すごとく、積層方向に互いに隣接するインナフィン7は、積層方向から見たときに互いの形状が重なり合わないように配設されている。
積層方向に隣接する2つのインナフィン7の間には、参考例1における中間フィン25に対応するものは配設されておらず、一対のインナフィン7が直接接触している。そして、一対のインナフィン7の積層体が、参考例1における、中間フィン25とその両面側に配される一対のインナフィン7との積層体の代わりに、冷却管2における冷媒流路21(図1、図4)に配置される。すなわち、一対のインナフィン7からなる積層体は、一つの冷却管2の長手方向の二か所において、積層方向に2個配置される。具体的には、冷却管2の外殻プレート22と中間プレート26との間の各冷媒流路21に、上記積層体がそれぞれ配置されることとなる。
冷却管2に配置された複数のインナフィン7は、すべてウェーブフィンからなり、積層方向に互いに隣接するウェーブフィンは、互いの山部71と谷部72とが、冷却管2の長手方向の同じ位置に配置されている。すなわち、互いに逆位相となるような形状となっている。そして、山部71と谷部72との中間位置において、インナフィン7同士が重なりあっている。また、一方のインナフィン7の山部71及び谷部72と、他方のインナフィン7の谷部72及び山部71とが互いに重なる。
これは、インナフィン7によって区切られる小流路211の流路幅D(冷却管2の長手方向の幅)を、インナフィン7のウェーブの振幅と同等としていることによる。
また、隣り合う2枚のインナフィン7は、図11に示すごとく、1枚の金属板70を折り返してなる。すなわち、1枚の金属板70を、第1領域706と第2領域707との2つの領域に分け、それぞれに、平面視において同位相の波形状となるように、凹凸を形成する。そして、第1領域706と第2領域707とを両者の境界線において折り畳み(矢印S)、図10に示すような2枚のインナフィン7の積層体を形成する。
その他は、参考例1と同様である。それゆえ、参考例1に係る図1〜図5に表れた構成は、本例において説明した構成と矛盾しない範囲において、本例の積層型冷却器1の構成を表す。
次に、本例の作用効果につき説明する。
上記冷却管2は、冷媒流路21中に積層方向に重ねた複数のインナフィン7を配設してなり、複数のインナフィン7はウェーブフィンである。ウェーブフィンは、冷媒流路21における長手方向の長さが同じストレートのインナフィンよりも、その表面積が大きくなる。それゆえ、ウェーブフィンを設けたことにより、冷却媒体との接触面積が大きくなる。すなわち、冷却媒体からの冷却管2の伝熱面積を大きくすることができ、伝熱効率を向上させることができる。その結果、電子部品6の冷却効率を向上させることができる。
また、ウェーブフィンを設けたことにより、冷媒流路21を流れる冷却媒体は、冷却管2をまっすぐに進むのではなく、ウェーブフィンに沿うように蛇行しながら進むこととなる。それゆえ、冷媒流路21において冷却媒体5が混合されやすくなり、冷却効率をより向上させることができる。
また、ウェーブフィンは、上記参考例1において示した中間フィン25を用いなくても、積層方向に隣接する他のインナフィン7との間に空間を確保しやすい。そのため、中間フィン25を設ける必要がない分、それぞれのインナフィン7の間の冷媒流路21間を冷却媒体が移動し、互いに混合しあうことが可能となるため、一層冷却効率を向上させることができる。
また、冷却管2には、ウェーブフィンが複数枚隣接配置されており、互いに隣り合う上記ウェーブフィンは、互いの山部71と谷部72とが、冷却管2の長手方向の同じ位置に配置されている。そのため、一方のウェーブフィンに沿って流れる冷却媒体5と、他方のウェーブフィンに沿って流れる冷却媒体5とが、互いに反対向きの蛇行の仕方をすることとなるため、効果的に電子部品6の冷却効率を向上させることができる。
また、積層方向の耐荷重強度を向上させることができる。
また、冷却管2には、インナフィン7が4枚積層方向に配設されているため、より一層、冷却媒体5とインナフィン7との伝熱面積を向上させることができ、冷却効率を向上させることができる。
その他、参考例1と同様の作用効果を有する。
(実施例2)
本例は、図12に示すごとく、ストレートフィン7sとウェーブフィン7wとを組み合わせた例である。
すなわち、積層方向に隣り合うインナフィン7の組み合わせとして、ストレートフィン7sとウェーブフィン7wとの組み合わせを採用している。
ストレートフィン7sにより形成される小流路211の幅と、ウェーブフィン7wにより形成される小流路211の幅と、ウェーブフィン7wの波の振幅とは同等となるように形成されている。
その他は、参考例1と同様である。それゆえ、参考例1に係る図1〜図5に表れた構成は、本例において説明した構成と矛盾しない範囲において、本例の積層型冷却器1の構成を表す。
本例の場合にも、実施例1に準じた作用効果を奏することができる。
なお、上記参考例1〜4、及び実施例1、2においては、一対のインナフィン7、あるいは1枚の一般中間フィン25と一対のインナフィン7とを、1枚の金属板70を折り畳むことにより形成する例を示したが、これらの構成要素は、互いに独立した複数の金属板を接合して組み立てることもできる。
1 積層型冷却器
2 冷却管
21 冷媒流路
25 中間フィン
26 中間プレート
3 連通部
5 冷却媒体
6 電子部品
7 インナフィン

