JP2012519312A - 自由形成の眼科レンズ - Google Patents

自由形成の眼科レンズ Download PDF

Info

Publication number
JP2012519312A
JP2012519312A JP2011553009A JP2011553009A JP2012519312A JP 2012519312 A JP2012519312 A JP 2012519312A JP 2011553009 A JP2011553009 A JP 2011553009A JP 2011553009 A JP2011553009 A JP 2011553009A JP 2012519312 A JP2012519312 A JP 2012519312A
Authority
JP
Japan
Prior art keywords
lens
ophthalmic lens
lens according
light
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011553009A
Other languages
English (en)
Inventor
ウィドマン・マイケル・エフ
エンス・ジョン・ビー
パウエル・ピー・マーク
サイツ・ピーター・ダブリュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Vision Care Inc
Original Assignee
Johnson and Johnson Vision Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Vision Care Inc filed Critical Johnson and Johnson Vision Care Inc
Publication of JP2012519312A publication Critical patent/JP2012519312A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00125Auxiliary operations, e.g. removing oxygen from the mould, conveying moulds from a storage to the production line in an inert atmosphere
    • B29D11/00134Curing of the contact lens material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Eyeglasses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本発明は、重合した架橋性材料の複数のボクセルを含むレンズの少なくとも一部を備える眼科レンズを提供する。加えて、本発明は、重合した架橋性材料の複数のボクセルを含む少なくとも一部を備える眼科レンズを生成する装置を提供する。幾つかの実施形態では、眼科レンズは、隆起部及び凹域の1つ又は両方を備える表面を含む。

Description

(関連出願の相互参照)
本出願は、米国特許出願第12/194,981号(2008年8月20日出願)、名称「Apparatus for Formation of an Ophthalmic Lens Precursor and Lens」の一部継続出願として、また同第12/195,132号(2008年8月20日出願)、名称「Methods for Formation of an Ophthalmic Lens Precursor and Lens」の一部継続出願として優先権を主張するものであり、それぞれの内容が根拠となり、参照によって本明細書に組み込まれる。
(発明の分野)
本発明は、眼科レンズを製作するための装置、より具体的には、幾つかの実施形態では、カスタマイズされたコンタクトレンズを形成するための装置について記載する。
注型成型技術による眼科レンズの製作が既知であり、注型成型技術では、モノマー材料を、対向する2つ又は3つ以上の鋳型部分の光学表面間に画定される空洞内に堆積させる。ヒドロゲルを有用な物品(例えば眼科レンズ)に作り上げるために用いる多部分鋳型は、例えば、眼科レンズの後側湾曲部に対応する凸部部分を伴う第1の鋳型部分と、眼科レンズの前側湾曲部に対応する凹部部分を伴う第2の鋳型部分とを備えることができる。
かかる鋳型部分を使用してレンズを調製するために、未硬化ヒドロゲルレンズ配合物が、プラスチック製の使い捨て前側湾曲部鋳型部分とプラスチック製の使い捨て後側湾曲部鋳型部分との間に置かれ、重合される。しかし、そこから生成される眼科レンズの設計は、用いられる鋳型の設計に限定される。
したがって、特定の患者若しくは目的の一方又は両方のためにカスタマイズすることができるように、所定の寸法及び形状の眼科レンズの形成につながる更なる方法及び装置を有することが望ましい。
本発明は、重合した架橋性材料の複数のボクセルを含む第1の部分と、ゲル化点を越えて重合した、架橋性材料の層状体積を含む第2の部分と、を含む眼科レンズに関する。
一般に、光吸収性成分を含む反応性混合物は、弓状の表面を備える基材を介して化学放射線源に暴露される。弓状の表面の少なくとも一部は、光学品質表面を含むことができる。化学放射線は、所定のパターンで反応性混合物の一部を硬化させるように制御可能である。所定のパターンは、光学品質基材表面に沿って形成される1つの表面と、反応性混合物の体積内に自由形成される第2の表面とを含むことができる。
本発明によるレンズは、光吸収性成分を含み得る。光吸収性成分は、複数のボクセルの形成に有用であり得る。各ボクセルは、第1の末端部と、第2の末端部とを含み得る。第2の部分は、ゲル化点を越えて重合した架橋性材料の層状体積を含み得、本質的にそれぞれの第2の末端部を被覆する。様々な実施形態は、第1の部分及び第2の部分の1つ又は両方に光学表面を含むことができる。
重合したレンズ材料のボクセルは、複数の化学放射線への架橋性材料の暴露により形成されてよく、それぞれの化学放射線は源から生じ、所与の時間にわたり反応性混合物の所与の部分の方向に反射される。それぞれの化学放射線は、所与の時間にわたり反応性混合物の所与の部分の方向に反射されることができ、所与の波長を含む。幾つかの実施形態では、第2の部分は、複数の点から生じる複数の化学放射線への反応性混合物の暴露により形成される。
幾つかの追加の実施形態は、重合した架橋性材料のボクセルによって形成されるトラフ、重合した架橋性材料のボクセルによって形成される1つ又は2つ以上の隆起部など1つ又は2つ以上の特性を備えるレンズを含み得る。
本発明に従って形成されるレンズは、球状でも、非球状でもあり得る。第1の表面は光学品質の光学域を含み得る。第2の表面は人工物を含み得る。
幾つかの実施形態では、レンズは、流動域及び構造域の両方を含むレンズ前駆体から形成されることができる。好ましい実施形態では、構造域は、主にボクセルリソグラフィセクションの動作によって決定されるが、しかしながら、流動域は、ボクセルリソグラフィセクションによっても影響を受けるが、数々の方法で決定することができる。代替の実施形態は、レンズ前駆体中間生成物を経ることなく、ボクセルリソグラフィセクションの効果からレンズを形成し得る。
本発明の幾つかの実施形態を実践するために使用され得る方法工程を図示する。 本発明の幾つかの実施形態を実践するために使用され得る追加方法工程を図示する。 形成及び固定化放射線の吸光度と透過率との間の関係の一例を図示する。 本明細書に開示される発明によって生成されるレンズの一例を図示する。 ボクセルに基づいたリソグラフィを含む本発明の幾つかの実施形態を実践するのに有用であり得る、装置構成要素を図示する。 本発明の幾つかの実施形態を実践するのに有用であり得る、例示的な光源装置構成要素を図示する。 本発明の幾つかの実施形態を実践するのに有用であり得る、例示的な光学装置構成要素を図示する。 本発明の幾つかの実施形態を実践するのに有用であり得る、例示的なデジタルミラー装置構成要素を図示する。 本発明の幾つかの実施形態を実践するのに有用であり得る、追加装置構成要素を図示する。 本発明の幾つかの実施形態を実践するのに有用であり得る、例示的な形成光学機器を図示する。 本発明の幾つかの実施形態を実践するのに有用であり得る、例示的なモノマーリザーバを図示する。 本発明の幾つかの実施形態を実践するのに有用であり得る、例示的な材料除去装置を図示する。 本発明の幾つかの実施形態を実践するのに有用であり得る、例示的な材料除去装置の全体的動作システムを図示する。 本発明の幾つかの実施形態を実践するのに有用であり得る、例示的な安定化及び固定化装置を図示する。 本発明の幾つかの実施形態を実践するのに有用であり得る、例示的な計測システムを図示する。 本発明の幾つかの実施形態を実践するのに有用であり得る、例示的な水和及び除去システムを図示する。 ボクセル構造及び流動性レンズ反応性媒体の層状体積を備える、レンズ前駆体の例示的な断面描示を図示する。 例示的な人工物のチャネルを備えるレンズ前駆体を図示する。 化学放射線へのレンズ前駆体の暴露により形成されるレンズを図示する。
本発明は、レンズを形成する方法及び装置、並びにレンズ前駆体を形成する方法及び装置を提供する。以下の項において、本発明の実施形態がより詳細に説明される。好ましい実施形態及び代替の実施形態の両方の説明は、完全ではあるが、例示的な実施形態に過ぎず、変形、修正、及び代替が当業者にとって明白であり得ることが理解される。したがって、例示的な実施形態は、特許請求の範囲によって定義される、基礎となる発明の態様の幅を限定しないことが理解される。
用語解説
本発明を目的とする本説明及び特許請求の範囲において、以下の定義が適用される、様々な用語が使用され得る。
本明細書で使用される場合、「化学放射線」は、化学反応を起こすことができる放射線を指す。
本明細書で使用される場合、「弓状の」は、弓のような曲線又は屈曲を指す。
本明細書に言及される「ベールの法則」(「ランベルト・ベールの法則」と称される場合もある)は、I(x)/I0=exp(−αcx)であり、式中、I(x)は、照射される表面からの距離xの関数としての強度であり、I0は、表面での入射強度であり、αは、吸収成分の吸収係数であり、cは、吸収成分の濃度である。
本明細書で使用される場合、「平行化する」は、入力として放射線を受信する装置からの出力として進行する、光等の放射線の円錐角を限定することを意味し、幾つかの実施形態では、円錐角は、進行する光線が平行となるように制限され得る。したがって、「コリメータ」は、この機能を実施する装置を含み、「平行化された」は、放射線に対する効果を説明する。
「DMD」が本明細書で使用される場合、デジタルマイクロミラーデバイスは、CMOS SRAMの全体に機能的に実装された、移動可能なマイクロミラーのアレイからなる双安定空間光変調器である。それぞれのミラーは、反射光を誘導するために、ミラーの下のメモリセルにデータを読み込むことによって独立して制御され、ビデオデータのピクセルをディスプレイ上のピクセルに空間的にマッピングする。データは、ミラーの状態が+X度(オン)又は−X度(オフ)のいずれかである2進数方式で、ミラーの傾斜角を静電気的に制御する。現在のデバイスは、Xを、10度又は12度(公称)のいずれかにすることができる。搭載されたミラーによって反射される光は、次いで投影レンズを通過してスクリーン上へ進む。光は、反射されて暗視野を生成し、画像の黒レベルフロアを画定する。画像は、観測者によって統合されるのに十分な速い速度でのオンレベルとオフレベルとの間のグレースケール変調によって生成される。DMD(デジタルマイクロミラーデバイス)は、DLP投影システムである場合がある。
本明細書で使用される場合、「DMDスクリプト」は、空間光変調器のための制御プロトコル、及びまた、例えば、いずれかがその時点の一連のコマンドシーケンスを含み得る、光源又はフィルターホイール等の、いずれかのシステム構成要素の制御信号を指すものとする。頭文字DMDの使用は、この用語の使用を空間光変調器のいずれか1つの特定種類又は寸法に限定することを意味しない。
本明細書で使用される場合、「固定化放射線」は、レンズ前駆体又はレンズを構成する、本質的に全ての反応性混合物の重合及び架橋の1つ又は2つ以上に十分な化学放射線を指す。
本明細書で使用される場合、「流動性レンズ反応性媒体」は、天然の形態、反応した形態、又は部分的に反応した形態のいずれかで流動性であり、更なる処理を受けて眼科レンズの一部に形成される、反応性混合物を意味する。
「自由形成」が本明細書で使用される場合、「自由形成された」又は「自由形成」は、反応性混合物の架橋によって形成され、注型成型に従って形状化されない表面を指す。
本明細書で使用される場合、「ゲル化点」は、ゲル又は不溶分画が最初に観測される点を指すものとする。ゲル化点は、液体重合混合物が固体となる程度に、液体重合混合物が架橋される変換の程度である。ゲル化点は、ポリマー反応を異なる時点で停止させ、結果として生じるポリマーを分析して残留不溶性ポリマーの重量分画を決定する、ソックスレー実験を使用して決定することができる。ゲルが存在しない点のデータを推定することができる。ゲルが存在しないこの点が、ゲル化点である。また、ゲル化点は、反応中の反応混合物の粘度を分析することによって決定することもできる。粘度は、反応混合物がプレート間にある状態で、平行プレートレオメーターを使用して測定することができる。少なくとも1つのプレートは、重合に使用される波長の放射線に対して透明であるべきである。粘度が無限大に到達する点が、ゲル化点である。ゲル化点は、所与のポリマー系及び具体的な反応条件と同一の変換度で生じる。
「レンズ」が本明細書で使用される場合、「レンズ」は、眼内又は眼上にある、いずれかの眼科装置を指す。これらの装置は光学補正をもたらすことができるか、又は美容用であっても良い。例えば、レンズという用語は以下のものを指すことができる。コンタクトレンズ、眼内レンズ、オーバーレイレンズ、眼用挿入物、光学挿入物、又は他の同様の、視力が補正若しくは変更される装置か、又は視力を妨げることなく目の生理機能が美容的に拡張される(例えば、虹彩色)装置。いくつかの実施形態では、本発明の好ましいレンズは、シリコーンヒドロゲル類、及びフルオロヒドロゲル類を含むが、これらに限定されない、シリコーンエラストマー類又はヒドロゲル類から製造される、ソフトコンタクトレンズである。
本明細書で使用される場合、「レンズ前駆体」は、レンズ前駆体形態及びレンズ前駆体形態と接触する流動性レンズ反応性混合物からなる複合物体を意味する。例えば、幾つかの実施形態では、流動性レンズ反応性媒体は、反応性混合物の体積内でレンズ前駆体形態を生成する過程で形成される。レンズ前駆体形態及び接着する流動性レンズ反応性媒体を、レンズ前駆体形態を生成するために使用される反応性混合物の体積から分離することによって、レンズ前駆体を作り出すことができる。更に、レンズ前駆体は、相当量の流動性レンズ反応性混合物を除去するか、又は相当量の流動性レンズ反応性媒体を非流動性組み込み材料に変換するかのいずれかによって、異なる実体に変換することができる。
本明細書で使用される場合、「レンズ前駆体形態」は、眼科レンズへの更なる処理を受けて組み込まれるものと一致する、少なくとも1つの光学品質表面を有する、非流動性物体を意味する。
本明細書で使用される場合、「レンズ形成混合物」は「反応性混合物」と同じ意味で使用され得る。「反応性モノマー混合物」又は「架橋性材料」は、硬化及び/又は架橋して眼科レンズ又は眼科レンズの一部を形成できるモノマー又はプレポリマー材料を指す。様々な実施形態は、UV遮断剤、染料、光開始剤、又は触媒、及びコンタクト若しくは眼内レンズ等の眼科レンズに望まれ得る他の添加剤等の1つ又は2つ以上の添加剤を有するレンズ形成混合物を含むことができる。
本明細書で使用される場合、「鋳型」は、未硬化配合物からレンズを形成するために使用され得る、剛性又は半剛性の物体を指す。いくつかの好ましい鋳型は、前側湾曲部鋳型部分及び後側湾曲部鋳型部分を形成する、2つの鋳型部分を含む。
本明細書で使用される場合、「放射線吸収成分」という用語は、反応性モノマー混合配合物に組み込むことができ、かつ特定の波長帯の放射線を吸収することができる、放射線吸収成分を指す。
反応性混合物(また、本明細書において、レンズ形成混合物、架橋性媒体、又は反応性モノマー混合物と称される場合もあり、「レンズ形成混合物」と同一の意味を有する。
「鋳型から取り外す」が本明細書で使用される場合、「鋳型から取り外す」は、レンズが、鋳型から完全に分離した状態、又は穏やかな振動によって取り外すか、若しくは綿棒を用いて押し外すことができるように、ほんの軽く付着した状態のいずれかとなることを意味する。
本明細書で使用される場合、「ステレオリソグラフィレンズ前駆体」は、レンズ前駆体形態が、ステレオリソグラフィ技術を使用することによって形成された、レンズ前駆体を意味する。
「基材」:上に他の実体が定置又は形成される物理的実体。
本明細書で使用される場合、「過渡レンズ反応性媒体」は、流動性又は非流動性形態でレンズ前駆体形態上に残存し得る、反応性混合物を意味する。しかしながら、過渡レンズ反応性媒体は、眼科レンズに組み込まれる前に、洗浄、溶媒和、及び水和工程の1つ又は2つ以上によって大幅に除去される。したがって、明確化のため、レンズ前駆体形態及び過渡レンズ反応性混合物の組み合わせは、レンズ前駆体を構成しない。
「ボクセル」が本明細書で使用される場合、「ボクセル」又は「化学放射線ボクセル」は、3次元空間の規則的な格子上の値を示す、体積要素である。ボクセルは、3次元ピクセルと考えることができるが、しかしながら、ピクセルが2D画像データを示す一方、ボクセルは、第3の次元を含む。更に、ボクセルは、医療及び科学的データの視覚化並びに分析にしばしば使用される一方、本発明では、ボクセルは、特定の反応性混合物の体積に到達する、ある量の化学放射線の境界を画定し、それによって具体的な反応性混合物の体積の架橋又は重合の速度を制御するために使用される。例として、ボクセルは、本発明では、化学放射線が、それぞれのボクセルの共通軸次元内の2D表面に対して垂直に向けられ得る、2D鋳型表面に対して等角である単一層内に存在すると見なされる。一実施例として、具体的な反応性混合物の体積は、768×768ボクセルに従って、架橋又は重合されてもよい。
「ボクセルに基づいたレンズ前駆体」が本明細書で使用される場合、「ボクセルに基づいたレンズ前駆体」は、レンズ前駆体形態がボクセルに基づいたリソグラフィ技術を使用することによって形成された、レンズ前駆体を意味する。
「Xゲル」が本明細書で使用される場合、Xゲルは、ゲル分画がゼロを超えるようになる、架橋可能な反応性混合物の化学変換の程度である。
装置
本発明に開示される装置は、本明細書において、概して5つの主要なサブセクションで提示され、装置の実施形態の第1の記述は、サブセクションレベルで論理的記述に編成される。これらのサブセクションは、ボクセルに基づいたリソグラフィ光学装置、浸出装置、安定化及び固定化装置、計測装置、並びに水和装置である。そうは言うものの、また、サブセクションは、全装置としても機能し、これは、サブセクション実施形態の見地から熟考されるべきである。
ボクセルに基づいたリソグラフィ光学装置
ボクセルに基づいたリソグラフィ光学装置は、レンズ形態及びレンズ前駆体を生成するために化学放射線を使用する構成要素である。本発明では、装置は、極めて均一な強度の放射線をとり、本質的にボクセル単位で、形成光学機器表面にわたる数々の別個の点での形成光学機器の表面への照射を制御する。この制御は、この構成要素が、特定のボクセル位置の光路に沿って反応性混合物内で起こる反応の程度を制御できるようにし、最終的に、そこで反応した材料の体積、したがってその上に形成されるレンズ前駆体の形状を決定する。
ボクセルに基づいたリソグラフィ光学装置の主要な構成要素は、図5の例示的な実施形態に示される。示されるそれぞれの構成要素は、後の項で詳細に記載される。ここでは、サブセクションの機能の例示的な概説が与えられる。
ここで、図5を参照すると、レンズ形成装置500は、光源520を含む。光源520で作り出される光は、画定された帯域内の波長であり、強度及び方向における空間的変化を有する光として生じる。空間的強度コントローラ530又はコリメータは、光を集光、拡散、及び幾つかの実施形態では平行化して、強度が極めて均一な光のビーム540を生成する。更に、幾つかの実施形態では、ビーム540は、それぞれにデジタルのオン又はオフ値を割り当てることができる強度のピクセル要素にビームを分割する、デジタルミラーデバイス(「DMD」)510に衝突する。それぞれのピクセルのミラーは、光を、2つの経路のうちの1つに反射する。「オン」経路、つまりアイテム550は、反応性化学媒体に向かって進行する光子に導く経路である。
反対に、幾つかの実施形態では、「オフ」状態は、アイテム516及び517として示される経路間にある、異なる経路に沿って反射されている光を含む。この「オフ」経路は、光子を、それに向けられる光子を機能的に吸収するか、ないしは別の方法で取り込むビームダンプ515に衝突するように向ける。
「オン」経路550を再び参照すると、この経路に示される光は、実際には、「オン」値に設定され、ピクセル位置に対応する個々の経路に沿って空間的に向けられる、多くの異なる潜在的なピクセル値を含む。それらのそれぞれの経路550に沿ったピクセル要素のそれぞれの時間平均強度は、DMD 510によって画定される空間的格子にわたり、空間的強度プロファイル560として示すことができる。あるいは、それぞれのミラーに衝突する一定の強度で、アイテム560は、空間的時間暴露プロファイルを示し得る。
オン状態のピクセル要素は、それらの個々の経路550に沿って向けられる光子を有する。幾つかの実施形態では、光線又は放射線は、集光要素によって集光されてもよい。例として、光路550が、本質的に表面に対して垂直に、形成光学機器580の光学機器表面に衝突するように画像化され得る。画像化された光は、形成光学機器580を通って、反応性レンズ混合物を収容するリザーバ590へ進む。
所与のピクセル位置に関連付けられた光線の相互作用が、リザーバ590内及び形成光学機器580の周囲にある反応性媒体又は架橋性材料の体積内にオン状態のボクセル要素を画定する。反応性媒体のこの体積内の光子は、吸収され、それを吸収する分子内の化学線による反応を促進し、分子の概略周辺内のモノマーの重合状態変化をもたらし得る。
本発明の幾つかの実施形態によると、ボクセルに基づいたリソグラフィシステムは、眼科レンズを形成するために使用され得る。かかる形成されるレンズの波面の図式表示は、図4に図示される。
幾つかの実施形態では、装置500の周囲を取り囲む、温度及び湿度を含む周囲環境を制御することができる。周囲気体環境の性質は、例えば、気体状窒素のパージを使用することによって制御することができる。パージを実施して、酸素分圧を所定のレベルに増加又は減少させることができる。また、湿度は、オフィス環境より比較的低いレベル等、比較的所定のレベルに維持され得る。
個々の装置構成要素と相互作用することができる振動エネルギーのレベルは、幾つかの実施形態において制御され得る別の環境パラメーターである。幾つかの実施形態では、大きな塊状支持構造体は、相対低振動環境を画定する。他の実施形態は、能動振動支持体上に支持されるボクセルに基づいたリソグラフィシステム500の幾つか又は全てを含み得る。一般的に考えられる溶液を制限することなく、空気袋支援ピストンは、絶縁されたシステムへの振動伝達を大幅に減少させることができることが当該技術分野において周知である。振動絶縁の他の標準的手段もまた、本発明の範囲に従い得る。
装置の環境内の微粒子は、生成物レンズ前駆体及びレンズへの組み込みを含む、様々な種類の望ましくない欠陥モードをもたらし得る。例えば、光学機器経路内で、微粒子は、1つ又は2つ以上のボクセル要素の実際の強度を変調する、及び又は特定のミラー要素の機能に影響を与える可能性がある。これらの理由のため、少なくとも、環境内の微粒子状物質を制御する手段を提供することは、本発明の範囲内である。これを達成するための一実施形態の一実施例は、装置本体の環境内への高性能微粒子エア(HEPA)フィルターの組み込み、及び装置の暴露される部分内で層流様式を確立するのに十分なフィルターに空気を透過させる手段であり得る。そうは言うものの、装置内及びその周囲の微粒子レベルを大いに制限するいかなる実施形態も、本発明の意図される範囲内である。
本発明に従う光学装置のための詳細な環境支持体の別の態様は、周辺光及びそれを制御するための方式を含む。幾つかの実施形態では、間接照明は、化学放射線を提供し、したがって漂遊光子エネルギー源を制限することが賢明である。
したがって、幾つかの実施形態では、装置500は、前述される環境要求事項に従う不透明な材料内に封入することができる。好ましい実施形態は、装置の作動部分が汚染環境照明に暴露されるのを防止するのに十分であり得る、フィルター処理した光源を装置の環境内に使用することを採用してもよい。
ここで、図6を参照し、強調形態600に示される光源を熟考する。光エネルギーの具体的な態様は、いずれかのリソグラフィシステムの基本的な態様と見なすことができ、ボクセルに基づいたリソグラフィ光学装置を使用する本発明の実施形態では、システムの光源の性質は、重要であり得る。
幾つかの実施形態では、光源620が狭いスペクトル帯域の光を提供することが望ましい。例示的な光システム600の構成要素は、前記狭いスペクトル特性を達成する手段を提供する。好ましい実施形態では、光源は、環境支持体及び筐体610内に存在する、発光ダイオード620を含む。例示的な目的のために、幾つかの実施形態では、発光ダイオード源620は、Digital Light Lab Inc.(Knoxville,TN USA)のコントローラを有するモデル、AccuCure ULM−2−365光源を含むことができる。このモデルは、約365nmを中心とする狭い帯域の光を放出し、更に、約9nmの半値全幅の特性を有する。したがって、この市販されている光源構成要素は、更なる装置なしで、既に所望の狭い帯域の光を放出する。また、いずれかのLED又は他の類似特性を有する発光製品が利用されてもよいことが明らかであり得る。
別の方法としては、また、例えば、炭素アークランプ又はキセノンランプ620等、より広いスペクトルの光源も使用され得る。この別の方法では、広帯域源620を利用することができる。光は、環境コンテナ610から放出され、光源620上に配置されるフィルターホイール630を通って進む。フィルターホイール630は、異なる動作位置に複数の異なるフィルター631を含むことができ、これらのフィルター631は、例えば、365nmを中心とし、類似する10nm性能の半値全幅を有する光を透過する帯域通過フィルターを含み得る。本実施形態では、フィルターホイールは、フィルターホイールを異なるフィルターへ動かすことができる電動式作動装置610によって作動させることができ、したがって、例示的なボクセルリソグラフィシステム実施形態500が、複数の選択可能な波長で動作できるようにする。
数々の代替の実施形態は、フィルター631が、広帯域光源620に近接して固定方式で実装され、適切な実施形態を提供し得るという、非制限的な観点を含む事実を容易に導き得ることが明らかであり得る。別の態様では、複数の波長能力は、異なる波長で個々に作動される環境610内に複数のLED光源620が存在する、代替の実施形態から導かれ得る。
より一般的に、幾つかの実施形態は、様々な種類のフィルターを有するか、又は有さない、例えば、白熱灯、レーザー、発光及び他の類似製品を含む様々な光源を含み得ることが明白である。更に、幾つかの実施形態では、制御されたスペクトル帯域内の光を放出することが可能であり得る光源を利用することができ、これは、本発明の範囲内である。
光源600は、更に、安定、均一、かつ比較的強烈であるという特性を有してもよい。幾つかの好ましい実施形態では、AccuCure LED光源620は、強烈な光を出力し、期間にわたって安定した強度を維持するために、内部監視フィードバックループを含む。
光源620は、定義されたデューティーサイクルで源をオン及びオフに変調することを含む、制御された方式で強度を変調するための手段を含むことができる。したがって、総合期間にわたり、強度制御のこのモードは、選択可能な時間平均強度レベルをもたらす。あるいは、追加の動作実施形態では、LED源は、非時間依存性レベルの放出される強度に対して強度の変化が生じる電圧制御動作モードを介して、強度を変調することができる。
いずれかの光源構成要素620の出力の安定性に関して、光源の環境内の追加の特徴は、追加の実施形態定義を含み得る。本態様の実施例は、冷却システムを介する温度制御手段を含むことができる。他の環境制御は、本発明の意図に従う、異なる実施形態定義を含んでもよい。
異なる態様では、光源装置600は、強度を変調するための代替の実施形態を提供する。個々の光源620は、所与の強度を放出するように動作してもよく、フィルターホイール630は、電動式要素610によって、減光フィルター631を用いて放出される光を遮断するように作動されてもよい。したがって、ボクセルリソグラフィシステム500の残りの部分に提供される光の強度は、より低い強度に変調される。一般的な観点から、個々の光フィルター631の設計は、数々の自由度を伴い、それ自体で、異なる実施形態態様を含み得ることが留意され得る。非限定的な実施例として、フィルターは、本体を通る1つの経路に沿って別の経路より高い強度を画定するように、空間的に画定される方式で、強度を変調するように設計されてもよい。第2の非限定的な実施例では、フィルターホイールは、DMDの動作と同期化され、それによってそれぞれのフィルターホイールセグメントの密度値によって画定されるピクセル及び強度を調整できるようにする方式で、強度を変調するように設計されてもよい。これらの動作モードを組み合わせることによって、代替の実施形態が提供され、また、これまでに記載されたように特性の光強度を制御するいかなる手段も、本発明の範囲内であることが明白である。
幾つかの実施形態では、フィルターホイール630は、光学機器システム500の残りの部分からの照射を遮断するように、フィルター要素631を閉じることができる。下流光学機器構成要素の安定性及び寿命を含む、かかる機能を組み込むことの数々の利点が存在し得る。更に、幾つかの実施形態では、光源構成要素620の安定性は、連続的に動作させる場合に改善され得る。遮断フィルター631は、光源600からの光をなくす必要がある、動作システムの残りの部分の工程を実施する手段を可能にし得る。フィルターホイール630の特定の位置が記載されてきたが、実施形態は、光学機器経路に沿った、他の適切な位置を含み得る。
別の態様において、幾つかの実施形態では、ボクセルに基づいたリソグラフィ光学装置は、均質化及び/又は平行化光学機器を含み得る。本装置は、光源520の光出力を受け取り、強度がより均一であり、DMD 510上に集光される、出力放射線540を生成するように設計される。
ここで、図7を参照すると、幾つかの好ましい実施形態が示される。上述されるように、装置は、光源520からの光を平行化し得る。また、その光を強度に関連して均質化し得る。幾つかの特定の実施形態は、光源620の出力の平行化を実施するために光学構成要素に取り付けられた、AccuCure 365nm LED光源620を含む。
平行化装置は、平行化構成要素及び均質化構成要素を含み得る。好ましい実施形態では、光は光源620によって十分に平行化され、700内に進み、一組の約2.54cm(1インチ)の集光光学機器710に衝突する。光学機器710には、例えば、CVI Laser,Inc.(Albuquerque,NM USA)から入手可能なレンズ構成要素が含まれ得る。
1つ又は2つ以上のレンズ710は、源光を光パイプ720上に集光するために利用され得る。光パイプ720は、入力光を均質化し、空間的強度における不均一性を平滑化する機能を果たす。光パイプ720は、UV等級アクリル材料で作製される、六角形状の光学機器パイプを含み得る。代替の実施形態は、源光の空間的均一性を均質化するための光学装置を含むことができる。
光パイプ720からの均質化された光出力は、この場合も同様に、例えば、CVI Laser Inc.(Albuquerque,NM USA)から入手可能な種類の、容易に入手できる等級の光学機器要素730によって集光される。ここで、集光された光は、開口絞り740を通って、一組の約5.08cm(2インチ)の集光要素750に進む。この場合も同様に、これらの集光要素は、例として、Thorlabs Inc.(Newton NJ USA)から入手可能であり得る、標準的な容易に入手できる等級の光学機器である。ここで、集光光学機器750の目的は、光を、デジタルミラーデバイス(DMD)510における光焦点位置に向けることである。これは、ボクセルに基づいたリソグラフィシステムの照明セクション内の光路で完了する。所望の中心波長及びスペクトル帯域幅の強烈かつ均一な光でDMD 510を照射することにおける同様の目的を達成するために、コリメータ及びホモジナイザー構成要素の態様を変更し得る、数々の実施形態が存在し得、これは、本発明の範囲内である。
好ましい実施形態では、照明システムアイテム520及び530は、Texas InstrumentsのDigital Mirror Device 510を含む能動要素上及びその周囲だけに光(図8の800で820で識別される)を付与する。好ましい実施形態で使用されるDMDは、DLi(Digital Light Innovations、Austin Texas,USA)から入手可能なDMD Developer Kit:DMD Discovery 3000を用いて入手された。キットは、対角線1.78cm(0.7インチ)、任意選択のUV透過窓を有するTexas Instruments DLP(商標)XGA DMDチップ(768×1024個のミラー)を有する、A DLi DMD Discovery 3000ボードを含む。また、コンピュータからD3000へのリンクとしての機能を果たすために、D3000ボードと一緒になったALP−3高速光処理ボードが含まれる。これらの構成要素は、共に、ボクセルに基づいたリソグラフィシステムのこの好ましい実施形態の、画像化システム構成要素の図8の800の810を含む。TI DLP(商標)XGA DMDの詳細な説明は、DMD Discovery(商標)3000Digital Controller(DDC3000)Starter Kit Technical Reference Manualとして、TIから入手され得る。
DMDデバイス810は、照明システムから出る光の強度の空間的変調を提供するように機能することができる。Texas InstrumentsからのDMDは、デバイスの活性領域の空間的格子内に単一アドレス可能位置を構成するマイクロミラー構成要素から光を反射することによって、デジタル方式でこの機能を実施する。したがって、DMD 810から反射され、画像化システム800を更に下る光の強度は、それ自体は、変化せず、しかしながら、ミラーのデューティーサイクルをオン状態又はオフ状態に制御することによって、単一ピクセル位置から反射される時間平均強度を修正することができる。
他の実施形態では、放射線をボクセル単位で制御するために、独国のFraunhofer Institut Photonische Microsystemeから入手可能なもの等の空間光変調器(SLM)を使用することができ、これは、強度の空間的変調機能810を含むことができる。SLMのミラーのような表面は、実際に、それぞれのミラーが、集積回路内にそれ自体の記憶セルを有する、複数の(すなわち、数千の)極めて小さな移動可能なミラーで構成されてもよい。所望の強度プロファイルの画像がSLMに送信される際、個々のミラーは、屈曲されるか、又は平らなままである(マイクロミラーを回転又は傾斜させるTI DMDとは異なる)。屈曲したミラーから反射される光は、化学線に対して反応性の化学物質混合物を通過及び暴露しないように、散乱される。
ここで、再び図8を参照すると、上述されるように、能動画像化要素DMD 810は、デジタル方式で光を処理し、2つの方向のうちの1つに反射する。オフ状態では、光の反射の経路は、化学線に対して反応性の化学物質混合物の位置を決して向かないことが意図される。確実にするために、外れる方向に向けられる光は、決してこの経路を向かず、画像化システム800の一部は、光ダンプ830を含むことができる。このダンプには、その上へのいかなる入射光も大幅に吸収し、ダンプ自体の更に深くへのみ反射する、吸収性の高い表面が含まれる。好ましい実施形態では、非限定的な実施例として、これらの表面は、Hoya Inc.(日本東京)から入手することができる、吸収性NDガラスシートを含む。
「オン」位置にあるミラー要素から反射される光は、異なる経路をとり、集光要素840に向かう。他の光学機器と同様に、これらの約2.54cm(1インチ)の集光レンズは、容易に入手できる構成要素であり、例えば、Thorlabs Inc.(Newton NJ USA)から入手可能であり得る。これらの集光レンズ840は、反応性モノマー混合物の光反応が生じる形成光学機器上への物体としてのDMD 810から発する「オン」状態の光を集光する。
幾つかの実施形態では、光学機器経路の状態を、生成されるレンズの結果から推測するより、直接画像化及び監視する手段を提供することが望ましい。ボクセルに基づいたリソグラフィ光学装置の好ましい実施形態では、この直接監視のための対策が提供される。形成光学機器580上に集光され得る光は、ビーム経路内へ、及びその外へ切り替えることができるミラー850によって遮られる。そのように向けられる光は、次いで光検出画像化装置860上に入射する。
ここで、図9を参照すると、形成装置900の構成要素は、ビームを反応性混合物の最終的な目標領域に衝突させる。上述されるように、幾つかの実施形態では、この光は、形成光学機器930自体の表面に対して垂直配向に集光されている。900に図示される実施形態では、光は、形成光学機器930の表面にほぼ垂直に衝突し得る。代替の実施形態では、レンズは、前記レンズの形成光学機器930に対する的確な配向を維持し得る、921として示される保定リング又は他の締結デバイスを介して、適切な位置に保持することができる。広義の観点から、本発明は、光が光学表面930にわたるボクセル単位を通る経路に関連する数々の実施形態を含むことに留意されたい。
図9を続けると、リザーバ及び形成光学機器の光ビームに対する相対配向は重要であるため、幾つかの実施形態では、アイテムの相互作用、つまり形成光学機器保定部材970と反応性モノマー混合物950を収容するリザーバとの相互作用によって示されるように、それらの相互連結位置の機構が画定されてもよい。また、これらの2つの部材間の整合は、リザーバ950を形成光学機器表面930の中心に置くための正の制御も提供する。また、位置制御は、幾つかの実施形態では、離間リング951の機能を用いて向上され得る。同様に、この離間は、リザーバ950に添加され得る反応性モノマー混合物の体積を制御する。
また、図9は、反応性モノマー混合物の近隣の周囲気体の制御に関連する追加の実施形態態様を示す。幾つかの実施形態では、酸素の存在は、モノマーの光化学を修正し、光生成フリーラジカルのスカベンジャとしての役割を果たす可能性があるため、幾つかの実施形態では、リザーバ950を取り囲む気体から排除する必要がある。これは、図9の900では、収容容器990によって達成される。窒素等の不活性気体を960を通して流すことによって、酸素は、環境から排除され得る。更に別の実施形態では、酸素レベルは、収容容器990を通って流れる気体960内のその希釈物を制御することによって、あるレベルに維持され得る。気体質量流コントローラを使用することによって気体960内の酸素の一定の希釈物レベルを達成する標準的手段は、周知の技術であり、本発明の趣旨内の実施形態を含む。
反応性混合物を収容するリザーバ950は、適切な体積の前記反応性混合物で充填されなければならない。幾つかの実施形態では、この充填は、形成光学機器930がリザーバ950に関連して配置される前に実施され得る。他の実施形態では、形成光学機器930及びリザーバ950は、収容容器990の内部に定置され、気体流960によるパージが行われてもよい。また、使用前の反応性混合物の濾過が採用されてもよい。その後、反応性混合物945の体積は、リザーバ950に定量的に充填されてもよい。
手での充填、自動手段による定量的な流体移送、又はレベル検出器がリザーバ950内の反応性混合物945の適切なレベルを測定するまでの充填を含む、反応性混合物945を移送するための数々の手段が存在し得る。一般的な観点から、適切な量の反応性混合物945を移送するための数々の実施形態が実用的であり得、かかる技術は、十分に本発明の範囲内であることが当業者にとって明らかであり得る。
光処理工程において酸素のレベルが決定的に重要である実施形態では、酸素は、溶存種として反応性モノマー混合物945内に存在し得ることが明白であり得る。かかる実施形態では、反応性モノマー混合物945内の酸素濃度を確立するための手段が必要となる。この機能を達成するための幾つかの実施形態は、混合物をパージ気体960が通って流れる気体環境中に滞留させることを含む。代替の実施形態は、モノマー混合物の供給物中の溶存気体を真空パージすることと、混合物の分注中に、分注される液体と気体との膜交換によって所望の量の酸素を再構成することとを含み得る。本発明の範囲内で、適切な濃度の必要とされる溶存気体を確立するためのいかなる手段も許容可能であることが明白である。更に、より一般的な意味で、他の材料は、溶存酸素の存在下又は不在下で、適切な阻害物質としての役割を果たし得る。更により一般的な観点から、阻害物質の適切なレベルを確立し、維持するための装置を含む実施形態は、本発明の範囲内であると予測される。
ここで、再び図10を参照すると、形成光学機器並びにその保持及び位置決め装置1000の例示的な形状が図示される。形成光学機器を保持する構造体は、平らなガラスディスク1040を含むことができる。形成光学機器は、光学的に整合性のある接着剤1020の手段によって、ディスクと形成光学機器との間を確実に整合させるためのアセンブリ治具を使用して、位置決め及び締結することができる。ディスクの平らな表面は、垂直方向の正の配向を提供し、一方、位置決めノッチ1030及び図示されない他の平らな表面は、放射状及び水平配位置御を可能にすることができる。
ここで、図11を参照すると、ディスク1000は、リザーバシステム1100と係合する。平らな表面は、3つの係合表面1130上にある。幾つかの実施形態は、アイテム1030にしっかりと係合し、位置決めする、バネ仕掛けの位置決めピン1120を更に含んでもよい。2つの静止位置決めピン(図示せず)は、形成光学機器アセンブリ上の2つの他の平らな表面を嵌合し、組み合わせは、全ての自由度で、形成光学機器アセンブリを運動学的に位置決めするように作用し、したがって形成光学機器を光学光路内に位置決めする、繰り返し可能かつ安定した手段を確実なものにする。また、幾つかの実施形態では、反応性モノマー1110を収容するためのリザーバも含むことができる。より一般的な観点から、当業者にとって明らかであり得る、形成光学機器を中心に置くため、かかる光学機器を反応性混合物を収容するリザーバに隣接して位置決めするため、及び1つ又は2つ以上のかかる機能を周囲制御環境内に位置決めするための方法の本明細書に開示される本発明技術に従う、数々の実施形態が存在し得る。
形成光学機器1010は、所望のスペクトルの化学放射線に対して、少なくとも部分的に透過性である。したがって、様々な実施形態では、形成光学機器1010は、例として、石英、プラスチック、ガラス、又は使用される反応性モノマー混合物を硬化させるように動作可能である光波長に対して透過性である他の材料の1つ又は2つ以上を含み得る。形成光学機器1010の形状は、形成光学機器1010を通過する形成化学放射線から生じる重合を介して表面1011に沿って形成される、レンズ又はレンズ前駆体に付与される特性を有する、表面1011のうちの1つを含むことが更に留意され得る。数々の形状実施形態は、本明細書の本発明技術を含み得る。
形成光学機器1010の設計及び特性に採用され得る様々な実施形態内で、前記部品の個々の実施例は、例えば、その在庫材料、製造、使用履歴、及び/又は他の原因に関連する、固有の態様を有し得る。これらの態様は、ボクセルリソグラフィシステム500の全体機能と相互作用して、又はせずに、目的とする最終生成物を達成するために必要とされる、ボクセル強度プロファイルの固有の光学的オフセット値を生成する。したがって、幾つかの実施形態は、形成光学機器1010を調整し、それらを維持し、それらを追跡するための手段を採用し得る。例示的な理由から、一実施形態は、形成光学機器部品1040の平らな表面上の識別マークを機械可読フォーマットに符号化するためのものであってもよい。追加の実施形態は、機械可読性のために、例えば、前記識別マークと共に取り付けられた無線周波数識別装置を含むことができる。本発明の意図を含み得る、個々の形成光学機器部品1040を識別するための数々の他の実施形態が存在し得る。
ボクセルに基づいたリソグラフィ光学器具500の産出生成物は、数々の実施形態を含み得る。一実施形態では、900に示されるように、反応性生成物940は、形成光学機器930の表面上に形成されるが、残留反応性化学物質混合物945内に依然として存在する。反応性生成物940と共に形成光学機器930を化学物質混合物945から引き離す行為は、装置の追加の実施形態を含み得る。幾つかのかかる実施形態では、形成光学機器930及び接着する反応性生成物940は、例えば、ロボット自動化の行為の下、化学物質混合物945から外へ持ち上げられてもよい。
幾つかの実施形態では、記載されるプロセスによってもたらされる製造物品は、レンズ前駆体と称される実体であり得る。レンズ前駆体は、形成を受けて形成光学機器に接着することができる。略図1700には、レンズ前駆体が接着され得る基材又は形成光学機器なしに、前躯体に含まれ得るものが示される。しかしながら、この概略表示は、レンズ前駆体の主要な特徴を図示する。反応性生成物は、ここで、1740で識別される、レンズ前駆体形態と称される固体成分を有する。本実施形態では、付着した面(形成光学機器が図示されていない)は、光学表面と共に1750として示される。ここで、レンズ前駆体形態1740は、ボクセルに基づいたリソグラフィシステム500の動作によって画定された表面1730を有する。流動性レンズ反応性混合物1745が表面1730に接着される。かかる実施形態では、媒体1745は、依然として、形成光学機器上に残存し、それらは、本明細書に記載されるもの等の追加の処理に暴露され得る。
流動性材料除去装置
幾つかの実施形態では、前述されるボクセルに基づいたリソグラフィ光学システム500によって生成されたレンズ前駆体1700は、新規実体を画定する。流動性材料除去装置(浸出装置と称される場合もある)は、レンズ前駆体1700上で作用することができる一組の装置であり、以下に詳細に記載される。
ここで、図12の1200を参照すると、流動性化学物質除去装置の実施形態の幾つかの態様の略図が示される。ここで、形成光学機器1250に取り付けられ、整合プレート1260がそれに取り付けられた、レンズ前駆体が示される。組み合わせは、レンズ前駆体の表面が下方を向く実施形態として示される。流動性レンズ反応性混合物1240は、重力を含む様々な力の下で移動する。浸出毛管1210は、流動性レンズ反応性混合物1240に近接して、レンズ表面に沿った低点に溜まった流動性化学物質の周囲及びその中に配置される。好ましい実施形態では、浸出毛管は、SafecritのモデルHP8UUntreated Plastic Microhematocrit管から作製されたポリマー浸出モデルを含んでもよい。代替の実施例として、また、毛管は、ガラス、金属、又は流動性化学物質除去の物理及び化学/材料要求に従う他の材料を含んでもよい。
流動性化学物質1240は、毛管1210に引き出され、レンズ前駆体から引き出される体積1241を形成する。一実施形態では、プロセスは、何度も繰り返され得る。処理後、レンズ前駆体1200は、レンズ前駆体形態1750に接着する、減少した量の流動性レンズ反応性混合物と共に残存する。
流動性レンズ反応性混合物の様々な態様は、例えば、流動性レンズ反応性混合物内の粘度がより低い構成要素が分離及び除去され得ることを含む、この処理によって影響され得る。化学物質除去プロセスが実施され得る方法に関する、多くの異なる任意選択の実施形態が存在し、全てが本発明の範囲に従うことは当業者にとって明白である。
広くは、任意選択の実施形態は、化学物質を表面から引き出すための数々の物理的設計を含み得る。異なる実施形態の一実施例は、流動性レンズ反応性混合物1240を引き出すことを助長するために、真空システム構成要素1220を作動させることであり得る。非限定的な実施例として、別の実施形態には、形成光学機器表面1250の形状を模倣する、それらの点に配置される、毛管装置1210の重複する複製物が含まれ得る。更に、化学物質除去は、一実施例として、スポンジのような高表面積材料、又は高表面積を有するナノスケール材料を用いて実施することができる。前述される概念を再記述すると、代替の実施形態は、形成光学機器930上のレンズ前駆体を反応性混合物945から引き抜く速度を制御することを含んでもよい。本実施形態では、表面張力は、毛管浸出工程との類似性を有し、レンズ前駆体がもたらされる際の流動性レンズ反応性混合物1710の残存量の減少をもたらす、化学物質除去の形態を含み得る。一般的な観点から、流動性レンズ反応性混合物1240の一部を除去する機能を実施することができる装置の数々の実施形態は、本発明の範囲内の技術を含む。
好ましい実施形態では、真空システム構成要素1220は、上記に定義した機能とは別の機能を有する。複数のレンズ前駆体の処理では、化学物質除去装置1200は、何度も化学物質除去を実施する。真空システム構成要素1220は、毛管装置1210を洗浄するため、及び空にするために使用され得る。異なる実施形態は、真空システム構成要素1220と併せて、毛管装置1210を通って流れるクレンジング溶媒を含んでもよい。
概して、図12に示される実施形態1200は、化学物質除去システムがどのように機能することができるかを図示し、これは、関連する構成要素の詳細及び拡大図に焦点を当てる。比較して、図13は、好ましい実施形態に採用される器具及び幾つかの代替物の両方の説明を助けるために、化学物質除去システム1300実施形態の幾つかの実施形態のより全体的な図を示す。図13の1300は、毛管除去構成要素1305と、形成光学機器上に実装されたレンズ前駆体と、直下を向くレンズ前駆体を有する、類似する構成の形成光学機器プレート1306と、を含む。
ここで、再び図13を参照すると、浸出毛管1306の定置は、代替の実施形態では、形成光学機器レンズ前駆体1305の中心、つまり中心点から外れた位置に位置決めされ得ることが明白であり得る。アイテム1330は、毛管の形成光学機器に対する中央整合をオフセットするために調節が行われる、xy換算表の単一次元を示す。例として、1330は、好ましい実施形態の手動バーニア調節形態で示される。しかしながら、調節は、例えば、ステッピングモータを含む自動化によって実施されてもよく、より一般的に、XY換算表の位置での自動化器具の様々なレベルの精度向上が本発明内であると予測され得ることが、当業者にとって明らかであり得る。より一般化し、かつ以下の記述を簡略化するために、装置のいずれの移動能力も、考えられる実施形態と同様の自由度を有し得ると考えられ得る。
アイテム1320、つまり形成光学機器保持装置は、形成光学機器を所望の安定した位置に柔軟に保持するための装置を含む。本実施形態では、前述において1000として示される形成光学機器部品は、ボクセルに基づいたリソグラフィ装置500内に位置決めされる際と類似する位置スキームを採用し得る。代替の実施形態は、形成光学機器保持装置1000を自動化手段の下で移動できるようにし得る。形成光学機器を保持し、それを流動性化学物質除去装置内の適切な位置に固定する方式の数々の代替方法が、本発明に従う態様を含むことは明白である。
これまでの記述は、概して、形成光学機器の軸が、水平面に対して垂直であり、重力の方向となるように位置決めされる実施形態を示してきた。代替の実施形態は、この垂直配向を中心にある角度で軸を回転できるようにし得る。アイテム1350は、形成光学機器軸と重力がなす角度を変化させるための調節手段を含む。かかる変化の基本的な効果は、レンズ前駆体上の流動性物質1710が形成光学機器の中心から外れた位置に溜まる傾向となることである。幾つかの実施形態では、中心から外れた位置に流動性媒体を引き出す利点が存在し得る。
図13に示される多数のアイテムは、毛管浸出装置1306のレンズ前駆体上の流動性媒体に対する垂直方式の位置に関連する。例えば1340は、垂直軸に沿って浸出毛管1306に取り付けられたステージを移動させることによって、この次元の総調節又は粗調節することを含み得る。更に、1345は、同一の移動可能性における微細レベルの調節を含む。同一の軸に沿って、形成光学機器実装ステージ1310を毛管浸出装置1306に対して調節することが同等に可能である。アイテム1370は、この目的のための微調節装置を含む。
浸出毛管を異なる配向に移動するために、1360は、回転運動装置を含む。例えば、かかる実施形態は、浸出デバイス1306を簡単かつ自動で交換する能力を可能にし得る。
記述されるように、流動性化学物質除去装置1300の様々な構成要素間での移動を自動化することに関連する、数々の実施形態が存在し得る。更に、しかしながら、代替の実施形態が、化学物質を除去するプロセスを制御するための光学測定を含むことは、完全に本発明の範囲内である。かかる監視のための更に代替の実施形態は、例えば、様々な種類の液体レベルセンサを含み得る。一般的に言えば、流動性化学物質混合物の一部を固体支持体から制御可能に除去するプロセスが、数々の検知及び計測装置を必要とし得ることは、当業者にとって明らかであり得る。
これまでに記載されてきた流動性レンズ反応性化学物質を除去するための装置に関連する実施形態の趣旨は、化学物質1710の一部をレンズ前駆体形態1730の表面から除去する方法及び装置を含む。化学洗浄工程が、より激しい任意選択の洗浄を用いる実施形態を含み得ることは当業者にとって明白であり得る。業界標準クレンジング技術を使用することによって、流動性レンズ反応性化学物質1710は、部分的に、又はほぼ完全に除去され得る。明らかに、かかるクレンジング作用を有する装置は、レンズ前駆体1700を異なる形態に変換し得る。しかしながら、幾つかの実施形態では、例えば、堆積、噴射、インクジェット、又は浸出等を介して、反応性混合物をレンズ前駆体形態の表面1730上に再び適用することによって、前記クレンジング技術後にレンズ前駆体を再構成することが可能であり得る。
化学物質除去の他の実施形態は、レンズ前駆体形態1740外部の器具を使用しない場合がある。あるいは、レンズ前駆体形態1740の形状は、数々の実施形態によって画定され得るため、レンズ前駆体形態1740の特定の位置に、局所的凹部又はチャネル(図4の400のアイテム440は、かかる特徴の幾つかの例示的な実施形態を含み、本明細書の他の項でより詳細に記載される)を含み得る、レンズ前駆体形態の設計が存在する。流動性レンズ反応性混合物1710をチャネルに誘導することによって、レンズ前駆体形態1740「上」の流動性レンズ反応性混合物1710の量の減少が得られる場合があり、これは、化学物質除去の前記代替の実施形態を含み得る。広くは、この種類の実施形態では、本方式で機能するための局所レリーフ特徴の実際の形状は様々であり得、自由形成表面に作り出されてもよいことが明白であり得る。
安定化及び固定化装置
レンズ前駆体1700は、眼科レンズのカスタマイズされた形成のための装置の追加の実施形態の原理を含む。一実施形態の描写に層1710として示される、レンズ前駆体の流動性層は、光学品質眼科レンズ表面を形成するための新規方式を提供する。レンズ前駆体が直立状態で定置される際、流動性媒体は、経時的に移動し得る。例えば、時間の長さ等の特定の条件下で、流動性層は、安定した実体を達成するために、重力及び表面力の両方の下で拡散し得る。安定化した流動性レンズ反応性混合物1710の表面は、1720で示すことができる。特定の実施形態の下で、結果として生じる表面1720は、レンズ前駆体形態1740の表面1730と比較して、光学的に優れた表面を含み得る。数々の装置が、流動性レンズ反応性混合物1710を安定化する機能的能力を提供し得る。
ここで、図14に進むと、好ましい実施形態の安定化装置1400が示される。一態様は、流れシステムを、移動又は振動エネルギーから絶縁できるようにする。これは、1400において構成要素1450を用いて達成される。比較的大きなテーブル1450を、振動絶縁システム1440上に支持することができる。かかる実施形態において、重力もまた採用される際、大きなテーブル1450は、水平な平らな表面を有することが望ましい場合がある。レンズ前駆体1410は、保持装置1451を用いて取り付けられ得る形成光学機器ホルダ1430に取り付けることができる。幾つかの実施形態では、流動性媒体の最小時間を制御して、比較的安定した状態を達成するために、自動化タイミング器具が使用され得る。
幾つかの実施形態では、安定化に使用される装置は、レンズ前駆体1700を形成された眼科レンズに固定するために、レンズ前駆体を化学線照射工程に暴露できるようにする、取り付けられた構成要素を含む。幾つかの実施形態では、固定化放射線は、流動性レンズ反応性混合物1710内でのみ光化学反応が起こるようにする。代替の実施形態では、例えば、レンズ前駆体形態1740等のレンズ前駆体の他の部分は、固定化放射線下で、1つ又は2つ以上の化学変化を起こし得る。レンズ前駆体を構成する材料の性質に基づく変形を構成する他の実施形態は、本発明の下で整合性のあるものとして、専門家にとって明らかであり得る。
1400では、固定化放射線源は、1460で識別される。例として、ボクセルリソグラフィ光学システム520の文脈で前述されるものと類似する光源が採用されてもよい。例えば、幾つかの実施形態では、Digital Light Lab Inc.(Knoxville,TN USA)のコントローラを有するAccuCure ULM−2−420光源1460は、固定化放射線1461の許容可能な源を構成してもよい。安定化のために適切なパラメーターが実施された後、固定化光源1460のコントローラは、レンズ前駆体及び周囲を固定化放射線1461に暴露し、一実施形態の眼科レンズを形成する、オン位置に切り替えられる。一般的な観点から、レンズ前駆体形態1730表面にわたる流動性レンズ反応性混合物を安定化ないしは別の方法で移動させ、次いで幾つかの方式で固定化放射線で照射することに関連する数々の実施形態が存在し得る。
例として、固定化装置内で処理するための幾つかの代替の実施形態は、流動性材料がウォッシングシステムで洗い落とされている場合がある、レンズ前駆体形態を含み得る。固定形態のこのレンズ前駆体形態が、それ自体で特定の特性のレンズを含み得るため、安定化装置自体を必要としない方式で固定化装置を使用することを伴う実施形態を予測することは、本発明の範囲内である。より一般的な意味で、本発明は、固定化装置が、流動性材料を固定される表面上に事前に流す必要のない材料を固定し得る、材料及び形態の数々の実施形態を予測し得る。例として、ボクセルに基づいたリソグラフィ光学システムを用いて形成され、流動性レンズ反応性混合物1710が洗い落とされたレンズ前駆体形態は、依然として、固定化装置がレンズ前駆体をレンズに固定することができる実施形態を含み得る。
一組の実施形態は、流動性レンズ反応性混合物1710を移動させるための代替の方式を含む。例として、幾つかの実施形態では、流動性レンズ反応性混合物1710を含むレンズ前駆体表面を撹拌することによって、流動性レンズ反応性混合物1710の移動が可能となり得る。更に、例えば、幾つかの実施形態では、フィルム処理において一般的なスピンコーティング方式で、レンズ前駆体を、中心軸を中心にスピンさせることが望ましい場合がある。
更に他の実施形態は、レンズ前駆体1410を、制御された方式で特定の距離にわたり降下させることによって、流動性レンズ反応性混合物1710が受ける重力を最小化することを含み得る。追加の実施形態は、上にレンズ前駆体1410、形成光学機器1420、及びホルダ1430が置かれる表面1450のレベルを変化させることによって、重力の影響を変えてもよい。異なる表面レベルによって、中心光学機器域内の流動性レンズ反応性混合物1710への力が変化し、移動を生じ得る。
別の態様では、幾つかの実施形態は、流動性レンズ反応性混合物1710の化学又は物理変化を含み得る。例として、代替の実施形態は、その流動性の性質を変化させる方式で、流動性反応性化学物質の中及び周囲に溶媒材料を導入することを含み得る。更に、前記添加材料は、レンズ前駆体系1700内の構成要素の表面エネルギー特性に影響を与え得る。流動性反応性化学物質1710の特性は、固定化とは異なる方式で流動性の性質を変化させるために、固定化照射(fixing irradiation)1461を使用することによって、部分的に変化されてもよい。流動性化学物質系の特性を変化させることに関連する、一般的な性質の数々の代替の実施形態は、本発明の本質によって予測され得る。
著しく基本的なレベルで、反応性化学物質混合物945の性質は、異なる結果をもたらすことができるように、装置の様々な実施形態と相互作用し得る。安定化及び固定化装置1400の性質、及び反応性化学物質混合物内の基本的な化学成分を変化させることに由来する実施形態の変形は、本発明の範囲内の実施形態を含むことが明白である。例として、これは、例えば、固定化放射線に採用される波長の変化を含むことができ、固定化放射線の前記波長における柔軟性を有する装置の実施形態を導入してもよい。
レンズ前駆体の材料が形成されたレンズの一部を含み得る際、安定化及び固定化装置内及びその周囲の環境制御は、重要な実施形態の態様を含み得ることが、当業者にとって明らかであり得る。例えば、例えばHEPAフィルター処理した空気流を用いる、微粒子状物質の制御は、環境制御の一実施形態を含み得る。流動性媒体は、依然として化学放射線に対して感受性があるため、環境に入る漂遊光の制御は、追加の任意選択の実施形態を含む。同様に、湿度及び他の気体汚染物質は、レンズの品質に影響を与え得、これらの環境条件の制御は、代替の実施形態を含み得る。当業者にとって明白であり得る環境制御の数々の態様は、本発明の範囲内の技術を含む。
安定化及び固定化装置を用いて幾つかの実施形態のレンズ前駆体を処理する生成物は、眼科レンズと類似するか、又はその形態の装置を含み得る。多くの点で、この材料は、最終的な水和眼科レンズに直接関連する特性を有する。しかしながら、多くの実施形態は、レンズ安定化及び固定化の後、実体物を生成し、これは、依然として形成光学機器及びホルダ1430上にあり、非水和形態の実体に、様々な形態の計測が実施され得る。
計測装置
図15へ続くと、光学及び材料特性を測定することができる計測装置の実施形態の描写が示される。計測は、前述の固定化装置1400を用いる処理の後にもたらされ得る「乾燥」レンズと、水和レンズとの両方に可能であり得ることが明らかであり得る。しかしながら、本実施形態は、好ましくは、依然として形成光学機器に取り付けられたままである、乾燥レンズの計測に焦点を当てる。図15を参照すると、乾燥レンズ1520は、依然として、形成光学機器1530及びその適切な保持構成要素1540に取り付けられたままである。一実施例では、この保持構成要素1540は、共に、レンズの中心軸を中心とする制御された回転運動を可能にする、一対のマウント1550及び1560に取り付けられる。
幾つかの実施形態では、Keyence(日本大阪)によって製造されるモデルLT−9030等のレーザー変位センサ1510からのレーザー光1515の、レンズ試料1520の表面との相互作用は、試料1520、形成光学機器1530、及び保持クランプ1540が軸方向に回転する際に生じる。回転サーボモータ1570は、上に試料アセンブリが置かれる回転軸受運動ステージを駆動する。回転の安定性のために、レンズ試料アセンブリの質量の中心は、幾つかの実施形態では、可能な限り中心点の近くに設定される。ステージが回転する際、レーザー変位センサ1510は、レンズ1520の表面の軸リングに沿った複数の点の変位を測定する。ステージが1回転した後、変位センサ1510は、方位角方向に移動される。それぞれの移動は、レンズの表面の周囲に新たな円形輪郭を作り出す。本実施形態のプロセスは、レンズ表面全体の輪郭が描かれるまで繰り返される。レンズ試料1520のない特定の形成光学機器1530を測定することによって、形成光学機器の表面位置は、同等の球状表記形式で取得され得る。この結果を光学機器上にレンズがある結果から減算することによって、レンズ生成物の厚さマッピングがもたらされる。この場合もやはり、取り付けられたRFIDを介するか、又は幾つかの他の手段による電子フォーマットの形成光学機器の一意的識別は、装置の別の実施形態の形態を含んでもよい。
この種類の幾つかの実施形態では、試料表面1520のセンサ1510に対する自由振動変位は、システムによって得られる変位測定値に重大な誤差を含む場合がある。そのため、振動減衰及び絶縁が含まれてもよい。したがって、幾つかの実施形態では、振動効果を最小限にするために、振動絶縁マウント1590上に置かれる大きな支持テーブル1580を利用することができる。幾つかの実施形態は、他のものほど振動ノイズに対して感受性はない場合もあるが、しかしながら、一般的に言えば、検出器及び試料位置決め装置の様々な形態の周囲の環境への振動エネルギー伝達モードを最小化する様々な方法は、本発明の範囲内の実施形態を含む。
他の実施形態は、レンズ特性を抽出するために、場合によっては、第1の記載されるレーザー変位センサに加えて、異なる測定システムを採用し得る。非限定的な実施例として、また、幾つかの実施形態では、形成されるレンズ本体の厚さを決定するために、Thorlabs Inc.(Newton,NJ,USA)から入手可能なShack−Hartmann Wavefront Sensorが使用されてもよい。
一般的な観点から、一部において、及び例えば、屈折率、放射線吸収、及び密度を特性化するための技術を含む、本発明の範囲内であると予測される計測装置における、相当の多様性が存在し得る。また、例えば、粒子検出を含む、環境制御に関連する態様も、予測され得る。これらの様々な技術は、例示的な計測装置1500と同一の環境及び位置にあってもよく、又は代替の実施形態では、汎用システム環境内又は外部に追加の位置を含んでもよい。
特定の試料の生成に使用される特定の試料及び構成要素に関連する計測及び記号論理学的データの収集、記憶、及び通信は、本発明の一般的な実施形態の原理を含む。これらの様々なデータは、レンズ特性を制御するためのフィードバックループを確立するのに有用であり得る。例示的かつ好ましい実施形態では、レンズ試料1520のレーザー変位センサに基づいた計測装置1500からの出力は、算定システム内に記録及び記憶される。一実施形態1530では、個々の形成光学機器部品は、前記試料1520の生成に使用される前に、それに対して同様のレーザー変位計測が実施されていてもよい。データ算定システムを使用することによって、変位データは、レンズ試料、したがって生成されるレンズの厚さの表示を生成するために、幾つかの方式で処理され得る。
算定システム内で、レンズ製作システムにおいて様々な構成要素の開始パラメーター設定点を提供するのに有用なレンズ試料の所望のモデルは、試料1520及び形成光学機器1530の変位データの操作と比較され得る。幾つかの実施形態では、モデル内の様々な位置点は、画像化システムの個々の構成要素に、好ましい実施形態では、ボクセルに基づいたリソグラフィ光学システム内の特定のボクセル要素にマッピングされるか、又はそれに関連付けられ得る。ボクセルのパラメーターを調節することによって、前の試料と比較して調節された性能を有する次のレンズ又はレンズ前駆体試料が生成され得る。計測及び様々な計算アルゴリズム、並びに装置の数々の実施形態内で、データの取得、処理、モデリング、フィードバック、及び通信の多くの代替の実施形態が、本発明の範囲内の要素を含むことは当業者にとって明白である。
幾つかの実施形態では、生成されたレンズ試料1520の厚さに関連する特定のシステムの計測データは、レンズ前駆体形態1720の輪郭に設計された整合機能を使用することによって、向上され得る。例示的な図4の400で、上述されるものと類似する方式で得られる厚さ計測が得られた。この400の他の記述は、本開示内の他の場所に行われるが、整合の実施形態を理解するために、440が熟考され得る。アイテム440は、レンズ試料1520の表面に、比較的深い輪郭陥凹を含み得る。かかる特徴の設計は、装置内の数々の処理工程を適応させるのに有用であり得る。一実施形態では、アルゴリズム又は計測データの操作によって、400に関連する信号が抽出又は認識され得る。かかる抽出は、整合機能440に関連する位置に近接するか、又はその位置に処理を提供する、様々な装置の部分を位置決めするのに有用であり得る。特にマーキング材料の使用及び輪郭特徴の設計を含む整合機能の数々の異なる実施形態が可能であり、本発明の範囲内の技術を含むことは、当業者にとって明白であり得る。
計測システム1500によって生成される計測データを使用する幾つかの代替の実施形態は、眼科レンズ生成システム全体又はその中のその様々な装置を診断及び制御目的のために、このデータを利用してもよい。非限定的な実施例として、形成光学機器1530の上述の測定値の記憶は、結果として、かかる測定値の履歴をもたらし得る。代替の計算及びアルゴリズム処理によって、表面の特性は、経時的に比較することができ、急激又は一定のいずれかのこれらの特性の変化は、ある種の診断介入が必要であることを知らせるために使用されてもよい。かかる信号変化の多くの考えられる原因の一例は、形成光学機器が、その表面上にある種の表面スクラッチを受けたことを含み得る。追加の実施形態では、得られる計測結果に許容可能な限度を定めるため、及び自動化感知において測定値の有効な変化を知らせるための両方に、統計に基づくプロセス制御アルゴリズムを使用することができる。更なる追加の実施形態は、これらの知らせに自動化手段で対応するために、システム内に自動化のための手段を提供し得る。しかしながら、一般的な観点から、本発明の範囲は、システム全体を診断及び制御するために、例えば、システム1500からの計測データを使用する、これら及び数々の他の実施形態を予測する。
これまでに記載された計測装置の実施形態は、概して、「乾燥」レンズ試料1520又はその形成光学機器1530の計測に関係し得る。より一般的な観点からは、しかしながら、同様の、又は追加の計測の実施形態は、全システム内の他の形態の特性の測定に由来し得る。非限定的な実施例として、「乾燥」レンズは、幾つかの実施形態では、続けて処理され、水和した状態となり得る。かかる新たに画定された試料1520の計測は、より一般的な実施形態の記述の一実施例を含み得る。更なる実施例は、レンズ前駆体試料1700に計測を実施することを含んでもよい。したがって、一般的な意味で、本発明の範囲内であると予測され、この種の眼科レンズ生成システム内の生成物を処理する、又は構成するのに使用される、様々な形態の材料に計測を実施するための数々の実施形態が存在する。
水和及び取り出し装置
眼科レンズを生成する装置の別のサブセクションは、レンズ又はレンズ前駆体をその形成光学機器から取り出し、それをクレンジングし、かつそれを水和させる工程を含む。幾つかの実施形態では、これらの工程は、本質的に同時に実施され得る。図16の1600に進むと、簡略化のために水和装置と称される、これらの工程を実施するための装置の実施形態が示される。装置には、水和用流体1610を収容するための容器が含まれる。レンズ1630及び形成光学機器ホルダ1640が浸漬される流体浴1620、及び浴を一定の温度に維持するための熱制御ユニット1650。
好ましい実施形態では、流体浴1620には、表面活性剤が添加された脱イオン(DI)水が含まれる。当該技術分野において予測され、本発明の範囲に従う、この浴の数々の実施形態が存在する。代替の実施形態では、流体浴1620には、脱イオン水及び表面活性剤との混合物である場合がある、有機アルコールの混合物が含まれてもよい。したがって、容器1610の幾つかの実施形態には、水又は有機アルコール類の体積の収容、及びまた、温度制御ユニット1650と流体浴1620との間での熱エネルギーの透過に従う材料が含まれ得る。一般性の観点から、レンズの水和及びクレンジングの範囲内に含まれ、本発明技術の実施形態を含み、容器の材料、容器の設計、並びに容器を充填する、及び空にする手段を含む、数々の代替の実施形態が存在し得る。
幾つかの実施形態では、浴の温度は、水和、クレンジング、及び取り出し動作を加速するために上昇される。かかる一実施形態では、温度は、内部感知装置1650を有するホットプレートの存在によって維持され得る。より高度な実施形態は、別の照射及び導電性材料並びに装置を含む、流体を加熱するための代替の方式を含み得る。また、追加の実施形態は、浴温度を監視し、それを温度帯内に制御するための異なる方式を含み得る。更なるより高度な実施形態は、流体浴の温度をその時点で変化させる又はプログラムする能力を含むことができる。本発明の範囲内の実施形態を含む、水和浴の温度を制御するための数々の実施形態が存在することが、当業者にとって明らかであり得る。
レンズ1630、及び形成光学機器1640の流体浴への暴露が進行し、レンズが水和される際、幾つかの実施形態では、レンズ本体は、膨張し、最終的に形成光学機器1640から分離する。したがって、幾つかの実施形態は、アセンブリの分離したレンズを捕獲し、適切な保管及びパッケージング手段に入れる手段を含んでもよい。更なる実施形態は、分離したレンズを位置決めし、流体浴媒体1620から採取することを含んでもよい。あるいは、実施形態は、レンズを流体から隔離するために、排出プロセス中に、前記流体浴媒体1620を濾す能力を提供し得る。一般的な観点から、レンズを位置決めし、それを保管手段に入れるように取り扱う数々の方式は、本発明の範囲内に従う実施形態を含む。
しかしながら、上記に言及されるように、膨張した形態のレンズは、レンズが患者によって着用される間のレンズの性能と最も一致する光学特性を含み得る。したがって、幾つかの実施形態では、膨張したレンズに1つ又は2つ以上の計測工程が実施されてもよい。かかる実施形態は、他の計測工程とともに記載されてきた、フィードバック、制御、及び診断の類似する態様を含んでもよく、水和装置中でレンズを膨張させることに由来する更なる追加の実施形態は、専門家にとって明白であり得る。
これらのサブセクションは、眼科レンズを形成する装置の本発明において、5つの主要なサブセクションを含む。好ましい実施形態では、それぞれは、装置を画定する、それ自体の実施形態を有する。しかしながら、装置のそれぞれのサブセクションが、より高いレベルの数々の代替の実施形態さえ含み得るため、サブセクションの異なる編成を有するか、あるいは1つ又は2つ以上のサブセクションが省略されている場合があるが、依然として本発明の範囲下の実施形態を含み得る、存在し得る代替物が存在することが明らかであり得る。
方法
本発明に開示される手順は、本質的に、5つの主要なサブセクションを含み得、したがって、方法の幾つかの実施形態の記述は、サブセクションレベルで、論理的な記述に編成される。サブセクションは、ボクセルに基づいたリソグラフィレンズ前駆体の生成に関する手順、レンズ前駆体を生成するより一般的な手順、レンズ前駆体を処理する様々な手順、レンズ及びレンズ前駆体の後処理、並びに計測及び様々なセクション間でのフィードバックの手順である。手順の以下の工程及び説明は、例示に過ぎず、本明細書に添付される特許請求の範囲において提示又は言及されない限り、本発明の範囲を限定する意図はないことに留意されたい。
全てのサブセクション又はそのサブセットも含む、手順の実施形態が存在し、したがって、記載される1つ又は2つ以上の方法工程の順序及び包含は、本発明を限定しない。図1を参照すると、手順100のサブセクションブロックが確認され、ボクセルに基づいたリソグラフィ手順110と、別の形成手順120と、レンズ前駆体処理手順130と、後処理手順140と、計測及びフィードバック手順150と、を含む。図1では、楕円形状の特徴内に2つの実体が確認され、それらは、レンズ前駆体、つまりアイテム160と、アイテム170の眼科レンズである。単一方向に進む矢印は、幾つかの実施形態がとり得る一般的な方向を含み得、2つの頭を有する矢印は、材料、データ、及び情報の幾つか又は全てが、様々な手順セクションから中心的測定及びフィードバックセクションへ、及びその逆へ流れることができることを示す。
ボクセルに基づいたリソグラフィ手順
ボクセルに基づいたリソグラフィ装置からレンズ前駆体を生成する方法は、数々の装置の実施形態、並びにレンズ前駆体の処理にこれらの装置の実施形態を使用するための数々の方法に関連する、数々の実施形態を含む。図1のアイテム110、つまりボクセルに基づいたリソグラフィ方法を参照すると、このシステムからのレンズの作製における初期工程を含み得る、ボックス115で示される開始工程が存在する。所望のレンズパラメーターが、アルゴリズム演算に入力されてもよい。幾つかの実施形態では、これらのパラメーターは、眼科患者の光学表面上で光学収差を測定することによって得られてもよい。これらの測定値は、作製されるレンズに要求される波面特性に変えることができる。他の実施形態では、レンズ生成パラメーターを決定するために、アルゴリズムに入力され得る理論上のレンズ波面特性が存在し得る。所望の産出レンズ特性を画定する初期工程に関連する数々の方法の実施形態が存在し得ることが、当業者にとって明らかであり得る。
アイテム115について続けると、アルゴリズムは、上述される入力パラメーターを受け取り、幾つかの実施形態では、パラメーターを以前に生成されたレンズに関連付ける。ここで、空間光変調器に通信される暴露「動画」又はスクリプトのための一連の「フレーム」が決定されてもよい。アルゴリズムに入力される、要求されるパラメーターのアルゴリズム処理を画定する手順に関連する、多数の実施形態が存在し得ることが明らかであり得る。
同様に、「DMD」スクリプトを含む、特定のボクセル要素のアルゴリズム出力を、その時点で予定される光反射プロファイルに変換するために使用することができる数々の手順が存在し得る。例として、アルゴリズムが望む全強度値は、全時間中に光照明システムの入力強度が反射される一連の時間刻みとして、反応性混合物のボクセル位置に供給されてもよい。これらの全「オン」工程の積分強度は、次いで、ミラー要素に部分値が書き込まれ、したがってミラーが、全オンレベル未満であるデューティーサイクル「オン」レベルを有する、別の時間刻みによって補完されてもよく、全体として反応性混合物に暴露される残りの時間刻みでは、この特定のボクセル要素は、結果として残りの持続時間の間、「オフ」となり得る。別の手順は、供給される多数の刻み又は「フレーム」の強度の平均値を取得することと、その値を使用して、DMDに送信されるフレームのバルクに値を設定することと、を含み得る。前述の装置の記述に記載される、一般的な空間光変調器も同様に、この強度及び時間暴露制御を作り出す意図と関連させるための手順の実施形態を有することが、当業者にとって明らかであり得る。
前述の方法が、空間的照明装置の動作によって空間的照明装置に適用される固定強度を変調することに関連する所与の実施例である一方、より高度な手順により、光源からの強度が、光濾過を用いて源又は光学機器システム内のいずれかで変調されるかどうかが導かれ得る。更なる実施形態は、照明システム構成要素内及び空間的照明変調器内の両方での強度制御の組み合わせに由来し得る。更なる実施形態は、照明の波長の制御に由来し得る。
一般的な意味で、いずれかの寸法のいずれかの空間光変調器への制御信号、及びまた、例として、光源、フィルターホイール等のいずれかのシステム構成要素の制御信号と関連すると見なされるべき「DMD」スクリプトを形成する方法は、したがって、広くは、その時点で一連のプログラムされたコマンドシーケンスを作成することを含み得る。化学放射線の詳細、採用される光学機器システムの詳細、及び反応性モノマー混合物を含む材料の詳細の多くの実施形態を包含する、制御信号プログラムを作成する方法に関連する、数々の実施形態が存在することが、当業者にとって明らかであり得る。
「DMD」スクリプト及びアルゴリズムの詳細は、処理後に得られる結果との関係を有し得ることが留意され得る。決定的に重要なパラメーターのフィードバックは、後述され、かかる詳細な記述は、したがって保留される。そうは言うものの、ボックス115に示されるDMDスクリプトを作成する方法に関して、ボクセルに基づいたリソグラフィ手順並びにフィードバック及び計測手順を指す、及びそれとは逆を指す双頭矢印は、一部において、DMDスクリプトを作成するための方法でのこの情報交換における役割を指す。
レンズ前駆体を形成する手順への別の入力は、システムの反応性混合物を調合及び調製する様々な方法によって含まれ得る。図1では、アイテム111は、反応性混合物に含まれる様々な手順のボックス表示である。本発明の範囲内であるとして記載される装置の実施形態が、反応性混合物内の構成要素の種類及び構成に関して、高度の柔軟性を含むことは当業者にとって明白であり得、反応性混合物要素の多数の実施形態が本発明の範囲を含むことは、本発明の一部であると予測される。
一般性の損失なく、例えば、反応性混合物内でモノマー単位として作用する化学成分は、実施形態のうちの幾つかに記載されたように、紫外スペクトルの光に対して光反応性である化学物質を含んでもよい。しかしながら、これらのモノマー分子は、同様に、光に反応して可視スペクトルの放射線を吸収するように選択することができる。同様に、システム内の構成要素は、電磁スペクトルの別の部分と整合させるために調整されてもよい。したがって、本発明に関連する材料手順は、電磁スペクトルの大部分にわたる化学放射線に対して感受性の分子を含み得ることが理解され得る。
幾つかの実施形態では、モノマー混合物は、実際には、1つ又は2つ以上の化学線に対して反応性のモノマー種類の混合物であり、また、他の化学成分とも混合される。非限定的な実施例の理由から、吸収化合物として、他の化学物質が含まれてもよい。モノマー混合物へのかかる添加剤は、例えば、ボクセル要素によって画定される経路に沿った化学放射線の強度が、ブゲール・ランベルト・ベールの法則によってモデル化され得る方式で、ボクセルに基づいたリソグラフィを動作させる実施形態において重要であり得る。本構成要素は、ボクセル要素内の形成プロセスの厚さ感度を大きく画定し得る。多数の実施形態は、関連スペクトル域内の光を吸収するモノマー混合物に構成要素を添加するために、本発明の範囲内の技術を含み得ることが、当業者にとって明らかであり得る。
他の実施形態では、モノマー混合物の吸収成分は、上述したものに更なる複雑性を含め得る。例えば、異なる方式で光を吸収する複数の分子が含まれる吸収体成分を画定する方法は、本発明の範囲内であり得る。追加の実施形態は、それら自体が複数の関連する吸収帯域を有する分子で構成される吸収体要素に由来し得る。手順の更なる実施形態は、モノマー及び吸収体を組み合わせた役割を有するモノマー混合物に構成要素を添加することを含み得る。同様に、この組み合わせられた役割は、幾つかの実施形態では、モノマーに化学反応が生じた後でさえ、吸収役割を継続できるようにする。また、逆の場合は、化学線による反応が起こる際に、変化した吸光度特性を有する化学物質が添加される実施形態を方法に含め得る。一般的な観点から、1つ又は2つ以上の関連スペクトル帯域で放射線を吸収するための成分と共に、反応性モノマー混合物を含む手順のための多くの実施形態は、本発明の範囲内であり得ることが、明らかであり得る。
モノマー混合物を調製する方法に阻害物質成分の添加が含まれる場合、追加の実施形態が導かれ得る。この意味で、阻害物質化合物は、反応性モノマー混合物内に形成された化学生成物との反応における役割を有し得る。幾つかの実施形態では、化学放射線の吸収は、1つ又は2つ以上のフリーラジカル化学種を発生させ得る。阻害物質は、フリーラジカル種との反応において作用し、それによって、重合反応経路を終了させ得る。かかる実施形態の1つの効果は、光化学重合反応の持続時間を制限すること、又は他の方法で、重合反応が元の光吸収反応開始剤事象から離れて起こり得る距離を制限することであり得る。モノマー混合物に阻害物質を添加する幾つかの実施形態は、したがって、ボクセル要素内での光子の収集が、開始する反応の空間的局所化に最終的に反映される、空間解像度に関連し得ることが明白であり得る。広くは、阻害物質の作用は、当該技術に関連する数々の実施形態を含み得る。
阻害するように作用し得る反応性混合物の化学種又は構成要素の種類は、当該技術の数々の他の実施形態を含む。吸収体と同様に、複数の重合経路の阻害において、阻害物質が二重の役割を有することは、本発明の範囲内である。更に、阻害物質は、モノマー分子自体の一部を含み得る。また、一般的な他の方式では、阻害物質は、それ自体が、熱又は光反応感受性を有し得る。更に他の実施形態は、混合物内に溶存形態を含み得るが、純形態で気体、液体、又は固体特性を呈するため、その純化学状態の阻害物質の性質に由来し得る。
モノマー混合物を調製する方法は、反応開始剤成分の添加に関して、追加の実施形態を有し得る。反応開始剤は、光子の吸収において重合反応を促進する化学種を生成する、光吸収性成分を含んでもよい。反応開始剤は、特定の帯域で大いに吸収する分子を含んでもよい。更なる実施形態は、装置の複数の関連帯域で光吸収性である反応開始剤分子によって生じ得る。その吸収は、関連周波数の比較的広い帯域も含み得る。モノマー混合物の反応開始剤成分が、モノマー混合物内のモノマー分子種類の1つ又は2つ以上の中に存在する化学反応開始剤反応性に由来する場合、更なる実施形態も可能である。本発明の範囲内で、数々の代替の実施形態が、反応開始剤としての役割を果たす構成要素を有するモノマー混合物を含む手順を含み得ることは、当業者にとって明らかであり得る。
幾つかの実施形態では、これらの記載される添加剤の役割は、眼科レンズを形成する方法のための機能性を含む。一例示的な実施形態では、使用されたモノマー混合物は、眼科レンズの生成で一般的に使用される反応性モノマー混合物、Etafilcon Aであった。再び図3を参照すると、Etafilcon Aは、重合下で固体又はゲルを形成する、モノマー成分を含む。また、Etafilcon Aは、例えば、アイテム310として示される、アイテム300内のより低い波長を含む帯域の紫外線を吸収する吸収体分子、Norblocを含む。更に、また、Etafilcon Aは、反応開始剤としての役割を果たし、その吸光度がアイテム340として示される構成要素も含む。混合物中で、溶存気体酸素の存在は、阻害物質の役割を含む。したがって、本実施形態では、反応性モノマー混合物を形成する手順は、固体及び又は液体成分の両方の混合物を製剤することを含み、溶存酸素のレベルを制御することを更に含む。本実施形態の説明は例示であり、したがって、本発明の範囲を限定することを意図しない。
本発明の幾つかの実施形態の追加の態様は、反応性モノマー混合物の物理的態様を制御することを提供する。幾つかの実施形態では、これは、反応性モノマー混合物の粘度を変化させるために、溶媒又は希釈剤の添加を含み得る。
モノマー混合物を調製する手順では、発生混合物に実施される処理から、追加の実施形態が画定され得る。非限定的な実施例として、混合物は、真空環境にさらされてもよく、これは、特定の溶存気体種の脱離をもたらし得る。別の実施形態では、モノマー混合物は、後続の化学線処理工程で使用される前に、多量の混合物を化学放射線への暴露にさらすことによって処理され、したがって混合物中の多重結合成分の度合い及び母集団分布が変化されてもよい。モノマー混合物を処理して変化した特性をもたらすための数々の追加の実施形態が可能であり得、結果として生じる混合物は、眼科レンズ前駆体及びレンズを生成するという更なる目的において有用であることが、当業者にとって明らかであり得る。
図1の矢印に沿ってボックス112に移動し、これは、反応性モノマー混合物を注入及び堆積するための方法に相当する。幾つかの実施形態では、ある量の反応性混合物は、溶存酸素の所望の濃度を有するように、平衡化されなければならない。幾つかの実施形態では、平衡化は、相当量のモノマー混合物を収容する容器を、周囲が、溶解される際に所望の濃度に平衡化するために望ましい量の酸素を含む筐体内に保管することによって達成され得る。追加の実施形態は、膜技術を介して的確な量の酸素を流動反応性混合物に交換し得る、自動化器具を含み得る。本発明の範囲に従う、組み込まれる気体を所望のレベルに変化させるか、又はそのレベルまで反応性混合物を注入するための数々の方式が存在し得ることが、当業者にとって明らかであり得る。
幾つかの実施形態では、注入される反応性モノマー混合物の体積は、ここで、手動の手段で、形成光学機器表面の付近に混合物を収容するための容器を含むリザーバに移動されてもよい。他の実施形態は、リザーバを反応性モノマー混合物で充填するための自動化機構を含んでもよい。本発明の更なる実施形態は、レンズ形成プロセスで必要に応じて使用され得る、充填使い捨て容器を含んでもよい。本発明の範囲は、全ての処理後に形成されるレンズを含む材料の量を超える、少なくともある量の反応性モノマー混合物で、形成光学機器表面の付近のリザーバを充填するためのある種の手順を使用することを含む。
様々な装置の実施形態、反応性モノマー混合物の材料の実施形態、化学放射線の性質の物理的実施形態、並びにスクリプト及びそれが含む装置の制御方式の実施形態の説明を用いて、ここで、ボクセルに基づいたリソグラフィ手順の産出物を形成する実施形態の幾つかが記載され得ることは当業者にとって明白であり得る。図1のプロセスフローチャートに移り、アイテム116は、これらの様々な実施形態を使用する形成方法を示す。上述された構成要素のそれぞれの代替の実施形態が存在し得、特定のかかる実施形態に関連する方法の説明が、本明細書の本発明の範囲を限定しないことは当業者にとって明白であり得る。
アイテム116の手順の幾つかを微視的スケールで熟考することは、有効であり得る。非限定的な実施例として、幾つかの実施形態ではベールの法則方式を用いてモデル化され得る、画像化された化学放射線が通過した深さと共に、強度における吸収性が大幅に低減されるように、モノマー混合物が吸収要素を含む全体的な形成方法を熟考する。また、例えば、特定のボクセル要素上に向けられる化学線照射の波長が、反応性混合物に含まれる反応開始剤に積極的に吸収される波長域内であり、かつ吸収体の急速に変化する吸収域にある、図3に示される実施形態を熟考する。また、非限定的な実施例として、モノマー混合物は阻害物質を含むと考える。本記述の容易な参照及び説明のために、この手順の組み合わせは、実施例3と称され得る。これは、実施形態を実施するための方法として提示されるが、本発明の範囲及び使用され得る他のモデルを限定する意図はない。
実施例3の一実施形態では、阻害物質は、モノマー混合物内に顕著な濃度で存在し得る。微視的レベルでは、この例示的な実施形態は、入射化学線照射が、特定の要素内の化学放射線によって開始される化学反応が、高濃度の阻害物質がその促進を阻害する能力を超える速度で起こる非常に限られた局所域を、それ自体の周囲に画定するという特性を有し得る。幾つかの空間光変調器システムが、それぞれの個々の変調要素間に、変調要素と同一の方式で光を反射しない、「不感」空間としてのそれらの表面の部分を有するという事実のため、本実施形態では、形成光学機器表面上に形成される、結果として生じる材料は、隔離されたボクセルに基づいた円柱状要素の形態をとり得、これは、極度に互いと結合しない場合があることが明白であり得る。
実施例3の実施形態の継続的な非限定的な実施例として、阻害物質の濃度は、若干低い濃度であり得、本実施形態では、例えば、所与の組の化学線照明パラメーターの空間的伝播が、ボクセル要素のそれぞれがボクセル要素間のいずれかの境界に重なるように進む化学線活量を画定するのに十分である、濃度であってもよい。微視的基準でのかかる場合は、個々の円柱状要素は、近隣のボクセルが著しい強度条件を画定する照明条件で、互いに溶け込む傾向にあってもよい。幾つかの実施形態では、光学画像化システムは、個々の円柱状要素が混ざり合うことを促進するために、別の方法の実施形態のように、焦点がぼけるモードで稼動されてもよい。更なる実施形態では、空間中でのレンズ形成光学機器及びホルダの振動又は揺動移動は、ボクセル要素が互いに重なり、連続形状部を形成する、同様の効果を促進し得る。
ボクセル要素の深さ次元における、形成手順の効果を微視的基準で続けて記載することが有用であり得る。実施例3の条件から、特定のボクセル要素の「DMDスクリプト」は、形成光学機器表面から離れたボクセル要素の深さに反応を生じさせる積分強度又は暴露時間を画定し得ることが明白であり得る。幾つかの特定の例示的な深さで、この条件は、反応度がゲル化点を画定する、モノマー混合物の強度促進反応条件を含み得る。この深さより浅い深さでは、反応生成物は3次元態様を形成していてもよいが、しかしながら、この深さより深い深さでは、反応生成物はゲル化点に到達していない場合があり、生じたある程度のモノマー反応により、依然として周囲の発生反応性モノマー混合物より粘稠な構成要素の混合物を含む場合がある。本実施形態では、明らかであり得るように、少なくとも2つの域、つまり、反応がゲル化点より高い度合いまで生じた域と、材料が、部分的に反応したモノマー混合物及び未反応のモノマー混合物の混合物であり得る非ゲル状層を含む域とを含むのに十分な体積の発生反応性混合物が存在した。幾つかの実施形態の下で、この層の幾つかは、流動性レンズ反応性媒体と称されるものを含み得る。微視的レベルで、これは、反応性混合物の体積空間内に形成されている。
他の実施形態では、「DMDスクリプト」は、ゲル化点を越えて反応したボクセル画定層に局所設計要素を画定するのに有用であり得る。この実体は、幾つかの実施形態では、レンズ前駆体形態と見なされ得る。非限定的な実施例として、幅方向の多数のボクセル要素、及び長さ方向の多くのボクセル要素であり、それが含む全てのボクセル要素における低積分強度特性を有する、DMDスクリプトに本質的に線形の特徴を組み込む効果を熟考する。実施例3に記載される実施形態を使用することによって、非限定的な実施例として、かかる線形特徴がレンズ前駆体形態内に物理的に画定されることが想定される。微視的スケールでは、近隣のボクセル要素は、幾つかの有意なレベルでレンズ前駆体形態における厚さを画定する強度を含み得る。線形特徴の第1の近隣ボクセル要素で、形成厚さは低下し、結果として、DMDスクリプト内に画定される線形特徴に関連する輪郭特徴をもたらす。
例として、図4のアイテム400を参照すると、本発明の全実施形態を用いて形成されるレンズの厚さの表示が示される。本実施例では、レンズの厚さは、これまで記載された線形特徴の特性を有する、幾つかの特徴を示す。アイテム440は、例えば、レンズにわたる多くのボクセル要素に延在する線形特徴である。推測の結果として、本発明の態様は、レンズの光学表面画定形状に加えて、画定され得る形状及び輪郭特徴の多くの異なる実施形態を含むことが明らかであり得る。数々の考えられる実施形態に共通して、例として、例えば、特徴440の実施形態の意図のような整合機能が存在し得る。追加の実施形態は、排出チャネル、本質的に放射状経路に沿ってレンズ前駆体形態の縁部に向かって延在する線形特徴を画定する輪郭特徴と、様々な形状及び寸法のウェル又は閉止された穴と、近隣の平均トポロジーと比較して上又は下である切形段差と、レンズ画定域のサブセットにわたる平坦域又は本質的に平らな特徴とを含み得る。これらの実施例は、形成工程手順と関連し得ることが当業者にとって明白であり得る数々の実施形態のうちの幾つかである。
