JP2013004387A - 燃料電池システム及び該システム搭載車両 - Google Patents

燃料電池システム及び該システム搭載車両 Download PDF

Info

Publication number
JP2013004387A
JP2013004387A JP2011135904A JP2011135904A JP2013004387A JP 2013004387 A JP2013004387 A JP 2013004387A JP 2011135904 A JP2011135904 A JP 2011135904A JP 2011135904 A JP2011135904 A JP 2011135904A JP 2013004387 A JP2013004387 A JP 2013004387A
Authority
JP
Japan
Prior art keywords
voltage
fuel cell
power
load
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011135904A
Other languages
English (en)
Other versions
JP5675509B2 (ja
Inventor
Shuichi Kazuno
修一 数野
Hibiki Saeki
響 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011135904A priority Critical patent/JP5675509B2/ja
Publication of JP2013004387A publication Critical patent/JP2013004387A/ja
Application granted granted Critical
Publication of JP5675509B2 publication Critical patent/JP5675509B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】燃料電池の劣化を防止しつつ、システム効率の悪化を抑制可能な燃料電池システム及び該システム搭載車両を提供する。
【解決手段】ECU24は、負荷33(負荷30+補機負荷31)の要求電力に対応するFCスタック40の電圧が、FCスタック40の酸化還元進行電圧範囲内の所定値(切替電圧)以上である場合には、FCスタック40の出力電圧を前記酸化還元進行電圧範囲外の所定電圧値に固定した状態で、FCスタック40に供給する酸素又は水素の濃度を前記負荷の要求電力に追従させるように変動させる第1制御モードで制御するとともに、前記負荷33の要求電力に対応するFCスタック40の電圧が、前記酸化還元進行電圧範囲内の所定値(切替電圧)未満である場合には、FCスタック40の出力電圧を酸化還元進行電圧範囲外の所定電圧値に固定した状態で、酸素又は水素の濃度を所定の濃度範囲に維持する第2制御モードで制御する。
【選択図】図2

Description

この発明は、酸化剤ガス及び燃料ガスの両反応ガスの電気化学反応により発電する燃料電池の劣化を防止し、且つシステム効率を向上させる燃料電池システム及び該システム搭載車両に関する。
燃料電池は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜をカソード電極とアノード電極とで挟持した電解質膜・電極構造体(MEA)を備える。カソード電極及びアノード電極は、カーボンペーパ等からなるガス拡散層と、白金合金等の触媒(以下、Pt触媒ともいう。)粒子が表面に担持されたカーボン粒子が前記ガス拡散層の表面に一様に塗布されて形成された電極触媒層とを有する。電極触媒層は、固体高分子電解質膜の両面に形成される。
この燃料電池の劣化を抑制するための技術が、特許文献1に提案されている。この特許文献1に提案された技術では、燃料電池を発電する際に、前記Pt触媒がシンタリング現象(Pt触媒の凝集)を発生する酸化還元進行電圧を回避するようにしている。
特開2007−5038号公報([0041]、図11等)
ところで、特許文献1では、Pt触媒に係る酸化還元進行電圧を回避し続けるために、走行モータ等の負荷の要求電力に対して、燃料電池の発電電力を多くしたり少なくしたりしている。
そして、要求電力に対して、燃料電池の発電電力が多くなった場合の余剰電力は、バッテリに充電する一方、燃料電池の発電電力が少なくなった場合の不足電力は、バッテリから放電することで賄われている。
しかしながら、バッテリは、充放電を繰り返す毎に、損失が発生し、結果として、システム効率が悪化するという課題がある。
また、特許文献1の制御では、一定速度での走行が比較的長い時間継続することが多い高速道路での走行(相対的に中負荷での走行)や、発進と停止を比較的頻繁に繰り返す市街地での走行(相対的に低負荷での走行)についての燃料電池システム全体での出力効率に関して何ら検討されていない。
この発明は、このような課題を考慮してなされたものであり、燃料電池の劣化を防止しつつ、システム効率の悪化を抑制しシステム効率を向上させることを可能とする燃料電池システム及び該システム搭載車両を提供することを目的とする。
この発明に係る燃料電池システムは、触媒を有し、前記触媒で酸素又は水素を反応させることで発電する燃料電池と、前記酸素及び前記水素の少なくとも一方を、前記燃料電池に供給するガス供給手段と、前記燃料電池の出力電圧を調整する電圧調整手段と、前記燃料電池の出力電力により駆動される負荷と、を備える燃料電池システムにおいて、前記負荷の要求電力を検出するとともに、前記燃料電池、前記ガス供給手段、及び前記電圧調整手段を制御する制御手段を有し、前記制御手段は、前記電圧調整手段を制御し前記燃料電池の出力電圧を酸化還元進行電圧範囲外の所定電圧値に固定した状態で、前記ガス供給手段を制御し前記燃料電池に供給する前記酸素又は前記水素の濃度を前記負荷の要求電力に追従させるように変動させる第1制御モードと、前記電圧調整手段を制御し前記燃料電池の出力電圧を前記所定電圧値に固定した状態で、前記ガス供給手段を制御し前記燃料電池に供給する前記酸素又は前記水素の濃度を所定の濃度範囲に維持する第2制御モードと、を実行するものであり、前記負荷の要求電力に対応する前記燃料電池の出力電圧が酸化還元進行電圧範囲内に設定される切替電圧以上である場合には前記第1制御モードを実行し、前記切替電圧未満である場合には前記第2制御モードを実行することを特徴とする。
この発明によれば、制御手段は、負荷の要求電力に対応する燃料電池の電圧が、該燃料電池の酸化還元進行電圧範囲内の所定値(切替電圧)以上である場合には、前記燃料電池の出力電圧を酸化還元進行電圧範囲外の所定電圧値に固定した状態で、前記燃料電池に供給する前記酸素又は前記水素の濃度を前記負荷の要求電力に追従させるように変動させる第1制御モードで制御するとともに、負荷の要求電力に対応する燃料電池の電圧が、前記燃料電池の酸化還元進行電圧範囲内の所定値(切替電圧)未満である場合には、前記燃料電池の出力電圧を酸化還元進行電圧範囲外の所定電圧値に固定した状態で、酸素又は水素の濃度を所定の濃度範囲に維持する第2制御モードで制御するようにしたので、燃料電池の出力電圧が酸化還元進行電圧範囲内となるのを回避して燃料電池の劣化を防止しつつ、システム効率を向上させることができる。
さらに、前記燃料電池の出力電力により充電され、前記燃料電池システムに電力を供給する蓄電装置を備え、前記制御手段は、前記第1制御モードを実行中に、前記蓄電装置のSOC値を検出し、検出した前記SOC値が所定値未満の値となった場合には、前記第2制御モードを実行することで、前記蓄電装置のSOC値が過度に低下することを防止できる。
上記の燃料電池システムを搭載した車両もこの発明に含まれる。
この発明によれば、燃料電池の出力電圧が酸化還元進行電圧範囲内となるのを回避することで燃料電池の劣化を防止しつつ、システム効率の悪化を抑制することで、システム効率を向上させることができるという効果が達成される。
この発明の一実施形態に係る燃料電池システムを搭載した燃料電池車両の概略全体構成図である。 前記燃料電池車両の電力系のブロック図である。 前記実施形態における燃料電池ユニットの概略構成図である。 前記実施形態におけるDC/DCコンバータの詳細を示す回路図である。 電子制御装置(ECU)における基本的な制御(メインルーチン)のフローチャートである。 システム負荷及び平均システム負荷を計算するフローチャートである。 現在のモータ回転数とモータ予想消費電力との関係を示す図である。 燃料電池を構成する燃料電池セルの電圧とセルの劣化量との関係の一例を示す図である。 燃料電池セルの電圧の変動速度が異なる場合の酸化の進行と還元の進行の様子の例を示すサイクリックボルタンメトリ図である。 燃料電池の通常の電流電圧特性の説明図である。 カソードストイキ比とセル電流との関係を示す図である。 燃料電池の発電制御に係る実施形態の説明に供されるフローチャートである。 燃料電池における複数の電力供給モードの説明図である。 バッテリのSOC値と充放電係数の関係を示す図である。 目標FC電流と目標酸素濃度との関係を示す図である。 目標FC電流と目標エアポンプ回転数及び目標ウォータポンプ回転数との関係を示す図である。 目標FC電流と目標背圧弁開度との関係を示す図である。 モータのトルク制御のフローチャートである。 燃料電池の発電電力と発電効率との関係を示す図である。 図20Aは、低酸素ストイキ比可変固定電圧発電での損失を表す図、図20Bは、通常ストイキ比固定電圧発電での損失を表す図、図20Cは、図20Aと図20Bの損失特性を重畳して表した図である。 実施形態と比較例に係る技術とを比較して説明するタイムチャートである。 燃料電池システムの第1変形例の概略構成を示すブロック図である。 燃料電池システムの第2変形例の概略構成を示すブロック図である。 燃料電池システムの第3変形例の概略構成を示すブロック図である。
図1は、この発明の一実施形態に係る燃料電池システム12(以下「FCシステム12」という。)を搭載した燃料電池車両10(以下「FC車両10」という。)の概略全体構成図である。図2は、FC車両10の電力系のブロック図である。図1及び図2に示すように、FC車両10は、FCシステム12に加え、走行用のモータ14(駆動モータ)と、インバータ(双方向の直流・交流変換器)16とを有する。
FCシステム12は、燃料電池ユニット18(以下「FCユニット18」という。)と、高電圧バッテリ20(以下「バッテリ20」ともいう。)(蓄電装置)と、DC/DCコンバータ22(電圧調整手段)と、電子制御装置24(以下「ECU24」という。)と、を有する。
モータ14は、FCユニット18及びバッテリ20から供給される電力に基づいて駆動力を生成し、当該駆動力によりトランスミッション26を通じて車輪28を回転させる。また、モータ14は、回生を行うことで生成した電力(回生電力Preg)[W]をバッテリ20等に出力する(図2参照)。
インバータ16{PDU(Power Drive Unit)ともいう。}は、3相フルブリッジ型の構成とされて、直流/交流変換を行い、直流を3相の交流に変換してモータ14に供給する一方、モータ14の回生動作に伴う交流/直流変換後の直流をDC/DCコンバータ22を通じてバッテリ20等に供給する。
なお、モータ14とインバータ16を併せて負荷30(後記する補機負荷31と区別する場合には、主負荷30ともいう。)という。主負荷30と補機負荷31とを合わせて、負荷33(総合負荷33ともいう。)という。
図3は、FCユニット18の概略構成図である。FCユニット18は、燃料電池スタック40(以下「FCスタック40」又は「FC40」という。)と、FCスタック40のアノードに対して水素(燃料ガス)を給排するアノード系54と、FCスタック40のカソードに対して酸素を含む空気(酸化剤ガス)を給排するカソード系56と、FCスタック40を冷却する冷却水(冷媒)を循環させる冷却系58と、セル電圧モニタ42とを備える。
FCスタック40は、例えば、固体高分子電解質膜をアノード電極とカソード電極とで両側から挟み込んで形成された燃料電池セル(以下「FCセル」という。)を積層した構造を有する。
アノード系54は、水素タンク44、レギュレータ46、エゼクタ48及びパージ弁50を有する。水素タンク44は、燃料ガスとしての水素を収容するものであり、配管44a、レギュレータ46、配管46a、エゼクタ48、配管48aを介して、アノード流路52の入口に接続されている。これにより、水素タンク44の水素を、配管44a等を介してアノード流路52に供給可能である。なお、配管44aには、遮断弁(図示せず)が設けられており、FCスタック40の発電の際、当該遮断弁は、ECU24により開弁される。
レギュレータ46は、導入される水素の圧力を所定値に調整して排出する。すなわち、レギュレータ46は、配管46bを介して入力されるカソード側の空気の圧力(パイロット圧)に応じて、下流側の圧力(アノード側の水素の圧力)を制御する。従って、アノード側の水素の圧力は、カソード側の空気の圧力に連動し、後記するように、酸素濃度を変化させるべくエアポンプ60の回転数等を変化させると、アノード側の水素の圧力も変化する。
エゼクタ48は、水素タンク44からの水素をノズルで噴射することで負圧を発生させ、この負圧によって配管48bのアノードオフガスを吸引することができる。
アノード流路52の出口は、配管48bを介して、エゼクタ48の吸気口に接続されている。そして、アノード流路52から排出されたアノードオフガスは、配管48bを通って、エゼクタ48に再度導入されることでアノードオフガス(水素)が循環する。
なお、アノードオフガスは、アノードにおける電極反応で消費されなかった水素、及び、水蒸気を含んでいる。また、配管48bには、アノードオフガスに含まれる水分{凝縮水(液体)、水蒸気(気体)}を分離・回収する気液分離器(図示せず)が設けられている。
配管48bの一部は、配管50a、パージ弁50、配管50bを介して、配管64cに設けられた希釈器(図示せず)に接続されている。パージ弁50は、FCスタック40の発電が安定していないと判定された場合、ECU24からの指令に基づき所定時間、開弁される。前記希釈器は、パージ弁50からのアノードオフガス中の水素を、カソードオフガスで希釈して大気に排出する。
カソード系56は、エアポンプ60、加湿器62、及び背圧弁64を有する。
エアポンプ60は、外気(空気)を圧縮してカソード側に送り込むものであり、その吸気口は、配管60aを介して車外(外部、外気)と連通している。エアポンプ60の吐出口は、配管60b、加湿器62及び配管62aを介して、カソード流路74の入口に接続されている。エアポンプ60がECU24の指令に従って作動すると、エアポンプ60は、配管60aを介して車外の空気を吸気して圧縮し、この圧縮された空気が配管60b等を通ってカソード流路74に圧送される。
加湿器62は、水分透過性を有する複数の中空糸膜62eを備えている。そして、加湿器62は、中空糸膜62eを介して、カソード流路74に向かう空気とカソード流路74から排出された多湿のカソードオフガスとを水分交換させ、カソード流路74に向かう空気を加湿する。
カソード流路74の出口側には、配管62b、加湿器62、配管64a、背圧弁64、配管64b及び配管64cが配置されている。カソード流路74から排出されたカソードオフガス(酸化剤オフガス)は、配管62b等を通って、配管64cから車外(大気)に排出される。
背圧弁64は、例えば、バタフライ弁で構成され、その開度がECU24により制御されることで、カソード流路74における空気の圧力を制御する。より具体的には、背圧弁64の開度が小さくなると、カソード流路74における空気の圧力が上昇し、体積流量当たりにおける酸素濃度(体積濃度)が高くなる。逆に、背圧弁64の開度が大きくなると、カソード流路74における空気の圧力が下降し、体積流量当たりにおける酸素濃度(体積濃度)が低くなる。
温度センサ72は、配管64aに取り付けられ、カソードオフガスの温度を検出してECU24に出力する。
冷却系58は、ウォータポンプ80及びラジエータ82(放熱器)を有する。ウォータポンプ80は、冷却水(冷媒)を循環させるものであり、その吐出口は、配管80a、冷媒流路84、配管82a、ラジエータ82、配管82bを順に介して、ウォータポンプ80の吸込口に接続されている。ECU24の指令に従ってウォータポンプ80が作動すると、冷却水が冷媒流路84とラジエータ82との間で循環し、FCスタック40を冷却する。
セル電圧モニタ42は、FCスタック40を構成する複数の単セル毎のセル電圧Vcellを検出する測定機器であり、モニタ本体と、モニタ本体と各単セルとを接続するワイヤハーネスとを備える。モニタ本体は、所定周期で全ての単セルをスキャニングし、各単セルのセル電圧Vcellを検出し、平均セル電圧及び最低電圧を算出する。そして、平均セル電圧及び最低セル電圧をECU24に出力する。
図2に示すように、FCスタック40からの電力(以下「FC電力Pfc」という。)は、インバータ16及びモータ14(力行時)に供給されるとともに、DC/DCコンバータ22を通じて高電圧バッテリ20(充電時)に供給され、さらに、エアポンプ60、ウォータポンプ80、エアコンディショナ90、ダウンバータ92、低電圧バッテリ94、アクセサリ96及びECU24に供給される。なお、FCスタック40とインバータ16及びDC/DCコンバータ22との間には、逆流防止ダイオード98が配置されている。また、FCスタック40の発電電圧(以下「FC電圧Vfc」という。)は、電圧センサ100(図4)により検出され、FCスタック40の発電電流Ifc(以下「FC電流Ifc」という。)は、電流センサ102により検出され、いずれもECU24に出力される。
バッテリ20は、複数のバッテリセルを含む蓄電装置(エネルギストレージ)であり、例えば、リチウムイオン2次電池等を利用することができる。キャパシタを利用してもよい。本実施形態ではリチウムイオン2次電池を利用している。バッテリ20の出力電圧(以下「バッテリ電圧Vbat又は1次電圧V1」という。)[V]は、電圧センサ120により検出され、バッテリ20の出力電流(以下「バッテリ電流Ibat又は1次電流I1」という。)[A]は、電流センサ124により検出され、それぞれECU24に出力される。さらに、バッテリ20の残容量(以下「SOC」という。)[%]は、SOCセンサ104(図2)により検出され、ECU24に出力される。
DC/DCコンバータ22は、FCユニット18からのFC電力Pfcと、バッテリ20から供給された電力(以下「バッテリ電力Pbat」という。)[W]と、モータ14からの回生電力の供給先をECU24の制御下に制御する。
図4には、この実施形態におけるDC/DCコンバータ22の一例が示されている。図4に示すように、DC/DCコンバータ22は、一方がバッテリ20のある1次側1Sに接続され、他方が負荷33とFCスタック40との接続点である2次側2Sに接続されている。
DC/DCコンバータ22は、1次側1Sの電圧(1次電圧V1=Vbat)[V]を2次側2Sの電圧(2次電圧V2)[V](V1≦V2)に昇圧するとともに、2次電圧V2を1次電圧V1(V1=Vbat)に降圧する昇降圧型且つチョッパ型の電圧変換装置である。
図4に示すように、DC/DCコンバータ22は、1次側1Sと2次側2Sとの間に配される相アームUAと、リアクトル110とから構成される。
相アームUAは、ハイサイドアームとしての上アーム素子(上アームスイッチング素子112とダイオード114)とローサイドアームとしての下アーム素子(下アームスイッチング素子116とダイオード118)とで構成される。上アームスイッチング素子112と下アームスイッチング素子116には、それぞれ例えば、MOSFET又はIGBT等が採用される。
リアクトル110は、相アームUAの中点(共通接続点)とバッテリ20の正極との間に挿入され、DC/DCコンバータ22により1次電圧V1と2次電圧V2との間で電圧を変換する際に、エネルギを放出及び蓄積する作用を有する。
上アームスイッチング素子112は、ECU24から出力されるゲート駆動信号(駆動電圧)UHのハイレベルによりオンにされ、下アームスイッチング素子116は、ゲートの駆動信号(駆動電圧)ULのハイレベルによりオンにされる。
なお、ECU24は、1次側1Sの平滑コンデンサ122に並列に設けられた電圧センサ120により1次電圧V1を検出し、電流センサ124により1次側1Sの電流(1次電流I1)[A]を検出する。また、ECU24は、2次側2Sの平滑コンデンサ128に並列に設けられた電圧センサ126により2次電圧V2を検出し、電流センサ130により2次側2Sの電流(2次電流I2)[A]を検出する。
DC/DCコンバータ22の昇圧時には、第1のタイミングで、ゲート駆動信号ULがハイレベル及びゲート駆動信号UHがローレベルにされ、リアクトル110にバッテリ20からエネルギが蓄積される(バッテリ20の正側からリアクトル110、下アームスイッチング素子116、及びバッテリ20の負側に至る電流路)。第2のタイミングで、ゲート駆動信号ULがローレベル及びゲート駆動信号UHがローレベルにされ、リアクトル110に蓄積されたエネルギがダイオード114を通じて2次側2Sに供給される(バッテリ20の正側からリアクトル110、ダイオード114、2次側2Sの正側、負荷33等、2次側2Sの負側、バッテリ20の負側の電流路)。以降、昇圧時の第1のタイミングと第2のタイミングが繰り返される。
DC/DCコンバータ22の降圧時には、第1のタイミングで、ゲート駆動信号UHがハイレベル及びゲート駆動信号ULがローレベルにされ、リアクトル110に2次側2S(FCスタック40又はモータ14が回生中の負荷33)からエネルギが蓄積されるとともにバッテリ20に充電される。第2のタイミングで、ゲート駆動信号UHがローレベル及びゲート駆動信号ULがローレベルにされ、リアクトル110に蓄積されたエネルギがダイオード118、リアクトル110を通じてバッテリ20に供給され、バッテリ20が充電される。なお、回生電力は、図2から分かるように、エアポンプ60等の補機負荷31にも供給可能である。以降、降圧時の第1のタイミングと第2のタイミングが繰り返される。
DC/DCコンバータ22は、上述したチョッパ型として動作する他、直結型として動作することもできる。直結型として動作する場合、ゲート駆動信号UHがハイレベルにされるとともにゲート駆動信号ULがローレベルとされ、バッテリ20が放電する際には、1次側1Sからダイオード114を通じて2次側2Sに電流が供給され(例えば、バッテリ20から負荷33に電力が供給され)、バッテリ20が充電される場合には、2次側2Sから上アームスイッチング素子112を通じてバッテリ20に電流が供給される(例えば、モータ14からバッテリ20に回生電力が供給される)。
ECU24は、通信線140(図1等)を介して、モータ14、インバータ16、FCユニット18、補機負荷31、バッテリ20及びDC/DCコンバータ22等を制御する。当該制御に際しては、メモリ(ROM)に格納されたプログラムを実行し、また、セル電圧モニタ42、流量センサ68、温度センサ72、電圧センサ100、120、126、電流センサ102、124、130、SOCセンサ104等の各種センサの検出値を用いる。
ここでの各種センサには、上記センサに加え、開度センサ150、モータ回転数センサ152及び車速センサ154(図1)が含まれる。開度センサ150は、アクセルペダル156の踏み角度である開度(アクセル開度)θp[度]を検出する。回転数センサ152は、モータ14の回転数Nm[rpm]を検出する。車速センサ154は、FC車両10の車速Vs[km/h]を検出する。さらに、ECU24には、メインスイッチ158(以下「メインSW158」という。)が接続される。メインSW158は、FCユニット18及びバッテリ20からモータ14への電力供給の可否を切り替えるものであり、ユーザにより操作可能なスイッチ(エンジン車両のイグニッションスイッチに対応するスイッチ)である。
ECU24は、マイクロコンピュータを含み、必要に応じて、タイマ、A/D変換器、D/A変換器等の入出力インタフェースを有する。なお、ECU24は、1つのECUのみからなるのではなく、モータ14、FCユニット18、バッテリ20及びDC/DCコンバータ22毎の複数のECUから構成することもできる。
ECU24は、FCスタック40の状態、バッテリ20の状態、及びモータ14の状態の他、各種スイッチ及び各種センサからの入力(負荷要求)に基づき決定したFC車両10全体としてFCシステム12に要求される負荷から、FCスタック40が負担すべき負荷と、バッテリ20が負担すべき負荷と、回生電源(モータ14)が負担すべき負荷の配分(分担)を調停しながら決定し、モータ14、インバータ16、FCユニット18、バッテリ20及びDC/DCコンバータ22に指令を送出する。
次に、ECU24の制御動作について説明する。
図5には、ECU24における基本的な制御(メインルーチン)のフローチャートが示されている。ステップS1において、ECU24は、メインSW158がオンであるかどうかを判定する。メインSW158がオンでない場合(S1:NO)、ステップS1を繰り返す。メインSW158がオンである場合(S1:YES)、ステップS2に進む。ステップS2において、ECU24は、FCシステム12に要求される負荷(システム負荷Psys又はシステム要求負荷Psysという。)[W]を計算する。
ステップS3において、ECU24は、計算されたシステム負荷Psysに基づきFCシステム12のエネルギマネジメントを行う。ここにいうエネルギマネジメントは、FCスタック40の劣化を抑制しつつ、FCシステム12全体の出力の効率(システム効率)を向上することを企図している。
ステップS4において、ECU24は、エネルギマネジメント処理結果に基づき、FCスタック40の周辺機器、すなわち、エアポンプ60、背圧弁64、及びウォータポンプ80の制御(FC発電制御)を行う。さらに、ステップS5において、ECU24は、モータ14のトルク制御を行う。
ステップS6において、ECU24は、メインSW158がオフであるかどうかを判定する。メインSW158がオフでない場合(S6:NO)、ステップS2に戻る。メインSW158がオフである場合(S6:YES)、今回の処理を終了する。
図6には、ステップS2のシステム負荷Psysを計算するフローチャートが示されている。ステップS11において、ECU24は、開度センサ150からアクセルペダル156の開度θpを読み込む。ステップS12において、ECU24は、回転数センサ152からモータ14の回転数Nm[rpm]を読み込む。
ステップS13において、ECU24は、開度θpと回転数Nmに基づいてモータ14の予想消費電力Pm[W]を算出する。具体的には、図7に示す現在のモータ回転数Nm[rpm]とモータ予想消費電力Pm[W]とのマップ(特性)において、開度θp毎に回転数Nmと予想消費電力Pmの関係を記憶しておく。例えば、開度θpがθp1であるとき、特性180を用いる。同様に、開度θpがθp2、θp3、θp4、θp5、θp6であるとき、それぞれ特性182、184、186、188、190を用いる。そして、開度θpに基づいて回転数Nmと予想消費電力Pmとの関係を示す特性を特定した上で、回転数Nmに応じた予想消費電力Pmを特定する。なお、力行側の加速中は、正の値、回生側の減速中は、予想消費電力Pmは負の値、すなわち予想回生電力となる。
ステップS14において、ECU24は、各補機負荷31から現在の動作状況を読み込む。ここでの補機負荷31には、例えば、図2に示すように、エアポンプ60、ウォータポンプ80及びエアコンディショナ90を含む高電圧系の補機や、低電圧バッテリ94、アクセサリ96及びECU24を含む低電圧系の補機が含まれる。例えば、エアポンプ60及びウォータポンプ80であれば、回転数Nap、Nwp[rpm]を読み込む。エアコンディショナ90であれば、その出力設定を読み込む。
ステップS15において、ECU24は、各補機の現在の動作状況に応じて補機の消費電力Pa[W]を算出する。
ステップS16において、ECU24は、モータ14の予想消費電力Pmと補機の消費電力Paの和(仮システム負荷Pm+Pa)を求め、FC車両10全体での予想消費電力、すなわち、システム負荷Psys(Psys=Pm+Pa、Psys←Pm+Paとも表記する。)を算出する。
ステップS17において、ECU24は、ステップS16でシステム負荷Psysを算出する毎に平均システム負荷Psysaveを算出する。平均システム負荷Psysaveは、所定時間、例えば10秒間のシステム負荷Psysの移動平均等として算出する。
上記のように、本実施形態におけるエネルギマネジメントでは、FCスタック40の劣化を抑制しつつ、FCシステム12全体の出力の効率向上を図ることを企図している。
図8は、FCスタック40を構成するFCセルの電圧(セル電圧Vcell)[V]とセルの劣化量Dとの関係の一例を示している。すなわち、図8中の曲線(特性)140は、セル電圧Vcellと劣化量Dとの関係を示す。
図8において、電圧v1(例えば、0.5V)を下回る領域(以下「白金凝集増加領域R1」又は「凝集増加領域R1」という。)では、FCセルに含まれる白金(酸化白金)について還元反応が激しく進行し、白金が過度に凝集する。電圧v1から電圧v2(例えば、0.8V)までは、還元反応が安定的に進行する領域(以下「白金還元安定領域R2」又は「還元安定領域R2」という。)である。
電圧v2から電圧v3(例えば、0.9V)までは、白金について酸化還元反応が進行する領域(以下「白金酸化還元進行領域R3」、又は「酸化還元進行領域R3」という。)である。電圧v3から電圧v4(例えば、0.95V)までは、白金について酸化反応が安定的に進行する領域(以下「白金酸化安定領域R4」又は「酸化安定領域R4」という。)である。電圧v4からOCV(開回路電圧)までは、FCセルに含まれるカーボンの酸化が進行する領域(以下「カーボン酸化進行領域R5」という。)である。
上記のように、図8では、セル電圧Vcellが白金還元安定領域R2又は白金酸化安定領域R4にあれば、FCセルの劣化の進行度合が小さい。一方、セル電圧Vcellが白金凝集増加領域R1、白金酸化還元進行領域R3、又はカーボン酸化進行領域R5にあれば、FCセルの劣化の進行度合が大きい。
なお、図8では、曲線(特性)140を一義的に定まるような表記としているが、実際は、単位時間当たりにおけるセル電圧Vcellの変動量(変動速度Acell)[V/sec]に応じて曲線(特性)140は変化する。
図9は、変動速度Acellが異なる場合の酸化の進行と還元の進行の様子の例を示すサイクリックボルタンメトリ図である。図9において、実線の曲線(特性)170は、変動速度Acellが高い場合を示し、破線の曲線(特性)172は、変動速度Acellが低い場合を示す。図9からわかるように、変動速度Acellに応じて酸化又は還元の進行度合が異なるため、必ずしも各電圧v1〜v4は一義的に特定されない。また、FCセルの個体差によっても各電圧v1〜v4は変化し得る。このため、電圧v1〜v4は、理論値、シミュレーション値又は実測値に誤差分を反映させたものとして設定することが好ましい。
また、FCセルの電流・電圧特性(IV特性)は、一般的な燃料電池セルと同様、図10に「通常」と示すIV特性(通常IV特性ともいう。)162に示すように、セル電圧Vcellが下がるほど、セル電流Icell[A]が増加する。加えて、FCスタック40の発電電圧(FC電圧Vfc)は、セル電圧VcellにFCスタック40内の直列接続数Nfcを乗算したものである。直列接続数Nfcは、FCスタック40内で直列に接続されるFCセルの数であり、以下、単に「セル数」ともいう。
図10の通常IV特性162では、カソードストイキ比(≒酸素濃度)は通常のストイキ比(通常ストイキ比)以上の酸素が豊潤な状態とされているときに得られる特性である。換言すれば酸素濃度は、通常の酸素濃度以上の酸素濃度とされる。なお、カソードストイキ比=カソード電極に供給されるエア流量/発電により消費されたエア流量、で表される。この実施形態において、カソードストイキ比を単にストイキ比ともいう。
酸素が豊潤な状態とは、図11に示すように、カソードストイキ比(≒酸素濃度)を上昇させても、セル電流(単セルの出力する電流)Icellが略一定となり、飽和した状態となる通常ストイキ比以上の領域における酸素を意味する。
水素についても同様である。すなわち、アノードストイキ比(≒水素濃度)=アノード電極に供給される水素流量/発電により消費された水素流量、で表される。
次に、図12のフローチャートを参照して、ステップS4のFC発電制御について説明する。
ステップS21において、ECU24は、バッテリ20の充放電係数αを算出し、算出した充放電係数αをステップS17で算出した平均システム負荷Psysaveに乗算することで目標FC電力Pfctgtを算出する(Pfctgt←Psysave×α)。
ここで、充放電係数αは、SOCセンサ104から入力される現在のSOC値と、図14の特性(マップ)163とに基づいて算出される。図14の特性163は、例えば、実測値、シミュレーション値を用いることができ、ECU24に予め記憶されている。また、ここでは、バッテリ20の目標SOC(目標蓄電量)を50[%]とした場合を例示するが、これに限定されることはない。図14に示すように、SOC値が50[%]よりも小さい充電を要する領域では、FCスタック40の発電を余剰とさせ、その余剰電力がバッテリ20に充電されるように、充放電係数αが「1」よりも大きくなる傾向となっている。一方、SOC値が50[%]よりも大きい充電状態が十分な領域では、FCスタック40の発電を不足させ、その不足電力を補うようにバッテリ20が放電するように、充放電係数αが「1」よりも小さくなる傾向となっている。
なお、以下の説明の理解の便宜のために、ここで、充放電係数αはα=1であるものとして説明する(Pfctgt=Psysave)。
次いで、ステップS22において、ECU24は、ステップS21で算出した目標FC電力Pfctgtが閾値電力Pthp以上であるかどうかを判定する(Pfctgt≧Pthp)。
ここで、閾値電力Pthpは、「触媒が劣化しないと判断されるセル電圧Vcell(Vcell=v2=0.8V、切替電圧、所定電圧)」と、「FCスタック40を構成する単セル数Nfc」と、「FCスタック40の通常のIV特性162(図10参照)においてセル電圧を0.8Vとした場合における電流値Icellp」とを乗算することで与えられる次の(1)式に示す固定値である。なお、図10において、目標FC電力Pfctgtの軸は線形ではない点に留意する。
Pthp=0.8[V]×Nfc×Icellp (1)
目標FC電力Pfctgtが閾値電力Pthp以上である場合には(ステップS22:YES)、ステップS23において、目標FC電力Pfctgtを得るべく、電圧可変・電流可変制御(モードA制御)を実行する。
このモードA制御は、主として、目標FC電力Pfctgtが相対的に高いときに用いられるものであり、目標酸素濃度Cotgtを通常(酸素を豊潤な状態を含む。)に維持した状態で、目標FC電圧Vfctgtを調整することによりFC電流Ifcを制御する。
すなわち、図13に示すように、目標FC電力Pfctgtが閾値電力Pthp以上で実行されるモードA制御では、FCスタック40の通常IV特性162(図10で示したものと同じ。)を用いる。モードA制御では、目標FC電力Pfctgtに応じて目標FC電流Ifctgtを算出し、さらに目標FC電流Ifctgtに対応する目標FC電圧Vfctgtを算出する。そして、FC電圧Vfcが目標FC電圧Vfctgtとなるように、ECU24は、DC/DCコンバータ22を制御する。すなわち、2次電圧V2が目標FC電圧Vfctgtとなるように1次電圧V1をDC/DCコンバータ22により昇圧することで、FC電圧Vfcを制御してFC電流Ifcを制御する。
以上のようなモードA制御によれば、目標FC電力Pfctgtが閾値電力Pthp以上の高負荷であっても、目標FC電力Pfctgtに応じて2次電圧V2(FC電圧Vfc)を、通常IV特性162に沿うようにDC/DCコンバータ22で変化させることで、基本的に、システム負荷PsysをFC電力Pfcにより賄うことができる。
一方、ステップS22の判定において、目標FC電力Pfctgtが閾値電力Pthp未満である場合には(ステップS22:NO)、ステップS24において、ステップS24で算出した目標FC電力Pfctgtが閾値電力Pthq未満(Pfctgt<Pthq)であるか否かを判定する。ここで、閾値電力Pthqを、例えば、セル電圧VcellをVcell=v3=0.9[V]に対応して決定する。閾値電力Pthqは、閾値電力Pthpより低い値に設定される(Pthq<Pthp。図13参照)。
ステップS24の判定が否定的となる場合、すなわち、目標FC電力Pfctgtが閾値電力Pthp未満であって、且つ閾値電力Pthq以上である場合には(ステップS24:NO、Pthq≦Pfctgt<Pthp)、ステップS25にて、目標FC電力Pfctgt[W]が第1所定負荷値PL1[W]以上で、且つこれより大きい第2所定負荷値PL2[W]未満の値であるか否かが判定される。
ここで、第1所定負荷値PL1は、図13に示すように、通常ストイキ比上(通常IV特性162上)で実現される電圧v2と電圧v3との間の酸化還元領域(R3)内の電圧ve[V]での閾値電力Pthr(=第1所定負荷値PL1)とされ、第2所定負荷値PL2は、通常ストイキ比(通常IV特性162上)で実現される電圧v2(ここでは、v2=0.8V)での閾値電力Pthp(=第2所定負荷値PL2)とされる。
今回算出した目標FC電力Pfctgt[W]が第1所定負荷値PL1[W]以上で、且つこれより大きい第2所定負荷値PL2[W]未満の値である場合には(ステップS25:YES)、ステップS26において、モードD制御(第2制御モード:電圧固定・ストイキ比通常・電流固定制御)が実行される。このモードD制御は、主として、平均システム負荷Psysaveが相対的に低いときに用いられるものであり、目標セル電圧Vcelltgt(=目標FC電圧Vfctgt/セル数Nfc)を、酸化還元進行領域R3よりも低い電圧以下で設定された基準電圧{本実施形態では、電圧v2(=0.8V)}に固定する、すなわち、FC電圧VfcをDC/DCコンバータ22により酸化還元進行電圧範囲(酸化還元進行領域R3)外の電圧v2(=0.8V)×Nfcに固定し(Vfc=v2×Nfcの一定値に固定。)、通常ストイキ比で発電させる。モードD制御での発電電力の余剰分は、バッテリ20に充電する。
その一方、ステップS25の判定が否定的である場合、すなわち、今回算出した目標FC電力Pfctgt[W]が第1所定負荷値PL1[W]未満で、且つ閾値電力Pthq以上である場合には、ステップS27において、バッテリ20のSOC値が、所定値、例えば、50[%](目標SOC値)未満であるか否かが判定される。
バッテリ20のSOC値が所定値未満であって、ステップS27の判定が肯定的である場合、上述したステップS26でのモードD制御が実行される。
その一方、バッテリ20のSOC値が所定値を上回る値であって、ステップS27の判定が否定的である場合、ステップS28でのモードB制御(第1制御モード:電圧固定・ストイキ比可変電流可変制御)が実行される。
このモードB制御は、主として、平均システム負荷Psysaveが相対的に中くらいのときに用いられるものであり、目標セル電圧Vcelltgt(=目標FC電圧Vfctgt/セル数Nfc)を、酸化還元進行領域R3よりも低い電圧以下で設定された基準電圧{本実施形態では、電圧v2(=0.8V)}に固定する、すなわちFC電圧VfcをDC/DCコンバータ22によりv2×Nfcに固定するとともに、目標酸素濃度Cotgtを可変とすることにより、FC電流Ifcを可変とする。
すなわち、図13に示すように、モードB制御では、閾値電力Pthq〜Pthrの範囲において、セル電圧Vcellを一定(Vcell=v2)に保った状態で目標酸素濃度Cotgtを下げていくことで酸素濃度Coを下げる。
図11に示したように、カソードストイキ比(≒酸素濃度Co)が低下するとセル電流Icell(FC電流Ifc)も低下する。このため、セル電圧Vcellを一定に保った状態(Vcell=v2=0.8V)で目標酸素濃度Cotgtを増減させることで、セル電流Icell(FC電流Ifc)及びFC電力Pfcを制御することが可能となる。なお、FC電力Pfcの不足分は、バッテリ20からアシストする。
この場合、ECU24は、DC/DCコンバータ22の昇圧率を調整することにより、酸化還元進行領域R3よりも低い電圧以下で設定された基準電圧{本実施形態では、電圧v2(=0.8V)}に目標FC電圧Vfctgtを固定し、さらに、目標FC電力Pfctgtに対応する目標FC電流Ifctgtを算出する。
また、目標FC電圧Vfctgtが基準電圧であることを前提として、目標FC電流Ifctgtに対応する目標酸素濃度Cotgtを算出する(図11及び図15参照)。なお、図15は、FC電圧Vfcが基準電圧であるときの目標FC電流Ifctgtと目標酸素濃度Cotgtとの関係を示す。
ここで、ECU24は、目標酸素濃度Cotgtに応じて各部への指令値を算出及び送信する。ここで算出される指令値には、エアポンプ60の回転数(以下「エアポンプ回転数Nap」又は「回転数Nap」という。)、ウォータポンプ80の回転数(以下「ウォータポンプ回転数Nwp」又は「回転数Nwp」という。)、及び背圧弁64の開度(以下「背圧弁開度θbp」又は「開度θbp」という。)が含まれる。
すなわち、図16及び図17に示すように、目標酸素濃度Cotgtに応じて目標エアポンプ回転数Naptgt、目標ウォータポンプ回転数Nwptgt及び目標背圧弁開度θbptgtが設定される。
以上のようにして、ステップS28のモードB制御が実行される。
再び、図12のフローチャートにもどり、上記のステップS24の判定が肯定的であるとき、すなわち、目標FC電力Pfctgtが閾値電力Pthq未満である場合には、ステップS29において、バッテリ20のSOC値が、所定値、例えば、50[%](目標SOC値)未満であるか否かが判定される。
バッテリ20のSOC値が所定値未満であって、ステップS27の判定が肯定的である場合、上述したステップS26でのモードD制御が実行される。
その一方、バッテリ20のSOC値が所定値を上回る値であって、ステップS29の判定が否定的である場合、ステップS30でのモードC制御が実行される。
図13に示すように、モードC制御は、主として、FC目標電力Pfctgtが相対的に最も低いときに用いられるものであり、目標セル電圧Vcelltgt(=目標FC電圧Vfctgt/セル数)を、酸化還元進行領域R3外の電圧{本実施形態では、電圧v3(=0.9V)}に固定し、FC電流Ifcを可変とする。FC電力Pfcの不足分は、バッテリ20からアシストし、FC電力Pfcの余剰分は、バッテリ20に充電する。
モードC制御では、図13に示すように、セル電圧Vcellを一定(Vcell=v3)に保った状態で目標酸素濃度Cotgtを下げていくことで酸素濃度Coを下げる。
図11に示したように、カソードストイキ比(≒酸素濃度Co)が低下するとセル電流Icell(FC電流Ifc)も低下する。このため、セル電圧Vcellを一定に保った状態(Vcell=v3=0.9V)で目標酸素濃度Cotgtを増減させることで、セル電流Icell(FC電流Ifc)及びFC電力Pfcを制御することが可能となる。なお、FC電力Pfcの不足分は、バッテリ20からアシストする。
ステップS28のモードB及びステップS30のモードCのストイキ比可変処理の実行中、ステップS31において、ECU24は、FCスタック40による発電が安定しているか否かを判定する。当該判定として、ECU24は、セル電圧モニタ42から入力される最低セル電圧が、平均セル電圧から所定電圧を減算した電圧よりも低い場合{最低セル電圧<(平均セル電圧−所定電圧)}、FCスタック40の発電が不安定であると判定する。なお、前記所定電圧は、例えば、実験値、シミュレーション値等を用いることができる。
発電が安定している場合(S31:YES)、今回の処理を終える。発電が安定していない場合(S31:NO)、ステップS32において、ECU24は、目標酸素濃度Cotgtを1段増加させる(通常の濃度に近づける)。具体的には、エアポンプ60の回転数Napの増加及び背圧弁64の開度θbpの減少の少なくとも一方を1段階行う。
次いで、ステップS33において、ECU24は、目標酸素濃度Cotgtが通常のIV特性における目標酸素濃度(通常酸素濃度Conml)未満であるか否かを判定する。目標酸素濃度Cotgtが通常酸素濃度Conml未満である場合(S33:YES)、ステップS31に戻る。目標酸素濃度Cotgtが通常酸素濃度Conml未満でない場合(S33:NO)、ステップS34において、ECU24は、FCユニット18を停止する。すなわち、ECU24は、FCスタック40への水素及び空気の供給を停止し、FCスタック40の発電を停止する。そして、ECU24は、図示しない警告ランプを点灯させ、運転者にFCスタック40が異常であることを通知する。なお、ECU24は、バッテリ20からモータ14に電力を供給し、FC車両10の走行は継続させる。
以上のようにして、ステップS4のFC発電制御が実行される。
次に、図18には、ステップS5の処理に係るモータ14のトルク制御のフローチャートが示されている。ステップS41において、ECU24は、車速センサ154から車速Vsを読み込む。ステップS42において、ECU24は、開度センサ150からアクセルペダル156の開度θpを読み込む。
ステップS43において、ECU24は、車速Vsと開度θpに基づいてモータ14の仮目標トルクTtgt_p[N・m]を算出する。具体的には、図示しない記憶手段に車速Vsと開度θpと仮目標トルクTtgt_pを関連付けたマップを記憶しておき、当該マップと、車速Vs及び開度θpとに基づいて仮目標トルクTtgt_pを算出する。