Claims (5)

  1. 複数の電子部品(6)を両面から冷却するための積層型冷却器(1)であって、
    該積層型冷却器(1)は、冷却媒体を流通させる冷媒流路(21)を設けた複数の冷却管(2)と、該複数の冷却管(2)を連通する連通部(3)とを有しており、
    上記冷却管(2)は、上記冷媒流路(21)中に積層方向に重ねた複数のインナフィン(7)を配設してなり、
    該複数のインナフィン(7)のうち、少なくとも一つのインナフィン(7)は、積層方向に直交する断面の形状が波型形状となるウェーブフィンであり、
    積層方向に隣接した上記インナフィン(7)は、積層方向から見たときに互いの形状が重なり合わないように配設されていることを特徴とする積層型冷却器(1)。
  2. 請求項1において、上記冷却管(2)に配置された複数の上記インナフィン(7)は、すべて上記ウェーブフィンからなることを特徴とする積層型冷却器(1)。
  3. 請求項1又は2において、上記冷却管(2)には、上記ウェーブフィンが複数枚隣接配置されており、互いに積層方向に隣接した上記ウェーブフィンは、互いの山部(71)と谷部(72)とが、上記冷却管(2)の長手方向の同じ位置に配置されていることを特徴とする積層型冷却器(1)。
  4. 請求項1〜3のいずれか一項において、上記冷却管(2)には、上記インナフィン(7)が3枚以上積層方向に配設されていることを特徴とする積層型冷却器(1)。
  5. 請求項1〜4のいずれか一項において、積層方向に互いに隣接した2枚の上記インナフィン(7)は、1枚の金属板(70)を折り返してなることを特徴とする積層型冷却器(1)。
JP2012223738A 2012-10-08 2012-10-08 積層型冷却器 Expired - Fee Related JP5382185B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223738A JP5382185B2 (ja) 2012-10-08 2012-10-08 積層型冷却器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012223738A JP5382185B2 (ja) 2012-10-08 2012-10-08 積層型冷却器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008168397A Division JP5157681B2 (ja) 2008-06-27 2008-06-27 積層型冷却器

Publications (2)

Publication Number Publication Date
JP2013009011A true JP2013009011A (ja) 2013-01-10
JP5382185B2 JP5382185B2 (ja) 2014-01-08

Family

ID=47676038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223738A Expired - Fee Related JP5382185B2 (ja) 2012-10-08 2012-10-08 積層型冷却器

Country Status (1)

Country Link
JP (1) JP5382185B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211112A (ja) * 2018-05-31 2019-12-12 株式会社Soken 熱交換器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164487A (ja) * 2000-11-27 2002-06-07 Fuji Electric Co Ltd 冷却装置
JP2005191527A (ja) * 2003-12-03 2005-07-14 Denso Corp 積層型冷却器
JP2009299968A (ja) * 2008-06-12 2009-12-24 T Rad Co Ltd 熱交換器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164487A (ja) * 2000-11-27 2002-06-07 Fuji Electric Co Ltd 冷却装置
JP2005191527A (ja) * 2003-12-03 2005-07-14 Denso Corp 積層型冷却器
JP2009299968A (ja) * 2008-06-12 2009-12-24 T Rad Co Ltd 熱交換器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211112A (ja) * 2018-05-31 2019-12-12 株式会社Soken 熱交換器

Also Published As

Publication number Publication date
JP5382185B2 (ja) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5157681B2 (ja) 積層型冷却器
KR101750066B1 (ko) 수냉식 이차전지
JP4479568B2 (ja) 積層型冷却器
JP4265509B2 (ja) 積層型冷却器
US11254236B2 (en) High performance uniform temperature cold plate
JP2011017516A (ja) プレート積層型冷却装置及びその製造方法
US20130058042A1 (en) Laminated heat sinks
JP2016205802A (ja) 熱交換器
JP7028526B2 (ja) 冷却装置及び冷却装置の製造方法
JP6578964B2 (ja) 積層型熱交換器
JP2011192730A (ja) 冷却器、積層冷却器および中間プレート
JP2011233688A (ja) 半導体冷却器
JP2011228566A (ja) 冷却器
JP2014086505A (ja) 電力変換装置
JP4544187B2 (ja) 冷却器
JP5316470B2 (ja) 積層型熱交換器
JP5382185B2 (ja) 積層型冷却器
WO2016166963A1 (ja) 熱交換器
JP6708113B2 (ja) 積層型冷却器
JP2012028361A (ja) ヒートシンク
JP5556691B2 (ja) 熱交換器
JP2011247432A (ja) 積層型熱交換器
JP2017142033A (ja) 積層型熱交換器
CN111306970A (zh) 热交换器
JP4400502B2 (ja) 積層型冷却器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees