JP2011233688A - 半導体冷却器 - Google Patents

半導体冷却器 Download PDF

Info

Publication number
JP2011233688A
JP2011233688A JP2010102132A JP2010102132A JP2011233688A JP 2011233688 A JP2011233688 A JP 2011233688A JP 2010102132 A JP2010102132 A JP 2010102132A JP 2010102132 A JP2010102132 A JP 2010102132A JP 2011233688 A JP2011233688 A JP 2011233688A
Authority
JP
Japan
Prior art keywords
space
refrigerant
flow path
area
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010102132A
Other languages
English (en)
Inventor
Yu Yamahira
優 山平
Yukio Hosono
幸男 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010102132A priority Critical patent/JP2011233688A/ja
Publication of JP2011233688A publication Critical patent/JP2011233688A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】冷却管の冷却性能を調整することができる半導体冷却器を提供すること。
【解決手段】第1及び第2冷媒空間26、27にインナフィンが配置され複数の分割流路が形成される。冷媒導入口21と冷媒排出口22との間に冷却媒体を流通させる第1及び第2流通経路が構成される。第1及び第2流通経路は、断面積が異なる複数の分割流路を含んで構成される。また、第1及び第2流通経路の通水抵抗は同一となるように構成される。ここで、第1及び第2流通経路の通水抵抗は同一のため、第1及び第2流通経路に流入する冷却媒体の流量は同一である。また、第1及び第2流通経路は断面積が異なる複数の分割流路を含んで構成されるため、第1及び第2流通経路内において異なる流速を持たせることができる。よって、無駄な通水抵抗の増加なく、冷却管2の冷却性能を調整することができる。
【選択図】図4

Description

本発明は、半導体素子を内蔵する半導体モジュールを冷却する半導体冷却器に関する。
内燃機関と電気モータの両方を駆動源として有するハイブリッド車両や、電気モータを駆動源として備えた電気自動車等には、電池から供給される直流電流と電気モータへ出力する交流電流との間で双方向変換する電力変換装置が備えられている。ハイブリッド車両や電気自動車等に用いられる電力変換装置は、電気モータから大きな駆動トルクを出力する必要があるため大電流が流れるように構成されている。そのため、電力変換装置の一部を構成し半導体素子を内蔵する半導体モジュールからの発熱量が大きくなるという問題がある。そこで、半導体モジュールの温度上昇を防止するため、冷却管の表面と裏面に複数の半導体モジュールを密着配置させた構造がある(特許文献1参照)。この構造においては、一対の外殻プレートによって中間プレートを挟んで冷却管を構成し、外殻プレートと中間プレートによって第一流路と第ニ流路が形成されている。そして、第一流路と第二流路に同一形状のフィンが互いに傾斜方向が逆となるように配置されている。また、第一流路と第二流路に配置されているフィンの数は同一である。そして、第一流路と第二流路に冷却媒体が流通し、冷却管の表面側と裏面側に密着配置された半導体モジュールが冷却されている。
特開2009−188387号公報
ところで、冷却管の表面側と裏面側に密着配置された半導体モジュールは、1つの電力変換装置内であっても、インバータ機能を構成するものやコンバータ機能を構成するものが存在する。そのため、半導体モジュールの各発熱量は、その半導体モジュールが発揮する機能によって異なっている。さらには、2種類のモータを駆動する電流変換装置も知られており、インバータ機能を構成するものであっても半導体モジュールがいずれのモータを駆動するものであるかによって発熱量は異なる。そのため、各半導体モジュールに必要とされる冷却性能は異なる場合がある。
しかし、特許文献1に記載の従来技術では、第一流路と第二流路に同一形状のフィンが互いに傾斜方向が逆となるように配置されている。また、第一流路と第二流路に配置されているフィンの数は同一である。つまり、第一流路と第二流路の通水抵抗は同一である。そのため、第一流路と第二流路に流入する冷却媒体の流量は同一である。また、第一流路と第二流路において中間プレートを挟んで隣り合う位置に配置されたフィンにより形成された冷却媒体が流通する流路の断面積は同一である。そのため、第一流路と第二流路を流れる冷却媒体の流速は同一である。よって、第一流路と第二流路、つまり、冷却管の表面側と裏面側の冷却性能は同一である。そのため、冷却管の冷却性能は、冷却管の表面側と裏面側に密着配置された半導体モジュールの中で最大発熱量を有する半導体モジュールを基準として決定される。
特許文献1に記載の従来技術の構成においては、最大発熱量に対する冷却性能を得るため第一流路と第二流路に配置するフィンの間隔を狭くし、冷却媒体の流速を増加させるという方法がある。この場合、最大発熱量を有する半導体モジュール以外の半導体モジュールを冷却する上では必要がないにも関わらず、無駄に通水抵抗が増加する。一般的に冷却媒体はポンプによって冷却管を循環する構成となっており、かかる通水抵抗の増加によりポンプの動力損失が大きくなるという問題があった。
また、第一流路と第二流路において高い冷却性能が必要とされる部分に配置されるフィンの間隔のみを狭くする方法を採用した場合、第一流路と第二流路の通水抵抗にばらつきが生じる。そのため、フィンの間隔を狭くした部分の冷却媒体の流速は増加するが、第一流路と第二流路に流入する冷却媒体の流量が変化するため、第一流路と第二流路の冷却性能の調整を適切に行うことができないという問題があった。
そこで、本発明はこのような問題に鑑みてなされたものであり、中間プレートが介在された冷却管を備えた半導体冷却器において、冷却管に発熱量が異なる半導体モジュールが配置された場合であっても、無駄な通水抵抗の増加なく、冷却管の冷却性能を調整することができる半導体冷却器を提供することを目的とする。
上記課題を解決するために、請求項1に記載の発明は、半導体素子を内蔵し、発熱量が異なる複数の半導体モジュールと、前記複数の半導体モジュールが密着配置された冷却面を有する冷却管とを備えた半導体冷却器であって、前記冷却管は、冷却媒体を導入する冷媒導入口と前記冷却媒体を排出する冷媒排出口と、前記冷媒導入口及び前記冷媒排出口に連通し前記冷却管の長手方向に沿って延びる冷媒流路と、前記冷却面と平行に配置され前記冷媒流路を第1冷媒空間と第2冷媒空間とに仕切る中間プレートとを有し、前記第1冷媒空間と前記第2冷媒空間には、前記冷却媒体の流通方向に沿って複数の分割流路を形成するインナフィンがそれぞれ配置されており、前記冷媒導入口と前記冷媒排出口との間に前記冷却媒体を流通させる第1流通経路と第2流通経路が構成され、前記第1流通経路と前記第2流通経路は、断面積が異なる複数の前記分割流路を含んで構成され、前記第1流通経路の通水抵抗と前記第2流通経路の通水抵抗は同一となるように構成されていることを特徴とする.
このように構成すれば、第1冷媒空間と第2冷媒空間にそれぞれインナフィンが配置されることによって、複数の分割流路が形成される。また、冷媒導入口と冷媒排出口との間に冷却媒体を流通させる第1流通経路及び第2流通経路が構成される。また、第1流通経路と第2流通経路は、断面積が異なる複数の分割流路を含んで構成される。さらに、第1流通経路の通水抵抗と第2流通経路の通水抵抗は同一となるように構成される。ここで、第1流通経路と第2流通経路の通水抵抗は同一のため、第1流通経路と第2流通経路に流入する冷却媒体の流量は同一である。また、第1流通経路と第2流通経路は断面積が異なる複数の分割流路を含んで構成されるため、第1流通経路内及び第2流通経路内において異なる流速を持たせることができる。よって、本発明によれば、冷却管に発熱量が異なる半導体モジュールが配置された場合であっても、無駄な通水抵抗の増加なく、冷却管の冷却性能を調整することができる。
請求項2に記載の発明は、請求項1に記載の半導体冷却器であって、前記第1冷媒空間は、前記分割流路として第1空間側幅狭区域と第1空間側幅広区域を備え、前記第1空間側幅狭区域の断面積は前記第1空間側幅広区域の断面積より狭く形成され、前記第2冷媒空間は、前記分割流路として第2空間側幅狭区域と第2空間側幅広区域を備え、前記第2空間側幅狭区域の断面積は前記第2空間側幅広区域の断面積より狭く形成され、前記第1流通経路は、前記第1空間側幅狭区域と前記第1空間側幅広区域を含んで構成され、前記第2流通経路は、前記第2空間側幅狭区域と前記第2空間側幅広区域を含んで構成されていることを特徴とする。
このように構成すれば、第1冷媒空間は断面積が異なる第1空間側幅狭区域と第1空間側幅広区域を含んで構成される。そのため、第1冷媒空間内において、冷却媒体に異なる流速を持たせることができる。よって、本発明によれば、第1冷媒空間内において、第1空間側幅狭区域と第1空間側幅広区域に異なる冷却性能を持たせることができる。
また、第2冷媒空間は断面積が異なる第2空間側幅狭区域と第2空間側幅広区域を含んで構成される。そのため、第2冷媒空間内において、冷却媒体に異なる流速を持たせることができる。よって、本発明によれば、第2冷媒空間内において、第2空間側幅狭区域と第2空間側幅広区域に異なる冷却性能を持たせることができる。
請求項3に記載の発明は、請求項2に記載の半導体冷却器であって、発熱量の異なる複数の前記半導体モジュールのうち、発熱量が大きい前記半導体モジュールが前記第1空間側幅狭区域及び前記第2空間側幅狭区域に対向して配置され、発熱量が小さい前記半導体モジュールが前記第1空間側幅広区域及び前記第2空間側幅広区域に対向して配置されていることを特徴とする。
このように構成すれば、発熱量が異なる複数の半導体モジュールのうち、発熱量が大きい半導体モジュールが第1空間側幅狭区域及び第2空間側幅狭区域に対向して配置される。ここで、第1空間側幅狭区域の断面積は第1空間側幅広区域の断面積より狭く構成されている。また、第2空間側幅狭区域の断面積は第2空間側幅広区域の断面積より狭く構成されている。よって、本発明によれば、第1空間側幅狭区域に対向して配置された半導体モジュールに対して、第1空間側幅広区域に対向して配置された半導体モジュールより高い冷却性能で効率的に冷却することができる。また、第2空間側幅狭区域に対向して配置された半導体モジュールに対して、第2空間側幅広区域に対向して配置された半導体モジュールより高い冷却性能で効率的に冷却することができる。
請求項4に記載の発明は、請求項2又は3に記載の半導体冷却器であって、前記第1空間側幅狭区域は、前記中間プレートを介在させて前記第2空間側幅広区域に対向して配置され、前記第1空間側幅広区域は、前記中間プレートを介在させて前記第2空間側幅狭区域に対向して配置されていることを特徴とする。
このように構成すれば、第1空間側幅狭区域は、中間プレートを介在させて第2空間側幅広区域に対向して配置される。また、第1空間側幅広区域は、中間プレートを介在させて第2空間側幅狭区域に対向して配置される。よって、本発明によれば、冷却管の長手方向に直交する方向における第1冷媒空間及び第2冷媒空間に異なる冷却性能を持たせることができる。
請求項5に記載の発明は、請求項2乃至4のうちいずれか1項に記載の半導体冷却器であって、前記第1冷媒空間において、前記第1空間側幅狭区域と前記第1空間側幅広区域は、前記冷却管の長手方向に対して連続して設けられ、前記第2冷媒空間において、前記第2空間側幅狭区域と前記第2空間側幅広区域は、前記冷却管の長手方向に対して連続して設けられていることを特徴とする。
このように構成すれば、第1冷媒空間において第1空間側幅狭区域と第1空間側幅広区域は、冷却管の長手方向に対して連続して設けられる。また、第2冷媒空間において第2空間側幅狭区域と第2空間側幅広区域は、冷却管の長手方向に対して連続して設けられる。そのため、第1冷媒空間において第1空間側幅狭区域及び第1空間側幅広区域を形成するインナフィンを複数用意する必要がない。同様に、第2冷媒空間において第2空間側幅狭区域及び第2空間側幅広区域を形成するインナフィンを複数用意する必要がない。よって、本発明によれば、インナフィンの部品点数を削減することができる。
請求項6に記載の発明は、請求項2乃至4のうちいずれか1項に記載の半導体冷却器であって、前記第1冷媒空間において、前記第1空間側幅狭区域と前記第1空間側幅広区域は、前記冷却管の長手方向に対して離間して設けられ、前記第2冷媒空間において、前記第2空間側幅狭区域と前記第2空間側幅広区域は、前記冷却管の長手方向に対して離間して設けられ、前記第1空間側幅狭区域と前記第1空間側幅広区域との離間距離と、前記第2空間側幅狭区域と前記第2空間側幅広区域との離間距離とは同一であることを特徴とする。
このように構成すれば、第1冷媒空間において第1空間側幅狭区域と第1空間側幅広区域は、冷却管の長手方向に対して離間して設けられる。また、第2冷媒空間において第2空間側幅狭区域と第2空間側幅広区域は、冷却管の長手方向に対して離間して設けられる。そのため、インナフィンが配置されていない第1冷媒空間及び第2冷媒空間と比較して通水抵抗が大きい第1空間側幅狭区域、第1空間側幅広区域、第2空間側幅狭区域、及び第2空間側幅広区域の冷却管の長手方向に対する長さを短くすることができる。よって、本発明によれば、第1冷媒空間及び第2冷媒空間全体にインナフィンが配置された場合と比較して、第1冷媒空間及び第2冷媒空間の通水抵抗を低減することができる。
請求項7に記載の発明は、請求項1乃至6のうちいずれか1項に記載の半導体冷却器であって、前記インナフィンは、前記冷却管の長手方向に対して平行に配置されたストレートフィンであることを特徴とする。
このように構成すれば、インナフィンとして冷却管の長手方向に対して平行に配置されたストレートフィンが用いられる。よって、本発明によれば、容易かつ確実に、第1冷媒空間及び第2冷媒空間を流れる冷却媒体とインナフィンとの伝熱面積を充分に確保することができる。
請求項8に記載の発明は、請求項1に記載の半導体冷却器であって、前記中間プレートは、前記冷却管の長手方向に対して直交する方向の両端部に、前記第1冷媒空間と前記第2冷媒空間とを連通する連通孔を有しており、前記インナフィンは、前記冷却管の長手方向に対して斜めに配置された傾斜フィンであり、前記傾斜フィンは、前記第1冷媒空間に配置された第1傾斜フィンと前記第2冷媒空間に配置された第2傾斜フィンを備え、前記第1傾斜フィンと前記第2傾斜フィンとは互いに傾斜方向が逆であり、前記第1冷媒空間に配置された前記第1傾斜フィンにより形成された前記分割流路と、前記第2冷媒空間に配置された前記第2傾斜フィンにより形成された前記分割流路との断面積が異なり、前記第1流通経路は、前記冷却媒体が前記連通孔を介して前記第1冷媒空間と前記第2冷媒空間を交互に螺旋状に流れる第1螺旋冷媒流路であり、前記第2流通経路は、前記冷却媒体が前記連通孔を介して前記第1冷媒空間と前記第2冷媒空間を交互に螺旋状に流れる第2螺旋冷媒流路であることを特徴とする。
このように構成すれば、中間プレートの冷却管の長手方向に対して直交する方向の両端部に第1冷媒空間と第2冷媒空間とを連通する連通孔が形成される。また、第1冷媒空間と第2冷媒空間にそれぞれ第1及び第2傾斜フィンが配置されることによって、複数の分割流路が形成される。また、第1冷媒空間に配置された第1傾斜フィンにより形成された分割流路と、第2冷媒空間に配置された第2傾斜フィンにより形成された分割流路との断面積は異なっている。そして、第1流通経路は、冷却媒体が連通孔を介して第1冷媒空間と第2冷媒空間を交互に螺旋状に流れる第1螺旋冷媒流路である。また、第2流通経路は、冷却媒体が連通孔を介して第1冷媒空間と第2冷媒空間を交互に螺旋状に流れる第2螺旋冷媒流路である。さらに、第1流通経路の通水抵抗と第2流通経路の通水抵抗は同一となるように構成される。ここで、第1流通経路と第2流通経路の通水抵抗は同一のため、第1流通経路と第2流通経路に流入する冷却媒体の流量は同一である。また、第1流通経路と第2流通経路は断面積が異なる複数の分割流路を含んで構成されるため、第1流通経路内及び第2流通経路内において異なる流速を持たせることができる。よって、本発明によれば、冷却管に発熱量が異なる半導体モジュールが配置された場合であっても、無駄な通水抵抗の増加なく、冷却管の冷却性能を調整することができる。
本実施例における半導体冷却器の平面図。 図1における冷却管の平面図及び半導体モジュールの断面図。 実施例1における図2のA−A断面図。 (a)は実施例1における図2のB−B断面図、(b)は実施例1における図2のC−C断面、(c)は実施例1における図2のD−D断面。 (a)は実施例2における図2のB−B断面図、(b)は実施例2における図2のC−C断面、(c)は実施例2における図2のD−D断面。 実施例3における図2のA−A断面図 (a)は実施例3における図2のB−B断面図、(b)は実施例3における図2のC−C断面、(c)は実施例3における図2のD−D断面。
(実施例1)
以下、本発明の実施例について図面を用いて説明する。なお、図1以降の説明において同一の構成については、同一の符号を付して説明を省略する。
図1は、本実施例における半導体冷却器1の平面図を示している。
半導体冷却器1は、図1に示すように、冷却管2、半導体モジュール3、連結管4、冷媒導入管5、冷媒排出管6から構成されている。
実施例1の半導体冷却器1は、出力の異なる2つの交流モータ(不図示)を駆動する電力変換装置としてのインバータの一部を構成している。図1に示すように、冷却管2は半導体モジュール3を両面から挟持するように配置されている。そして、全体的には、冷却管2と半導体モジュール3の列とを交互に積層している。これにより、全ての半導体モジュール3は、その両面を冷却管2により挟持された状態となる。また、積層方向に隣り合う複数の冷却管2は、その長手方向の両端部にそれぞれ設けた冷媒導入口21及び冷媒排出口22を互いに連結管4によって連結されている。積層方向の一端に配置される冷却管2には、冷却管2の積層体全体に冷却媒体を導入するための冷媒導入管5と、積層体全体から冷却媒体を排出するための冷媒排出管6とが配置されている。また、積層方向の両端に配される冷却管2は、片側にのみ半導体モジュール3が密着配置される冷却面23を備えている。積層方向の両端に配される冷却管2以外の冷却管2は、図1に示したように両側に冷却面23を備えている。
このように構成することにより、冷媒導入管5から導入された冷却媒体は、連結管4を介して複数の冷却管2に分配される。冷却媒体は各冷却管2における冷媒導入口21から各冷却管2における冷媒排出口22の方向へ流通する。このとき、冷却媒体は、各冷却管2の冷却面23に密着配置された半導体モジュール3との間で熱交換を行う。熱交換を行った後の冷却媒体は、各冷却管2における冷媒排出口22から、連結管4を介して冷媒排出管6に達し排出される。
冷却媒体としては、水やアンモニア等の自然冷媒、エチレングリコール系の不凍液を混入した水、フロリナート等のフッ化炭素系冷媒、HCFC123、HFC134a等のフロン系冷媒、メタノール、アルコール等のアルコール系冷媒、アセトン等のケトン系冷媒等の冷媒等を用いることができる。
図2は、図1における半導体冷却器1を構成する冷却管2の平面図及び冷却管2に密着配置された第1〜第4半導体モジュール3a〜3dの断面図を示している。図3は、実施例1における図2のA−A断面図を示している。図4(a)は実施例1における図2のB−B断面図、図4(b)は実施例1における図2のC−C断面図、図4(c)は実施例1における図2のD−D断面図を示している。
図2〜図4に示すように、冷却管2は、一対の第1及び第2外殻プレート24a、24b、及び中間プレート28から構成されている。
冷却管2の外殻部を構成する第1及び第2外殻プレート24a、24bは、長方形状の外観を有し、周縁を除いて、互いに離れる方向へ後退した凹形状に形成されている。また、第1及び第2外殻プレート24a、24bの両端部に冷却媒体を導入する冷媒導入口21と冷却媒体を排出する冷媒排出口22が形成されている。そして、第1及び第2外殻プレート24a、24bは冷媒導入口21から冷媒排出口22に向かって冷却媒体を流通させる冷媒流路25を内部に備えている。また、冷却管2は偏平状に形成され冷媒導入口21から冷媒排出口22の方向が長手方向となっている。そして、冷却管2の長手方向に沿って冷媒流路25を第1冷媒空間26と第2冷媒空間27とに仕切る平板状の中間プレート28が配置されている。
第1冷媒空間26は、第1外殻プレート24aと中間プレート28との間に形成されている。また、第2冷媒空間27は、第2外殻プレート24bと中間プレート28との間に形成されている。
中間プレート28から第1外殻プレート24aまでの距離と中間プレート28から第2外殻プレート24bまでの距離とは等しくされており、第1冷媒空間26を構成する空間の体積と第2冷媒空間27を構成する空間の体積は等しくなっている。
図4(b)に示すように中間プレート28には、第1及び第2外殻プレート24a、24bが備えている冷媒導入口21と対向する位置にプレート側導入口281が形成され、冷媒排出口22と対向する位置にプレート側排出口282を備えている。中間プレート28はその周縁においてろう付等によって第1及び第2外殻プレート24a、24bと接合されている。また、冷却管2は、アルミニウム、銅、又はその合金からなる複数の部材から構成されている。
また、1つの冷却管2内には冷媒導入口21から冷媒排出口22に至るまで2つの流通経路が存在する。実施例1では、第1冷媒空間26が第1流通経路に相当し、第2冷媒空間27が第2流通経路に相当する。
図2に示すように、冷却管2の第1〜第4冷却面23a〜23dに第1〜第4半導体モジュール3a〜3dが密着配置されている。第1〜第4半導体モジュール3a〜3dは、冷却管2の積層方向における両側の第1〜第4冷却面23a〜23dのうち、一方の第1及び第2冷却面23a、23bと他方の第3及び第4冷却面23c、23dに対してそれぞれ2個ずつ、冷却管2の長手方向に対して並べて配置されている。具体的には、第1半導体モジュール3a及び第4半導体モジュール3dは出力の異なる2つの交流モータのうち、出力の小さいモータの駆動に用いられている。第2半導体モジュール3b及び第3半導体モジュール3cは出力の異なる2つの交流モータのうち、出力の大きいモータの駆動に用いられている。そのため、第1半導体モジュール3a及び第4半導体モジュール3dよりも、第2半導体モジュール3b及び第3半導体モジュール3cは発熱量が大きくなっている。
第1〜第4半導体モジュール3a〜3dはそれぞれ半導体素子である第1〜第4IGBT(Insulated Gate Bipolar Transistor)31a〜31dと、第1〜第4フライホイールダイオード32a〜32dが内蔵されている。また、第1〜第4半導体モジュール3a〜3dは第1〜第4IGBT31a〜31dと、第1〜第4フライホイールダイオード32a〜32dを挟持するように配設された一対の放熱板33a、33bを備えている。また、第1〜第4IGBT31a〜31dと、第1〜第4フライホイールダイオード32a〜32dは、一方の放熱板33aとは直接接触しているが、他方の放熱板33bとの間には熱伝導性に優れたスペーサ34を介在させている。
半導体素子としては、例えば、IGBTに替えてMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いてもよい。
次に、実施例1の要部について説明する。
第1外殻プレート24aと中間プレート28との間に形成された第1冷媒空間26には、インナフィンとして第1ストレートフィン29aと第2ストレートフィン29bが配置されている。以下、第1冷媒空間26のうち、第1ストレートフィン29aが配置された流路区域を第1空間側幅広区域70といい、第2ストレートフィン29bが配置された流路区域を第1空間側幅狭区域71という。そして、第1ストレートフィン29aが配置された第1空間側幅広区域70と、第2ストレートフィン29bが配置された第1空間側幅狭区域71とが第1流通経路に相当する。
第2外殻プレート24bと中間プレート28との間に形成された第2冷媒空間27にも、第1冷媒空間26と同様に第1ストレートフィン29aと第2ストレートフィン29bが配置されている。以下、第2冷媒空間27のうち、第1ストレートフィン29aが配置された流路区域を第2空間側幅広区域72といい、第2ストレートフィン29bが配置された流路区域を第2空間側幅狭流路区域73という。そして、第1ストレートフィン29aが配置された第2空間側幅広区域72と、第2ストレートフィン29bが配置された第2空間側幅狭区域73とが第2流通経路に相当する。
第1及び第2ストレートフィン29a、29bは凹凸が繰り返された波形に形成されている。また、第2ストレートフィン29bは第1ストレートフィン29aよりも凹凸の間隔が狭くなるように形成されている。具体的に図3、図4に示すように第1ストレートフィン29aは、第1空間側幅広区域70及び第2空間側幅広区域72に4個の幅広流路74を形成するように、凹凸間の長さがL1となるように折曲形成されている。また、第2ストレートフィン29bは第1空間側幅狭区域71及び第2空間側幅狭区域73に8個の幅狭流路75を形成するように、凹凸間の長さが第1ストレートフィン29aよりも小さいL2(L1>L2)となるように折曲形成されている。また、これらの第1及び第2ストレートフィン29a、29bは中間プレート28にろう付け接合されている。
以下、第1及び第2ストレートフィン29a、29bが配置された第1冷媒空間26及び第2冷媒空間27について説明する。
図4(a)に示すように、第1冷媒空間26に対して冷媒導入口21から冷媒導入口21と冷媒排出口22との中間位置まで第1ストレートフィン29aが配置され、第1空間側幅広区域70が形成されている。また、第1ストレートフィン29aは、冷却管2の長手方向と直交する方向の第1外殻プレート24aの端部から第1ストレートフィン29aの端部までの長さがL1となるように配置されている。そのため、第1外殻プレート24aの端部から等間隔(L1)に4個の幅広流路74が形成されている。
また、第1冷媒空間26に対して、冷媒導入口21と冷媒排出口22との中間位置から冷媒排出口22まで第2ストレートフィン29bが配置され、第1空間側幅狭区域71が形成されている。第2ストレートフィン29bは、冷却管2の長手方向と直交する方向の第1外殻プレート24aの端部から第2ストレートフィン29bの端部までの長さがL2となるように配置されている。そのため、第1外殻プレート24aの端部から等間隔(L2)に8個の幅狭流路75が形成されている。
図4(c)に示すように、第2冷媒空間27に対して冷媒導入口21から冷媒導入口21と冷媒排出口22との中間位置まで第2ストレートフィン29bが配置され、第2空間側幅狭区域73が形成されている。また、第2ストレートフィン29bは、冷却管2の長手方向と直交する方向の第2外殻プレート24bの端部から第2ストレートフィン29bの端部までの長さがL2となるように配置されている。そのため、第2外殻プレート24bの端部から等間隔(L2)に8個の幅狭流路75が形成されている。
また、第2冷媒空間27に対して、冷媒導入口21と冷媒排出口22との中間位置から冷媒排出口22まで第1ストレートフィン29aが配置され、第2空間側幅広区域72が形成されている。第1ストレートフィン29aは、冷却管2の長手方向と直交する方向の第2外殻プレート24bの端部から第1ストレートフィン29aの端部までの長さがL1となるように配置されている。そのため、第2外殻プレート24bの端部から等間隔(L1)に4個の幅広流路74が形成されている。
ここで、第1ストレートフィン29aの凹凸間の長さL1は第2ストレートフィン29bの凹凸間の長さL2より長い(L1>L2)。また、中間プレート28から第1及び第2外殻プレート24a、24bまでの距離は同一である。そのため、冷却管2の長手方向と直交する方向の幅広流路74の断面積(S1)は、幅狭流路75の断面積(S2)より大きくなる(S1>S2)。
次に、実施例1の作用効果について説明する。
冷媒導入口21から第1冷媒空間26に流入した冷媒は、まず第1空間側幅広区域70を通過し、その後、第1空間側幅狭区域71を通過し、冷媒排出口22から排出される。このとき第1空間側幅広区域70では、流速が相対的に遅くなり、第1空間側幅狭区域71では、流速が相対的に速くなる。一方、冷媒導入口21から第2冷媒空間27に流入した冷媒は、まず第2空間側幅狭区域73を通過し、その後、第2空間側幅広区域72を通過し、冷媒排出口22から排出される。このとき第2空間側幅狭区域73では、流速が相対的に速くなり、第2空間側幅広区域72では、流速が相対的に遅くなる。ここで、第1空間側幅広区域70と第2空間側幅広区域72の断面積は同一のため、第1空間側幅広区域70及び第2空間側幅広区域72を流れる冷却媒体の流速は同一である。また、第1空間側幅狭区域71と第2空間側幅狭区域73の断面積は同一のため、第1空間側幅狭区域71及び第2空間側幅狭区域73を流れる冷却媒体の流速は同一である。
また、第1空間側幅広区域70、第1空間側幅狭区域71、第2空間側幅狭区域73、及び第2空間側幅広区域72の冷却管2の長手方向に対する長さは同一である。そのため、第1冷媒空間26の通水抵抗と、第2冷媒空間27の通水抵抗は同一である。従って、第1冷媒空間26及び第2冷媒空間27に流入する冷却媒体の流量は同一である。
そのため、第1冷媒空間26及び第2冷媒空間27に流入する冷却媒体の流量を変化させずに、第1冷媒空間26及び第2冷媒空間27内において冷却媒体に異なる流速を持たせることができる。
その結果、流速の速い第1冷媒空間26の第1空間側幅狭区域71に対向した第2冷却面23bと第2冷媒空間27の第2空間側幅狭区域73に対向した第3冷却面23cでは、冷却性能が大きくなる。そのため、第1空間側幅狭区域71の第2冷却面23bに発熱量の大きい第2半導体モジュール3bが配置され、第2空間側幅狭区域73の第3冷却面23cに発熱量の大きい第3半導体モジュール3cが配置されることで、発熱量の大きい第2及び第3半導体モジュール3b、3cが高い冷却能力で効率的に冷却される。その一方で、流速の遅い第1冷媒空間26の第1空間側幅広区域70に対向した第1冷却面23aと第2冷媒空間27の第2空間側幅広区域72に対向した第4冷却面23dでは、冷却性能が小さくなる。そのため、第1空間側幅広区域70の第1冷却面23aに発熱量の小さい第1半導体モジュール3aが配置され、第2空間側幅広区域72の第4冷却面23dに発熱量の小さい第4半導体モジュール3dが配置されることで、発熱量の小さい第1及び第4半導体モジュール3a、3dが低い冷却能力で効率的に冷却される。よって、冷却管2に発熱量が異なる第1〜第4半導体モジュール3a〜3dが配置された場合であっても、無駄な通水抵抗の増加なく、冷却管2の冷却性能を調整することができる。
また、第1冷媒空間26は断面積が異なる第1空間側幅狭区域71と第1空間側幅広区域70を含んで構成される。そのため、第1冷媒空間26内において、冷却媒体に異なる流速を持たせることができる。よって、第1冷媒空間26内において第1空間側幅狭区域71と第1空間側幅広区域70に異なる冷却性能を持たせることができる。
また、第2冷媒空間27は断面積が異なる第2空間側幅狭区域73と第2空間側幅広区域72を含んで構成される。そのため、第2冷媒空間27内において、冷却媒体に異なる流速を持たせることができる。よって、第2冷媒空間26内において第2空間側幅狭区域73と第2空間側幅広区域72に異なる冷却性能を持たせることができる。
また、発熱量が異なる複数の第1〜第4半導体モジュール3a〜3dのうち、発熱量が大きい第2及び第3半導体モジュール3b、3cが第1空間側幅狭区域71及び第2空間側幅狭区域73に対向して配置される。ここで、第1空間側幅狭区域71の断面積は第1空間側幅広区域70の断面積より狭く構成されている。また、第2空間側幅狭区域73の断面積は第2空間側幅広区域72の断面積より狭く構成されている。よって、第1空間側幅狭区域71に対向して配置された第2半導体モジュール3bに対して、第1空間側幅広区域70に対向して配置された第1半導体モジュール3aより高い冷却性能で効率的に冷却することができる。また、第2空間側幅狭区域73に対向して配置された第3半導体モジュール3cに対して、第2空間側幅広区域72に対向して配置された第4半導体モジュール3dより高い冷却性能で効率的に冷却することができる。
また、第1冷媒空間26において第1空間側幅狭区域71と第1空間側幅広区域70は、冷却管2の長手方向に対して離間して設けられる。また、第2冷媒空間27において第2空間側幅狭区域73と第2空間側幅広区域72は、冷却管2の長手方向に対して離間して設けられる。そのため、インナフィンが配置されていない第1冷媒空間26及び第2冷媒空間27と比較して通水抵抗が大きい第1空間側幅狭区域71、第1空間側幅広区域70、第2空間側幅狭区域73、及び第2空間側幅広区域72の冷却管2の長手方向に対する長さを短くすることができる。よって、第1冷媒空間26及び第2冷媒空間27全体にインナフィンが配置された場合と比較して、第1冷媒空間26及び第2冷媒空間27の通水抵抗を低減することができる。
また、インナフィンとして冷却管2の長手方向に対して平行に配置された第1及び第2ストレートフィン29a、29bが用いられる。よって、容易かつ確実に、第1冷媒空間26及び第2冷媒空間27を流れる冷却媒体とインナフィンとの伝熱面積を充分に確保することができる。
(実施例2)
次に、実施例2について説明する。
図5(a)は実施例2における図2のB−B断面図、図5(b)は実施例2における図2のC−C断面図、図5(c)は実施例2における図2のD−D断面図を示している。
実施例2では、第1冷媒空間26において第1空間側幅狭区域70と第1空間側幅広区域71は、冷却管2の長手方向に対して離間して設けられている。また、第2冷媒空間27において第2空間側幅狭区域73と第2空間側幅広区域72は、冷却管2の長手方向に対して離間して設けられている点が実施例1と異なる。
次に、実施例2の要部について説明する。
実施例2においては、図5(a)に示すように、第1冷媒空間26に対して冷媒導入口21から冷媒導入口21と冷媒排出口22との中間位置より所定長さ冷媒導入口21側の位置まで第1ストレートフィン29aが配置され、第1空間側幅広区域70が形成されている。また、第1冷媒空間26に対して冷媒導入口21と冷媒排出口22との中間位置より所定長さ冷媒排出口22側の位置から冷媒排出口22まで第2ストレートフィン29bが配置され、第1空間側幅狭区域71が形成されている。つまり、第1冷媒空間26において第1空間側幅狭区域70と第1空間側幅広区域71は、冷却管2の長手方向に対して離間して設けられる。そのため、実施例1と比較して、冷却管2の長手方向に対する第1空間側幅広区域70及び第1空間側幅狭区域71の長さが短くなるように構成されている。
同様に、図5(c)に示すように、第2冷媒空間27に対して冷媒導入口21から冷媒導入口21と冷媒排出口22との中間位置より所定長さ冷媒導入口21側の位置まで第2ストレートフィン29bが配置され、第2空間側幅狭区域73形成されている。また、第2冷媒空間27に対して冷媒導入口21と冷媒排出口22との中間位置より所定長さ冷媒排出口22側の位置から冷媒排出口22まで第1ストレートフィン29a配置され、第2空間側幅広区域72が形成されている。つまり、第2冷媒空間27において第2空間側幅狭区域73と第2空間側幅広区域72は、冷却管2の長手方向に対して離間して設けられる。そのため、実施例1と比較して、冷却管2の長手方向に対する第2空間側幅広区域72及び第2空間側幅狭区域73の長さが短くなるように構成されている。
なお、上記以外の構成は実施例1と同様である。
次に、実施例2の作用効果について説明する。
第1冷媒空間26において第1空間側幅狭区域70と第1空間側幅広区域71は、冷却管2の長手方向に対して離間して設けられる。また、第2冷媒空間27において第2空間側幅狭区域73と第2空間側幅広区域72は、冷却管2の長手方向に対して離間して設けられる。そのため、第1及び第2ストレートフィン29a、29bが配置されていない第1冷媒空間26及び第2冷媒空間27と比較して通水抵抗が大きい第1空間側幅広区域70、第1空間側幅狭区域71、第2空間側幅狭区域73、及び第2空間側幅広区域72の冷却管2の長手方向に対する長さを短くすることができる。よって、第1冷媒空間26及び第2冷媒空間27全体に第1及び第2ストレートフィン29a、29bが配置された場合と比較して、第1冷媒空間26及び第2冷媒空間27の通水抵抗を低減することができる。
(実施例3)
次に、実施例3について説明する。
図6は実施例3における図2のA−A断面図を示している。図7(a)は実施例3における図2のB−B断面図、図7(b)は実施例3における図2のC−C断面図、図7(c)は実施例3における図2のD−D断面図を示している。
実施例3では、インナフィンとして第1及び第2傾斜フィン80a、80bが用いられている。また、中間プレート28は冷却管2の長手方向に対して直交する方向の両端部に第1冷媒空間26と第2冷媒空間27とを連通する第1及び第2連通孔81a〜81d、82a〜82dを備えている。そして、冷却媒体が流通する第1及び第2流通経路は、中間プレート28の第1及び第2連通孔81a〜81d、82a〜82dを介して第1冷媒空間26と第2冷媒空間27を交互に流れる第1及び第2螺旋冷媒流路である点が上記実施例と異なる。
次に、実施例3の要部について説明する。
図6に示すように、中間プレート28は冷却管2の長手方向に対して直交する方向の両端部に第1及び第2連通孔81a〜81d、82a〜82dを有している。第1及び第2連通孔81a〜81d、82a〜82dは、冷却媒体が第1冷媒空間26と第2冷媒空間27とを交互に流れるように第1冷媒空間26と第2冷媒空間27とを連通している。第1及び第2連通孔81a〜81d、82a〜82dは、冷却管2の長手方向に延びる長孔に形成されている。第1及び第2連通孔81a〜81d、82a〜82dは、それぞれ僅かな間隔をあけて4個ずつ冷却管2の長手方向に並んで形成されている。そして、第1及び第2連通孔81a〜81d、82a〜82dは冷却管2の長手方向に対して直交する方向に対向して配置されている。
図7(a)に示すように、第1外殻プレート24aと中間プレート28との間に形成された第1冷媒空間26には、インナフィンとして第1傾斜フィン80aが配置されている。また、図7(c)に示すように、第2外殻プレート24bと中間プレート28との間に形成された第2冷媒空間27には、インナフィンとして第2傾斜フィン80bが配置されている。具体的には、中間プレート28から第1外殻プレート24aに向かって薄板状の第1傾斜フィン80aが突出して形成されている。また、中間プレート28から第2外殻プレート24bに向かって薄板状の第2傾斜フィン80bが突出して形成されている。
第1冷媒空間26に配置された第1傾斜フィン80aは同間隔で形成され、第1傾斜フィン80a間には幅狭流路75が形成されている。また、第2冷媒空間27に配置された第2傾斜フィン80bは同間隔で形成され、第2傾斜フィン80b間には幅広流路74が形成されている。
第1傾斜フィン80aは冷却管2の長手方向に対して45°傾斜して第1冷媒空間26に配置されている。また、第2傾斜フィン80bは冷却管2の長手方向に対してー45°傾斜して第2冷媒空間27に配置されている。つまり、第1冷媒空間26に配置される第1傾斜フィン80aと第2冷媒空間27に配置される第2傾斜フィン80bとは、互いに傾斜方向が逆となっている。また、第1傾斜フィン80aは、その両先端部が第1及び第2連通孔81a〜81d、82a〜82dに近接して配置されている。また、第2傾斜フィン80bも、その両先端部が第1及び第2連通孔81a〜81d、82a〜82dに近接して配置されている。なお、実施例3において近接とは、第1及び第2傾斜フィン80a、80bの両先端部が第1及び第2連通孔81a〜81d、82a〜82dの周縁まで延びている状態をいうが、冷却媒体の流れに影響を与えない範囲内であれば、第1及び第2傾斜フィン80a、80bの両先端部と第1及び第2連通孔81a〜81d、82a〜82dとを離間させてもよい。
互いに傾斜方向が逆となった第1傾斜フィン80aと第2傾斜フィン80bとにより、冷媒導入口21から第1冷媒空間26に導入された冷媒は、図7(a)、(c)において濃色で示したように、幅狭流路75→第1連通孔81a→幅広流路74→第2連通孔82b→幅狭流路75→第1連通孔81c→幅広流路74と流れ、冷媒排出口22から排出される。その結果、冷媒導入口21と冷媒排出口22との間に、第1冷媒空間26の幅狭流路75、第2冷媒空間27の幅広流路74、中間プレート28の第1連通孔81a、81c、及び第2連通孔82bにより冷却媒体が流通する第1螺旋冷媒流路が第1流通経路として形成される。
同様に、冷媒導入口21から第2冷媒空間27に導入された冷媒は、図7(a)、(c)において白色で示したように、幅広流路74→第2連通孔82a→幅狭流路75→第1連通孔81b→幅広流路74→第2連通孔82c→幅狭流路75と流れ、冷媒排出口22から排出される。その結果、冷媒導入口21と冷媒排出口22との間に、第1冷媒空間26の幅狭流路75、第2冷媒空間27の幅広流路74、中間プレート28の第1連通孔81b、及び第2連通孔82a、82cにより冷却媒体が流通する第2螺旋冷媒流路が第2流通経路として形成される。
第1傾斜フィン80aの間隔は第2傾斜フィン80bの間隔よりも小さく形成されている。具体的に第1冷媒空間26内の冷却媒体の流通方向と直交する方向における第1傾斜フィン80a間の長さはL3であり、第2冷媒空間27内の冷却媒体の流通方向と直交する方向における第2傾斜フィン80b間の長さはL4である。ここで、L3の長さがL4の長さより短く(L3<L4)となるように第1及び第2傾斜フィン80a、80bが配置されている。また、図6に示すように、中間プレート28から第1及び第2外殻プレート24a、24bまでの距離は同一である。そのため、冷却媒体の流通方向と直交する方向の幅狭流路75の断面積(S3)は、幅広流路74の断面積(S4)より小さくなる(S3<S4)。
また、発熱量の大きい第2及び第3半導体モジュール3b、3cは第1冷媒空間26の幅狭流路75に対向した第1及び第2冷却面23a、23bに配置されている。また、発熱量の小さい第1及び第4半導体モジュール3a、3dは第2冷媒空間27の幅広流路74に対向した第3及び第4冷却面23c、23dに配置されている。
なお、上記以外の構成は実施例1と同様である。
次に、実施例3の作用効果について説明する。
第1流通経路である第1螺旋冷媒流路を流れる冷却媒体は、幅狭流路75では流速が相対的に速くなり、幅広流路74では流速が相対的に遅くなる。同様に、第2流通経路である第2螺旋冷媒流路を流れる冷却媒体も、幅狭流路75では流速が相対的に速くなり、幅広流路74では流速が相対的に遅くなる。ここで、第1螺旋冷媒流路及び第2螺旋冷媒流路では冷媒導入口21から導入された冷却媒体は共に幅狭流路75を2回、幅広流路74を2回通過して冷媒排出口22から排出される。そのため、第1螺旋冷媒流路及び第2螺旋冷媒流路の冷媒流通方向の長さ(冷媒長)は同一である。また、冷却媒体の流通方向と直交する方向における幅狭流路75の断面積は全て同じである。また、冷却媒体の流通方向と直交する方向における幅広流路74の断面積は全て同じである。そのため、第1螺旋冷媒流路の通水抵抗と、第2螺旋冷媒流路の通水抵抗は同一となる。従って、第1螺旋冷媒流路及び第2螺旋冷媒流路に流入する冷却媒体の流量は同一である。
そのため、第1螺旋冷媒流路及び第2螺旋冷媒流路に流入する冷却媒体の流量を変化させずに、第1螺旋冷媒流路及び第2螺旋冷媒流路内において冷却媒体に異なる流速を持たせることができる。
その結果、流速の速い第1冷媒空間26の幅狭流路75に対向した第1及び第2冷却面23a、23bでは冷却性能が大きくなる。そのため、発熱量の大きい第2及び第3半導体モジュール3b、3cが高い冷却性能で効率的に冷却される。その一方で、流速の遅い第2冷媒空間27の幅広流路74に対向した第3及び第4冷却面23c、23dでは冷却性能が小さくなる。そのため、発熱量の小さい第1及び第4半導体モジュール3a、3dが低い冷却性能で効率的に冷却される。
従って、第1螺旋冷媒流路及び第2螺旋冷媒流路の通水抵抗を同一にした状態で第1螺旋冷媒流路内及び第2螺旋冷媒流路内の冷却媒体の流速を変化させることによって、冷却性能の調整を適切に行うことができる。よって、冷却管2に発熱量が異なる第1〜第4半導体モジュール3a〜3dが配置された場合であっても、無駄な通水抵抗の増加なく、冷却管2の冷却性能を調整することができる。
以上、本発明の好ましい実施例について説明したが、本発明は上記実施例に限定されることはなく、本発明の技術的範囲に存在する限り、以下のように変形させてもよい。
・実施例1及び実施例2において、第1及び第2ストレートフィン29a、29bと第1及び第2傾斜フィン80a、80bは中間プレート28にろう付け接合されているが、中間プレート28と外殻プレート24a、24bとのいずれか一方又は双方にろう付け接合されてもよい。
・実施例1及び実施例2において、第1及び第2冷媒空間26、27は冷却管2の長手方向に対して断面積が異なる2種類の分割流路が形成されているが、3種類以上の分割流路を形成してもよい。
・実施例1及び実施例2において、中間プレート28を介在させて第1空間側幅狭区域71と第2空間側幅狭区域73を対向して配置してもよい。また、中間プレート28を介在させて第1空間側幅広区域70と第2空間側幅広区域72を対向して配置してもよい。
・上記実施例3において、第1及び第2傾斜フィン80a、80bは冷却管2の長手方向に対して45°傾斜して配置されているがこの角度に限定しない。
・実施例3において、第1及び第2傾斜フィン80a、80bは中間プレート28から第1及び第2外殻プレート24a、24bに向かって突出して形成されているが、第1及び第2外殻プレート24a、24bから中間プレート28に向かって突出して形成してもよい。
・上記実施例において、第1〜第4半導体モジュール3a〜3dを冷却管2の一方の冷却面に対して2個配置しているが、2個以上配置してもよい。また、第1〜第4半導体モジュール3a〜3dについて第1〜第4IGBT31a〜31dと第1〜第4フライホイールダイオード32a〜32dを冷却管2の長手方向に対して直交する方向に配置しているが、冷却管2の長手方向に対して配置してもよい。
1 半導体冷却器
2 冷却管
21 冷媒導入口
22 冷媒排出口
23、23a〜23d 第1〜第4冷却面
24a 第1外殻プレート
24b 第2外殻プレート
26 第1冷媒空間
27 第2冷媒空間
28 中間プレート
29a 第1ストレートフィン
29b 第2ストレートフィン
3、3a〜3d 第1〜第4半導体モジュール
70 第1空間側幅広区域
71 第1空間側幅狭区域
72 第2空間側幅広区域
73 第2空間側幅狭区域
74 幅広流路
75 幅狭流路
80a 第1傾斜フィン
80b 第2傾斜フィン
81a〜81d 第1連通孔
82a〜82d 第2連通孔

Claims (8)

  1. 半導体素子を内蔵し、発熱量が異なる複数の半導体モジュール(3、3a〜3d)と、
    前記複数の半導体モジュール(3、3a〜3d)が密着配置された冷却面(23a〜23d)を有する冷却管(2)とを備えた半導体冷却器(1)であって、
    前記冷却管(2)は、冷却媒体を導入する冷媒導入口(21)と前記冷却媒体を排出する冷媒排出口(22)と、
    前記冷媒導入口(21)及び前記冷媒排出口(22)に連通し前記冷却管(2)の長手方向に沿って延びる冷媒流路(25)と、
    前記冷却面(23a〜23d)と平行に配置され前記冷媒流路(25)を第1冷媒空間(26)と第2冷媒空間(27)とに仕切る中間プレート(28)とを有し、
    前記第1冷媒空間(26)と前記第2冷媒空間(27)には、前記冷却媒体の流通方向に沿って複数の分割流路を形成するインナフィンがそれぞれ配置されており、
    前記冷媒導入口(21)と前記冷媒排出口(22)との間に前記冷却媒体を流通させる第1流通経路と第2流通経路が構成され、
    前記第1流通経路と前記第2流通経路は、断面積が異なる複数の前記分割流路を含んで構成され、
    前記第1流通経路の通水抵抗と前記第2流通経路の通水抵抗は同一となるように構成されていること、
    を特徴とする半導体冷却器(1)。
  2. 前記第1冷媒空間(26)は、前記分割流路として第1空間側幅狭区域(71)と第1空間側幅広区域(70)を備え、
    前記第1空間側幅狭区域(71)の断面積は前記第1空間側幅広区域(70)の断面積より狭く形成され、
    前記第2冷媒空間(27)は、前記分割流路として第2空間側幅狭区域(73)と第2空間側幅広区域(72)を備え、
    前記第2空間側幅狭区域(73)の断面積は前記第2空間側幅広区域(72)の断面積より狭く形成され、
    前記第1流通経路は、前記第1空間側幅狭区域(71)と前記第1空間側幅広区域(70)を含んで構成され、
    前記第2流通経路は、前記第2空間側幅狭区域(73)と前記第2空間側幅広区域(72)を含んで構成されていること、
    を特徴とする請求項1に記載の半導体冷却器(1)。
  3. 発熱量の異なる複数の前記半導体モジュール(3、3a〜3d)のうち、発熱量が大きい前記半導体モジュール(3、3a〜3d)が前記第1空間側幅狭区域(71)及び前記第2空間側幅狭区域(73)に対向して配置され、
    発熱量が小さい前記半導体モジュール(3、3a〜3d)が前記第1空間側幅広区域(70)及び前記第2空間側幅広区域(72)に対向して配置されていること、
    を特徴とする請求項2に記載の半導体冷却器(1)。
  4. 前記第1空間側幅狭区域(71)は、前記中間プレート(28)を介在させて前記第2空間側幅広区域(72)に対向して配置され、
    前記第1空間側幅広区域(70)は、前記中間プレート(28)を介在させて前記第2空間側幅狭区域(73)に対向して配置されていること、
    を特徴とする請求項2又は請求項3に記載の半導体冷却器(1)。
  5. 前記第1冷媒空間(26)において、前記第1空間側幅狭区域(71)と前記第1空間側幅広区域(70)は、前記冷却管(2)の長手方向に対して連続して設けられ、
    前記第2冷媒空間(27)において、前記第2空間側幅狭区域(73)と前記第2空間側幅広区域(72)は、前記冷却管(2)の長手方向に対して連続して設けられていること、
    を特徴とする請求項2乃至4のうちいずれか1項に記載の半導体冷却器(1)。
  6. 前記第1冷媒空間(26)において、前記第1空間側幅狭区域(71)と前記第1空間側幅広区域(70)は、前記冷却管(2)の長手方向に対して離間して設けられ、
    前記第2冷媒空間(27)において、前記第2空間側幅狭区域(73)と前記第2空間側幅広区域(72)は、前記冷却管(2)の長手方向に対して離間して設けられ、
    前記第1空間側幅狭区域(71)と前記第1空間側幅広区域(70)との離間距離と、前記第2空間側幅狭区域(73)と前記第2空間側幅広区域(72)との離間距離とは同一であること、
    を特徴とする請求項2乃至4のうちいずれか1項に記載の半導体冷却器(1)。
  7. 前記インナフィンは、前記冷却管(2)の長手方向に対して平行に配置されたストレートフィン(29a、29b)であること、
    を特徴とする請求項1乃至6のうちいずれか1項に記載の半導体冷却器(1)。
  8. 前記中間プレート(28)は、前記冷却管(2)の長手方向に対して直交する方向の両端部に、前記第1冷媒空間(26)と前記第2冷媒空間(27)とを連通する連通孔(81a〜81d、82a〜82d)を有しており、
    前記インナフィンは、前記冷却管(2)の長手方向に対して斜めに配置された傾斜フィン(80a、80b)であり、
    前記傾斜フィン(80a、80b)は、前記第1冷媒空間(26)に配置された第1傾斜フィン(80a)と前記第2冷媒空間(27)に配置された第2傾斜フィン(80b)を備え、
    前記第1傾斜フィン(80a)と前記第2傾斜フィン(80b)とは互いに傾斜方向が逆であり、
    前記第1冷媒空間(26)に配置された前記第1傾斜フィン(80a)により形成された前記分割流路と、前記第2冷媒空間(27)に配置された前記第2傾斜フィン(80b)により形成された前記分割流路との断面積が異なり、
    前記第1流通経路は、前記冷却媒体が前記連通孔(81a〜81d、82a〜82d)を介して前記第1冷媒空間(26)と前記第2冷媒空間(27)を交互に螺旋状に流れる第1螺旋冷媒流路であり、
    前記第2流通経路は、前記冷却媒体が前記連通孔(81a〜81d、82a〜82d)を介して前記第1冷媒空間(26)と前記第2冷媒空間(27)を交互に螺旋状に流れる第2螺旋冷媒流路であること、
    を特徴とする請求項1に記載の半導体冷却器(1)。
JP2010102132A 2010-04-27 2010-04-27 半導体冷却器 Pending JP2011233688A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102132A JP2011233688A (ja) 2010-04-27 2010-04-27 半導体冷却器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102132A JP2011233688A (ja) 2010-04-27 2010-04-27 半導体冷却器

Publications (1)

Publication Number Publication Date
JP2011233688A true JP2011233688A (ja) 2011-11-17

Family

ID=45322728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102132A Pending JP2011233688A (ja) 2010-04-27 2010-04-27 半導体冷却器

Country Status (1)

Country Link
JP (1) JP2011233688A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515337A (zh) * 2012-06-22 2014-01-15 三星电机株式会社 用于功率模块的散热系统
JP2014127577A (ja) * 2012-12-26 2014-07-07 Toyota Industries Corp 車両用インバータ装置
JP2016039202A (ja) * 2014-08-06 2016-03-22 スズキ株式会社 インバータ装置
WO2016067501A1 (ja) * 2014-10-28 2016-05-06 株式会社デンソー 熱交換器
US9502331B2 (en) 2014-09-18 2016-11-22 Denso Corporation Electric power converter with a spring member
US9955613B2 (en) 2016-09-13 2018-04-24 Denso International America, Inc. Cooler and power electronic module having the same
WO2019017106A1 (ja) * 2017-07-18 2019-01-24 株式会社デンソー 熱交換器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287108A (ja) * 2005-04-04 2006-10-19 Denso Corp 積層型冷却器
JP2009152455A (ja) * 2007-12-21 2009-07-09 Denso Corp 半導体冷却構造
JP2009188387A (ja) * 2008-01-10 2009-08-20 Denso Corp 半導体冷却構造
JP2009266937A (ja) * 2008-04-23 2009-11-12 Denso Corp 積層型冷却器
JP2010040757A (ja) * 2008-08-05 2010-02-18 Denso Corp 電子部品冷却器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287108A (ja) * 2005-04-04 2006-10-19 Denso Corp 積層型冷却器
JP2009152455A (ja) * 2007-12-21 2009-07-09 Denso Corp 半導体冷却構造
JP2009188387A (ja) * 2008-01-10 2009-08-20 Denso Corp 半導体冷却構造
JP2009266937A (ja) * 2008-04-23 2009-11-12 Denso Corp 積層型冷却器
JP2010040757A (ja) * 2008-08-05 2010-02-18 Denso Corp 電子部品冷却器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515337A (zh) * 2012-06-22 2014-01-15 三星电机株式会社 用于功率模块的散热系统
JP2014127577A (ja) * 2012-12-26 2014-07-07 Toyota Industries Corp 車両用インバータ装置
JP2016039202A (ja) * 2014-08-06 2016-03-22 スズキ株式会社 インバータ装置
US9502331B2 (en) 2014-09-18 2016-11-22 Denso Corporation Electric power converter with a spring member
WO2016067501A1 (ja) * 2014-10-28 2016-05-06 株式会社デンソー 熱交換器
JP2016086115A (ja) * 2014-10-28 2016-05-19 株式会社デンソー 熱交換器
US9955613B2 (en) 2016-09-13 2018-04-24 Denso International America, Inc. Cooler and power electronic module having the same
WO2019017106A1 (ja) * 2017-07-18 2019-01-24 株式会社デンソー 熱交換器

Similar Documents

Publication Publication Date Title
US8472193B2 (en) Semiconductor device
JP4379339B2 (ja) 半導体冷却装置
CN101473432B (zh) 散热装置以及冷却器
JP5983565B2 (ja) 冷却器
JP2011233688A (ja) 半導体冷却器
JP5157681B2 (ja) 積層型冷却器
US11223081B2 (en) Serpentine counter flow cold plate for a vehicle battery module
WO2015079643A1 (ja) 半導体モジュール用冷却器の製造方法、半導体モジュール用冷却器、半導体モジュール及び電気駆動車両
US11254236B2 (en) High performance uniform temperature cold plate
US20220178627A1 (en) Multi-channel high-efficiency heat dissipation water-cooling radiator
JP4766110B2 (ja) 半導体冷却構造
JP2001035981A (ja) 半導体素子用冷却器及びこれを用いた電力変換装置
JP2013254787A (ja) 熱交換器及びその製造方法
JP4941398B2 (ja) 積層型冷却器
JP5083288B2 (ja) 半導体冷却構造
US20140020867A1 (en) Thermal transfer device with spiral fluid pathways
JP7000777B2 (ja) 熱交換器
TW202127997A (zh) 集液槽及多流道液冷排
JP2021196087A (ja) 熱伝導部材及びそれを備えた冷却装置
JP2021196086A (ja) 放熱部材及びそれを備えた冷却装置
US20170246964A1 (en) Device unit
JP5218306B2 (ja) 冷却装置
JP7294126B2 (ja) 冷却器
JP2019211112A (ja) 熱交換器
CN210831380U (zh) 机油冷却器及具有其的车辆

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805