ステップS44において、ECU24は、FCシステム12からモータ14に供給可能な電力の限界値(限界供給電力Ps_lim)[W]に等しいモータ14の限界出力(モータ限界出力Pm_lim)[W]を算出する。具体的には、限界供給電力Ps_lim及びモータ限界出力Pm_limは、FCスタック40からのFC電力Pfcとバッテリ20から供給可能な電力の限界値(限界出力Pbat_lim)[W]との和から補機の消費電力Paを引いたものである(Pm_lim=Ps_lim←Pfc+Pbat_lim−Pa)。
ステップS45において、ECU24は、モータ14のトルク制限値Tlim[N・m]を算出する。具体的には、モータ限界出力Pm_limを車速Vsで除したものをトルク制限値Tlimとする(Tlim←Pm_lim/Vs)。
ステップS46において、ECU24は、目標トルクTtgt[N・m]を算出する。具体的には、ECU24は、仮目標トルクTtgt_pに対してトルク制限値Tlimによる制限を加えたものを目標トルクTtgtとする。例えば、仮目標トルクTtgt_pがトルク制限値Tlim以下である場合(Ttgt_p≦Tlim)、仮目標トルクTtgt_pをそのまま目標トルクTtgtとする(Ttgt←Ttgt_p)。一方、仮目標トルクTtgt_pがトルク制限値Tlimを超える場合(Ttgt_p>Tlim)、トルク制限値Tlimを目標トルクTtgtとする(Ttgt←Tlim)。そして、算出した目標トルクTtgtを用いてモータ14を制御する。
図19には、上述した電力供給モードに係わるモードA制御、モードB制御、モードC制御、モードD制御と、FC電力Pfc[W]と、FCスタック40の発電効率[%]との関係が示されている。図19からわかるように、モードA制御では、基本的に、平均システム負荷PsysaveをFC電力Pfcで賄いつつ、FCスタック40の発電効率を高く維持することができる。v2電圧固定ストイキ比通常制御のモードD制御では、基本的に、平均システム負荷PsysaveをFC電力Pfcで賄うことで、バッテリ20の充放電の頻度を抑え、FCシステム12全体での出力効率を高く維持することが可能である。v2電圧固定低酸素ストイキ比可変制御のモードB制御では、基本的に、平均システム負荷PsysaveをFC電力Pfcで賄うことで、バッテリ20の充放電の頻度を抑え、FCシステム12全体での出力効率をモードD制御に準じて高くすることが可能である。モードC制御では、FC電力Pfcとバッテリ電力Pbatにより平均システム負荷Psysaveを賄う。
なお、図12を参照して説明したFC発電制御(S4)の形態は、平均システム負荷PsysaveにFC電力Pfcを追従させつつ、バッテリ20から何割か固定出力しているような燃料電池システムにも適用可能である。
次に、上述したモードB制御(v2固定、低酸素ストイキ比可変制御)とモードD制御(v2固定、ストイキ比通常制御)を画定する閾値電力Pthrの決定の仕方について、図20A、図20B、図20Cを参照して説明する。
図20Aは、低酸素ストイキ比可変のv2固定発電時での発電量[W]に対する損失Lbの特性を示し、図20Bは、通常ストイキ比のv2固定発電時での発電量[W]に対する損失Laの特性を示し、図20Cは、損失Lbと損失Laを発電量[W]に対して重ねて描いた損失[W]の特性を示している。
図20Aに示す損失Lbは、通常IV特性162上で発生するFC損失から低酸素ストイキ比可変のv2固定発電で発生する損失を差し引いた損失であり、酸素濃度Coが少なくなるほど、損失Lbが大きくなる。
図20Bに示す損失Laは、通常ストイキ比のv2固定発電で発生する損失である余剰分をバッテリ20に充電することによる損失及びその際のDC/DCコンバータ22の損失を加算した損失であり、発電量[W]が大きくなるほど小さくなる。
図20Cに示すように、最大値の異なる損失Lbと損失Laは、発電量[W]が、上述した第1所定負荷値PL1に相当する閾値電力Pthrで交差する。そこで、発電量(平均システム負荷Psysave[W])が第1所定負荷値PL1(Pthr)[W]以上で、且つこれより大きい第2所定負荷値PL2(Pthp)[W]未満の値である場合には、低酸素ストイキ比可変のv2固定発電で実行されるモードB制御を停止し、FC電圧VfcをDC/DCコンバータ22によりv2×Nfcに固定し(Vfc=v2×Nfc)、通常ストイキ比のv2固定発電でのモードD制御を実行させることで、FCスタック40の効率を向上させることができる。すなわち、損失[W]を少なくすることができる。
図21は、クルーズ走行状態等の一定負荷が続く状態でのモードD制御が成立する場合のタイムチャートを示している。なお、図21中、SOC値{図中、所定値は、50[%]の目標SOC値)より下に描いたタイムチャートにおいて、太い破線で示したものは比較例による変化特性を示し、太い実線で示したものは実施形態よる変化特性を示している。
時点t1までモードA制御が実行され、時点t1から時点t2までモードB制御(v2=0.8Vでの低酸素ストイキ可変制御)が実行され、時点t2において、ステップS25の判定条件が成立(肯定的)となったので、固定電圧低酸素ストイキ可変フラグFsがオンからオフとされ、時点t2〜時点t3の間で固定電圧ストイキ比通常制御(モードD制御)が実行される。時点t3において、ステップS25の判定条件が非成立(否定的)となったので、時点t3以降ではモードB制御が実行される。
[実施形態のまとめ]
以上説明したように、実施形態に係る燃料電池システム12は、触媒を有し、前記触媒で酸素又は水素を反応させることで発電するFCスタック40と、前記酸素及び前記水素の少なくとも一方を、FCスタック40に供給するガス供給手段{燃料ガス供給手段(水素タンク44)、酸化剤ガス供給手段(エアポンプ60)}と、FCスタック40のFC電圧Vfcを調整(可変)するDC/DCコンバータ22(電圧調整手段)と、FCスタック40の出力電力により駆動される負荷33と、を備える。
この燃料電池システム12は、負荷33の平均システム負荷Psysave(負荷の要求電力)を検出するとともに、FCスタック40、前記ガス供給手段、及びDC/DCコンバータ22を制御するECU24(制御手段)を有する。
ECU24は、負荷33の平均システム負荷Psysaveに対応するFCスタック40の電圧が、FCスタック40の酸化還元進行電圧範囲(酸化還元進行領域R3)内に相当するとき、FC電圧VfcをFCスタック40の酸化還元進行電圧範囲(酸化還元進行領域R3)外に設定するとともに、FCスタック40の発電電力が所定電力範囲内(PL1≦Psysave≦PL2)である場合には第2制御モード{FCスタック40のセル電圧Vcellを酸化還元進行電圧範囲外の電圧v2に固定し、酸素又は水素の濃度を所定の濃度範囲(ストイキ比通常制御)に維持するモードD制御}を実行し、FCスタック40の発電電力が前記所定電力範囲外であって小さい場合(Pthq≦Psysave<PL1)には第1制御モード{FCスタック40のセル電圧Vcellを酸化還元進行電圧範囲(酸化還元進行領域R3)外の電圧v2に固定し、酸素又は水素の濃度を要求電力に追従させるように変動させる(低酸素ストイキ比可変制御)モードB制御}を実行するようにしたので、FCスタック40のセル電圧Vcellが酸化還元進行電圧範囲(酸化還元進行領域R3)内となるのを回避することでFCスタック40の劣化を防止しつつ、システム効率の悪化を抑制しシステム効率を向上させることができる。
より具体的説明すると、負荷33の平均システム負荷Psysaveに対応する電圧(平均要求電圧)が、酸化還元進行電圧範囲(酸化還元進行領域R3)内の所定電圧値{第1制御モード(モードB制御)と第2制御モード(モードD制御)で効率が逆転するFCスタック40の切替電圧}ve(図13参照)以下であって、下限値の電圧v2以上である場合には、FCスタック40の発電電圧Vfcを電圧v2に固定してストイキ比通常制御(モードD制御)によりFC電力Pfcが平均システム負荷Psysaveを上回るような制御を行い、余剰電力はバッテリ20に充電する。また、平均システム負荷Psysaveに対応する電圧(平均要求電圧)が、酸化還元進行電圧範囲(酸化還元進行領域R3)内の所定電圧値veを上回る値であって酸化還元進行電圧範囲(酸化還元進行領域R3)の上限値の電圧v3未満の値である場合には、FCスタック40の発電電圧Vfcを電圧v2に固定してストイキ比可変制御(モードB制御)によりFC電力Pfcが平均システム負荷Psysaveに追従する制御を行う。
FCスタック40のFC電力Pfcにより充電され、燃料電池システム12に電力を供給する高電圧バッテリ20(蓄電装置)を備えるとき、ECU24は、例えば、前記第1制御モード(モードB制御)を実行中に、高電圧バッテリ20のSOC値を検出し、検出したSOC値が所定値、例えば50[%]未満の値となった場合には、前記第2制御モード(モードD制御)を実行することで、高電圧バッテリ20のSOC値が過度に低下することを防止できる。
[変形例]
なお、この発明は、上記実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
上記実施形態では、FCシステム12をFC車両10に搭載したが、これに限らず、別の対象に搭載してもよい。例えば、FCシステム12を船舶や航空機等の移動体に用いることもできる。或いは、FCシステム12を家庭用電力システムに適用してもよい。
上記実施形態では、FCスタック40と高電圧バッテリ20を並列に配置し、バッテリ20の手前にDC/DCコンバータ22を配置する構成としたが、これに限らない。例えば、図22に示すように、FCスタック40とバッテリ20を並列に配置し、昇圧式、降圧式又は昇降圧式のDC/DCコンバータ22をFCスタック40の手前に配置する構成であってもよい。あるいは、図23に示すように、FCスタック40とバッテリ20を並列に配置し、FCスタック40の手前にDC/DCコンバータ160を、バッテリ20の手前にDC/DCコンバータ22を配置する構成であってもよい。あるいは、図24に示すように、FCスタック40とバッテリ20を直列に配置し、バッテリ20とモータ14の間にDC/DCコンバータ22を配置する構成であってもよい。
上記実施形態では、ストイキ比を調整する手段又は方法として、目標酸素濃度Cotgtを調整するものを用いたが、これに限らず、目標水素濃度を調整することも可能である。また、目標濃度の代わりに、目標流量又は目標濃度と目標流量の両方を用いることもできる。
上記実施形態では、酸素を含む空気を供給するエアポンプ60を備える構成を例示したが、これに代えて又は加えて、水素を供給する水素ポンプを備える構成としてもよい。
10…燃料電池車両 12…燃料電池システム
14…駆動モータ(負荷) 16…インバータ(負荷)
18…燃料電池ユニット 20…高電圧バッテリ(蓄電装置)
22…DC/DCコンバータ(電圧調整手段)
24…ECU(制御装置) 33…負荷
40…FCスタック 44…水素タンク
60…エアポンプ(負荷) 80…ウォータポンプ(負荷)
90…エアコンディショナ(負荷)

