JP2012523270A - 中空マイクロニードルアレイを製造する方法並びにそれに由来する製品及びその使用法 - Google Patents

中空マイクロニードルアレイを製造する方法並びにそれに由来する製品及びその使用法 Download PDF

Info

Publication number
JP2012523270A
JP2012523270A JP2012504693A JP2012504693A JP2012523270A JP 2012523270 A JP2012523270 A JP 2012523270A JP 2012504693 A JP2012504693 A JP 2012504693A JP 2012504693 A JP2012504693 A JP 2012504693A JP 2012523270 A JP2012523270 A JP 2012523270A
Authority
JP
Japan
Prior art keywords
mold
recess
hollow microneedle
recesses
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012504693A
Other languages
English (en)
Inventor
イー.ファーガソン デニス
レンドン スタンリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of JP2012523270A publication Critical patent/JP2012523270A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/30Mounting, exchanging or centering
    • B29C33/301Modular mould systems [MMS], i.e. moulds built up by stacking mould elements, e.g. plates, blocks, rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • A61B2010/008Interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/003Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a lumen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C2045/0094Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor injection moulding of small-sized articles, e.g. microarticles, ultra thin articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/0088Multi-face stack moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7544Injection needles, syringes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles

Abstract

中空マイクロニードルアレイを製造する方法を説明する。また、この方法に由来する製品、並びに対象への流体の供給及び/又は対象からの体液の抽出などの用途における製品の使用法も説明する。

Description

本開示は、広くは中空マイクロニードルアレイを製造する方法及びそれに由来する製品に関する。
たとえ認可された化学的促進剤を使用しても、実証された治癒的価値のあるほんの少数の分子が皮膚を介して移送されることができる。皮膚を介した分子移送の主な障害は、角質層(皮膚の最も外側の層)である。
比較的小型の構造体のアレイを含む装置は、マイクロニードル、マイクロニードルアレイ、マイクロアレイ、マイクロピンなどと呼ばれることがある。これらの構造体は、皮膚及びその他の表面を介した治療薬及びその他の薬物の供給に関連した使用に関して開示されている。これらの医療装置は角質層を貫通し、皮膚の最も外側の層に複数の微視的なスリット又は穴を形成して、皮膚を介した治療薬の経皮的な供給を促進する。装置は通常、治療薬及びその他の薬物が角質層を通過してその下の組織内に至ることができるようにその層を貫通させるべく、皮膚に対して押し付けられるか又は擦過される。
実施形態によっては、マイクロニードルアレイは、マイクロニードルの中を通って延伸する毛管又は通路を有する構造体を含む。この毛管又は通路は、マイクロニードルが対象の皮膚を介して流体治療薬を供給するか、又は皮膚を介して対象から流体を抽出することを可能にする。
マイクロニードル構造体は小さいので、マイクロニードル内に形成された通路(又は毛管)は大きさに限界がある。その結果、マイクロニードル及びマイクロニードルの通路は製造が困難であり得る。更に、格段に大きな巨視的な成形構造体に固定されマイクロ複製された別個の機構を伴う微細な構造的細部を有するマイクロニードルを高分子成形プロセスで作製することは困難であり得る。本開示の発明者は、既知のマイクロニードルの成形プロセスは全て特定の欠点を有しており、これら欠点は主として、成形過程での空気排出に伴う本来的な限界を前提とした、商業規模での極めて精密な機構の複製を達成する能力不足に関連していることを究明した。
マイクロニードル内の通路の位置を正確に決定し配置する必要がある。本開示の発明者は、高忠実度(即ち原型の凹部形状とほぼ同一の形状の製品をもたらす複製)、低サイクル時間、高容量(即ち型を繰り返し使用できる)、かつ汚染のないネットシェイプ中空マイクロニードルアレイを製造する方法が必要であると認識している。
一態様において、本開示は、(a)複数のプレート及び複数の凹部を備える積層ラミネート型を備える第1の型半体を用意する工程であって、プレートの各々が、(i)互いに反対側の第1及び第2の主表面と、(ii)第1及び第2の主表面を接続する第1の型表面と、を有し、複数の凹部が少なくとも第1の型表面に対して開口しかつ凹部表面を含み、凹部表面が対応する各プレートの第1の主表面及び対応する各プレートの第1の型表面と交差する工程を備える、中空マイクロニードルアレイを製造する方法を提供する。この方法は、(b)複数の凸部を備える第2の型表面を備える第2の型半体を用意する工程と、(c)少なくとも第1の型表面又は第2の型表面を高分子材料と接触させる工程と、(d)複数の凸部を複数の凹部の中に挿入する工程と、を更に備える。
一実施形態では、凸部の先端部が凹部の少なくとも1つの面に接触する、中空マイクロニードルアレイを製造する方法が開示されている。
別の実施形態では、複数のプレート間のサブマイクロメートルの空隙部によって複数の凹部の脱気を行う、中空マイクロニードルアレイを製造する方法が開示されている。
別の実施形態では、凹部表面が第1の材料を含み、凸部が第2の材料を含み、第1の材料が、第2の材料の比強度よりも少なくとも0.5GPa(ギガパスカル)高い比強度を有する、中空マイクロニードルアレイを製造する方法が開示されている。
別の態様では、本明細書内で説明する方法のいずれかによって製造された中空マイクロニードルアレイが開示されている。例えば、中空マイクロニードルアレイは、(a)複数のプレート及び複数の凹部を備える積層ラミネート型を備える第1の型半体を用意する工程であって、プレートの各々が、(i)互いに反対側の第1及び第2の主表面と、(ii)第1及び第2の主表面を接続する第1の型表面と、を有し、複数の凹部が少なくとも第1の型表面に対して開口しかつ凹部表面を含み、凹部表面が対応する各プレートの第1の主表面及び対応する各プレートの第1の型表面と交差する、工程と、(b)複数の凸部を備える第2の型表面を備える第2の型半体を用意する工程と、(c)少なくとも第1の型表面又は第2の型表面を高分子材料と接触させる工程と、(d)複数の凸部を複数の凹部の中に挿入する工程と、によって製造できる。
更に別の態様において、流体の注入及び/又は抽出のための中空マイクロニードルアレイの使用法が説明されている。
本開示の特徴及び利点は、発明を実施するための形態、及び添付の特許請求の範囲を考慮することで理解される。本開示のこれら並びに他の特徴及び利点は、本開示の様々な例示的な実施形態に関連して以下で説明され得る。本開示の上記の「課題を解決するための手段」は、本開示の各開示実施形態又は全ての実施を説明しようとするものではない。以下の図面及び発明を実施するための形態は、実例となる実施形態をより具体的に例示するものである。
本開示の1つの例示的な実施形態による第1の型半体10の概略側面図。 本開示の1つの例示的な実施形態による積層ラミネート型100の等角図。 本開示の1つの例示的な実施形態による積層ラミネート型160の等角図。 本開示の1つの例示的な実施形態による第2の型半体200の等角図。 本開示の1つの例示的な実施形態による凸部300の等角図。 本開示の1つの例示的な実施形態による凸部305の等角図。 本開示の1つの例示的な実施形態による型アセンブリー400の概略側面図。 本開示の1つの例示的な実施形態による締付け型アセンブリー400の拡大図。 本開示の1つの例示的な実施形態による凹部520の中に配置された凸部550の等角図。 本開示の1つの例示的な実施形態による図5Aの切断線5Bで切り取った断面。 図5A及び5Bの凹部及び凸部から得られた中空マイクロニードル501の等角図。 本開示の1つの例示的な実施形態による型600の概略側面図。 本開示の1つの例示的な実施形態による型700の概略側面図。 本開示の1つの例示的な実施形態による凹部820の中に配置された凸部850の等角図。 本開示の1つの例示的な実施形態による先端部880で切り取った図8Aの断面平面。 図8A及び8Bの凹部及び凸部から得られた中空マイクロニードル801の等角図。 本開示の1つの例示的な実施形態による凹部920の中に配置された凸部950の等角上面図。 本開示の1つの例示的な実施形態による先端部980で切り取った図9Aの断面平面。 図9A及び9Bの凹部及び凸部から得られた中空マイクロニードル901の等角図。 実施例6による中空マイクロニードルアレイ1000の上面からの写真。 中空マイクロニードルアレイ1000からの中空マイクロニードル1010の拡大図。 実施例6による中空マイクロニードルの側面からの写真。 図10Cの中空マイクロニードルの先端の拡大図。 実施例12からの中空マイクロニードルアレイ1200の側面からの写真。 図11Aからの2つの中空マイクロニードルの拡大図。
上で特定した図面は、本開示のいくつかの実施形態を示しているが、考察部分で述べているように、他の実施形態も考えられる。いかなる場合も、本開示は、本発明を限定するのではなく代表して提示するものである。本発明の原理の範囲及び趣旨に含まれる多数の他の修正形態及び実施形態が、当業者によって考案され得ることを理解されたい。図面は縮尺通りに描かれていない場合がある。
有利には、本開示の成形工程は、結果として得られる成形品の成形形状を確実に再現し、一定の高さのマイクロニードルを生成し、サブマイクロメートルの先端直径を有するマイクロニードルを生成し、経済的な方法で中空マイクロニードルアレイを生成する能力を提供することができる。
本願において、結果として得られる成形品は中空マイクロニードルアレイと呼ばれ、その使用においては治療用装置と呼ばれるが、本開示は不当に中空マイクロニードルアレイに限定されるべきではない。本開示の方法及び手順に従って、例えば円筒状の柱、マイクロ電子デバイス、電気コネクタ、医療用マイクロ流体素子、燃料噴霧器及び光電子デバイスなど、その他のミクロ構造品が想到される。
図1Aは、本開示の第1の型半体の一実施形態の側面図を示している。第1の型半体10は、フレーム16間に挿入された積層ラミネート型12を備えている。第1の型表面14は構造面を有し、結果として得られる成形品(例えば中空マイクロニードルアレイ)の第1の主表面(患者又は対象に面する側)のためのネガ型(negative mold)である。各プレートが隣接したプレートと密着するように、フレーム16を使用して積層ラミネート型12のプレートを一緒に固定することができる。プレートは、例えば型締め、接着又はくさび止め(wedge blocking)を含む物理的又は化学的手段によって一体的に密着して保持されることで積層ラミネート型12が形成され、フレーム16内に保持される。例えば、フレームは、積層ラミネートのプレートを固定するためのクロスバー又は積層ラミネートのプレートを基底部に固定するための穴部を備えていてもよい。
積層ラミネート型は、本開示の積層ラミネート型の代表的な一実施形態を示す図1Bを参照することによってよりよく理解できる。積層ラミネート型100は、相互に接触したプレート110a、110b、110c、...及び110e(集合的に複数のプレート110)を備えている。各プレートは、第1の主表面及び第2の主表面を備えている。各プレートの第1の主表面及び第2の主表面は一般的に平面的であるものの、このことは、これらが実質的に相互に適合している限り必要条件ではない。図1Bに示すとおり、プレート110aは、第1の主表面120a及び第2の主表面130aを備えている。複数のプレート110は、プレート110aの第2の主表面130aがプレート110bの第1の主表面120bに隣接するように、相互に隣接して積層されている。複数のプレート110は第1の型表面140を備えており、第1の型表面140は各プレートの第1の主表面と第2の主表面とを接続している。
一実施形態において、複数のプレート内の各プレートの第1の主表面及び第2の主表面は、図1Bに示すように相互に並行である。別の実施形態では、複数のプレート内のプレートの第1の主表面及び第2の主表面は相互に並行ではなく、その代わりに水平方向、垂直方向のどちらか、又はその両方の方向にテーパー形状をしている。この場合、隣接するプレートは、あるプレートの第2の主表面と隣接するプレートの第1の主表面との間の実質的な適合を維持するように、反対方向にテーパー形状をしている。
図1Bに示すように、複数のプレート110の各々の第1の型表面140は、個々の型表面の各々からなる連続した切れ目のない表面を呈するように、慎重に形成されるべきである。
積層ラミネート型内の凹部の代表的な形成は以下のとおりである。複数のプレート110は、複数の凹部150aを備えている。各凹部150aは、頂点153で接する第1の平面的な凹部表面151及び第2の平面的な凹部表面152を含むV字形溝部を備えている。図1Bに示すように、凹部150aは、少なくとも第1の型表面140に対して開口している。第1の平面的な凹部151及び第2の平面的な凹部152は、対応する各プレートの第1の主表面(例えば120a)及び対応する各プレートの第1の型表面(例えば140)と交差する。
結果として得られる凹部形状は、隣接するプレートの第1の主表面と第2の主表面との間の密着によって画定される。例えば図1Cでは、積層ラミネート型160は、プレート111eの第1の主表面121上の凹部150b及びプレート111dの第2の主表面131上の凹部155bによって画定された正四角錐形状の凹部を備えている。
凹部の表面は、図1B及び1Cに示すような平面的又は曲線状であることができる。凹部は、例えば角錐、半角錐、段付き角錐、角柱、円錐、半円錐、段付き円錐、錐台、レギュラーベベル、ショートベベル若しくはトゥルー(true)ショートベベルの皮下注射針形状、三裂形状、オベリスク、面取り円柱又はこれらの組み合わせを含む任意の形状を有することができる。
凹部の形状及び表面には特に制限はないが、凹部を設計する際には以下を考慮することができる。第1に、凹部の形状は凹部の機械加工のし易さによって制限される場合がある。第2に、凹部は、結果として得られる成形品の取り出しを容易にするように設計してもよい。例えば、結果として得られる成形品の型からの適切な取り出しを確実にするために、少なくとも0.5度よりも大きな適切な抜き勾配を凹部の形状設計に織り込んでもよい。このことは、設計がほぼ垂直な壁部を有する凹部を含む場合に特に重要である。第3に、流体を供給又は抽出するうえで効果的であり、かつ患者に優しい成形品を得られるように、凹部を設計してもよい。例えば、中空マイクロニードルアレイは、対象の皮膚を貫通するように十分丈夫でなければならない。中空マイクロニードルアレイに使用される高分子材料の強度が、凹部の勾配を必然的に決定する場合がある。例えば、勾配が大きいほど中空マイクロニードルの強度が高くなるであろう。しかし、この勾配の増加が患者(又は対象)の皮膚により大きな外傷をもたらすことがある。したがって、中空マイクロニードルの先端が角質層の表面を破壊するために必要な力が極微となる鋭利な先端及び小さな表面積を有する中空マイクロニードルを提供することが重要である場合がある。
本開示の一実施形態において、第1の型半体は、鋼鉄、合金鋼、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、銅、銅合金、ベリリウム銅、ベリリウム銅合金又はこれらの組み合わせのうちの少なくとも1つからなる型材料を含んでいる。
凹部は、例えばフライス加工、切削、研削、化学的エッチング、電極放電機械加工、電気化学エッチング、レーザーアブレーション、集束イオンビーム機械加工又はこれらの組み合わせを使用して機械加工することができる。例えばスクエアエンド又はラウンドエンドのフライス盤用カッター、好適なテーパー形状の切断砥石又は研削砥石などを含むフライス加工工具を使用して凹部を切削できる。一実施形態において、凹部は、銅電極を使用したプランジャー電極放電機械加工によって形成されている。
凹部の寸法は、図1Bを参照して以下のように定義される。凹部の長さ170は、第1の主表面120aに沿って頂点153から第1の型表面140までの距離として定義される。凹部基底部の幅172は、第1の型表面140及び対応するプレートの主表面(例えば120a)に沿った凹部の距離として定義される。凹部基底部の奥行174は、第1の型表面140に沿った、それぞれのプレートの主表面に垂直な凹部の距離として定義される。図1Cのように、実施形態によっては、凹部基底部の奥行は隣接したプレート上の凹部基底部の奥行の和である。
一実施形態では、凹部はテーパー形状をしており、少なくとも0.25対1、1.5対1、3対1、5対1、10対1、15対1、20対1、又は更には30対1の凹部アスペクト比(凹部の長さ対凹部基底部の幅)を有する。一実施形態では、凹部は25〜3000μm(マイクロメートル)の凹部長さを有する。実施形態によっては、凹部の長さは少なくとも20、25、30、40、50、75、100、200、400、500、800、1000、1500、2000、又は更には2500μmであり、最大3000、2800、2500、2000、1500、1000、800、500、又は更には250μmである。一実施形態では、凹部は25〜900μmの凹部基底部の幅を有する。実施形態によっては、凹部基底部の幅は少なくとも20、25、30、40、50、100、150、200、300、500、又は更には700μmであり、最大900、800、700、600、500、250、100、又は更には50μmである。一実施形態では、凹部は25〜500μmの凹部基底部の奥行を有する。実施形態によっては、凹部基底部の奥行は少なくとも20、25、30、40、50、100、150、200、300、又は更には400μmであり、最大500、400、300、200、100、又は更には50μmである。但し、より大きな凹部及びより小さな凹部もまた本開示の範囲内である。
第1の型半体上の複数の凹部には、特に制限がない。しかし、第1の型半体は、一般的に1〜100個の凹部を備えている。実施形態によっては、複数の凹部は、少なくとも1、2、4、5、8、10、12、15、20、50、又は更には75個の凹部を備えており、最大100、75、50、30、28、24、20、15、12、10、8又は6個の凹部を備えている。凹部は、25〜5000μmの中心間距離を有することができる。実施形態によっては、凹部は、少なくとも20、25、50、100、150、300、500、1000、2000、3000、又は更には4000μmであり、最大5000、4000、3000、2000、1000、750、500、250、又は更には100μmである中心間距離を有している。凹部は、第1の型半体の表面上で整列していてもよく、ランダムであってもよい。
凹部の間隔は、積層ラミネート型内のプレートの厚さ、凹部を伴わないプレートの介在、及び第1の型表面内の凹部基底部の幅によって影響を受け得る。したがって、凹部のアレイは成形間で調節でき、アレイの周辺領域は積層ラミネート型内のプレートを追加又は削除することによって調節できる。