図1の工程117に進み、幾つかの実施形態における、工程116の結果として生じる材料を反応性モノマー混合物の環境から取り出すことに関連する手順が記載される。幾つかの実施形態では、この取り出しのための一方法は、保持部品及びレンズ前駆体形態を有する形成光学機器を反応性モノマー混合物のリザーバから持ち上げるプロセスを含み得る。他の実施形態では、リザーバは、取り付けられたレンズ前駆体形態を有する形成光学機器から引き下げられてもよい。更なる実施形態は、ある程度の精度でかかる取り出しの速度を制御することができる器具を用いて、引き下げ又は持ち上げ工程のいずれかを自動化することに由来し得る。代替の実施形態では、反応性モノマー混合物のリザーバは、幾つかの方式で排出され、結果として、取り付けられたレンズ前駆体形態を有する形成光学機器が反応性モノマー混合物から分離されてもよい。一般的な観点から、工程116の生成物を反応性モノマー混合物から取り出す工程117を含む数々の実施形態が存在し、これらの実施形態は、本発明の範囲内の技術を含むことが当業者にとって明らかであり得る。
図1では、生成物及び中間生成物は、楕円形状のパターンで示される。したがって、幾つかの実施形態では、レンズ前駆体160は、デバイス実体を含む。手順の記述と共に他の項を理解するために、レンズ前駆体の態様が確実に検討される。レンズ前駆体1700には、2つの層、すなわちレンズ前駆体形態1740と、流動性レンズ反応性媒体、つまりアイテム1710とが含まれ得る。幾つかの実施形態では、これらの層は、前述の形成手順に対応する。幾つかの実施形態では、レンズ前駆体形態は、ボクセルに基づいたリソグラフィシステムによって画定され、ゲル化点を越えて反応した材料である。これは、前述された様々な構造の実施形態を有し得る。
ここで、図17を参照すると、ボクセル1704単位での重合により形成されるレンズ前駆体1700が示される。幾つかの実施形態は、流動性レンズ反応性モノマー混合物を含むレンズ前駆体、又はボクセル単位での重合によって形成される架橋性材料1704を含み得る。形成光学機器及び反応した材料のボクセル単位の構造が、反応性モノマー混合物のリザーバから取り出される際、ボクセル単位の構造又はレンズ前駆体形態の表面に接着する粘稠材料が存在し得る。レンズ前駆体形態と、その上にある、更なる処理を受けて眼科レンズデバイスの一部に形成されることができる流動性レンズ反応性媒体1704と、のこの組み合わせは、レンズ前駆体を構成するものである。
幾つかの実施形態では、レンズ前駆体は3次元形状を前提とするが、しかしながら、吸収した反応性媒体の流動性のため、実体は、固定の3次元形状を有さない。
このレンズ前駆体は、例えば光学品質表面を有する基材など、基材1705に沿って形成され得る第1の表面1701も含み得る。第1の表面1701は、ゲル化点を越えて少なくとも部分的に重合する、第1の架橋密度を備える媒体の一部を含む。レンズ前駆体1700は第2の表面1702も含み、第2の表面は、ゲル化点付近又はゲル化点未満の硬化度である第2の架橋密度を含む。
幾つかの実施形態では、流動性レンズ反応性媒体の一部は、レンズ前駆体から除去されてよい。非限定的な実施例として、流動性レンズ反応性媒体は、毛管現象によって除去されてもよい。幾つかの実施形態では、手順は、毛管現象の工程が実施される前に、流動性レンズ反応性媒体の一部が共に留まるように、滞留させる工程を含んでもよい。更なる実施形態では、レンズ表面は、その表面軸が重力の方向に対して角度をなすように配置されてもよい。毛管に基づいた装置を用いて流動性レンズ反応性媒体を除去する方法に関連する数々の実施形態が可能であり得、本発明の範囲内の技術を含み得ることが明らかであり得る。
他の実施形態では、流動性レンズ反応性媒体を除去する手順は、毛管浸出器具とは別の装置を含んでもよい。例えば、流動性媒体を除去するために吸収性表面を使用することを含む方法は、幾つかの実施形態を含み得る。追加の実施形態は、詳細に記載されたものではなくむしろ、多くの毛管点を有する装置を使用する方法に関連してもよい。更なる実施形態は、流動性材料を除去するために、レンズ前駆体をスピン処理する方法を含んでもよい。流動性材料の一部を除去するために装置を使用する数々の方法のいずれかは、当業者にとって明らかであり得るように、本発明の範囲内の態様を含み得る。
レンズ前駆体の上面から材料を除去するための異なる種類の実施形態は、この目的のためにレンズ本体にレリーフ特徴を画定する方法を含み得る。これらの種類の実施形態では、前述項に言及された排出チャネル等の特徴は、比較的低い粘度の流動性媒体が流れ出すようにし、それによって比較的高い粘度の流動性媒体が流れ込むための低勾配空間を作り出すための位置を作り出すように設計されてもよい。更なる実施形態では、また、レンズ本体のスピンの使用は、材料が流れ込むためのレリーフ特徴を設計することと併せて、レンズ材料を除去する実施形態も含み得る。異なるレリーフ表面設計の様々な実施形態を含む実施形態はまた、本発明の範囲内の技術を含むことが、当業者にとって明らかであり得る。
安定化中には、流動性レンズ反応性媒体が様々な力の下で流れ、レンズ前駆体形態の表面に沿って低エネルギーかつ比較的安定な状態を探し得る。
微視的レベルで、前躯体形態の表面は、ある程度の粗度を局所的に有し得ることが明白であり得る。形成実施形態の数々の態様は、この粗度の性質、かかる場合の一実施例では、反応が開始する周囲で、比較的急激に反応を停止する阻害物質の影響を決定し得る。多くの実施形態では、流動性媒体の表面力、摩擦力及び拡散力、重力、並びに他の適用される力は、合成され、トポグラフィー上全体に流れた滑らかな被膜を生成する。これらの力を決定する手順には、本発明の範囲内の数々の可能な実施形態が存在する。
幾つかの実施形態では、レンズ前駆体は、流動性レンズ反応性媒体が重力下で流れるように構成されてもよい。これを実施する方法は、流れるのを助長するために、レンズ前駆体を異なる配向に移動させることを含み得る。代替の実施形態は、レンズ前駆体を、できる限り移動が少ない固定状態に維持することによる、逆の方策を含み得る。更に代替の実施形態は、レンズ前駆体を軸を中心にスピンさせることに関連する力を流動性材料に適用することを含み得る。幾つかの実施形態では、このスピンは、レンズ前駆体の中央を中心とする軸を中心に実施され得る。代替の実施形態では、前記スピンは、レンズ前駆体の上面が、軸点若しくはその逆、又はその間の無数の可能な配向のいずれかを向く間、レンズ前駆体を外軸点を中心に回転させることを含み得る。更に他の実施形態では、レンズ前駆体は、重力の影響を最小限にするために、自由落下環境で処理され得る。安定化方法中に、レンズ前駆体に流動性力を適用することに関連する数々の方法が存在し得ることは、当業者にとって明白であり得る。
他の実施形態では、流動性媒体の流動性の性質が、手順によって変性されてもよい。幾つかの実施形態では、流動性媒体の粘度は、希釈又は溶媒化の手段によって変化されてもよい。代替の実施形態は、粘度を増加させるために、希釈剤の一部を蒸発させることを含み得る。ある程度の化学放射線への暴露は、前記流動性フィルムの粘度を変化させるための更なる方法を含み得る。流動性媒体の粘度を変化させることに関連する数々の実施形態が存在し得る。
更に他の実施形態では、流動性レンズ反応性媒体上の表面エネルギーに関連する力は、手順によって変化されてもよい。幾つかの実施形態では、これは、表面活性剤を発生反応性モノマー混合物に添加することを含み得る。代替の実施形態では、表面エネルギーを変化させるために、添加剤又は化学反応体がレンズ前駆体に添加されてもよい。
ここで、図18を参照すると、幾つかの実施形態では、レンズ前駆体1801の設計は、人工物11802を含んで、流動性レンズ反応性媒体の流動状態を促進し得る。非限定的な実施例として、チャネル1802は、流動性レンズ反応性媒体をレンズ前駆体域から排出するための手段を含んでもよい。代替の実施形態では、急激な輪郭の変化に関連する設計方法は、変化した安定状態を提供するための手順を含み得る。人工物は、レンズ前駆体の分野で支持されるほぼすべての種類、形状、及び取り合わせに形成され得る。幾つかの実施形態では、人工物1803は、1つ又は2つ以上の英数字などの印を含む。他の印としては、位置合わせマークが挙げられる。人工物1802〜1803は、DMDスクリプトに従って形成される。
一般的な観点から、これらの様々な実施形態の種類は、安定化を含む手順において、流動性レンズ反応性媒体の完全に安定した、若しくは部分的に安定した、又は不安定な性質を生成する方法の一般性を制限するべきではない。例えば、様々な実施形態の組み合わせ、前記手順の追加の実施形態が、当該技術分野の専門家にとって明らかであり得る。
安定化の手順が実施された後、幾つかの実施形態では、流動性材料に、アイテム133として示される次の手順種類、つまり非流動性状態に変換するための固定化が行われてもよい。幾つかの実施形態では、固定化方法中に適用される化学放射線の性質は、代替を含み得る。適用されるスペクトル帯域は、一種の手順の実施形態の一例であり得る。代替の実施形態は、適用される放射線の強度を含み得る。代替の実施形態では、固定化照射の様々な態様の適用は、時間依存性を含み得る。非限定的な実施例として、初期の波長帯域は、次いで異なる帯域に変化される、第1の刻みを含んでもよい。当業者にとって明らかであり得る、光条件を定義する方法の実施形態の領域は、本発明の範囲内である。
アイテム133の幾つかの実施形態では、固定化方法は、照射がとり得る異なる経路を含んでもよい。実施形態の種類の一実施例では、照射は、レンズ前駆体の前面上に生じてもよく、又は別の方法として背面を透過してもよい。更に他の実施形態は、幾つかが、レンズ前駆体実体に化学放射線の異なる効果を生成するように、おそらく異なる光特性を有する、複数の照射源に由来し得る。更なる実施形態は、放射線以外のエネルギー形態を含む固定化方法に由来し得る。一般的に、固定化工程を含み得る数々の方法は、本発明の範囲内である。
幾つかの実施形態では、固定化が生じた後、レンズ前駆体130の処理が完了する。幾つかの実施形態では、この完成生成物は、更に処理される。この生成物種類は、図1のブロック120に示される技術の種類の良例、つまり前躯体の別の形成を含む。非限定的な実施例として、固定化の生成物がボクセルに基づいたリソグラフィ手順に導入され戻される場合、第2の層の処理が発生し得る。この複数の段階がある態様は、多くの任意選択の実施形態の手順をもたらす。
幾つかの実施形態では、複雑なレンズ前駆体は、非限定的な実施例として、眼科レンズ表面が画定される第1の工程と、輪郭特徴が表面に追加される第2の工程とを含み得る、複数回の通過から形成され得る。手順の他の複雑な実施形態は、前述の実施例の幾つかのように、例えば、レンズ前駆体形態に沿った隔離されたボクセル列を生成する、条件付きのボクセルに基づいたリソグラフィシステムの第1の通過を含み得る。次いで第2のボクセルに基づいたリソグラフィ工程は、ボクセル列と異なる特性の材料との間の特徴を充填することを含み得る。続くシステムの第3の通過は、次いで眼科レンズを画定し得る。それぞれが記載される多くの異なる可能な実施形態を有し得る、システムを複数回通過する一般的な手順は、全てが本発明の範囲内である非常に多くの異なる実施形態を含み得ることが明らかであり得る。
幾つかの他の実施形態では、レンズ前駆体は、流動性反応性媒体をレンズ前駆体形態上に適用することによって形成され得る。例えば、ボクセルに基づいたリソグラフィ方法によって形成されるレンズ前駆体は、流動性レンズ反応性媒体を除去する極端な方法として、ウォッシングシステムにさらされてもよい。レンズ前駆体形態は、ウォッシング方法に由来する。幾つかの実施形態では、次に、このレンズ前駆体形態に対して、次の流動性レンズ反応性媒体をその表面に適用する方法が行われてもよい。幾つかの実施形態では、次の流動性媒体を表面に適用する手順は、アイテム117に記載される実施形態と類似する方法で、レンズ前躯体を浸漬し、除去することを含んでもよい。ここで、結果として生じるレンズ前駆体は、モノマー及び多重結合分子の異なる分布を有してもよく、又は幾つかの実施形態では、レンズ前駆体形態を形成するために使用されるものとは異なるポリマーの化学的性質を含んでもよい。流動性レンズ媒体を様々なレンズ前駆体形態の実施形態上に適用するための手順を含む数々の実施形態が、本発明の範囲内の技術を含むことは当業者にとって明白であり得る。
別の組の実施形態では、レンズ前駆体形態は、ボクセルに基づいたリソグラフィとは異なる手段により形成されてもよい。第1の非限定的な実施例では、レンズ前駆体形態を形成するための原理としてステレオリソグラフィを使用することによって、様々な実施形態が可能であり得る。幾つかの実施形態では、このステレオリソグラフィによって形成されるレンズ前駆体形態は、117の取り出し手順からの流動性レンズ反応性媒体を有し得るが、他の実施形態は、流動性レンズ反応性媒体をステレオリソグラフィによって形成された基部に適用することを含み得る。レンズ前駆体形態を決定し、次いでそれを言及された方法で使用するために、マスクに基づいたリソグラフィプロセスを使用することによって、代替の実施形態が可能であり得る。更なる実施形態は、眼科レンズの製造に一般的な標準注型成型プロセス、及び次いで言及された方法でレンズ前駆体を形成することによって形成されるレンズ前駆体形態の使用を含み得る。レンズ前駆体形態を形成する数々の実施形態は、レンズ前駆体を形成する方法を含み得ることが明白であり得る。
ここで、図20を参照すると、十分な化学放射線に暴露して未反応の重合した架橋性材料を重合することにより、レンズ前駆体から形成されるレンズ2001が図示される。実施形態は、重合した架橋性材料の複数のボクセルを含む第1の部分2003と、架橋性材料のゲル化点を越えて重合した架橋性材料の層状体積を含む第2の部分2002とを含むことができる。
化学放射線2004の源には、例えば、架橋性材料に対して化学線作用がある、十分な強度かつ波長の放射線2005をもたらす光源2004が挙げられる。幾つかの実施形態では、化学放射線は、(図示されるように)光線の複数の光源点を含むことができる。他の実施形態は、化学放射線をもたらす単一の光源を含み得る。
幾つかの実施形態では、形成された、又は固定されたレンズは、形成光学機器の表面に接着され得る。幾つかの実施形態では、レンズは、水和され得る。水和としては、例えば、水溶液又はIPA溶液などの溶液への浸漬が挙げられてよい。幾つかの実施形態では、溶液は、摂氏60度〜95度の温度に加熱され得る。
幾つかの実施形態では、浸漬方法は、レンズ本体を洗浄し、それを水和させ得る。水和プロセスでは、レンズは膨張し、それが接する形成基材から外れ得る。
ここで、図2を参照すると、本発明の幾つかの実施形態の別の態様では、眼科レンズの形成は、計測及びフィードバックによって向上され得る。例えば、205では、所望のレンズパラメーターが外部源から入力され得る。例示的な目的のために、レンズ表面のモデルは、患者の眼に適用される眼用測定デバイスによってもたらされてもよい。他の実施形態では、理論上の入力パラメーターは、工程205の手順を含み得る。このような入力は、それらをボクセルに基づいたリソグラフィ210の入力要求と一致させるための幾つかの手順で処理される。様々な装置はこのような入力を受信し、幾つかの実施形態では、アルゴリズム方法を用いて、入力をボクセルに基づいたリソグラフィシステム211において使用可能なパラメーターに変換する。
図2を更に進むと、レンズ前駆体220がボクセル単位で形成され得る。レンズ前駆体は、続いてレンズ前駆体処理手順230で処理され、眼科レンズ240の「乾燥」形態を生じ得る。ここで、乾燥眼科レンズは、計測工程250で測定され得る。例示的な目的のために、この工程は、レーザー変位センサの使用を含み得る。この場合も同様に、例として、幾つかの実施形態では、この測定から生じる表面トポロジーは図4に示されるアイテム400のように見え得る。アルゴリズムは、結果と、レンズが工程205からの入力パラメーターと一致する場合に予測されるものとを比較するために、このデータをアイテム251及び252に示されるように処理し得る。幾つかの実施形態では、入力パラメーターからの差は処理され、ボクセルに基づいたリソグラフィシステム211内のレンズを処理するために使用されるパラメーターを変更する必要性に対応し得る。データ及びパラメーター情報のこのフィードバックループは、アイテム253のフィードバックループに示される。また、データは、処理され、レンズ前駆体処理手順252に所望されるパラメーターの変更に対応し得る。このシステム252内のパラメーターへの所望の変更のフィードバックは、フィードバックループ254によって示される。様々なコンピュータによる手順及び制御手順が、メインフレーム、個人用コンピュータ、工業用コンピュータ、及び他の同様のコンピュータ環境を含むが、これらに限定されない、様々なデータ処理機器上で実施され得ることが明らかであり得る。図2に示される工程及び関連手順の説明は、例示であり、本発明の範囲を限定する意図はないことに留意されたい。
幾つかの実施形態では、計測工程250並びにデータ251及び252の様々な処理の結果は、生成されるレンズ240がアイテム205の入力パラメーター前後の一組の許容可能な限界内であるかを判断する能力を含み得る。このレンズに関する判断は、次いでアイテム251に示され、ここでレンズは、変更されたパラメーターを有する別のレンズが生成されるように、廃棄され得る。あるいは、レンズは、許容可能な限界内であり、したがって後処理手順及び装置の実施形態で処理するために、工程260へ進み得る。次いでレンズが膨張され、取り外された後、これに対してアイテム270に示される別の計測手順が行われてもよい。幾つかの実施形態では、この計測の結果は、本実施形態の工程250に示されたものと同様のフィードバック実施形態を有し得る。
280で眼科レンズ生成物が実現された後、処理フローは、乾燥レンズが破棄されるフローに連結してもよい。その後、全フローは、290の条件戻り工程によって示される工程内の工程205にループして戻ることが可能である。本発明の様々な生成物に計測工程を実施し、次いで測定結果を組み込み、システムパラメーターを調節するフィードバックループを策定する工程における数々の修正、追加、及び代替が存在することは、当業者にとって明白であり得る。
幾つかのわずかに異なる実施形態では、追加の測定の種類は、全体的な器具フィードバックのために、レンズの品質態様を評価してもよい。非限定的な実施例として、幾つかの実施形態では、生成されたレンズ前駆体内のかかる欠陥の存在を判定するために、微粒子検出スキームが展開されてもよい。かかる判定が、微粒子問題を警告する結果をもたらす場合、幾つかの実施形態では、警告された問題を改善するために、装置及び手順の操作者にフィードバックすることを伴い得る、フィードバックループが存在し得る。数々の計測の実施形態が、測定結果が操作者にフィードバックされる、本発明の範囲内の技術を含み得ることは、当業者にとって明らかであり得る。
更なる実施形態では、ロジスティックデータの使用は、フィードバックループの要素を含み得る。本発明の装置の記述に言及されるように、幾つかの実施形態では、装置の主要な構成要素が識別されている場合がある。この構成要素の識別は、場合によっては、自動化装置によって追跡され得る。フィードバックは、例えば、特定の構成要素が、耐用年数を含む特定の態様に使用されたことを含み得る。幾つかの実施形態では、フィードバックは、操作者に対して行われてもよく、又はシステムの自動応答を含んでもよい。構成要素識別を使用する更なる実施形態では、厚さ結果がシステムのパラメーターに影響を与える場合の前述の計測の実施形態の結果、例えば形成光学機器部品のような構成要素の一意的な識別は、そうでなければ全体的なパラメーターを、特定の構成要素に対して個々に調整できるようにする。したがって、ロジスティックデータ及び計測データは、様々なアルゴリズム及びデータ処理機器で生成され得る。計測データは、入力レンズ要求として使用されるデータと区別され、更にレンズの形成に使用される装置へのフィードバックとして提供され得る。
(実施例1):
本発明の様々な実施形態が実施され、本明細書に記載される形態のレンズ生成物及びレンズ前駆体が生成された。この項では、一組の実施形態からの結果の記述を、一実施例として記載する。
本実施例の結果を実施するための装置は、以下の一般的態様を含んだ。レンズ前駆体を形成するために、ボクセルに基づいたリソグラフィ光学装置が使用された。一般的な観点から、本装置は、365nmで動作する、好ましい実施形態の種類の光源を含んだ。Texas Instruments DLP(商標)XGA Digital Mirror Deviceを照明するために、記載される光学パイプ及び集光光学機器を有するホモジナイザーが使用された。画像化システムは、図10に示される種類の形成光学機器の上に、画像化光学機器を更に含んだ。
強度プロファイル及びDMDピクセル値は、光学的吸収及びEtafilcon Aで構成される反応性モノマー混合物の反応性に基づいて計算された。このシステムは、照射ピーク320が365nmであり、形成ピーク330が420nmである、図3に示される吸光度特性を有する。このシステムの吸光度特性は、ベールの法則の吸光度方式に従い、これは、形成光学機器の表面にわたり配置される、約768×1024個のボクセル要素のそれぞれの正確な強度及び時間プログラムを推定するために使用された。
説明目的で、必要とされる強度をモデル化するために、ブゲール・ランベルト・ベールの方式が使用された。モデルは、この方式に基づくパラメーター依存性、並びにEtafilcon Aのような材料及び装置の両方に関連する変数をもたらす。レンズ作製過程からの結果は、モデルパラメーターを改善し、レンズを作り出すように、次いでフィードバックされる。モデルの論理は次の通りである。
ブゲール・ランベルト・ベールの法則:
ベールの法則は、化学放射線の強度が、材料内で、減衰係数α(λ)に依存して指数関数的に減少することを予測する。
I(x)/I=exp(−α(λ)cx) 等式1
距離に伴う強度減少速度は、
dI/dx=−α(λ)cIexp(−α(λ)cx) 等式2
であり、
式中、I(x)は、照射される表面からの距離xの関数としての強度であり、I0は、表面での入射強度であり、α(λ)は、波長(λ)の関数としての吸収成分の吸収係数であり、cは、そうでなければ比較的透明な媒体中の吸収成分の濃度である。したがって、放射線の波長を選択することによって、プロセスは、強度勾配(すなわち、αが大きくなると、特性の変化がより速くなり、したがってレンズが薄くなる)を選択するように調整することができる。
ここで、図3のアイテム300を参照すると、吸収体310による透過域、反応開始剤340の吸光度スペクトルとの重なり、並びに形成放射線源320及び固定化放射線源330の放射スペクトルを示す、反応性混合物の透過スペクトルが示される。
反応性モノマー混合物内のラジカル媒介重合の重合速度は、重合速度(Rp)が、反応性官能基の濃度([C=C])をラジカル濃度([・])及び速度論パラメーター(k)で乗算したものと等しい、一般的な速度式に従う。
Rp=k[C=C][・] 等式3
ラジカル濃度は、開始速度及び停止機構に強く依存する。典型的に、ラジカル−ラジカル/二分子停止が、一次停止機構である。経時的なラジカル濃度の変化は、開始速度(R)から停止速度を減算したものに等しい。
d[・]/dt=R−k[・] 等式3
定常状態(d[・]/dt=0)と仮定してラジカル濃度を解くと、ラジカル濃度は、開始速度の1/2を底とする指数関数と共に変化することが分かる。したがって、重合速度は、開始速度の1/2を底とする指数関数に依存する。
[・]=(R/k1/2 等式4
=k[C=C](R/k1/2 等式5
活性化エネルギー(E)、理想気体定数(R)、ケルビン温度(T)、重合速度尺度(β)、及びアレニウスのフロント因子(k)を考慮すると、重合速度は、次のように表される:
=k−E/RT[C=C](R/kβ 等式6
光化学反応開始速度は、次の式:
i=k’I 等式7
によって与えられ、
式中、Iは、放射線の強度であり、k’は、量子収量に関する定数である。全てのパラメーター及び反応開始剤の濃度が反応を通して一定のままであると仮定すると、式は、定数である全てのパラメーターがkにまとめられるように、簡略化することができる。
=ke−E/RT[C=C](I)β 等式8
重合速度は、経時的な官能基濃度の変化の速度(−d[C=C]/dt=Rp)であり、したがって、式は次のように表すことができる:
−d[C=C]/dt=ke−E/RT[C=C](I)β 等式9
微分式を解き、X=1−[C=C]/[C=C]で表される変換に代入すると、
X=1−exp[−ke−E/RT(I)βt] 等式10
となり、
式中、tは秒単位の暴露時間である。
反応性混合物が化学放射線の波長の放射線を吸収する吸収体を含む場合、変換の程度は、ベールの法則に従い、強度の関数、したがって表面からの距離の関数として変化する。ベールの法則の関係を速度論式に挿入することによって、表面からの距離xの関数として、変換の程度を予測することができる。
X(x)=1−exp[−ke−E/RT(I−αcxβt] 等式11
自由形成される表面が、変換度がゲル化点(すなわち、X=Xgel)である境界で生成されることを理解することによって、レンズの厚さ、xThickは、以下のxを解くための式を再構成することによって、予測することができる。
Figure 2012519312
gelは、光開始反応中に形成される架橋によって、配合物が液体から固体に遷移する、変換の程度である。式を再構成し、特定の変換XgelでのxThickを解いた後、フィルムの厚さを計算することができる。全ての他のパラメーター及び特性を一定に保つことにより、I及び暴露時間tを変化させることによって、表面上のいかなるx、y位置での所望の厚さをも推定することができる。所望の厚さは、i及びjが特定のボクセルの行及び列座標を示すボクセル単位で推定されてもよく、
Figure 2012519312
は、同一のボクセルの形成される厚さである。
Figure 2012519312
Figure 2012519312
式中のパラメーターの典型的な値(表1)は、速度論データの分析から推定され得る。
Figure 2012519312
暴露後、レンズ前駆体は、図12及び図13に示されるように、反応性混合物リザーバから取り出され、流動性化学物質除去装置で処理された。次いで、関連項に記載されるように、レンズは安定化された。次いでレンズは、NorblocのEtafilcon A内の吸収体が、もはや入射光を大幅に吸収しない点まで、420nmの放射暴露を用いて安定化された。次いでレンズは、測定され、続いて上述の装置を用いて水和された。
この方式で、Etafilcon A、反応性モノマー混合物を用いて、実際のレンズが作製され、それらの屈折力が測定された。2つのレンズについて測定された屈折力(ジオプター単位)は、次の表に示される。
Figure 2012519312
同様の意味で、同一の化学物質系、Etafilcon Aを使用して別のレンズを作製するためにプロセス条件が使用され、レンズは透過波面干渉計装置を使用して測定された。図4では、形成光学機器と生成されたレンズとの間の差分信号は、400、つまり生成されたレンズのトポグラフィーのマッピングとして示される。レンズの光学域は、同心輪状線410によって、適格に形成されたトポグラフィーを示すことに留意されたい。表面は、高品質の眼科レンズ装置である。
レンズ400の生成及びその測定では、レンズ内に設計されトポグラフィーマッピング上の特徴として生じる、特徴が存在する。例えば、420は、暴露動画中に、プログラムされた低強度を有する、レンズ前駆体形態にプログラムされた排出チャネルを含む。異なる種類のチャネルが440として測定される。このアイテム440は、レンズ表面の整合マークとして有用な長いチャネルを含む。この特徴は、空間中に、レンズ前面の軸方向に明確な配向を生成するために、類似形態で、レンズの反対側かつ示される特徴440の真上に複製される。
Figure 2012519312
結論
上述され、以下の特許請求の範囲によって更に定義される本発明は、レンズ前駆体及び眼科レンズを形成する方法、及びかかる方法を実践するための装置、並びにそれによって形成されるレンズ前駆体及び眼科レンズを提供する。
〔実施の態様〕
(1) 重合した架橋性材料の複数のボクセルを含む第1の部分と、
前記架橋性材料のゲル化点を越えて重合した、架橋性材料の層状体積を含む第2の部分と、を含む、眼科レンズ。
(2) 1つ又は2つ以上の追加の、架橋性材料の層状体積を含む第3の部分を更に含む、実施態様1に記載の眼科レンズ。
(3) 前記架橋性材料の層状体積が、ボクセル単位以外の架橋パターンを含む、実施態様1に記載の眼科レンズ。
(4) 前記第1の部分が光吸収性成分を更に含む、実施態様1に記載の眼科レンズ。
(5) 前記第2の部分が光吸収性成分を更に含む、実施態様1に記載の眼科レンズ。
(6) 前記第1の部分が第1の光学表面を含む、実施態様4に記載の眼科レンズ。
(7) 前記第2の部分が第2の光学表面を含む、実施態様6に記載の眼科レンズ。
(8) 前記第1の部分が、複数の化学放射線への反応性混合物の暴露により形成され、それぞれの化学放射線が源から生じ、それぞれの光線が、所与の時間にわたり前記架橋性材料の所与の部分の方向に反射される、実施態様3に記載の眼科レンズ。
(9) 所与の時間にわたり前記架橋性材料の所与の部分の方向に反射されるそれぞれの化学放射線が、所与の波長を含む、実施態様8に記載の眼科レンズ。
(10) 前記第2の部分が、複数の点から生じる複数の化学放射線への反応性混合物の暴露により形成される、実施態様9に記載の眼科レンズ。
(11) 前記重合した架橋性材料のボクセルによって形成される1つ又は2つ以上の凹域を更に含む、実施態様8に記載の眼科レンズ。
(12) 前記重合した架橋性材料のボクセルによって形成される1つ又は2つ以上の隆起部を更に含む、実施態様8に記載の眼科レンズ。
(13) 前記ゲル化点を越えて重合した前記架橋性材料の層状体積が、前記重合した架橋性材料のボクセルによって形成される前記凹域に対して等角である、実施態様11に記載の眼科レンズ。
(14) 前記ゲル化点を越えて重合した前記架橋性材料の層状体積が、前記重合した架橋性材料のボクセルによって形成される前記凹域に対して不等角である、実施態様11に記載の眼科レンズ。
(15) それぞれのボクセルが、第1の末端部と、第2の末端部とを含み、前記ゲル化点を越えて重合した架橋性材料の層状体積を含む前記第2の部分が、本質的にそれぞれの第2の末端部を被覆する、実施態様1に記載の眼科レンズ。
(16) 前記第1の部分が基材の表面に沿って形成される非連続パターンを含む、実施態様6に記載の眼科レンズ。
(17) 前記レンズの周辺が本質的に非円形状を含む、実施態様6に記載の眼科レンズ。
(18) 前記レンズの周辺が本質的に楕円形状を含む、実施態様6に記載の眼科レンズ。
(19) 前記レンズが円環形状を含む、実施態様6に記載の眼科レンズ。
(20) 光学品質の光学域を含む第1の表面と、
化学放射線のそれぞれのベクトルによって個別に重合した1つ又は2つ以上の隣接するボクセルを含む人工物を含む第2の表面と、を含む、眼科レンズ。
(21) 前記人工物が、化学放射線の複数のベクトルによって重合した反応性材料のベクトル和を含む、実施態様20に記載の眼科レンズ。
(22) 前記レンズの周辺が本質的に非球形状を含む、実施態様20に記載の眼科レンズ。

Claims (22)

  1. 重合した架橋性材料の複数のボクセルを含む第1の部分と、
    前記架橋性材料のゲル化点を越えて重合した、架橋性材料の層状体積を含む第2の部分と、を含む、眼科レンズ。
  2. 1つ又は2つ以上の追加の、架橋性材料の層状体積を含む第3の部分を更に含む、請求項1に記載の眼科レンズ。
  3. 前記架橋性材料の層状体積が、ボクセル単位以外の架橋パターンを含む、請求項1に記載の眼科レンズ。
  4. 前記第1の部分が光吸収性成分を更に含む、請求項1に記載の眼科レンズ。
  5. 前記第2の部分が光吸収性成分を更に含む、請求項1に記載の眼科レンズ。
  6. 前記第1の部分が第1の光学表面を含む、請求項4に記載の眼科レンズ。
  7. 前記第2の部分が第2の光学表面を含む、請求項6に記載の眼科レンズ。
  8. 前記第1の部分が、複数の化学放射線への反応性混合物の暴露により形成され、それぞれの化学放射線が源から生じ、それぞれの光線が、所与の時間にわたり前記架橋性材料の所与の部分の方向に反射される、請求項3に記載の眼科レンズ。
  9. 所与の時間にわたり前記架橋性材料の所与の部分の方向に反射されるそれぞれの化学放射線が、所与の波長を含む、請求項8に記載の眼科レンズ。
  10. 前記第2の部分が、複数の点から生じる複数の化学放射線への反応性混合物の暴露により形成される、請求項9に記載の眼科レンズ。
  11. 前記重合した架橋性材料のボクセルによって形成される1つ又は2つ以上の凹域を更に含む、請求項8に記載の眼科レンズ。
  12. 前記重合した架橋性材料のボクセルによって形成される1つ又は2つ以上の隆起部を更に含む、請求項8に記載の眼科レンズ。
  13. 前記ゲル化点を越えて重合した前記架橋性材料の層状体積が、前記重合した架橋性材料のボクセルによって形成される前記凹域に対して等角である、請求項11に記載の眼科レンズ。
  14. 前記ゲル化点を越えて重合した前記架橋性材料の層状体積が、前記重合した架橋性材料のボクセルによって形成される前記凹域に対して不等角である、請求項11に記載の眼科レンズ。
  15. それぞれのボクセルが、第1の末端部と、第2の末端部とを含み、前記ゲル化点を越えて重合した架橋性材料の層状体積を含む前記第2の部分が、本質的にそれぞれの第2の末端部を被覆する、請求項1に記載の眼科レンズ。
  16. 前記第1の部分が基材の表面に沿って形成される非連続パターンを含む、請求項6に記載の眼科レンズ。
  17. 前記レンズの周辺が本質的に非円形状を含む、請求項6に記載の眼科レンズ。
  18. 前記レンズの周辺が本質的に楕円形状を含む、請求項6に記載の眼科レンズ。
  19. 前記レンズが円環形状を含む、請求項6に記載の眼科レンズ。
  20. 光学品質の光学域を含む第1の表面と、
    化学放射線のそれぞれのベクトルによって個別に重合した1つ又は2つ以上の隣接するボクセルを含む人工物を含む第2の表面と、を含む、眼科レンズ。
  21. 前記人工物が、化学放射線の複数のベクトルによって重合した反応性材料のベクトル和を含む、請求項20に記載の眼科レンズ。
  22. 前記レンズの周辺が本質的に非球形状を含む、請求項20に記載の眼科レンズ。
JP2011553009A 2009-03-02 2010-03-01 自由形成の眼科レンズ Pending JP2012519312A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/396,019 US7905594B2 (en) 2007-08-21 2009-03-02 Free form ophthalmic lens
US12/396,019 2009-03-02
PCT/US2010/025773 WO2010101831A1 (en) 2009-03-02 2010-03-01 Free form ophthalmic lens

Publications (1)

Publication Number Publication Date
JP2012519312A true JP2012519312A (ja) 2012-08-23

Family

ID=42212096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011553009A Pending JP2012519312A (ja) 2009-03-02 2010-03-01 自由形成の眼科レンズ

Country Status (13)

Country Link
US (2) US7905594B2 (ja)
EP (1) EP2403709A1 (ja)
JP (1) JP2012519312A (ja)
KR (1) KR101806100B1 (ja)
CN (1) CN102421587A (ja)
AR (1) AR076068A1 (ja)
AU (1) AU2010221566B2 (ja)
BR (1) BRPI1012570A2 (ja)
CA (1) CA2753215C (ja)
RU (1) RU2011139991A (ja)
SG (1) SG173851A1 (ja)
TW (2) TWI539200B (ja)
WO (1) WO2010101831A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522449A (ja) * 2013-05-30 2016-07-28 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. プログラム可能なメディアインサートを備えた通電可能眼用レンズの製造及びプログラミングの方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7905594B2 (en) 2007-08-21 2011-03-15 Johnson & Johnson Vision Care, Inc. Free form ophthalmic lens
US8317505B2 (en) * 2007-08-21 2012-11-27 Johnson & Johnson Vision Care, Inc. Apparatus for formation of an ophthalmic lens precursor and lens
US8318055B2 (en) * 2007-08-21 2012-11-27 Johnson & Johnson Vision Care, Inc. Methods for formation of an ophthalmic lens precursor and lens
US8313828B2 (en) * 2008-08-20 2012-11-20 Johnson & Johnson Vision Care, Inc. Ophthalmic lens precursor and lens
US10018853B2 (en) 2008-04-04 2018-07-10 Battelle Memorial Institute Methods of altering the refractive index of materials
WO2015038614A1 (en) 2013-09-12 2015-03-19 Battelle Memorial Institute Methods of altering the refractive index of materials
EP2578185A3 (en) 2008-04-04 2013-07-24 Battelle Memorial Institute Adjustable intraocular lens
US10254562B2 (en) 2008-04-04 2019-04-09 Battelle Memorial Institute Methods for tailoring the refractive index of lenses
US9417464B2 (en) 2008-08-20 2016-08-16 Johnson & Johnson Vision Care, Inc. Method and apparatus of forming a translating multifocal contact lens having a lower-lid contact surface
US8240849B2 (en) * 2009-03-31 2012-08-14 Johnson & Johnson Vision Care, Inc. Free form lens with refractive index variations
US20130235334A1 (en) * 2011-08-31 2013-09-12 Michael F. Widman Ophthalmic lens forming optic
KR101881065B1 (ko) 2011-12-21 2018-07-24 삼성전자주식회사 광원 모듈 및 백라이트 유닛
WO2013119775A1 (en) 2012-02-10 2013-08-15 Johnson & Johnson Vision Care, Inc. Method and apparatus for determining a thickness profile of an ophthalmic lens using a single point thickness and refractive index measurements
AU2013202155A1 (en) * 2012-03-30 2013-10-17 Johnson & Johnson Vision Care, Inc. Method and apparatus for providing variations of a lower-lid contact surface and under-lid support structures of a translating multifocal contact lens
SG193768A1 (en) * 2012-03-30 2013-10-30 Johnson & Johnson Vision Care Methods and apparatus for forming a translating multifocal contact lens
AU2015203881B2 (en) * 2012-03-30 2018-02-15 Johnson & Johnson Vision Care, Inc. Method and apparatus for providing variations of a lower-lid contact surface and under-lid support structures of a translating multifocal contact lens
AU2013206460A1 (en) 2012-06-27 2014-01-16 Johnson & Johnson Vision Care, Inc. Free form custom lens design manufacturing apparatus, system and business method
US9933632B2 (en) 2014-03-26 2018-04-03 Indizen Optical Technologies, S.L. Eyewear lens production by multi-layer additive techniques
US9952448B2 (en) 2014-03-26 2018-04-24 Indizen Optical Technologies, S.L. Eyewear lens production by additive techniques
EP2923826B1 (fr) * 2014-03-28 2018-11-07 Essilor International Lentille ophtalmique et procédé de fabrication d'une telle lentille
US9645412B2 (en) 2014-11-05 2017-05-09 Johnson & Johnson Vision Care Inc. Customized lens device and method
US10359643B2 (en) 2015-12-18 2019-07-23 Johnson & Johnson Vision Care, Inc. Methods for incorporating lens features and lenses having such features
US10607335B2 (en) * 2016-06-28 2020-03-31 Johnson & Johnson Vision Care, Inc. Systems and methods of using absorptive imaging metrology to measure the thickness of ophthalmic lenses
US11021558B2 (en) 2016-08-05 2021-06-01 Johnson & Johnson Vision Care, Inc. Polymer compositions containing grafted polymeric networks and processes for their preparation and use
EP3593529B1 (en) * 2017-03-06 2022-07-06 Gelsight, Inc. Surface topography measurement systems
US11034789B2 (en) 2018-01-30 2021-06-15 Johnson & Johnson Vision Care, Inc. Ophthalmic devices containing localized grafted networks and processes for their preparation and use
US10961341B2 (en) 2018-01-30 2021-03-30 Johnson & Johnson Vision Care, Inc. Ophthalmic devices derived from grafted polymeric networks and processes for their preparation and use
USD931352S1 (en) 2019-04-17 2021-09-21 Lumus Ltd. Ophthalmic lens
CN114072274A (zh) * 2019-06-24 2022-02-18 依视路国际公司 通过增材制造生产光学元件的方法和机器
US11364696B2 (en) 2020-09-18 2022-06-21 Johnson & Johnson Vision Care, Inc Apparatus for forming an ophthalmic lens
US11633907B2 (en) 2020-10-16 2023-04-25 Indizen Optical Technologies S.L. Eyewear lens creation using additive techniques with diffuse light
WO2023052890A1 (en) 2021-09-29 2023-04-06 Johnson & Johnson Vision Care, Inc. Anthraquinone-functionalized polymerization initiators and their use in the manufacture of ophthalmic lenses
US20230176251A1 (en) 2021-09-29 2023-06-08 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses and their manufacture by in-mold modification
WO2023052889A1 (en) 2021-09-29 2023-04-06 Johnson & Johnson Vision Care, Inc. Amide-functionalized polymerization initiators and their use in the manufacture of ophthalmic lenses
US11912800B2 (en) 2021-09-29 2024-02-27 Johnson & Johnson Vision Care, Inc. Amide-functionalized polymerization initiators and their use in the manufacture of ophthalmic lenses
US11789181B1 (en) * 2022-02-03 2023-10-17 Atheneum Optical Sciences, Llc Polymeric additive manufacturing and ophthalmic lenses formed thereby

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025848A2 (en) * 2007-08-21 2009-02-26 Johnson & Johnson Vision Care, Inc. Apparatus for formation of an ophthalmic lens precursor

Family Cites Families (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916033A (en) 1971-06-09 1975-10-28 High Voltage Engineering Corp Contact lens
CA993401A (en) 1972-12-04 1976-07-20 Edward W. Merrill Contact lens and method of preparation
US4701288A (en) 1985-06-05 1987-10-20 Bausch & Lomb Incorporated Method of making articles of dissimilar polymer compositions
US4827109A (en) * 1987-02-18 1989-05-02 Fuji Photo Film Co., Ltd. Photographic printing system
JPH01163027A (ja) 1987-12-21 1989-06-27 Matsushita Electric Ind Co Ltd 光学素子の成形方法およびその装置
US5182056A (en) 1988-04-18 1993-01-26 3D Systems, Inc. Stereolithography method and apparatus employing various penetration depths
DE4002029A1 (de) 1990-01-24 1991-07-25 Peter Hoefer Verfahren zur herstellung von kontaktlinsen und kontaktlinsenfertigungssystem
AU629725B2 (en) 1990-01-24 1992-10-08 Novartis Ag Contact lens and process for the manufacture thereof
EP0458734B1 (de) 1990-04-24 1993-12-01 Ciba-Geigy Ag Verfahren zur Herstellung von Kontaklinsen
US5359173A (en) 1992-09-29 1994-10-25 Bausch & Lomb Incorporated Scanning technique for laser ablation
US5452031A (en) 1993-05-05 1995-09-19 Boston Eye Technology, Inc. Contact lens and a method for manufacturing contact lens
US6800225B1 (en) 1994-07-14 2004-10-05 Novartis Ag Process and device for the manufacture of mouldings and mouldings manufactured in accordance with that process
ATE159886T1 (de) 1993-07-29 1997-11-15 Ciba Geigy Ag Verfahren und vorrichtung zur herstellung von formkörpern
US5502518A (en) 1993-09-09 1996-03-26 Scient Optics Inc Asymmetric aspheric contact lens
US5517260A (en) 1994-03-28 1996-05-14 Vari-Site, Inc. Ophthalmic lens having a progressive multifocal zone and method of manufacturing same
US5730911A (en) 1995-03-03 1998-03-24 Essilor International-Compagnie General D'optique Process for the manufacture of a substrate made of transparent organic glass and substrate thus obtained
US5685420A (en) 1995-03-31 1997-11-11 Johnson & Johnson Vision Products, Inc. Composite packaging arrangement for contact lenses
US5650837A (en) * 1995-05-04 1997-07-22 Johnson & Johnson Vision Products, Inc. Rotationally stable contact lens designs
BR9600543A (pt) 1996-02-06 1997-12-30 Samir Jacob Bechara Sistema computadorizado para escolha e adaptação de óculos
US6241355B1 (en) 1996-03-29 2001-06-05 Brian A. Barsky Computer aided contact lens design and fabrication using spline surfaces
US5662706A (en) 1996-06-14 1997-09-02 Pbh, Inc. Variable transmissivity annular mask lens for the treatment of optical aberrations
JP4125793B2 (ja) 1997-03-25 2008-07-30 ノバルティス アクチエンゲゼルシャフト 成形法
IT1291809B1 (it) 1997-03-26 1999-01-21 Eikon Di Chiavacci Daniela E C Procedimento di costruzione di lenti a contatto su calco elettronico della cornea
US5983201A (en) 1997-03-28 1999-11-09 Fay; Pierre N. System and method enabling shopping from home for fitted eyeglass frames
US6302876B1 (en) 1997-05-27 2001-10-16 Visx Corporation Systems and methods for imaging corneal profiles
FR2764073B1 (fr) * 1997-05-30 1999-07-16 Sgs Thomson Microelectronics Protocole de communication pour carte a memoire asynchrone
AR013512A1 (es) 1997-09-24 2000-12-27 Novartis Ag Metodo para fabricar una lente de contacto astigmatica
HUP0100523A2 (hu) * 1997-12-29 2001-05-28 Novartis Ag. Holografikus szemlencse
CA2273162C (en) 1998-02-03 2002-07-02 Tsuyoshi Saigo Eyeglasses try-on simulation system
JP3593460B2 (ja) * 1998-07-29 2004-11-24 富士通株式会社 メモリカード
US6457826B1 (en) 1998-08-06 2002-10-01 John B. W. Lett Multifocal aspheric lens
US6598975B2 (en) 1998-08-19 2003-07-29 Alcon, Inc. Apparatus and method for measuring vision defects of a human eye
JP2002524770A (ja) 1998-09-08 2002-08-06 サイエンティフィック オプティクス, インク. コンタクトレンズ
US6279114B1 (en) * 1998-11-04 2001-08-21 Sandisk Corporation Voltage negotiation in a single host multiple cards system
US20030128336A1 (en) 2001-12-28 2003-07-10 Jethmalani Jagdish M. Customized lenses
US6364208B1 (en) * 1999-03-29 2002-04-02 Transmo Limited Card changing system
WO2001002881A1 (en) 1999-07-01 2001-01-11 Bausch & Lomb Incorporated Process for removing extractables from polymeric contact lenses
US6616275B1 (en) 1999-08-11 2003-09-09 Asclepion Meditec Gmbh Method and device for completely correcting visual defects of the human eye
US6305802B1 (en) 1999-08-11 2001-10-23 Johnson & Johnson Vision Products, Inc. System and method of integrating corneal topographic data and ocular wavefront data with primary ametropia measurements to create a soft contact lens design
US6200646B1 (en) 1999-08-25 2001-03-13 Spectra Group Limited, Inc. Method for forming polymeric patterns, relief images and colored polymeric bodies using digital light processing technology
US20020024631A1 (en) 1999-08-31 2002-02-28 Roffman Jeffrey H. Rotationally stabilized contact lenses
US6086204A (en) 1999-09-20 2000-07-11 Magnante; Peter C. Methods and devices to design and fabricate surfaces on contact lenses and on corneal tissue that correct the eye's optical aberrations
DE10006896A1 (de) 2000-02-16 2001-08-30 Wavelight Laser Technologie Ag Verfahren zum Herstellen einer künstlichen okularen Linse
US6394999B1 (en) 2000-03-13 2002-05-28 Memphis Eye & Cataract Associates Ambulatory Surgery Center Laser eye surgery system using wavefront sensor analysis to control digital micromirror device (DMD) mirror patterns
US6233102B1 (en) 2000-03-21 2001-05-15 Veigh E. Hogan, Jr. Point-of-purchase display
US6827325B2 (en) 2000-08-28 2004-12-07 Johnson & Johnson Vision Care, Inc. Shape memory polymer or alloy ophthalmic lens mold and methods of forming ophthalmic products
AU2001288327A1 (en) 2000-09-11 2002-03-26 Research Triangle Institute Process for desulfurizing hydrocarbon fuels and fuel components
US6499843B1 (en) 2000-09-13 2002-12-31 Bausch & Lomb Incorporated Customized vision correction method and business
US6626534B1 (en) 2000-09-29 2003-09-30 Dimartino Robert B. Contact lens stabilization design system
US6511180B2 (en) 2000-10-10 2003-01-28 University Of Rochester Determination of ocular refraction from wavefront aberration data and design of optimum customized correction
JP2004533660A (ja) 2000-10-18 2004-11-04 ジヨンソン・アンド・ジヨンソン・コンシユーマー・カンパニーズ・インコーポレーテツド 知能性能ベースの製品推奨システム
US6746120B2 (en) 2000-10-30 2004-06-08 Novartis Ag Method and system for ordering customized cosmetic contact lenses
US6595639B1 (en) 2000-11-10 2003-07-22 Ocular Sciences, Inc. Junctionless ophthalmic lenses and methods for making same
EP1336924A4 (en) 2000-11-24 2007-04-18 Vision Optic Co Ltd SYSTEM FOR CONTROLLING / SELLING EYEGLASSES ON A NETWORK AND CORRESPONDING METHOD
US7293871B2 (en) * 2000-11-27 2007-11-13 Ophthonix, Inc. Apparatus and method of correcting higher-order aberrations of the human eye
US6491392B2 (en) 2000-12-08 2002-12-10 Johnson & Johnson Vison Care, Inc. Dynamically stabilized contact lenses
US6547391B2 (en) 2000-12-08 2003-04-15 Johnson & Johnson Vision Care, Inc. Ocular aberration correction taking into account fluctuations due to biophysical rhythms
US7232220B2 (en) 2001-03-01 2007-06-19 Richard Franz System for vision examination utilizing telemedicine
WO2002098290A2 (en) 2001-04-18 2002-12-12 Bausch & Lomb Incorporated Objective measurement of eye refraction
US7111938B2 (en) 2001-04-27 2006-09-26 Novartis Ag Automatic lens design and manufacturing system
US7217375B2 (en) 2001-06-04 2007-05-15 Ophthonix, Inc. Apparatus and method of fabricating a compensating element for wavefront correction using spatially localized curing of resin mixtures
US6609794B2 (en) 2001-06-05 2003-08-26 Adaptive Optics Associates, Inc. Method of treating the human eye with a wavefront sensor-based ophthalmic instrument
US7188082B2 (en) 2001-07-06 2007-03-06 Digital Vision, Inc. Electronic ordering system, such as for use by eye care professionals
AUPR649601A0 (en) 2001-07-20 2001-08-09 Redfern Polymer Optics Pty Ltd Casting preforms for optical fibres
CA2456653A1 (en) 2001-08-09 2003-02-20 Johnson & Johnson Vision Care, Inc. Apparatus and method for handling lens carriers
US6595642B2 (en) 2001-08-31 2003-07-22 Adaptive Optics Associates, Inc. Ophthalmic instrument having Hartmann wavefront sensor with extended source
US20030083890A1 (en) 2001-11-01 2003-05-01 Duncan Gregory Scott Automated pack out
AUPR949101A0 (en) 2001-12-14 2002-01-24 Sola International Holdings Ltd Method for prescribing and/or dispensing ophthalmic lenses
CN100462048C (zh) 2002-01-04 2009-02-18 株式会社威炯眼镜 眼镜选定系统及其方法
JP3731003B2 (ja) 2002-02-01 2006-01-05 株式会社メニコン コンタクトレンズの提供および診察システム
CA2476315A1 (en) 2002-02-15 2003-08-28 Zms, Llc Polymerization process and materials for biomedical applications
US7130835B2 (en) 2002-03-28 2006-10-31 Bausch & Lomb Incorporated System and method for predictive ophthalmic correction
US7291294B2 (en) 2002-07-11 2007-11-06 Carole Lewis Stolpe Iris assembly for a prosthetic eye device
US7384143B2 (en) 2002-07-24 2008-06-10 Novartis Ag Method of manufacturing a contact lens
JP4485360B2 (ja) 2002-08-06 2010-06-23 ノバルティス アーゲー コンタクトレンズ
US6966649B2 (en) 2002-08-12 2005-11-22 John H Shadduck Adaptive optic lens system and method of use
CN100519124C (zh) * 2002-08-16 2009-07-29 庄臣及庄臣视力保护公司 生产隐形眼镜的模具
JP3806077B2 (ja) * 2002-08-26 2006-08-09 株式会社東芝 メモリカード認識システム、容量切り替え型メモリカード・ホスト機器、容量切り替え型メモリカード、記憶容量設定方法及び記憶容量設定プログラム
US6863848B2 (en) 2002-08-30 2005-03-08 Signet Armorlite, Inc. Methods for preparing composite photochromic ophthalmic lenses
US7097301B2 (en) 2002-09-06 2006-08-29 Synergeyes, Inc. Hybrid contact lens system and method
US7235195B2 (en) 2002-09-06 2007-06-26 Novartis Ag Method for making opthalmic devices
US7163292B2 (en) 2002-09-06 2007-01-16 Synergeyes, Inc. Hybrid contact lens system and method
US7195354B2 (en) 2002-10-04 2007-03-27 The Regents Of The University Of California Adaptive ophthalmologic system
AU2003282671B8 (en) 2002-10-28 2010-05-27 Johnson & Johnson Vision Care, Inc. Lithographic method for forming mold inserts and molds
US6832694B2 (en) * 2002-11-07 2004-12-21 Fort James Corporation Dispenser for cutlery utensils
WO2004046768A2 (en) 2002-11-20 2004-06-03 Powervision Lens system and method for power adjustment
CA2505845C (en) 2002-12-06 2014-03-18 Visx, Incorporated Presbyopia correction using patient data
US20040119174A1 (en) 2002-12-19 2004-06-24 Hofmann Gregory J. Method for forming ophthalmic lenses using reusable molds
CA2517576A1 (en) 2003-03-06 2004-09-23 John H. Shadduck Adaptive optic lens and method of making
US6842223B2 (en) 2003-04-11 2005-01-11 Nikon Precision Inc. Enhanced illuminator for use in photolithographic systems
US7063422B2 (en) 2003-04-16 2006-06-20 Novartis Ag Multifocal ophthalmic lens
EP1629319B1 (en) 2003-05-21 2012-12-12 Novartis AG Contact lenses
MXPA05012123A (es) 2003-05-30 2006-02-22 Scient Optics Inc Lentes de contacto con periferia modelada.
US20040263779A1 (en) 2003-06-12 2004-12-30 Visx, Inc. Hartmann-Shack wavefront measurement
US7458683B2 (en) 2003-06-16 2008-12-02 Amo Manufacturing Usa, Llc Methods and devices for registering optical measurement datasets of an optical system
DE10329165A1 (de) 2003-06-27 2005-01-13 Carl Zeiss Meditec Ag Vorrichtung zur Bestimmung der Fehlsichtigkeit eines optischen Systems
WO2005005121A2 (en) 2003-07-11 2005-01-20 Koninklijke Philips Electronics N.V. A method of manufacturing a mould for producing an optical surface, a method of producing a contact lens and a device for use with these methods
WO2005007386A2 (en) 2003-07-17 2005-01-27 Koninklijke Philips Electronics N.V. Method, device and preform for three-dimensionally shaping a plate like object
DE10333794A1 (de) 2003-07-24 2005-03-03 Technovision Gmbh Verfahren und Vorrichtung zur Online-Kontaktlinsenbewertung
US20050041203A1 (en) 2003-08-20 2005-02-24 Lindacher Joseph Michael Ophthalmic lens with optimal power profile
US20050074616A1 (en) 2003-10-02 2005-04-07 John Harchanko Lithographic method for forming mold inserts and molds
JP5052897B2 (ja) 2003-11-10 2012-10-17 ヴィズイクス・インコーポレーテッド 診断用デバイスとレーザー屈折システムとの間のトーショナルアライメントをテストするための方法及び装置
US7080906B2 (en) 2003-11-12 2006-07-25 Novartis Ag Translating bifocal wear modality
US7234810B2 (en) 2003-11-14 2007-06-26 Ophthonix, Inc. System for manufacturing an optical lens
US20050105044A1 (en) 2003-11-14 2005-05-19 Laurence Warden Lensometers and wavefront sensors and methods of measuring aberration
US7018039B2 (en) 2003-11-14 2006-03-28 Synergeyes,Inc. Contact lens
JP4464726B2 (ja) 2004-03-30 2010-05-19 株式会社トプコン 眼科装置
US8147728B2 (en) 2004-04-01 2012-04-03 Novartis Ag Pad transfer printing of silicone hydrogel lenses using colored ink
PL1756625T3 (pl) * 2004-04-21 2014-11-28 Novartis Ag Utwardzalne barwne tusze do wytwarzania silikonowo-hydrożelowych barwnych soczewek kontaktowych
US20050264756A1 (en) 2004-05-14 2005-12-01 Powervision, Inc. Custom contact lens molding system and methods
KR20070055422A (ko) 2004-05-20 2007-05-30 쿠퍼비젼,인코포레이티드 시력 향상을 위한 각막 온레이 및 파면 수차 보정
ES2253078B1 (es) 2004-06-11 2007-07-16 Consejo Superior De Investigaciones Cientificas. Procedimiento para evitar la induccion de aberraciones en sistemas de cirugia refractiva laser.
US9248614B2 (en) 2004-06-30 2016-02-02 Novartis Ag Method for lathing silicone hydrogel lenses
ATE451223T1 (de) 2004-07-30 2009-12-15 Novartis Ag Verfahren zur herstellung ophthalmischer linsen mit modulierter energie
CA2575028A1 (en) 2004-08-04 2006-02-09 Novartis Ag Soft contact lenses with stiffening rib features therein
US20060055071A1 (en) 2004-08-18 2006-03-16 Stephen Kendig Using higher order mathematical functions to create asymmetric molding back pieces
US20080143960A1 (en) 2004-11-22 2008-06-19 Macrae Scott M Apparatus And Method For Simulating Vision Correction
US8597282B2 (en) 2005-01-13 2013-12-03 Amo Manufacturing Usa, Llc Database system for centralized clinical and research applications with data from wavefront aberrometers
US20060186564A1 (en) * 2005-02-22 2006-08-24 Adams Jonathan P Hydrogel processing
US20060192310A1 (en) 2005-02-23 2006-08-31 Lindacher Joseph M Method of manufacturing ophthalmic lenses using modulated energy
US7401922B2 (en) 2005-04-13 2008-07-22 Synergeyes, Inc. Method and apparatus for reducing or eliminating the progression of myopia
EP1719612A1 (en) 2005-05-03 2006-11-08 Vision Dynamics Holding B.V. Method of and apparatus for moulding optical components
US7224539B2 (en) 2005-05-13 2007-05-29 Schaack David F Providing optical systems having improved properties to users of catalog (stock) lenses
US20060264917A1 (en) 2005-05-20 2006-11-23 Visx, Incorporated Scleral lenses for custom optic evaluation and visual performance improvement
GB2426812B (en) 2005-06-03 2009-11-25 Contact Lens Prec Lab Ltd Improvements in or relating to contact lenses
US7216978B2 (en) 2005-06-08 2007-05-15 Johnson & Johnson Vision Care, Inc. Method for evaluating eyelid movement and contact lens position
US7384146B2 (en) 2005-06-28 2008-06-10 Carestream Health, Inc. Health care kiosk having automated diagnostic eye examination and a fulfillment remedy based thereon
ATE480181T1 (de) 2005-08-18 2010-09-15 Imagine Eyes Verfahren und system zur korrektur von abweichungen des auges für ein ophthalmisches instrument
US7296890B2 (en) 2005-10-25 2007-11-20 Truform Optics Contact lens with controlled shape
SG169355A1 (en) 2005-10-28 2011-03-30 Johnson & Johnson Vision Care Ophthalmic lenses useful for the correction of presbyopia which incorporate high order aberration correction
TWI262325B (en) 2005-11-16 2006-09-21 Ind Tech Res Inst Eye aberration measurement and calibrating equipment and its method
US7172285B1 (en) 2005-12-09 2007-02-06 Bausch & Lomb Incorporated Contact lens with high-order compensation for non-axisymmetric structure
DE602005016825D1 (de) 2005-12-13 2009-11-05 Sauflon Cl Ltd Herstellung von Kontakt-Linsen
JP5068765B2 (ja) 2005-12-14 2012-11-07 ノバルティス アーゲー シリコーンヒドロゲルの製造方法
US7623295B2 (en) 2006-04-18 2009-11-24 Anton Sabeta Optical device characterization
US20070284770A1 (en) 2006-06-07 2007-12-13 Ansell Scott F Decreased lens delamination during ophthalmic lens manufacture
US8691100B2 (en) 2006-06-09 2014-04-08 Taiwan Semiconductor Manufacturing Co. Ltd. Concave and convex micromirrors and methods of making the same
AR062067A1 (es) 2006-07-17 2008-10-15 Novartis Ag Lentes de contacto toricas con perfil de potencia optica controlado
TWI309881B (en) 2006-07-21 2009-05-11 Siliconware Precision Industries Co Ltd Semiconductor package with heat-dissipating structure
US8003024B2 (en) 2006-09-18 2011-08-23 Coopervision International Holding Company, Lp Polyolefin contact lens molds and uses thereof
US7862169B2 (en) 2006-09-29 2011-01-04 Johnson & Johnson Vision Care, Inc. Contact lenses and methods for their design
US7875217B2 (en) 2006-09-29 2011-01-25 Johnson & Johnson Vision Care, Inc. Excess polymer ring removal during ophthalmic lens manufacture
US7620147B2 (en) 2006-12-13 2009-11-17 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
US20080137030A1 (en) 2006-11-03 2008-06-12 Hoffman William C Optical devices with reduced chromatic aberration
TWI332809B (en) * 2006-11-30 2010-11-01 Inventec Corp Circuit board
JP5669396B2 (ja) 2006-12-13 2015-02-12 ノバルティス アーゲー 化学線硬化性シリコーンヒドロゲルコポリマーおよびその使用
JP5534817B2 (ja) 2006-12-19 2014-07-02 ノバルティス アーゲー プレミアム視力眼科用レンズ
WO2008083015A2 (en) 2006-12-31 2008-07-10 Novartis Ag Method and system for determining power profile for an eye
US20080179770A1 (en) 2007-01-31 2008-07-31 Rooney Thomas R Free form ophthalmic lens mold
US20080288369A1 (en) 2007-02-26 2008-11-20 Hunter Reginald W Next Generation Eyewear Retailing
EP2146621B1 (en) 2007-05-24 2019-03-20 AMO Development, LLC Accommodation compensation systems and methods
US8403919B2 (en) 2007-06-05 2013-03-26 Alcon Refractivehorizons, Inc. Nomogram computation and application system and method for refractive laser surgery
US7777872B2 (en) 2007-07-31 2010-08-17 Alcon Research, Ltd. Method of measuring diffractive lenses
US7905594B2 (en) 2007-08-21 2011-03-15 Johnson & Johnson Vision Care, Inc. Free form ophthalmic lens
US8318055B2 (en) 2007-08-21 2012-11-27 Johnson & Johnson Vision Care, Inc. Methods for formation of an ophthalmic lens precursor and lens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025848A2 (en) * 2007-08-21 2009-02-26 Johnson & Johnson Vision Care, Inc. Apparatus for formation of an ophthalmic lens precursor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522449A (ja) * 2013-05-30 2016-07-28 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. プログラム可能なメディアインサートを備えた通電可能眼用レンズの製造及びプログラミングの方法

Also Published As

Publication number Publication date
US20090174863A1 (en) 2009-07-09
CN102421587A (zh) 2012-04-18
CA2753215A1 (en) 2010-09-10
TWI539200B (zh) 2016-06-21
US8157373B2 (en) 2012-04-17
AU2010221566B2 (en) 2014-02-13
US20110116036A1 (en) 2011-05-19
TW201109766A (en) 2011-03-16
SG173851A1 (en) 2011-09-29
TWI594043B (zh) 2017-08-01
KR20110139237A (ko) 2011-12-28
RU2011139991A (ru) 2013-04-10
TW201627721A (zh) 2016-08-01
US7905594B2 (en) 2011-03-15
WO2010101831A1 (en) 2010-09-10
EP2403709A1 (en) 2012-01-11
AR076068A1 (es) 2011-05-18
BRPI1012570A2 (pt) 2016-09-20
AU2010221566A1 (en) 2011-10-20
CA2753215C (en) 2017-11-28
KR101806100B1 (ko) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6239658B2 (ja) 眼科レンズ形成方法
JP6092176B2 (ja) 眼科レンズを形成する方法
JP5908442B2 (ja) 眼科レンズ前駆体を形成するための装置
JP2012519312A (ja) 自由形成の眼科レンズ
JP5567116B2 (ja) 屈折率変化を有する自由形成レンズ
JP6355892B2 (ja) 平行移動多焦点のコンタクトレンズを成形するための方法及び装置
JP2013214068A5 (ja)
JP6173742B2 (ja) 平行移動多焦点のコンタクトレンズの下眼瞼接触面及び眼瞼下の支持構造物の変形をもたらすための方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140428

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805