Claims (3)

  1. 触媒を有し、前記触媒で酸素又は水素を反応させることで発電する燃料電池と、
    前記酸素及び前記水素の少なくとも一方を、前記燃料電池に供給するガス供給手段と、
    前記燃料電池の出力電圧を調整する電圧調整手段と、
    前記燃料電池の出力電力により駆動される負荷と、
    を備える燃料電池システムにおいて、
    前記負荷の要求電力を検出するとともに、前記燃料電池、前記ガス供給手段、及び前記電圧調整手段を制御する制御手段を有し、
    前記制御手段は、
    前記電圧調整手段を制御し前記燃料電池の出力電圧を酸化還元進行電圧範囲外の所定電圧値に固定した状態で、前記ガス供給手段を制御し前記燃料電池に供給する前記酸素又は前記水素の濃度を前記負荷の要求電力に追従させるように変動させる第1制御モードと、
    前記電圧調整手段を制御し前記燃料電池の出力電圧を前記所定電圧値に固定した状態で、前記ガス供給手段を制御し前記燃料電池に供給する前記酸素又は前記水素の濃度を所定の濃度範囲に維持する第2制御モードと、
    を実行するものであり、
    前記負荷の要求電力に対応する前記燃料電池の出力電圧が酸化還元進行電圧範囲内の切替電圧以上である場合には前記第1制御モードを実行し、前記切替電圧未満である場合には前記第2制御モードを実行する
    ことを特徴とする燃料電池システム。
  2. 請求項1記載の燃料電池システムにおいて、
    さらに、前記燃料電池の出力電力により充電され、前記燃料電池システムに電力を供給する蓄電装置を備え、
    前記制御手段は、
    前記第1制御モードを実行中に、前記蓄電装置のSOC値を検出し、検出した前記SOC値が所定値未満の値となった場合には、前記第2制御モードを実行する
    ことを特徴とする燃料電池システム。
  3. 請求項1又は2記載の燃料電池システムを搭載した車両。
JP2011135904A 2011-06-20 2011-06-20 燃料電池システム及び該システム搭載車両 Expired - Fee Related JP5675509B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011135904A JP5675509B2 (ja) 2011-06-20 2011-06-20 燃料電池システム及び該システム搭載車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011135904A JP5675509B2 (ja) 2011-06-20 2011-06-20 燃料電池システム及び該システム搭載車両