図2は、本開示の第2の型半体の代表的な一実施形態を示している。第2の型半体200は、結果として得られる成形品の第2の主表面(裏側)のためのネガ型である第2の型表面210を備えている。第2の型表面210は比較的平面的であり、その上に複数の凸部220を備えている。図2に示すように、第2の型半体は単体型であるが、実施形態によっては、複数の凸部を備えたインサートをフレーム内に挿入して定位置に保持してもよい。
凸部については図3Aを参照するとよりよく理解されるであろう。凸部300は、基底端部310(第2の型半体の比較的平面的な表面と接触している)、先端部330及びネック部320(基底端部310を先端部330に接続する)を備えている。図3Aに示すように、凸部の基底端部が第1の抜き勾配を備えることができる一方、凸部のネック部は第2の抜き勾配を備えることができる。場合によっては、凸部は第1の抜き勾配のみを備えることができ、例えば、凸部は円錐であってよい。しかし、本開示から、結果として得られる成形品からの離型を容易にするために、ネック部と比較して基底端部の抜き勾配を変えることが好都合であることが分かっている。
図3Aは、ネック部320が先端近傍部330、面取り面350及び接触面340を備えていることを示している。
凸部の先端部は、例えば矩形、正方形、円形又は半円形などの任意の幾何学的形状を備えることができる。凸部の先端部は、例えば2つの対向する面取り面が収束して線を形成するときのほんの僅かな厚みを備えた線、又は、例えばネック部の面が一点に収束するときの点でさえあることができる。
凸部のネック部は、凹部内に収まるように十分小さく、凹部内への溶融高分子材料の流れを可能にし、成形品からの離型を容易にし、かつ場合によっては、結果として得られる成形品の導管又はボアとなるように設計されている。一実施形態において、ネック部は少なくとも1つの面取り面を備えるであろう。面取り面は、より大きな断面積が高分子材料で充填されることを可能とすることによって、凹部の頂点への溶融高分子材料の流れを可能とし、結果として得られる成形品の先端を強化する役に立つ。一実施形態において、ネック部は25〜5000μmの長さを有している。実施形態によっては、ネック部は、少なくとも20、25、30、40、50、100、150、200、300、500、750、1000、1500、2000、3000、又は更には4000μmであり、最大5000、4500、4000、3000、2000、1000、750、500、250、100、又は更には50μmである長さを有している。ネック部の幅は、凸部のネック部を凹部内に挿入でき、この凹部内に少なくとも部分的に収容できるように、凹部の幅よりも小さい。一実施形態において、ネック部は5〜800μmの最大ネック幅を有している。実施形態によっては、ネック幅は少なくとも5、7、10、15、20、25、30、40、50、100、150、200、300、500、又は更には700μmであり、最大800、700、600、500、250、100、50、20、又は更には10μmである。ネック部は、例えば曲面(例えば円筒形)若しくは平面(例えば矩形)などの任意の形状又はこれらの組み合わせを有することができる。ネック部の形状及び寸法が、結果として得られる成形品内のボアの形状及び寸法を決定し、結果として得られる成形品からの離型を容易にする形状であるべきである。結果として得られる成形品の型からの適切な取り出しを確実にするために、少なくとも0.5度よりも大きな適切な抜き勾配を凸部の設計に織り込んでもよい。このことは、設計がほぼ垂直な壁部を有するネック部を含む場合に特に重要である。
ネック部及び先端部分の設計には特に制限がなく、いろいろな中空マイクロニードルアレイを作るために凹部の形状との組み合わせで設計することが好ましい。例えば、十字ドライバーに類似したクロスヘッド形状を備えた凸部の別の実施形態を図3Bに示す。凸部305は、基底端部315及びネック部325を備えている。ネック部325は、4つの接触面(345a及び345bを図示)及び面取り面(355a、355b及び355cを図示)を備えている。
凸部の基底端部は、ネック部を第2の型の比較的平面的な面に接続している。基底端部は、凸部のネック部及び先端部に構造的支持を提供している。例えば、より大きな基底端部は、型アセンブリーの位置合わせ及び充填の過程で、より脆弱なネック部によりよい構造的安定性を提供する。基底端部の最大領域は、凸部の先端部よりも少なくとも2、3、4、5、8、10、15、20、又は更には50倍大きい。一般的に、基底端部は、例えば錐体(例えば楕円形、円形又は多角形の底面)、錐台(即ち切頭錐体)、立方体、切頭立方体又は多面体などの任意の好適な形状に形成できる。例えば、図3Aの基底端部310は、第2の型半体の比較的平面的な面に接続しているところがより大きな直径であり、ネック部に接続しているところがより小さな直径である、切頭円錐の形状である。一実施形態において、基底端部は、25〜2000μmの凸部基底部高さ(凸部のネック部から第2の型半体の比較的平面的な面までの、第2の型半体に垂直な距離)を有している。実施形態によっては、凸部基底部高さは少なくとも20、25、30、40、50、100、150、200、300、500、又は更には1000μmであり、最大2000、1500、1000、900、800、700、600、500、250、100、又は更には50μmである。一実施形態において、基底端部は、25〜3000μmの凸部基底幅(第2の型半体の比較的平面的な面に平行な凸部基底部の最も広い部分を横切る距離)を有している。実施形態によっては、凸部基底部の幅は、少なくとも20、25、30、40、50、100、150、200、300、500、1000、1500、2000、又は更には2500μmであり、最大3000、2500、2000、1500、1000、900、800、700、600、500、250、100、又は更には50μmである。
本開示の一実施形態において、第2の型半体は、鋼鉄、合金鋼、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、銅、銅合金、ベリリウム銅、ベリリウム銅合金又はこれらの組み合わせのうちの少なくとも1つからなる型材料を含んでいる。
凸部は、例えばフライス加工、切削、研削、化学的エッチング、電極放電機械加工、電気化学エッチング、レーザーアブレーション、集束イオンビーム機械加工又はこれらの組み合わせを使用して機械加工することができる。例えばスクエアエンド又はラウンドエンドのフライス盤用カッター、好適なテーパー形状の切断砥石又は研削砥石などを含むフライス加工工具を使用して凸部を切削できる。
第2の型半体上の複数の凸部の数及び配置には、特に制限がない。しかし、第2の型半体は、一般的に1〜100個の凸部を備えている。実施形態によっては、複数の凸部は、少なくとも1、2、4、5、8、10、12、15、20、50、又は更には75個の凸部を備えており、最大100、75、50、30、28、24、20、15、12、10、8、又は更には6個の凸部を備えている。複数の凸部は、25〜5000μmの中心間距離を有することができる。実施形態によっては、凸部は、少なくとも20、25、50、100、150、300、500、1000、2000、3000、又は更には4000μmであり、最大5000、4000、3000、2000、1000、750、500、250、又は更には100μmである中心間距離を有している。凸部は、第2の型半体の表面上で整列していてもよく、ランダムであってもよい。
一般的に、第2の型半体の凸部の整列は、その位置及び間隔において第1の型半体内の凹部と同一であって、各凸部が各凹部と位置合わせされるようになっている。とはいえ、第1の型上の凹部の数が第2の型半体上の凹部の数と同じではない方法もまた想到される。例えば、一実施形態において、第2の型半体は第1の型半体が収容している凹部よりも少ない凸部を収容しており、その結果、例えば、中実マイクロニードル及び中空マイクロニードルの両方を有する製品が得られる。
本開示によれば、第1の型半体を第2の型半体と接触させて型アセンブリーを作り、高分子材料を溶融して型アセンブリーに充填し、高分子材料を凝固させ、次に凝固した高分子材料を型アセンブリーから取り外すことによって、中空マイクロニードルアレイが達成される。
一実施形態において、第1の型半体及び第2の型半体が図4Aに示すように接触して型アセンブリー400が形成される。型アセンブリー400は、積層ラミネートインサート412及びフレーム416を含む第1の型半体410並びに第2の型半体420を備えている。図4Aに示すように、第1の型半体上の複数の凸部は、第2の型半体の複数の凹部と位置合わせされている。
第1の型半体及び第2の型半体は、例えば型半体の位置合わせのためのサイドロック及び/又はテーパー付きパーティングロック(parting taper locks)を使用した物理的手段によって相互に接触している。機械的手段を伴うアクティブアライメントを利用して型半体が位置合わせされる(即ち、各凸部がそれらに対応する凹部内に位置合わせされる)。一実施形態において、位置合せは10、7、5、4、2、又は更には1μm未満である。
凸部は各凹部内に収容され得るものの、製造公差、凸部の一定していない熱膨張及び型半体の位置合わせに起因する僅かな位置ずれが存在する場合がある。したがって、凸部/凹部の各対間の相互作用は同一ではないことがある。本開示の利点は、凸部が自己位置合わせし、各凸部が各凹部内の実質的に同様な位置に位置することを可能にする能力にある。例えば、300μmの凹部基底幅を有する凹部は凸部に対して30μm位置ずれ(10%の中心間位置ずれを)している可能性があり、これは凸部の自己位置合わせ機能によって軽減できる。
僅かな位置ずれは凹部及び凸部の設計によって克服できる。例えば、角錐形の凹部は凸部を誘導でき、凸部はその組成物に基づいて、型が閉じるときに他の凸部とは無関係にある程度屈曲する能力を有することができる。
一実施形態では、パッシブアライメントを利用して各凹部内の凸部がより正確に位置合わせされる。パッシブアライメントは、凹部及び凸部に荷重がかかった後に型半体の更にぴったりとした位置合わせを可能とするために、型半体の各々の独立した熱制御の利用を伴う。型半体が不適切に位置合わせされた場合、型の微細な機構が破壊される可能性があり、又は型の破局的故障を引き起こす可能性がある。型ベース、積層ラミネート型インサートを収容する型フレーム及び積層ラミネート型自体の独立した温度制御を利用したパッシブアライメントによって、型半体の各々を構成する型材料の各々の熱膨張係数の適切な制御が確実に達成される。例えば、型の凹部に対する凸部の過膨張(不適当なパッシブアライメント)は、凹部表面又は凸部構造自体の損傷を招くおそれがある。パッシブアライメントを利用した凸部の適切な膨張は、凸部の所望の接触面と凹部表面との間にほぼ完璧な接触をもたらすことができる。
このパッシブアライメントは、動的温度制御を利用して達成できる。動的温度制御は、例えば誘導率、電気、レーザー、赤外線、抵抗率、超音波、水、蒸気、油又はこれらの組み合わせのうちの少なくとも1つを利用した型半体の加熱又は冷却によって実施することができる。
動的温度制御を促進するために、型半体は一般的に、異なる型材料を含んでいる。一実施形態では、凹部表面及び複数の凸部が異なる型材料を含んでいる。例えば、凹部表面は、硬化H13、P20、ばね鋼、420ステンレス鋼又はこれらの組み合わせのうちの少なくとも1つを含んでいてもよく、凸部は、S7鋼、A2鋼、D2鋼、ニッケル又はこれらの組み合わせのうちの少なくとも1つを含んでいてもよい。
凹部450の中の凸部430を示した型アセンブリー400の拡大概略図を図4Bに示す。実施形態によっては、凸部は凹部の表面と接触(例えば密着)している。実施形態によっては、凸部は凹部表面と接触していない。
凸部及び凹部表面に異なる型材料を選択することによって、凹部内で屈曲するように凸部を製造でき、型の位置合わせの過程で凹部表面又はそれ自体を損傷しないようにすることができる。凸部/凹部の位置合わせ及び材料の選定の非損傷的な性質によって型半体が繰り返し使用されることができ、これによって多量使用がもたらされる。
型材料の剛性対重量比を規定する比弾性率の選定によって、印加される荷重の結果生じる著しいたわみ又は変型に耐えることができる設計に基づいて、凹部表面又は凸部のどちらかが最小の構造重量を有することが可能となる。中空マイクロニードルアレイの成形過程において、凹部及び凸部の比弾性率は重要な検討事項である。締付けの過程で印加された荷重の下での凸部の「屈曲」を可能とするために凹部表面と比較してより低い比弾性率の凸部を活用することによって、凹部表面に対する凸部の自己位置合わせが可能となる。適切な比弾性率を選定することによって、凸部及び凹部の双方の寿命が延びる。一実施形態において、凹部表面は第1の型材料を含み、凸部は第2の型材料を含み、第1の型材料は、第2の型材料の比弾性率よりも少なくとも30、20、15、又は更には10GPa(ギガパスカル)高い比弾性率を有する。
比強度は材料の強度及び密度に関連する。比強度は材料の破壊長又は自己支持長を規定する。凹部表面の材料よりも高い比強度の凸部の型材料を選択することによって、凸部及び凹部双方のより長い寿命が保証される。一実施形態において、凹部表面は第1の型材料を含み、凸部は第2の型材料を含み、第1の型材料は、第2の型材料の比強度よりも少なくとも0.2、0.5、1、又は更には2GPa高い比強度を有する。
硬度は、印加された力又は荷重の結果としての型材料の形状の変化に対する抵抗として定義される。マスター型の製造にかかる経費の故に、凸部及び凹部双方のより長い寿命を保証するためには、型の完全な状態を維持し、かき傷をつけたり腐蝕させたりなどしないことが通常望ましい。本開示の一実施形態において、凹部表面は第1の型材料を含み、凸部は第2の型材料を含み、第2の型材料は、第1の型材料の硬度よりも高い硬度を有する。本開示の別の実施形態において、凹部表面は第1の型材料を含み、凸部は第2の型材料を含み、第1の型材料は、第2の型材料の硬度よりも高い硬度を有する。例えば、凹部表面は第1の型材料を含み、凸部は第2の型材料を含み、第1の型材料は、第2の型材料の硬度よりも少なくとも20、25、30、35、又は更には50ロックウェルC硬さ高い硬度を有する。
凸部の凹部との相互作用は、図5Aを参照するとよりよく理解されるであろう。図5Aでは、凸部550が正四角錐形の凹部520内に挿入されている。図5Aに示すように、先端部540及びネック部510の少なくとも一部が凹部520内に収容されている。凹部520は、凹部表面530b(前面)及び530a(右側面)を備えている。凸部550の接触面560は、凹部表面530aと密着している。凸部550の面取り面570は、凹部表面530bと接触していない。
図5Bは、図5Aの断面線5Bで切り取った図5Aの平面断面である。図5Bに示すように、凸部550は領域580a及び580bで凹部表面530a及び530cに接触する。凸部550は凹部表面530b及び530dには接触しない。
接触面560が凹部表面530aと密着している一方、面取り面570は凹部表面530bとは接触していない。溶融高分子材料が凹部520を充填するとき、溶融材料は凸部550の周りを流れ、面取り面570によって残された空隙を経て凹部520の頂点に到達することができるであろう。接触面560は凹部表面530aと密着しているので、溶融高分子材料の凹部表面の領域580a及び580bとの接触が防止され、したがって結果として得られる成形品には2つの互いに反対側にあるオリフィスが存在するであろう。
溶融高分子材料が冷却し硬化した後、型半体が分離され、結果として得られる成形品(例えば中空マイクロニードルアレイ)が取り出される。結果として得られる成形品501を図5Cに示すが、この図は、成形品表面531a上にオリフィス561を有し成形品表面531b上にはオリフィスを有さない正四角錐形構造体を示している。(接触面560によって生じた)オリフィス561と流体連通している(ネック部510によって生じた)ボア541も、図5Cに示す。
図5Aにおいて、凹部及び凸部は対称的であるので、図5Cには示していないものの、成形品501は、右側面531a(正四角錐の右側面)上に1つ及びその反対側面(正四角錐の左側面、図示せず)上に1つの、2つのオリフィス561を備えている一方、成形品の前側面531b及びその反対側の成形品501の裏面はオリフィスを含んでいない。
図8Aは、凸部の凹部との相互作用を示す別の実施形態である。図8Aでは、凸部850が正四角錐形の凹部820内に挿入されている。図8Aに示すように、先端部880及びネック部810の少なくとも一部が凹部820内に収容されている。凹部820は、凹部表面830a(右裏側)、830b(右前側)、830c(左前側)及び830d(左裏側)を備えている。凸部850の接触面890a、890b及び890cは、凹部表面830b、830c及び830dとそれぞれ密着している。凸部850の面取り面870は、凹部表面830aと接触していない。
図8Bは、先端部880で切り取った図8Aの平面断面である。図8Bに示すように、先端部880は、接触面890a、890b、880c及び880dで凹部表面830b、830c及び830dに接する。凸部850は凹部表面830aとは接触しない。
接触面890a、890b及び8901cが凹部表面830b、830c及び830dにそれぞれ密着している一方で、面取り面870は凹部表面830aに接触していない。溶融高分子材料が凹部820を充填するとき、溶融材料は凸部850の周りを流れ、先端部880と凹部表面との間に残された空隙を経て凹部820の頂点に到達できるであろうが、溶融高分子材料の大部分は面取り縁部870によって残された空隙によって凹部820の頂点に到達できる。
溶融高分子材料が冷却し硬化した後、型半体が分離され、結果として得られる成形品が取り出される。結果として得られる成形品801を図8Cに示すが、この図は、成形品表面831b、831c及び831dの上にオリフィス861を有し、成形品表面831a上にはオリフィスを有さない正四角錐形構造体を示している。(接触面890bによって生じた)オリフィス861と流体連通している(ネック部810によって生じた)ボア841もまた、図8Cに示す。
図9Aは、凸部の凹部との相互作用を示す更に別の実施形態である。図9Aにおいて、凸部950の先端部980は、接触面990a、990b、990c及び990dを有する凹部920の凹部表面990a、990b、990c及び990dに密着する。図9Bは、凹部領域の大部分を含む先端部980を示す、先端部980で切り取った図9Aの平面断面である。結果として得られる成形品901を図9Cに示すが、この図は、結果として得られる成形品の表面931a及び931b(図示)上のオリフィス961並びにオリフィス961と流体連通しているボア941とを有する正四角錐形構造体を示している。
結果として得られる成形品が構造的に堅牢でかつ耐久性を有し、溶融高分子材料が凹部の頂点に到達することを可能とする十分な空隙が凸部の先端部と凹部表面との間に存在する限り、上記に開示したもの以外の、様々な形状の凹部及び凸部、並びに、例えば5、6、8、更には10個の複数の接触領域を含む凹部及び凸部の設計が想到される。
型アセンブリー内での溶融高分子材料の充填を図6及び7に更に示す。一実施形態において、図6は、第2の型半体605と接触している第1の型半体610を備えた型アセンブリー600の側面図を示している。図6に示すように、凸部のネック部の少なくとも一部と凹部表面との間の距離は、660において凹部表面と接触している凸部620によって可変である。接触領域665によって、結果として得られる成形品内のオリフィスの大きさ及び形状を決定できる。第1の型表面及び第2の型表面の平面間の領域を、溶融高分子材料が充填する。凸部のネック部と凹部表面との間の空隙の故に、溶融高分子材料が凸部620の周りから凹部650の頂点の中まで充填するであろう。この実施形態では、少なくとも1つの凹部表面は凸部と接触していない。第1の型表面及び第2の型表面の平面間の長さ630によって、結果として得られる成形品の支持ベースの厚さを規定できる。
別の実施形態において、図7は、第2の型半体705と接触している第1の型半体710を備えた型アセンブリー600の側面図を示している。凸部720は、凹部表面760a及び760bと接触している。第1の型表面及び第2の型表面の平面間の領域を、溶融高分子材料が充填する。凸部のネック部と凹部表面との間の空隙の故に、溶融高分子材料が凸部720の周りから凹部750の頂点の中まで充填するであろう。この実施形態では、少なくとも2つの凹部表面が凸部と接触しており、結果として少なくとも2つのオリフィスを備えた成形品が得られる。第1の型表面及び第2の型表面の平面間の長さ730によって、結果として得られる成形品の支持ベースの厚さを規定できる。
本明細書内に記載された型半体を使用して異なる領域又は群を有する成形品を成形することが可能である。各領域又は群が同様の凹部又は凸部の群を収容して、凹部又は凸部が領域毎に異なってもよい。このような相違は、凹部若しくは凸部の大きさ、配置、向き又はこれらの組み合わせであることができる。
当該技術分野において既知のとおり、本明細書内に記載の型半体を使用して、例えば圧縮成形、熱エンボス加工、熱可塑性(TP)若しくは熱硬化性(TS)射出成形(IM)、射出圧縮成形(ICM)、粉末射出成形(PIM)、液体射出成形(LIM)、反応射出成形(RIM)、セラミック射出成形(CIM)、金属射出成形(MIM)及びキャスト押出成形を含む種々の成形技術を想定することができる。
一実施形態では、高分子材料が少なくとも第1の型表面又は第2の型表面に接触する前に、複数の凸部が複数の凹部の中に挿入される。TPIM、TSIM、ICM、PIM、LIM、RIM、CIM又はMIMを利用して、これらの手法それぞれについて当該技術分野において既知のプロセスに基づいて中空マイクロニードルアレイを複製することができる。従来の射出成形技法は、複数の凹部に接触する複数の凸部によって覆われた空隙間での溶融高分子材料の射出を必要とするであろう。溶融高分子材料が比較的高圧で射出され、結果として得られる成形品を型アセンブリーから取り出す前に硬化、固化、又は冷却のために放置される。
別の実施形態では、複数の凸部を複数の凹部の中に挿入する前に、高分子材料が少なくとも第1の型表面又は第2の型表面に接触する。熱エンボス加工又は圧縮成形などのプロセスを使用して、複数の凹部に接触する複数の凸部間に均一な圧力を印加することができる。この均一な圧力は、成形アセンブリー内の高分子材料の軟化と同時に一定期間に亘って印加される。
一実施形態において、溶融高分子材料の射出は、溶融高分子材料による第1の型半体の充填を容易にするために使用される速度及び/又は充填圧力制御若しくは射出圧力制御と共に実施される。一実施形態において、この圧力は、約6,000psi、10,000psi、又は更には20,000psi(ポンド/平方インチ)(41.4MPa、68.9PMPa、又は更には137.9MPa)よりも高くてもよい。
一実施形態では、米国特許公報第2008/0088066 A1号(Ferguson他)に記載されているように、凹部の充填を補助するために、第1の型半体内の溶融高分子材料に圧縮力又は圧印を加えることが好ましい場合がある。射出圧縮成形に関する更なる詳細は、米国特許第4,489,033号(Uda他)、第4,515,543号(Hamner)及び第6,248,281号(Abe他)に見出すことができる。
一般的に、製品を成形する場合、凹部のガス抜きが必要である。ガス抜きは、型の凹部付近の出口領域として機能して排出空気が凹部を出ることを可能とし、したがって溶融高分子材料による型の凹部のより均一な充填を可能とする。一般的に、型半体のガス抜きは、それぞれ通常10及び100μmの深さの溝である主脱気孔及び二次脱気孔によって提供される。主脱気孔及び二次脱気孔は、凹部から空気を遠ざけるように型の第1の型半体の主表面内に切削されている。主脱気孔は、空気の流出路を確保する一方、併せて空気と比較して大きな粘度の差の故に溶融高分子材料が進入することを妨げもする。二次脱気孔は、排気されている空気が型半体の分割線を通って自由に流れ出ることができることを確実にする。脱気はまた、結果として得られる成形品を型から取り出すために使用する突出しピンによっても達成できる。これら主脱気孔及び二次脱気孔が凹部の巨視的部分の空気の大まかな排気を確実にする役に立つ一方、それぞれの凹部の充填不足を軽減する役には立たず、その結果凹部の不完全な充填を招き、結果として得られる成形品の先端部の直径が凹部よりも格段と大きくなる。
本開示の一実施形態において、複数の凹部のガス抜きは、複数のプレート間のサブマイクロメートルの空隙部によって提供される。第1の型半体では、対応する各プレートの第1の主表面及び第2の主表面は研磨されておらず、各主表面に僅かな粗さが残っている。複数のプレートは相互に密着しているものの、プレートのサブマイクロメートルの粗さが、凹部を強制的に出された空気が隣接したプレート間に脱気されることを可能とする。更に、ガス抜きはサブマイクロメートルの範囲であるので、溶融高分子材料は、排気された空気に対して格段に高いその粘度の故に、凹部内に封じ込められる。サブマイクロメートルのガス抜きは積層ラミネート型内の完全な排気を可能とし、その結果10〜20°F(−12〜−7℃)低い成形温度、25〜30%低い射出圧力、より短いサイクル時間(20〜30秒速い)の熱可塑性射出成形が可能となり、型及び微細工具の双方の寿命が延びる。サブマイクロメートルのガス抜きはまた、結果として得られる成形品の先端の大きさをより鋭くすることができる。例えば一実施形態において、本開示による中空マイクロニードルは、20、10、7、5、2、1、0.8、又は更には又は0.5μm以下である先端直径を有する。
複数のプレートは各プレートの第1及び第2の主表面の実質的に全域に亘って、30RMS(二乗平均平方根)μインチ(0.762RMS μm)、20RMS μインチ(0.508RMS μm)、10RMS μインチ(0.254RMS μm)、又は更には4RMS μインチ(0.102RMS μm)未満である表面粗さを備えている。
一実施形態において、複数の凹部のガス抜きは、当該技術分野において従来から使用されているような主脱気孔及び/又は二次脱気孔を備えることができる。
結果として得られる成形品(例えば中空マイクロニードルアレイ)は、様々な材料から製造することができる。材料の選択は、所望のパターンを正確に再現する材料の能力、中空マイクロニードルアレイに形成されたときの材料の強度及び強靭性、例えば人間若しくは動物の皮膚との材料の適合性、中空マイクロニードルアレイと接触することが予想されるであろう任意の流体との材料の適合性などを含む様々な要因に基づくことができる。
本開示の中空マイクロニードルアレイに好適な高分子材料には、例えばポリカーボネート、環状オレフィンコポリマー、液晶ポリマー、ポリアクリレート、アクリレートコポリマー、ポリスチレン、ポリプロピレン、ポリエチレン、ポリエステル、ポリアミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリブチレンテレフタレート、ポリフェニルスルフィド類、アセタール類、ポリエチレンテレフタレート類、ポリ塩化ビニル、ポリメチルメタクリレート、アクリロニトリルブタジエンスチレン又はこれらの組み合わせを挙げることができる。
高分子材料が、高破断点引張伸び、高衝撃強度及び高メルトフローインデックスのうちの1つ以上の特性を有することが好ましい場合がある。一態様では、ASTM D1238によって測定されたメルトフローインデックス(300℃、1.2kg重の条件下)は、約5g/10分よりも高い。ASTM D1238によって測定されたメルトフローインデックス(300℃、1.2kg重の条件下)は、約10g/10分よりも高く、又は更には約20g/10分〜30g/10分である。一態様では、ASTM D638によって測定された破断点引張伸び(2.0インチ/分(5.08cm/分))は、約100%よりも高い。一態様では、ASTM D256によって測定された衝撃強度「ノッチ付アイゾッド」(73°F(23℃))は、約5ft−lb/インチ(265J/m)よりも高い。
使用する成形技法によっては、高分子材料のシートを溶融するために型アセンブリーが加熱されるか、又は溶融した材料が型アセンブリー内に射出される。第1及び/又は第2の型半体を高分子材料の軟化温度よりも高く加熱することによって、高分子材料が型アセンブリー内の凹部及びマイクロメートルの機構を実質的に充填することが可能となる。充填完了前に高分子材料が凹部内で「被膜形成(skin over)」又は凝固し、溶融した材料の更なる流れを阻止する可能性があるので、マイクロメートル機構を充填する前に高分子材料を実質的に冷却してしまわないようにすることが重要である。
「軟化温度」とは、結果として得られる成形品を型半体から取り外す過程で受ける力などの通常の力を受けたときに高分子材料が軟化し変形するであろう温度を指す。これは、端部が平坦な針が試料の中を貫通する温度を測定(例えばASTM D1525−00に記載される、針上の50Nの荷重及び120℃/時の温度上昇速度の条件下)するビカー軟化温度によって都合よく測定できる。非晶質材料については、軟化温度は材料のガラス転移によって決まり、場合によっては、ガラス転移温度は本質的にビカー軟化温度と同等となるであろう。ガラス転移温度は、10℃/分の一般的な走査速度を使用した示差走査熱量測定法などの、当業者に既知の方法によって測定できる。
溶融高分子材料が凹部を充填した後、次に型アセンブリーが少なくとも高分子材料の軟化温度未満の温度まで冷却される。最後に、結果として得られる成形品が型アセンブリーから取り外される。結果として得られる成形品は、例えば押出ピン、リフター、ストリッパースリーブ又は空気補助などの当該技術分野において既知の技法を使用して、型アセンブリーから取り出すことができる。
本開示の、結果として得られる成形品(例えば中空マイクロニードル)を特徴付けることのできる1つの方法は高さである。中空マイクロニードルの高さは、結果として得られる成形品の比較的平面的な支持ベースから測定できる。一実施形態では、中空マイクロニードルの底部から頂点までを測定したときに、中空マイクロニードルの高さは3000μm以下、2500μm以下、2000μm以下、1500μm以下、1000μm以下、750μm以下、500μm以下、300μm以下、又は更には100μm以下である。一実施形態において、中空マイクロニードルの高さは、第1の型半体内の対応する凹部の長さの90%よりも高く、又は更には約95%よりも高い。中空マイクロニードルは、型アセンブリーから押出すときに僅かに変形又は伸長する場合がある。この状態は、成形された材料がその軟化温度未満に冷却されていない場合に最も顕著であるが、材料がその軟化温度未満に冷却された後でさえ発生することがある。一実施形態において、中空マイクロニードルの高さは、第1の型半体内の凹部の長さの約115%未満であり、又は更には約105%未満である。一実施形態において、中空マイクロニードルの高さは、第1の型半体内の対応する凹部の長さと実質的に同一(例えば95%〜105%)である。
本開示の中空マイクロニードルの一般的形状はテーパー形状である。例えば、中空マイクロニードルは、結果として得られる成形品の支持ベースでより大きな底部を有し、結果として得られる成形品の支持ベースから離れて頂点まで先細りながら延伸する。一実施形態において、中空マイクロニードルの形状は角錐である。別の実施形態では、中空マイクロニードルの形状はおおむね円錐形である。
中空マイクロニードルは、任意の所望のパターンに配置でき、又は結果として得られる成形品の表面全域に亘って無作為に分布することができる。図10Aに示すように、中空マイクロニードルは、矩形配置に置かれ均一に間隔をあけた列に配置されている。一実施形態において、本開示の中空マイクロニードルアレイは、約0.1cmよりも大きく約20cmよりも小さい、又は更には約0.5cmよりも大きく約5cmよりも小さい、患者に面した表面積を有している。一実施形態において、結果として得られる成形品の表面の一部にはパターンが存在しない。一実施形態において、パターンの存在しない表面は、患者の皮膚面に面する装置表面の全面積の約1%よりも大きく約75%よりも小さい面積を有している。一実施形態において、結果として得られる成形品の、パターンの存在しない表面は、約0.10インチ(0.65cm)よりも大きく約1インチ(6.5cm)よりも小さい面積を有している。別の実施形態(図示せず)では、中空マイクロニードルは、結果として得られる成形品の実質的に表面領域全体に亘って配置されている。
本開示の中空マイクロニードルを特徴付けることができる別の方法は、中空マイクロニードルのアスペクト比に基づく。中空マイクロニードルのアスペクト比は、マイクロニードルの高さ(マイクロニードルの底部から頂点までの距離)対最大底部寸法(即ち結果として得られる成形品の支持ベース上でマイクロニードル底部が占める最長直線距離)の比である。
一般的に、マイクロニードルは、支持を提供するための支持ベースに取り付けられている。支持ベースの厚さは任意の寸法であってよいが、重要な基準は、皮膚を貫通するためにマイクロニードルが使用されるときにマイクロニードル構造体を保持するように、支持ベースが機械的に堅牢であるように十分に厚いことである。
本開示の中空マイクロニードルを特徴付けることができる別の方法は、中空マイクロニードル内のオリフィス(又は開口部)の存在である。一実施形態において、中空マイクロニードルは、ボアと流体連通しているオリフィスを備えている。これは、凸部の先端部を凹部表面と接触させて、凹部表面の一部が高分子材料を含まないことを可能にすることによって達成できる。この方法では、通常、結果として得られる成形品内のオリフィスの大きさは、凸部の接触面と凹部表面との間の接触面積によって影響を受ける。別の実施形態では、オリフィスをボアと流体連通させるか、又はオリフィスを拡大し、形を整え、若しくはオリフィスの縁部を滑らかにすることを可能とするために、中空マイクロニードルをレーザードリルを行うことができる。この方法では、通常、結果として得られる成形品内のオリフィスの大きさは、レーザーの波長、出力及び露出時間によって影響を受ける。
オリフィスの設計には特に制限がなく、一般的には、対象への十分な流体の供給又は対象からの十分な流体の抽出を可能とするように設計されるであろう。オリフィスは、例えば円形、半円形、楕円形、台形又は任意の正多角形若しくは変則多角形などの任意の形状を有することができる。オリフィスは、対象への流体の注入、又は対象からの流体の抽出を可能にするのに十分な大きさであるべきである。一実施形態において、オリフィスの面積は、結果として得られる成形品の表面上の断面積によって測定したときに、20,000、15,000、10,000、8,000、6,000、5,000、4,000、3,000、2,000、1000、750、500、300、100、75、50、30、25、10、5、又は更には2μm以下である。
中空マイクロニードルの頂点と中空マイクロニードル上のオリフィスの中心との間の距離は、流体を対象に供給でき、又は対象から抽出できる限度に影響するであろう。一実施形態において、この距離は、500、400、300、200、100、又は更には50μm以下である。一般的に、この距離は、中空マイクロニードルの高さ及び中空マイクロニードルのアスペクト比に依存して200〜400μmである。中空マイクロニードルの頂点とオリフィスの中心との間の距離が大きすぎる場合、対象への流体の適切な供給又は対象からの流体の適切な抽出が妨げられるおそれがある。
ボアと流体連通しているオリフィスの存在によって、身体内に流体を注入、又は身体から流体を抽出するために、本開示の中空マイクロニードルを使用することが可能となる。オリフィスと流体連通しているボアを露出させる面は、ホイル若しくはパウチで気密封止するか、あるいは別の成形部品若しくは空の、又は経皮的供給のための液体若しくは流体を保持する容器と超音波圧接することができる。
次に、中空マイクロニードルアレイを、サンプリングされた流体の特定の特性を測定する手段又は生物学的障壁(例えば皮膚)を越える供給のための薬若しくは生体物質を保持する容器などの別の構造体と流体連通して設置することができる。本開示の流体供給の実施形態において、中空マイクロニードルのボア及びオリフィスは、供給されるべき流体又は物質を収容する容器から薬、製剤、又は生体物質を転送するように作用する。本開示の流体抽出の実施形態において、中空マイクロニードルのボア及びオリフィスは、様々な検体の収集及び/又は試験のための間質液又は全血などの流体をサンプリングする作用をする。
本開示の、結果として得られる成形品はネットシェイプできる(即ち、単一工程のプロセスで完成品が達成される)。したがって、結果として得られる成形品のフライス加工又は研削などの二次的な作業(結果として得られる成形品の不要な残留物及び汚染物をもたらし得る)が不要である。更に、型を製造するために使用する機械加工及び型の自己位置合わせの故に、アレイ全域に亘る中空マイクロニードルの高忠実度(即ち同一複製)もまた達成できる。
本開示の利点及び実施形態を、以下の実施例によって更に例示するが、これらの実施例において列挙される特定の材料及びその量並びに他の諸条件及び詳細によって、本開示を不当に制限するものではないと解釈すべきである。他に言及されるか、明らかでない限り、全材料は市販されているか、又は当業者に知られている。
限定はしないが以下の特定の実施例が、本開示を説明するために供給される。
第1の型半体
凹型1:ミネソタ州ローチェスターのIBM Corp.が、複数の凹部を有する積層ラミネート型を備えた第1の型半体を以下のように製作した。積層ラミネート型は、420ステンレス鋼シムストック製の20個のステンレス鋼プレートを備えており、各プレートの各主表面の表面粗さは約0.30RMS μmであった。各プレートの寸法は、長さ16mm、幅10.2mm及び厚さ0.50mmであった。1.6mmの位置合わせピンを使用してプレートをまとめて留めることを可能とするために、各プレートの主表面を貫通する2つの穴部をあけた。プレートをまとめて留め、次に型表面及び積層ラミネートの4つの縁部全てを研削して連続した共平面を提供した。プレートに参照番号を付け、分離した。
電極放電機械加工(EDM)を使用して対角に横切って切ったような半角錐(例えば図1Aの凹部150aを参照)の形状を有する5つの凹部を10枚のプレートの一方の主表面内に機械加工し、10枚のプレートを未加工(又はブランク)のまま残した。次に、3枚のブランクプレート、正四角錐形の凹部を形成するように位置合わせされた2枚の機械加工したプレートに続く1枚のブランクプレートからなる5組、及び2枚のプランクプレートの要領で、プレートをラミネート保持器インサート(laminate holder insert)に入れてウェッジブロック型とした。参照番号を使用して、プレートが研削のために留められたときと同じ順番であることを確実にした。プレートをまとめて積層したときにプレートが正四角錐形の凹部のアレイを形成するように、プレート内の凹部を機械加工した。主脱気孔又は二次脱気孔はプレート内に機械加工されなかった。凹型1では、第2の型半体上の押出ピンとの位置合わせを可能とするために、アレイ内の中央凹部のうちの1つを型に作製しなかったので、凹型1は合計24個の正四角錐形凹部を備えていた。
第1の型半体全体は、1.216cmの側壁寸法を有する正方形であった。第1の型半体上の個々の凹部は、508μmの凹部長さ及び300μmの凹部基底部幅を有し、したがって1.67:1の凹部アスペクト比を与える正四角錐形(4つの側壁)であった。凹部は、規則正しいアレイ状に、隣接した凹部の頂点間に1513μmの距離の間隔を開けていた。凹部の頂点は、5μm以下の直径を有していた。
凹型2:ミネソタ州ブレインのDetail Tool and Engineeringが、複数の凹部を有する積層ラミネート型を備えた第1の型半体を製作した。以下以外は上記凹型1で説明した機械加工を繰り返した。20枚の代わりに6枚のプレートを使用し、各主表面は0.36RMS μmの表面粗さを有していた。各プレートの寸法は、長さ18mm、幅10.7mm及び厚さ1.8mmであった。4枚のプレートの両方の主表面及び2枚のプレートの一方の主表面内に5つの凹部を切削した。6枚のプレートをラミネート保持器に入れてウェッジブロック型とし、5つ×5つの正四角錐形凹部のアレイを形成するように配列した。主脱気孔又は二次脱気孔はプレート内に機械加工されなかった。凹型1は、合計25個の正四角錐形凹部を備えていた。
第1の型半体上の個々の凹部は、900μmの凹部長さ及び360.7μmの凹部基底部の縁部長さ(凹部縁部の1辺に沿った距離)の正四角錐形であった。
第2の型半体
凸型1:ミネソタ州ローチェスターのIBM Corp.が、凸部を備えた第2の型半体を以下のように作製した。ロックウェル硬度計(Cスケール)上で52の硬度を有するS7鋼製の鋼鉄プレートの一方の面内に、EDMを使用して合計24個の凸部を機械加工した。鋼鉄プレートの寸法は、長さ19mm、幅19mm及び厚さ47.7mmであった。凸部を、中央凸部の代わりに押出ピンを有するアレイ状に配列した。押出ピンの直径は63ミル(1.575mm)であり、結果として得られる成形品の押出しを可能とするためにこれを使用した。凸部のアレイは、約0.25インチ(1.6cm)の面積を占めていた。各凸部は、半球形状の基底端部及び図9Aのネック部950と同一の形状のネック部を有していた。凸部の寸法は、基底端部の最大直径が1.190mmであり、ネック部が半球の上部に直接配置され、ネック部が9.6度の抜き勾配を有し、ネック部の先端部の直径が0.1mmで、その結果先端部980の面積が0.314mmとなり、凸部全体の長さが1.17mmであり、凸部先端間の距離が約1.513mmであった。
凸型2:ミネソタ州ブレインのDetail Tool and Engineeringが、凸部を備えた第2の型半体を以下のように製作した。ロックウェル硬度計(Cスケール)上で52の硬度を有するS7鋼製の鋼鉄プレートの一方の面内に、EDMを使用して合計25個の凸部を機械加工した。鋼鉄プレートの寸法は、長さ19mm、幅19mm及び厚さ47.7mmであった。凸部を、約1.6cmの面積を占める5つ×5つのアレイに配列した。押出ピンは使用しなかった。各凸部は図3Aに示すような形状であった。凸部の寸法は、基底端部310の最大直径が0.0398インチ(1.0mm)であり、基底端部310の長さが0.0400インチ(1.0mm)であり、基底端部310のきょう角が60度であり、基底端部におけるネック部320の直径が0.006インチ(0.152mm)であり、ネック部320の長さが0.0270インチ(0.68mm)であり、ネック部の抜き勾配が0.5度であり、接触面340が0.000013インチ(8400μm)の面積を有し、先端部330が(4040μm)の面積を有し、面取り面350が0.0147インチ(0.37mm)の長さ及び約8度の角度を有し、凸部の先端間の距離が0.07インチ(1.78mm)であった。
材料
マサチューセッツ州ピッツフィールドのSabic Innovative Plasticsの、Lexan HPS1Rから入手可能なポリカーボネートのペレットを使用した。ポリカーボネートのペレットは、1)300℃及び1.2kgf(キログラム重)(11.8N)の条件下でASTM D1238に従って測定したときに25g(グラム)/10min(分)のメルトフローインデックス、2)50mm(ミリメートル)/分の速度でASTM D638に従って測定したときに2350MPa(メガパスカル)の引張係数、3)50mm/分の速度でASTM D638に従って測定したときに63MPaのタイプ1引張降伏応力(tensile stress at yield,Type I)、4)50mm/分の速度でASTM D638に従って測定したときに120%の破断点引張伸び、5)23℃でISO 180/1Aに従って12KJ(キロジュール)/mのノッチ付アイゾッド衝撃強さ、6)120℃/h(時)の速度でISO 306に従って測定したときに139℃のビカー軟化温度、の材料特性を有した(文献より抜粋)。
テキサス州ヒューストンのTotal Petrochemicals 1751から入手可能なポリプロピレンコポリマーを使用した。ポリプロピレンコポリマーは、1)ASTM D1238に従って測定したときに20g/10分のメルトフローインデックス、2)ASTM D638に従って測定したときに434MPaの引張係数、3)ASTM D638に従って測定したときに>300%の破断点引張伸び、及び4)23℃でASTM D256Aに従って587J/mのノッチ付アイゾッド衝撃強さ、の材料特性を有した(文献より抜粋)。
方法
方法1:高温油熱サイクル装置(ミシガン州St.Joseph市のRegloplas Corp.社製Regloplas 301 DG)を備えた65トン射出成形機(ドイツ、ミュンヘンのKrauss−Maffei Technologies GmbH製Krauss−Maffei KM65−180CX)内の型ベース内に、凹型1及び凸型1を設置した。当該分野において一般的であるように、成形アセンブリーの分割線は、高分子材料の射出中の一般空気排出のための主脱気孔及び二次脱気孔の両方を有していた。積層ラミネート型のプレート間のサブマイクロメートルのガス抜きが追加の脱気を行い、これがミクロ構造体の高忠実度の複製を可能にした。ポリカーボネートのペレットをホッパー内に装填し、その後往復スクリュー内に供給して溶融状態での適切な処理温度を達成した。凹型1及び凸型1をポリカーボネートの軟化点よりも高い規定温度(以下「射出時の型温度」と呼ぶ)まで加熱した。凸型1で凹型1を閉じることによって成形サイクルを開始した。15トンの力で型を相互に締め付けて締付け成形チャンバー(clamped mold chamber)を形成した。往復スクリューからの高分子材料の総量の第1の部分(部品寸法容量の(part size volume)約80〜90%)を締付け成形チャンバー内に射出した。高分子材料の第1の部分を一定速度(以下「射出速度」と呼ぶ)で成形チャンバー内に射出した。材料の第1の部分を射出したのち、一定圧力(以下「充填圧力」と呼ぶ)を印加して溶融高分子材料の残りを型凹部内に押し入れることによって、プロセスを射出速度駆動プロセスから圧力駆動プロセスに切り替えた。充填圧力を一定時間(以下「保持時間」と呼ぶ)印加した。その後充填圧力を解除し、成形チャンバーを、ポリカーボネートの軟化温度以下の適切な押出し温度(以下「押出し時の型温度)」と呼ぶ)まで冷却した。各実施例に使用した射出速度、充填圧力、保持時間、射出温度及び押出し温度の詳細を表1に示す。
方法2:高分子材料がポリプロピレンコポリマーであり、凹型2及び凸型2を使用したこと以外は、方法1で説明した方法を使用した。成形パラメータとして、2.54cm/秒の射出速度、41.4MPaの充填圧力、4秒間の保持時間、49℃の射出時の型温度及び49℃の押出し時の型温度を使用した。
中空マイクロニードルアレイ
実施例1〜10:表1に掲載した射出速度、充填圧力、保持時間、射出時の型温度及び押出し時の型温度を用いて方法1を使用した。各実施例の、結果として得られた中空マイクロニードルの高さ及びオリフィスの平均幅もまた、表1に示す。立体顕微鏡及び走査型電子顕微鏡によって、中空マイクロニードルの高さ及び成形された中空機構の大きさを測定した。中空マイクロニードルの高さ及びオリフィスの幅を、9つの(各個別のアレイから3つ)測定値の平均として採用した。
Figure 2012523270
実施例1〜10は、積層ラミネート工具との組み合わせでポリカーボネートを使用した中空マイクロニードルアレイの射出成型を例証している。理論による限定を望むものではないが、射出時により低い型温度を使用する能力は、サブマイクロメートルのガス抜きによって可能となる針の方向に強化された脱気に起因すると考えられる。射出時に使用される、より低い型温度は、サイクル時間の短縮及び中空マイクロニードルの機構の忠実度の向上を可能とする。しかし、中空マイクロニードルの忠実度は、当該技術分野において既知のとおり、最適化されていない条件の使用によって損なわれることがある。例えば、射出時の型温度が高すぎる場合、型アセンブリーの不要な領域に進入する溶融高分子材料及び押出し前の溶融ポリマーの不十分な急冷に起因して、中空マイクロニードルの高さが増加する(例えば射出時の型温度が176.7℃で平均高さが512μm)。逆に、射出時の型温度が低く設定されすぎると、マイクロニードル凹部の充填が不完全となるであろう(例えば射出時の型温度が132.2℃で平均高さが93μm)。したがって、結果として得られる成形品の高忠実度を保証するためには、射出時の型温度及び押出し時の型温度は、考慮すべき重要な要因となり得る。
実施例1〜10の総合したデータは、中空マイクロニードルアレイが中空マイクロニードルの平均高さ494μm(+/−5μm)及び最短寸法における先端の平均長さ1〜2μm(+/−1μm)を有したことを示した。
凹部形状と実施例1〜10から結果として得られた成形品との間の比較が、98.7%の部分対部分の再現性を示した。この値は、凹部の1.3%が高分子材料で完全に複製されなかったことを示唆している。9つの測定値(各個別のアレイから3つ)の平均としての測定値を採用し、中空マイクロニードルの基底部直径対凹部の基底部幅、オリフィス面積対接触面積、中空マイクロニードル高さ対凹部長さ、及び中空マイクロニードルの先端直径対凹部の先端直径を評価した。
実施例6の中空マイクロニードルアレイを光学顕微鏡(Olympus SZX12,Olympus America Inc.,Center Valley,PA)の下で観察した。実施例6から得た中空マイクロニードルアレイの写真を図10Aに示す。中空マイクロニードルアレイ1000は複数の中空マイクロニードル1010を備えている。一中空マイクロニードル1010の拡大図を図10Bに示す。中空マイクロニードル1010上に4つのオリフィス(オリフィスのうちの2つを1020と表示した)を示す。図10Cは一中空マイクロニードルの側面図であり、1125が中空マイクロニードルの高さを示し、1128が中空マイクロニードルの基底部縁部の幅を示している。図10Dは、3,456倍の倍率で観察した一中空マイクロニードルの先端の拡大図である。中空マイクロニードルの先端1150は約1μmと測定された。中空マイクロニードルアレイ1000上で、800nm〜5μmの寸法が観察された。中空マイクロニードルは、頂点から150μm離れたところに4つのサイドポート(各壁部に1つ)を有していた。中空マイクロニードル上に作られたオリフィスの大きさは、幅が25μmであった。各オリフィスは、中空マイクロニードルの頂点付近で130μmの幅寸法及び基底部で1000μmの幅寸法を有するボアと流体連通していた。
実施例11:以下以外は方法1に説明した手順に従って成形中空マイクロニードルアレイを作製した。積層ラミネート型を、複数の凸部と比較して10℃低い射出時の型温度に維持した。これにより、両方の型材料の熱膨張の適切な比を保証して、凹部に対する凸部の均一な荷重を達成した。型半体を使用して1000回を超える成形サイクルを行った。結果として得られた成形品の検査の結果、アレイ全域に亘る中空マイクロニードルの各々について均一な中空マイクロニードル高さ及びオリフィス面積が示された。また、凸型の型半体又は凹型の型半体の磨耗の兆候は観察されなかった。
実施例12:方法2に従って成形中空マイクロニードルアレイを作製した。結果として得られた成形品を図11Aに示すが、中空マイクロニードルアレイ1200は、5つ×5つのアレイ状の中空マイクロニードル1210を備え、結果として得られた成形品の支持ベースの厚さ1260を有していた。図11Bは、2つのマイクロニードルの拡大図である。中空マイクロニードルは895μmの平均高さを有し、中空マイクロニードルの互いに反対側の面上に2つのオリフィスを備え、各オリフィスは約8600μmの平均面積を有していた。
本開示を、そのいくつかの実施形態に関連して説明した。上記の詳細な説明及び実施例は、理解を明確にするためにのみ示されたものであり、不必要な限定がそれらから解釈されるべきではない。本開示の趣旨及び範囲から逸脱することなく、多数の変更が、説明した実施形態に対してなされ得ることが、当業者には理解されよう。したがって、本開示の範囲は、本明細書において説明した構成及び構造の厳密な細部に限定されるべきではなく、むしろ、特許請求の範囲の文言によって限定されるべきである。

Claims (32)

  1. (a)複数のプレート及び複数の凹部を備える積層ラミネート型を備える第1の型半体を用意する工程であって、前記プレートの各々が、
    (i)互いに反対側の第1及び第2の主表面と、
    (ii)前記第1及び第2の主表面を接続する第1の型表面と、を有し、前記複数の凹部が少なくとも前記第1の型表面に対して開口しかつ凹部表面を含み、前記凹部表面が対応する各プレートの第1の主表面及び対応する各プレートの第1の型表面と交差する、工程と、
    (b)複数の凸部を備える第2の型表面を備える第2の型半体を用意する工程と、
    (c)少なくとも記前第1の型表面又は前記第2の型表面を高分子材料と接触させる工程と、
    (d)前記複数の凸部を前記複数の凹部の中に挿入する工程と、
    を含む、中空マイクロニードルアレイを製造する方法。
  2. 少なくとも前記第1の型表面又は前記第2の型表面を高分子材料と接触させる前に、前記複数の凸部を前記複数の凹部の中に挿入する、請項求1に記載の方法。
  3. 前記複数の凸部を前記複数の凹部の中に挿入する前に、少なくとも前記第1の型表面又は前記第2の型表面を高分子材料と接触させる、請求項1に記載の方法。
  4. 前記凸部が、ネック部を介して先端部に接続される基底端部を備え、前記基底端部の最大面積が前記先端部よりも少なくとも3倍大きい、請求項1〜3のいずれか一項に記載の方法。
  5. 前記ネック部が面取り面を備えている、請求項4に記載の方法。
  6. 前記凹部内に、前記先端部及び前記ネック部の少なくとも一部を配置する工程を更に含む、請求項4〜5のいずれか一項に記載の方法。
  7. 前記凹部内の前記ネック部の一部と前記凹部表面との間の距離が可変である、請求項6に記載の方法。
  8. 前記複数の凸部を前記複数の凹部の中に位置合わせする工程を更に含む、請求項1〜7のいずれか一項に記載の方法。
  9. 前記位置合わせが5マイクロメートル未満である、請求項8に記載の方法。
  10. 前記位置合わせする工程がアクティブアライメントを含む、請求項8〜9のいずれか一項に記載の方法。
  11. 前記先端部を前記凹部の少なくとも1つの面に接触させる工程を更に含む、請求項4〜10のいずれか一項に記載の方法。
  12. 前記接触させる工程が動的温度制御を含む、請求項11に記載の方法。
  13. 前記動的温度制御が、誘導率、電気、レーザー、赤外線、抵抗率、超音波、水、蒸気、油又はこれらの組み合わせのうちの少なくとも1つを利用した加熱又は冷却を含む、請求項12に記載の方法。
  14. 前記凹部が、少なくとも1.5対1の凹部アスペクト比(凹部長さ対凹部基底部幅)を有する、請求項1〜13のいずれか一項に記載の方法。
  15. 前記複数のプレート間のサブマイクロメートルの空隙部によって前記複数の凹部の脱気を行う工程を更に含む、請求項1〜14のいずれか一項に記載の方法。
  16. 前記サブマイクロメートルの空隙部が、対応する各プレートの第1の主表面及び第2の主表面の表面粗さによって提供される、請求項15に記載の方法。
  17. 前記表面粗さが30RMS(二乗平均平方根)μインチ(0.762RMS μm)未満である、請求項16に記載の方法。
  18. 前記凹部表面及び前記凸部が、異なる材料を含む、請求項1〜17のいずれか一項に記載の方法。
  19. 少なくとも前記第1の型半体又は前記第2の型半体が、鋼鉄、合金鋼、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、銅、銅合金、ベリリウム銅及びベリリウム銅合金のうちの少なくとも1つ又はこれらの組み合わせを含む、請求項1〜18のいずれか一項に記載の方法。
  20. 前記凹部表面が第1の材料を含み、前記凸部が第2の材料を含み、前記第1の材料は、前記第2の材料の比弾性率よりも少なくとも20GPa高い比弾性率を有する、請求項1〜19のいずれか一項に記載の方法。
  21. 前記凹部表面が第1の材料を含み、前記凸部が第2の材料を含み、前記第1の材料は、前記第2の材料の比強度よりも少なくとも0.5GPa高い比強度を有する、請求項1〜20のいずれか一項に記載の方法。
  22. 前記凹部表面が第1の材料を含み、前記凸部が第2の材料を含み、前記第1の材料は、前記第2の材料の硬度よりも少なくとも25ロックウェルC高い硬度を有する、請求項1〜21のいずれか一項に記載の方法。
  23. 前記凹部表面が、硬化型H13、P20、又は420ステンレス鋼のうちの少なくとも1つを含み、前記凸部が、S7鋼、A2又はニッケルのうちの少なくとも1つを含む、請求項1〜22のいずれか一項に記載の方法。
  24. 前記高分子材料が、ポリカーボネート、環状オレフィンコポリマー、液晶ポリマー、ポリアクリレート、アクリレートコポリマー、ポリスチレン、ポリプロピレン、ポリエチレン、ポリエステル、ポリアミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリブチレンテレフタレート又はこれらの組み合わせのうちの少なくとも1つである、請求項1〜23のいずれか一項に記載の方法。
  25. (a)前記高分子材料を溶融する工程と、
    (b)前記高分子材料を凝固させる工程と
    (c)前記第1の型表面及び前記第2の型表面から凝固した高分子材料を取り外して、中空の突起を備える中空マイクロニードルアレイを生成する工程と、
    (d)必要に応じて前記中空の突起の中を通してレーザードリルを行う工程と、
    を更に含む、請求項1〜24のいずれか一項に記載の方法。
  26. 請求項1〜25のいずれか一項に従って製造した、中空マイクロニードルアレイ。
  27. 中空マイクロニードルの側面上にオリフィスを備える、請求項26に記載の中空マイクロニードルアレイ。
  28. 前記オリフィスの面積が10,000平方マイクロメートル以下である、請求項27に記載の中空マイクロニードルアレイ。
  29. 前記オリフィスがボアと流体連通している、請求項27に記載の中空マイクロニードルアレイ。
  30. 前記中空マイクロニードルが、1マイクロメートル未満の先端直径を有する、請求項26〜29のいずれか一項に記載の中空マイクロニードルアレイ。
  31. 流体を身体内に注入するための、請求項26〜30のいずれか一項に記載の中空マイクロニードルアレイの使用法。
  32. 体液を身体から抽出するための、請求項26〜31のいずれか一項に記載の中空マイクロニードルアレイの使用法。
JP2012504693A 2009-04-10 2010-03-22 中空マイクロニードルアレイを製造する方法並びにそれに由来する製品及びその使用法 Withdrawn JP2012523270A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16826809P 2009-04-10 2009-04-10
US61/168,268 2009-04-10
PCT/US2010/028095 WO2010117602A2 (en) 2009-04-10 2010-03-22 Methods of making hollow microneedle arrays and articles and uses therefrom

Publications (1)

Publication Number Publication Date
JP2012523270A true JP2012523270A (ja) 2012-10-04

Family

ID=42936788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012504693A Withdrawn JP2012523270A (ja) 2009-04-10 2010-03-22 中空マイクロニードルアレイを製造する方法並びにそれに由来する製品及びその使用法

Country Status (6)

Country Link
US (1) US9289925B2 (ja)
EP (1) EP2416835B1 (ja)
JP (1) JP2012523270A (ja)
CN (1) CN102458559B (ja)
SG (1) SG175135A1 (ja)
WO (1) WO2010117602A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746747B1 (ko) 2016-03-03 2017-06-14 배원규 모세관력을 이용하여 약물의 전달성을 향상시킨 마이크로니들 시스템
US10632653B2 (en) 2014-10-17 2020-04-28 Kao Corporation Fine hollow protrusion manufacturing method
KR20210030511A (ko) * 2016-03-31 2021-03-17 카오카부시키가이샤 미세 중공 돌기구의 제조 방법, 및 미세 중공 돌기구
US11433224B2 (en) 2017-09-13 2022-09-06 Kao Corporation Method for manufacturing hollow needling implement, device for manufacturing hollow needling implement, and hollow needling implement

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100540086C (zh) * 2004-03-12 2009-09-16 新加坡科技研究局 用来制造侧开口微型针的方法及模具
CN102458559B (zh) * 2009-04-10 2014-06-04 3M创新有限公司 制造中空微针阵列的方法以及由其制得的制品和用途
US9339956B2 (en) 2009-12-18 2016-05-17 3M Innovative Properties Company Molding thermotropic liquid crystalline polymers
EP2575845B1 (en) 2010-05-28 2017-02-15 3M Innovative Properties Company Aqueous formulations for coating microneedle arrays
JP5770055B2 (ja) * 2010-09-29 2015-08-26 富士フイルム株式会社 針状アレイ経皮吸収シートの製造方法
DK2646218T3 (en) * 2010-12-02 2016-07-25 3M Innovative Properties Co MICROCANYLS OF LIQUID CRYSTALLINE POLYMER
JP5868004B2 (ja) * 2011-01-29 2016-02-24 Asti株式会社 マイクロニードルとマイクロニードルアレイとマイクロニードルアレイ装置
WO2012126784A1 (en) 2011-03-18 2012-09-27 Universite Libre De Bruxelles Devices for puncturing a human or animal body's membrane
JP6080762B2 (ja) * 2011-08-31 2017-02-15 地方独立行政法人東京都立産業技術研究センター 成形体の製造方法
JP5879927B2 (ja) * 2011-10-26 2016-03-08 凸版印刷株式会社 マイクロニードルデバイスおよびその製造方法
JP5845808B2 (ja) * 2011-10-28 2016-01-20 凸版印刷株式会社 マイクロニードルデバイスおよびその製造方法
US20140296796A1 (en) * 2011-11-02 2014-10-02 Chee Yen Lim Plastic microneedle strip
JP2013111104A (ja) * 2011-11-25 2013-06-10 Dainippon Printing Co Ltd マイクロニードルデバイスの製造方法
EP2711080B1 (de) * 2012-09-24 2019-04-10 Siemens Healthcare Diagnostics Products GmbH Hohlnadel für einen probenpipettor
US20160113561A1 (en) * 2012-11-01 2016-04-28 David R. Elmaleh Apparatus and method for detecting and/or monitoring one or more compounds in blood
US9675284B2 (en) * 2012-11-01 2017-06-13 David R. Elmaleh Apparatus and method for detecting and\or monitoring one or more compounds in blood
NL2009799C2 (en) * 2012-11-13 2014-05-14 Ambro B V Micro needle for transporting fluid across or into a biological barrier and method for producing such a micro needle.
WO2014088492A1 (en) * 2012-12-07 2014-06-12 Ascilion Ab A microfabricated sensor and a method of sensing the level of a component in bodily fluid
WO2014105458A1 (en) 2012-12-27 2014-07-03 3M Innovative Properties Company Article with hollow microneedles and method of making
US10820860B2 (en) * 2013-03-14 2020-11-03 One Drop Biosensor Technologies, Llc On-body microsensor for biomonitoring
EP2972264A4 (en) 2013-03-14 2016-12-07 Sano Intelligence Inc ON THE BODY BORN MICROSENSOR FOR BIO SURVEILLANCE
SG11201509810TA (en) 2013-05-31 2015-12-30 3M Innovative Properties Co Microneedle injection and infusion apparatus and method of using same
CN105283216B (zh) 2013-05-31 2018-01-26 3M创新有限公司 包括倒置致动器的微针注入设备
CN105246541B (zh) 2013-05-31 2018-01-16 3M创新有限公司 包括双覆盖件的微针注射设备
US10390724B2 (en) * 2013-06-26 2019-08-27 The Penn State Research Foundation Three-dimensional bio-medical probe sensing and contacting structures with addressibility and tunability
EP3013258B1 (en) 2013-06-26 2017-06-07 3M Innovative Properties Company Curette head
US10232157B2 (en) 2013-07-16 2019-03-19 3M Innovative Properties Company Hollow microneedle with beveled tip
EP3021931B1 (en) 2013-07-16 2021-09-01 Kindeva Drug Delivery L.P. Hollow microneedle array article
WO2015009531A1 (en) 2013-07-16 2015-01-22 3M Innovative Properties Company Article comprising a microneedle
US10384047B2 (en) 2013-07-16 2019-08-20 3M Innovative Properties Company Hollow microneedle with bevel opening
US10195410B2 (en) * 2013-07-22 2019-02-05 Tuo Jin Fabrication process of phase-transition microneedle patch
JP6135353B2 (ja) * 2013-07-22 2017-05-31 オムロン株式会社 金型構造、転写成形装置、転写成形方法、及び、光学部材形成装置
US10500386B2 (en) 2013-07-30 2019-12-10 Asti Corporation Microneedle array manufacturing method
RU2719937C1 (ru) 2014-04-24 2020-04-23 Джорджия Тек Рисёч Корпорейшн Микроиглы и способы их изготовления
WO2016033652A1 (en) * 2014-09-03 2016-03-10 Newsouth Innovations Pty Limited Microfluidic devices and fabrication
US9718228B1 (en) * 2014-09-16 2017-08-01 Cambridge Security Seals LLC Mold and method of making a mold
WO2016118459A1 (en) 2015-01-21 2016-07-28 3M Innovative Properties Company Microneedle array and method of use
US10953370B2 (en) 2015-02-05 2021-03-23 The Penn State Research Foundation Nano-pore arrays for bio-medical, environmental, and industrial sorting, filtering, monitoring, or dispensing
CN104959502A (zh) * 2015-05-21 2015-10-07 上海交通大学 基于超声振动辅助的纯钛实心微针成形工艺
JP7116680B2 (ja) 2015-10-09 2022-08-10 キンデーバ ドラッグ デリバリー リミティド パートナーシップ コーティングされたマイクロニードルアレイのための亜鉛組成物
CN105498082B (zh) * 2015-12-24 2017-10-27 广州新济药业科技有限公司 微针芯片及其制备方法
JP2017131397A (ja) 2016-01-27 2017-08-03 花王株式会社 微細中空突起具の製造方法
AU2017253674B2 (en) 2016-04-18 2021-07-29 Kindeva Drug Delivery L.P. Formulations of abaloparatide, transdermal patches thereof, and uses thereof
WO2018093218A1 (ko) * 2016-11-18 2018-05-24 연세대학교 산학협력단 복합 제형이 적용된 마이크로니들 어레이 및 이의 제조방법
WO2018116257A1 (en) * 2016-12-21 2018-06-28 Sabic Global Technologies B.V. Microneedle curved laminate mold and a method of manufacturing microneedle arrays using this mold
CN110234385A (zh) * 2016-12-21 2019-09-13 沙特基础工业全球技术公司 制作微针的方法、用于微针的模具组装件和微针阵列
WO2018181700A1 (ja) * 2017-03-31 2018-10-04 凸版印刷株式会社 経皮投与デバイス
US11541015B2 (en) 2017-05-17 2023-01-03 Massachusetts Institute Of Technology Self-righting systems, methods, and related components
WO2018213579A1 (en) * 2017-05-17 2018-11-22 Massachusetts Institute Of Technology Self-actuating articles
WO2018211421A1 (en) 2017-05-19 2018-11-22 Sabic Global Technologies B.V. Methods and systems of producing polymer microneedle arrays via ultrasonic embossing, and resulting microneedle arrays
EP3461367B1 (en) 2017-09-28 2020-04-22 The Procter & Gamble Company Method of making a unitary brush head and unitary toothbrush head
WO2019082099A1 (en) 2017-10-24 2019-05-02 Sabic Global Technologies B.V. METHODS AND SYSTEMS FOR PRODUCING MICRO-NEEDLE NETWORKS
EP3778169B1 (en) * 2018-03-27 2021-12-29 FUJIFILM Corporation Method for manufacturing mold having concave pedestal pattern and method for manufacturing pattern sheet
US20210228119A1 (en) 2018-05-16 2021-07-29 Kindeva Drug Delivery L.P. Microneedle biosensor
WO2020180033A1 (ko) * 2019-03-04 2020-09-10 주식회사 대웅테라퓨틱스 마이크로니들 어레이 및 이의 제조방법
CN110355911A (zh) * 2019-07-12 2019-10-22 南京航空航天大学 一种脚状仿壁虎黏附材料的制备方法
CN111317911A (zh) * 2020-02-28 2020-06-23 广东工业大学 一种新型微针及其制造方法
US11931935B2 (en) 2021-06-01 2024-03-19 Xtpl S.A. Method of filling a microcavity with layers of polymeric material
US11877848B2 (en) 2021-11-08 2024-01-23 Satio, Inc. Dermal patch for collecting a physiological sample
US11964121B2 (en) 2021-10-13 2024-04-23 Satio, Inc. Mono dose dermal patch for pharmaceutical delivery
CN114146301A (zh) * 2021-12-27 2022-03-08 广州纳丽生物科技有限公司 一种d型微针及其在超微针片的应用
CN115154876A (zh) * 2022-05-24 2022-10-11 北京化工大学 一种麦穗形状的仿生多孔微针经皮给药系统

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649153A (en) * 1969-11-04 1972-03-14 Peter E Brudy Faceted core
US3914101A (en) * 1971-10-26 1975-10-21 Norbalt Rubber Corp Apparatus for forming corrugated tubing
US3833699A (en) * 1971-10-26 1974-09-03 Norbalt Rubber Corp Method of forming corrugated tubing using a mandrel having inflatable sleeves adjacent the ends
US4066236A (en) * 1976-06-25 1978-01-03 Beatrice Foods Co. Cube corner type retroreflector bodies and molds made therewith
JPS6058010B2 (ja) 1981-04-14 1985-12-18 三井化学株式会社 射出圧縮成形方法
US4515543A (en) 1983-09-02 1985-05-07 The Budd Co. In-mold coating part ejection system
US5124108A (en) 1988-03-30 1992-06-23 Amp Incorporated Method for making connector for posted terminals
US5217728A (en) * 1991-06-21 1993-06-08 Amp Incorporated High density mold
JP3310297B2 (ja) * 1995-07-28 2002-08-05 日本カーバイド工業株式会社 マイクロプリズム母型
US6010609A (en) * 1995-07-28 2000-01-04 Nippon Carside Kogyo Kabushiki Kaisha Method of making a microprism master mold
US6248281B1 (en) 1996-11-14 2001-06-19 Idemitsu Petrochemical Co., Ltd. Compression apparatus for molding, injection compression molding machine, and injection compression molding method using the compression device
US6039556A (en) 1997-01-21 2000-03-21 Velcro Industries B.V. Stackable mold plates having arrays of laser-cut mold surfaces at their edges
US5922222A (en) 1997-09-23 1999-07-13 Velcro Industries B.V. Forming fastener mold cavities by electro-discharge machining
US6503231B1 (en) * 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
US6213753B1 (en) * 1998-07-24 2001-04-10 The Whitaker Corporation Mold apparatus
US6224807B1 (en) 1999-03-25 2001-05-01 Velcro Industries B.V. Methods of molding fasteners and of forming fastener molds
US6312612B1 (en) 1999-06-09 2001-11-06 The Procter & Gamble Company Apparatus and method for manufacturing an intracutaneous microneedle array
TW416010B (en) * 1999-07-16 2000-12-21 Hubblevision Co Ltd Method in manufacturing a reverse reflection board and pin elements for producing the reverse reflection board
US6511463B1 (en) * 1999-11-18 2003-01-28 Jds Uniphase Corporation Methods of fabricating microneedle arrays using sacrificial molds
US6565532B1 (en) 2000-07-12 2003-05-20 The Procter & Gamble Company Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup
US6305924B1 (en) 2000-10-31 2001-10-23 3M Innovative Properties Company Stacked laminate mold
CA2702143C (en) * 2001-06-05 2014-02-18 Mikro Systems, Inc. Methods for manufacturing three-dimensional devices and devices created thereby
US6749792B2 (en) 2001-07-09 2004-06-15 Lifescan, Inc. Micro-needles and methods of manufacture and use thereof
US7578954B2 (en) 2003-02-24 2009-08-25 Corium International, Inc. Method for manufacturing microstructures having multiple microelements with through-holes
WO2005009645A2 (en) 2003-07-21 2005-02-03 10X Technology Llc. Apparatus and method for manufacturing microneedles
CN100355470C (zh) * 2003-12-26 2007-12-19 中国科学院理化技术研究所 微型实心硅针阵列芯片及其制备方法和用途
US20070191761A1 (en) 2004-02-23 2007-08-16 3M Innovative Properties Company Method of molding for microneedle arrays
CN100540086C (zh) 2004-03-12 2009-09-16 新加坡科技研究局 用来制造侧开口微型针的方法及模具
US20050238844A1 (en) * 2004-04-27 2005-10-27 Shih-Sheng Yang Non-sewn adhesive tape and the manufacture thereof
US7560036B2 (en) 2004-08-05 2009-07-14 Apogee Technology, Inc. System and method for drug delivery and microfluidic applications using microneedles
CN102358015A (zh) 2004-12-07 2012-02-22 3M创新有限公司 模制微型针的方法
EP1888454A2 (en) 2005-06-10 2008-02-20 3M Innovative Properties Company Method of making a mold and molded article
EP1968777B1 (en) * 2005-12-23 2013-11-06 3M Innovative Properties Company Manufacturing microneedle arrays
GB0600795D0 (en) 2006-01-16 2006-02-22 Functional Microstructures Ltd Method of making microneedles
WO2007112309A2 (en) 2006-03-24 2007-10-04 3M Innovative Properties Company Process for making microneedles, microneedle arrays, masters, and replication tools
EP2076312A4 (en) 2006-04-20 2013-09-04 3M Innovative Properties Co SHAPED ITEMS WITH MICRONADEL ARRANGEMENTS
WO2007127976A2 (en) 2006-05-01 2007-11-08 Georgia Tech Research Corporation Particle based molding
JP2010502267A (ja) 2006-08-28 2010-01-28 エージェンシー・フォー・サイエンス・テクノロジー・アンド・リサーチ マイクロニードルおよびマイクロニードルの製造方法
FR2922805B1 (fr) * 2007-10-26 2013-09-06 Aplix Sa Bloc d'insertion pour la formation d'un champ de crochets sur un objet moule par injection et objet moule comportant un champ de crochet de ce genre
CN101297989B (zh) * 2008-06-19 2010-06-23 上海交通大学 基于模压的中空微针批量制备方法
CN102458559B (zh) * 2009-04-10 2014-06-04 3M创新有限公司 制造中空微针阵列的方法以及由其制得的制品和用途

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10632653B2 (en) 2014-10-17 2020-04-28 Kao Corporation Fine hollow protrusion manufacturing method
KR101746747B1 (ko) 2016-03-03 2017-06-14 배원규 모세관력을 이용하여 약물의 전달성을 향상시킨 마이크로니들 시스템
KR20210030511A (ko) * 2016-03-31 2021-03-17 카오카부시키가이샤 미세 중공 돌기구의 제조 방법, 및 미세 중공 돌기구
KR102365233B1 (ko) * 2016-03-31 2022-02-18 카오카부시키가이샤 미세 중공 돌기구의 제조 방법, 및 미세 중공 돌기구
US11433224B2 (en) 2017-09-13 2022-09-06 Kao Corporation Method for manufacturing hollow needling implement, device for manufacturing hollow needling implement, and hollow needling implement

Also Published As

Publication number Publication date
CN102458559B (zh) 2014-06-04
US20120041337A1 (en) 2012-02-16
EP2416835A2 (en) 2012-02-15
WO2010117602A3 (en) 2011-03-31
WO2010117602A2 (en) 2010-10-14
EP2416835A4 (en) 2016-12-28
SG175135A1 (en) 2011-12-29
US9289925B2 (en) 2016-03-22
CN102458559A (zh) 2012-05-16
EP2416835B1 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP2012523270A (ja) 中空マイクロニードルアレイを製造する方法並びにそれに由来する製品及びその使用法
US20070191761A1 (en) Method of molding for microneedle arrays
US20100193997A1 (en) Method of making a mold and molded article
US10155334B2 (en) Molding thermotropic liquid crystalline polymers and articles made therefrom
KR102219636B1 (ko) 중공형 마이크로니들을 갖는 물품 및 제조 방법
US8088321B2 (en) Method of molding a microneedle
AU2003269906B2 (en) A method of forming a mold and molding a micro-device
WO2006099176A2 (en) 3-d interconnected multi-layer microstructure of thermoplastic materials
JP5072899B2 (ja) 貫通孔を有する微細構造成形体の製造方法及び製造装置
Ebrahiminejad et al. Design, development, and testing of polymeric microblades: a novel design of microneedles for biomedical applications
JP5183375B2 (ja) 針状体製造方法、針状体製造装置および針状体
JP5152935B2 (ja) 貫通孔を有する微細構造成形体の製造方法及び微細構造成形体素材
JP2009225987A (ja) 針状体
WO2018211421A1 (en) Methods and systems of producing polymer microneedle arrays via ultrasonic embossing, and resulting microneedle arrays

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604