Publications (2)

Publication Number Publication Date
JP2013004387A true JP2013004387A (ja) 2013-01-07
JP5675509B2 JP5675509B2 (ja) 2015-02-25

Family

ID=47672742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135904A Expired - Fee Related JP5675509B2 (ja) 2011-06-20 2011-06-20 燃料電池システム及び該システム搭載車両

Country Status (1)

Country Link
JP (1) JP5675509B2 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278764A (ja) * 1986-05-28 1987-12-03 Toshiba Corp 燃料電池発電プラント
JPS63181267A (ja) * 1987-01-21 1988-07-26 Toshiba Corp 燃料電池発電装置
JP2005056764A (ja) * 2003-08-06 2005-03-03 Matsushita Electric Ind Co Ltd 電源装置
JP2007005038A (ja) * 2005-06-21 2007-01-11 Toyota Motor Corp 燃料電池システム及び移動体
JP2007128790A (ja) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd 燃料電池の制御方法及びその制御装置
JP2007157544A (ja) * 2005-12-06 2007-06-21 Nissan Motor Co Ltd 燃料電池システム
JP2008218398A (ja) * 2007-02-05 2008-09-18 Toyota Motor Corp 燃料電池システム
JP2008226591A (ja) * 2007-03-12 2008-09-25 Toyota Motor Corp 燃料電池システム
JP2009152131A (ja) * 2007-12-21 2009-07-09 Toyota Motor Corp 燃料電池システム
JP2010157426A (ja) * 2008-12-26 2010-07-15 Toyota Motor Corp 燃料電池システム
JP2010272449A (ja) * 2009-05-25 2010-12-02 Toyota Motor Corp 燃料電池システムおよびその制御方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278764A (ja) * 1986-05-28 1987-12-03 Toshiba Corp 燃料電池発電プラント
JPS63181267A (ja) * 1987-01-21 1988-07-26 Toshiba Corp 燃料電池発電装置
JP2005056764A (ja) * 2003-08-06 2005-03-03 Matsushita Electric Ind Co Ltd 電源装置
JP2007005038A (ja) * 2005-06-21 2007-01-11 Toyota Motor Corp 燃料電池システム及び移動体
JP2007128790A (ja) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd 燃料電池の制御方法及びその制御装置
JP2007157544A (ja) * 2005-12-06 2007-06-21 Nissan Motor Co Ltd 燃料電池システム
JP2008218398A (ja) * 2007-02-05 2008-09-18 Toyota Motor Corp 燃料電池システム
JP2008226591A (ja) * 2007-03-12 2008-09-25 Toyota Motor Corp 燃料電池システム
JP2009152131A (ja) * 2007-12-21 2009-07-09 Toyota Motor Corp 燃料電池システム
JP2010157426A (ja) * 2008-12-26 2010-07-15 Toyota Motor Corp 燃料電池システム
JP2010272449A (ja) * 2009-05-25 2010-12-02 Toyota Motor Corp 燃料電池システムおよびその制御方法

Also Published As

Publication number Publication date
JP5675509B2 (ja) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5456723B2 (ja) 燃料電池システム及び該システム搭載車両
JP5622693B2 (ja) 燃料電池車両
JP5474898B2 (ja) 燃料電池車両
JP5335047B2 (ja) 燃料電池システム
JP5456721B2 (ja) 燃料電池システム
JP5525001B2 (ja) 燃料電池システム
JP5920525B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP4613694B2 (ja) 燃料電池自動車及びその制御方法
US8394517B2 (en) Fuel cell system and control method of the system
CN102991368B (zh) 燃料电池车辆
JP2012185971A (ja) 燃料電池システム
JP2013208001A (ja) 燃料電池車両
JP2012252998A (ja) 燃料電池システム
JP5825839B2 (ja) 燃料電池車両
JP5631826B2 (ja) 燃料電池システム
JP5651528B2 (ja) 燃料電池システム
JP2013062097A (ja) 燃料電池システム
JP5341955B2 (ja) 燃料電池車両
JP5675509B2 (ja) 燃料電池システム及び該システム搭載車両
JP5736282B2 (ja) 燃料電池車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141224

R150 Certificate of patent or registration of utility model

Ref document number: 5675509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees