JP2012519130A - 高純度シリコンを製造するための流動床反応器 - Google Patents

高純度シリコンを製造するための流動床反応器 Download PDF

Info

Publication number
JP2012519130A
JP2012519130A JP2011552017A JP2011552017A JP2012519130A JP 2012519130 A JP2012519130 A JP 2012519130A JP 2011552017 A JP2011552017 A JP 2011552017A JP 2011552017 A JP2011552017 A JP 2011552017A JP 2012519130 A JP2012519130 A JP 2012519130A
Authority
JP
Japan
Prior art keywords
silicon
fluidized bed
bed reactor
chamber
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011552017A
Other languages
English (en)
Inventor
エス べサーズ マシュー
サン セグンド サンチェス ハヴィエル
ルイス モンテシーノス バローナ ホセ
アユソ コネジェロ エヴァリスト
ヴィセント ヴァレス カンル マニュエル
ベナビデス レル ザビエル
ルジャン ガルシア ペドロトマス
マルティネス マリア トマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siliken Chemicals SL
Original Assignee
Siliken Chemicals SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siliken Chemicals SL filed Critical Siliken Chemicals SL
Publication of JP2012519130A publication Critical patent/JP2012519130A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/029Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00407Controlling the temperature using electric heating or cooling elements outside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00415Controlling the temperature using electric heating or cooling elements electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00433Controlling the temperature using electromagnetic heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00433Controlling the temperature using electromagnetic heating
    • B01J2208/0046Infrared radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Silicon Compounds (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

内表面上に堆積した1層以上の保護層を有する流動床反応器を含む、高純度シリコンの製造方法および製造装置である。保護層は流動ガスおよびシリコン含有ガスによる腐食に耐久性がある。

Description

本発明は、高純度エレクトロニック級シリコンの製造方法に関する。より具体的には、本発明は、流動床反応器中での分解によってシード粒子上にシリコン含有ガスを化学気相成長(CVD)させることによる、高純度シリコンビーズの製造方法に関する。
多結晶シリコンは、電子部品および太陽電池構造物の製造に使用される。多結晶シリコンの従来の製造方法のひとつには、水素とシラン(SiH)とを含む混合物、または、水素とトリクロロシラン(HSiCl)などのハロシランとを含む混合物を、熱いワイヤーまたは熱い基質ロッドを含む分解反応器に供給するものがある。該方法は、製造したシリコンの質量単位あたり高いエネルギー量が必要となり、また、該方法によって製造されるシリコンロッドには、シリコンインゴット成長プロセスで使用するための更なるプロセスが必要となる。
代替のシリコン製造方法としては、高温に維持したシリコンビーズを含む流動床に、水素およびシランを含む混合物または水素およびトリクロロシランを含む混合物を供給する方法がある。シランまたはトリクロロシランの分解によって、ビーズ表面への元素シリコンの堆積が起きる。従って、シリコンビーズのサイズが成長し、十分な大きさとなれば、高純度シリコン生成物として流動床反応器から排出する。ワイヤーまたはロッドの基質反応器で用いる基質に比べて、流動床反応では、加熱したチャンバ中でのビーズとシリコン含有ガスとの接触領域が広くなり、シリコン含有ガスの熱分解を強め、その結果、存在するビーズの表面に高純度元素シリコンを形成することができる。
シリコン精製プロセスの一実施形態を示す。 シリコン精製プロセスに用いる流動床反応器の一実施形態を示す。 本明細書に開示する流動床反応器の一実施形態の拡大横断面を示す。
本明細書において記載するように、シリコン生成物を汚染しない材料から反応器を構成することにより、流動床反応器を用いて製造するシリコンの純度は維持される。一実施形態において、流動床反応器、または高純度シリコンの製造に使用する反応器もしくは反応器システムは、反応器を構成するのに用いる材料からの不純物の拡散による多結晶シリコン生成物の汚染を防ぐかまたは最小限にする材料から構成することができる。別の実施形態において、反応器は、反応器供給ガスおよび流動化ガス並びに流動床反応器の使用中に生成しうる他のガスまたは生成物に対して、不活性または耐久性である物質で構成し、内側を覆い、またはコーティングすることができる。
一実施形態において、本明細書に開示する流動床反応器は、1つ以上の注入口および1つ以上の排出口を備えた、細長いチャンバまたはカラムを有してもよい。かような一実施形態において、流動床反応器は、シリコンビーズの床などの粒状固体材料の床を含んでもよく、この床は、シードビーズの表面上に追加シリコンが堆積することによってシードビーズのサイズが増大するシリコン分解反応の種となるシードビーズとして使用できる。更なるシリコン生成物を有するシードビーズを反応器から最終的に除去して、高純度シリコン生成物を回収する。ビーズを攪拌させるのに十分な速度で反応器に流動ガスを注入することにより、シードビーズを反応器中で「流動化」させてもよいし、または浮遊させてもよい。流動ガスは、カラムの端および反応器カラムの側面などの、反応器の周囲に位置する1つ以上の注入口を介して反応器に注入してもよい。一実施形態において、流動ガスまたはシリコン生成物は1つ以上の排出口を介して反応器から除去してもよい。かような一実施形態として、反応器はシリコンビーズの床を流動化させるのに用いる流動ガスに不活性または耐久性を有する材料で、構成し、内側を覆い、またはコーティングすることができる。
シリコン含有ガスは、このシリコン含有ガスに不活性または耐久性を有する材料で、構成し、内側を覆い、またはコーティングした流動床反応器に注入してもよい。一実施形態において、シリコン含有ガスはトリクロロシラン(TCS)でもよく、流動ガスと同じ位置で、または流動ガスに近い位置で反応器に注入する。加熱されると反応器中のTCSは分解して、シードシリコンビーズ上にシリコンが形成され、これにより、時間とともにシードシリコンビーズの直径が増加し、望ましい高純度シリコン生成物が製造できる。出来上がった多結晶シリコン生成物が高い純度である1つの理由として、分解中のシリコンの汚染を防ぐかまたは最小限にする材料により反応器を構成することが挙げられる。出来上がったシリコン生成ビーズは反応器から回収してもよく、そして半導体および太陽電池の製造に使用してもよい。
高純度シリコンの製造方法は、反応器の腐食を避け、シリコン生成物の汚染を防ぐように構成した流動床反応器の使用を含んでもよい。一実施形態において、シリコンの製造方法は、金属級シリコン(MGS)からトリクロロシラン(TCS)などのヒドロハロシランへの転換と;蒸留などによるヒドロハロシランの精製と;ヒドロハロシランのシリコンへの分解とを含んでもよい。
一実施形態において、MGSのヒドロハロシランへの変換は、シリコンを四塩化シリコン(STC)、水素および塩化水素と反応させてTCSおよび水素を発生させることにより、行ってもよい。図1を参照して、次の反応は、エリア101内部にて起こる。
3SiCl+2H+Si→4HSiCl
SiCl+H→HSiCl+HCl
3HCl+Si→HSiCl+H
一実施形態において、エリア101における反応結果物は、TCS、STCおよびHを含む混合ガスであり、エリア101から除去され、その後蒸留による精製のためエリア102中に導入される。
ヒドロハロシランの蒸留によるTCSの精製は、図1に示すエリア102において起こりうる。一実施形態において、TCS、STCおよび他のヒドロハロシランを含む、エリア101からのガス流は、エリア102中の蒸留カラムに注入され、高純度TCSとなる。水素は更なる精製除去後にエリア101中での使用に再利用してもよい。出来上がったTCS蒸気はシリコン含有ガスであり、エリア103中のシリコン分解プロセスに使用できる流動床反応器へ注入することができる。
エリア103はTCSの高純度シリコンへの変換のための多数の構成要素を含んでもよい。例えば、エリア103は次のうちの1つ以上を含んでもよい:流動床反応器、貯蔵タンク、蒸発器、反応器ヒーター、ガス分離器、粒分離器、サイクロン、熱回収システム、生成物回収システム並びに高純度シリコンの生成に用いる他のデバイスおよびシステム。用語「ヒドロハロシラン」は、シリコンに結合した1以上のハロゲン原子および1以上の水素原子を含む任意のシラン種であり、限定されるわけではないが、モノクロロシラン(HSiCl)、ジクロロシラン(HSiCl)、トリクロロシラン(HSiCl)、およびペンタクロロジシランなどの様々な塩化ジシランを含む。
一実施形態として、TCS蒸気などのシリコン含有ガスは高純度シリコンの製造に使用できる。TCSの高純度シリコンへの変換は、図2に示すような流動床反応器200を用いて行うことができ、その中において次の反応が起こりうる:
4SiHCl→Si+3SiCl+2H(熱分解)
分解プロセス中に使用する流動床反応器200は細長いチャンバまたはカラム205を含んでもよく、ここにはシリコンビーズ床210を含み、シリコンを分解反応の種とすべく使用することができる。ビーズ210は、初めに流動ガス215などのガスを注入口220からカラム205の中へ注入して「流動化」させ、シリコンビーズ210を攪拌または流動化させてもよい。一実施形態において、流動ガス215は水素および四塩化シリコンSiClを含んでもよい。別の実施形態において、流動ガスは水素、ヘリウム、アルゴン、四塩化シリコン、四臭化シリコンおよび四ヨウ化シリコンから成る群から選択した1つまたは混合物でもよい。かような一実施形態において、流動ガス215は、カラム205の底または側面などで、注入口220を介するなど、反応器200のいくつかのエリアからカラム205へ注入してもよい。
流動床反応器200は、反応器200の本体の周囲または近くに設置する1つ以上のヒーター240により加熱することができる。ヒーター240は、放熱ヒーター、伝導ヒーター、電磁気ヒーター、赤外ヒーター、または当業者に既知の他のタイプのヒーターであってよい。一実施形態において、反応器の壁250の表面は、テクスチャー化し、エッチングし、またはサンドブラストで磨いてもよく、これにより反応器の壁250の熱放射率または熱出力伝達効率を上げて、ヒーター240によるカラム205や反応器200の内側の加熱を向上をさせることができる。
別の実施形態において、ヒーター240などの加熱装置は、反応器の壁250と全体的にまたは部分的に接触してもよい。更なる別の実施形態において、ヒーター240は反応器の壁250と直接の接触がなくてもよい。かような一実施形態として、ヒーター240は反応器の壁250の外側に設置して、反応器200の1つ以上の排出口表面を部分的にまたは完全に覆うシリンダーの群として構成してもよい。更なる別の実施形態において、ヒーター240は、熱放射、または、直接的加熱伝導および熱放射を混合して使用するように構成し、シリコンビーズ210およびシリコン含有ガスを分解反応に十分な温度に加熱してもよい。
一実施形態において、流動床反応器200は、高純度シリコン製造中に、約500℃から約1200℃の範囲の温度に加熱することができる。例えば、カラム205中のシリコンビーズ210、シリコン含有ガスおよび流動ガス215を、およそ、600℃から1100℃、または700℃から1000℃、または700℃から900℃、または750℃から850℃、または800℃から1000℃の範囲の温度に加熱するように、ヒーター240によって流動床反応器200を加熱してもよい。
流動床反応器200は、約500℃から約1200℃の範囲の温度、および約50mbarから約6000mbarの範囲の内圧を含む、分解反応中の条件に耐久性を有するように構成することができる。例えば、本明細書中に記載する流動床反応器200は、およそ50mbar、100mbar、200mbar、500mbar、750mbar、1000mbar、1500mbar、2000mbar、2500mbar、3000mbar、3500mbar、4000mbar、4500mbar、5000mbar、5500mbarおよび6000mbarまでの圧力に耐久性を有するように構成してもよい。別の実施形態において、流動床反応器200は、約50mbarから約6000mbarまでの範囲の圧力を支持するように構成した別の構造または筐体を含んでもよい。
一実施形態において、TCSなどの1つ以上のシリコン含有ガスを反応器200中に注入してもよい。例えば、シリコン含有ガスは、カラム205に通じる注入口220を介して反応器200中に注入してもよい。かような一実施形態において、TCSなどのシリコン含有ガスは分解して、ビーズ210上にシリコンを形成し、シリコン生成ビーズ212になるまで時間とともにビーズ210の直径を増大する。更なる別の実施形態において、シリコン含有ガスは、加熱すると分解してシリコンを形成するガスを含んでもよく、モノシラン、ジシラン、トリシラン、トリクロロシラン、ジクロロシラン、モノクロロシラン、トリブロモシラン、ジブロモシラン、モノブロモシラン、トリヨードシラン、ジヨードシランおよびモノヨードシランの群から選択したガスまたは混合ガスである。一実施形態において、高純度シリコン生成ビーズ212は、反応器200のカラム205の最上部の排出口230から、水素、STC、HCl、未反応のTCSおよびモノクロロシラン(MCS)およびジクロロシラン(DCS)を含みうる排ガス流235と共に、回収することができる。
一実施形態において、流動床反応器200への供給流中のシリコン含有ガスの濃度は、約20mol%から100mol%の範囲でもよい。一実施形態において、流動シリコンビーズ210の平均直径は0.5mmから4mmの範囲でもよい。別の実施形態において、シリコンビーズ210の平均直径は、0.25mmから1.2mm、または約0.6mmから1.6mmの範囲でもよい。一実施形態において、シリコンビーズ210は、所望のサイズに至るまで反応器200に留めてから、シリコン生成ビーズ212を反応器200から除去してもよい。別の実施形態において、シリコンビーズ210を反応器200中に留める時間は、シリコンビーズ210の当初のサイズによる。一実施形態において、シリコンビーズ210の成長速度は、特にガス濃度、温度および圧力を含む反応条件に依存しうる。最小流動化速度および指定運転速度は様々な因子に基づいて、当業者によって決定することができる。最小流動化速度には、重力加速度、流体密度、流体速度、固体密度、および固体粒子サイズを含む因子が影響しうる。運転速度には、流動床の高さ、全表面積、供給ガス流中のシリコン前駆体の流速、圧力、ガスおよび固体の温度、化学種の濃度ならびに熱力学的平衡点などの、熱伝導および力学的特長を含む因子が影響しうる。
一実施形態において、流動床反応器200の1つ以上の表面は、金属または金属合金で作製できる。かような一実施形態において、反応器200の1つ以上の表面は、反応温度に耐久性を有する金属または金属合金を含んでもよい。例えば、反応器の壁250は鉄合金で製造してもよく、例えば:ステンレス鋼合金、クロムニッケル合金、ならびに、ニッケルクロム合金およびニッケルクロムモリブデン合金を含むニッケル合金であり、これらはマンガン、モリブデン、シリコン、コバルト、タングステンなどを随意に含み、これは本開示目的下において当業者に周知である。明白な実施形態であって、金属合金はスチール1.4841、スチール1.4959、スチール2.4856、スチール2.4819またはスチール2.4617から選択してもよい。例えば、反応器の壁250は、約500℃から1200℃の範囲の温度に熱耐久性があるように構成することができる。例えば、反応器の壁250は、約500℃から600℃、または500℃から700℃、または600℃から800℃、または800℃から900℃、または800℃から1000℃、または900℃から1100℃、または900℃から1200℃の範囲の温度に耐えられるように構成することができる。
図2に示すように、反応器の壁250の内表面は、部分的に、または完全に保護層260に覆われており、反応器200または反応器の壁250からの不純物の拡散による生成ビーズ212の汚染を避け、または最小限にすることができる。かような一実施形態において、保護層260は、金属または金属合金などの反応器200中の反応条件において不活性のまたは耐久性のある材料からなってもよく、保護層260の適用と互換性があってもよい。例えば、保護層260は、熱、圧力、および、反応器200に注入される流動ガス215またはシリコン含有ガスによる腐食に耐久性のある材料からなってもよい。
一実施形態において、流動床反応器200は、反応器200内の条件による腐食または分解に耐久性のあるセラミック材料を含む保護層260で内側を覆ってもよい。かような一実施形態において、保護層260は、アルミナ(Al)、二酸化ジルコニウム(ZrO)およびイットリウム安定化二酸化ジルコニウムの材料のうち少なくともひとつを含んでもよい。別の実施形態において、保護層は非シリコンまたは非炭素の組成物でできたセラミック材料である。更なる別の実施形態において、保護層260は、アルミナ(Al)、二酸化ジルコニウム(ZrO)およびイットリウム安定化二酸化ジルコニウムの少なくとも1つを、多結晶シリコン、シリコンカーバイト、シリコンカーバイト被膜グラファイト、シリカ、窒化シリコン、タングステンカーバイトまたはモリブデンのうち少なくとも1つと組み合わせて含んでもよい。更なる別の実施形態において、流動床反応器200は、アルミナ(Al)、二酸化ジルコニウム(ZrO)およびイットリウム安定化二酸化ジルコニウムの少なくとも1つを、石英、グラファイト、炭素繊維またはこれらの組合せのうち1つと組み合わせて含んでもよい。
図3は、本明細書において記載する流動床反応器の壁の横断面を反応器中に配置されたシリコンビーズ310とともに示す拡大図である。図3に示す実施形態において、反応器の壁350は、保護層360と、この保護層360の堆積前に反応器の壁350に設けた接着層365とを含む。該接着層365は、保護層360が結合または付着する基質を提供し、保護層360の耐久性および機能を向上させる。かような一実施形態において、接着層365は、イットリウムを含むか含まないニッケル合金を含んでもよく、特に、CrNi合金などの鉄合金の場合、反応器の壁250に含む。
一実施形態において、保護層260はおよそ3から1000μmの深さの被膜を有する。かような一実施形態において、保護層260は、約5から900μm、10から700μm、20から500μm、25から400μm、または40から300μmの範囲の深さを有する。別の実施形態において、保護被膜は、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、95、100、150、200、250、300、350、400、450、500、600、700、800、または900μmまでの深さを有する。
図2に示す保護層260または図3に示す保護層360などの保護層は、熱射影、化学気相成長法、物理気相成長法、ゾルゲル、電気泳動析出およびエアロゾル熱スプレーを含む、当業者にとって既知の1つ以上の方法によって形成または堆積できる。
一実施形態において、保護層260または保護層360の堆積に続いて熱処理をしてもよい。例えば、保護層260は、約900℃から1300℃の範囲の温度の熱処理でアニールしてもよい。かような一実施形態において、熱処理は900℃から1000℃、900℃から1100℃、1000℃から1200℃、または1000℃から1300℃の範囲の温度を含んでもよい。
ここで記載する具体例はただの実例としての目的であり、本開示をなんら制限するものではない。次の実施例で言及され、使用される組成物は購入することができるか、または、当業者の標準的な文書の方法によって調製することができる。
(実施例1:スチール1.4841における分解条件の効果)
A.窒素ガス
熱耐久性スチール1.4841の試料を、シリコンビーズおよびNガス流の存在下で900℃の分解条件にさらした。反応条件下で100時間後、試料のスチール1.4841を反応器から除去し、室温まで冷却した。
その後、試料のスチール1.4841の横断面切断物を用意し、走査型電子顕微鏡(SEM)での分析に供した。SEM分析では、金属中に約2μmの深さのシリサイド層が広がっていることから明らかなように、スチールが腐食されていることが明らかとなった。
B.HClおよび水素ガス
熱耐久性スチール1.4841の試料を、シリコンビーズならびにHClおよびH(5:1)の存在下で900℃の分解条件にさらした。反応条件下で100時間後、試料のスチール1.4841を反応器から除去し、室温まで冷却した。
試料のスチール1.4841の横断面切断物を用意し、SEM分析に供した。SEM分析では、塩化物による金属基質の腐食によってできた、金属上の50μmのシリサイド層があることが明らかになった。SEM分析ではまた、鉄および塩化クロムを含む塩化物が形成していることが明らかになった。
C.Cr層を有するスチール
スチール1.4841の試料に、化学気相成長法で50μmのCr層を被膜した。Cr被膜スチールを、シリコンビーズおよびNガスの存在下で900℃に熱した。100時間後、Cr被膜スチールを室温まで冷却した。SEM分析では、スチール表面上にシリカおよびクロムが存在することが示され、それは次の反応による可能性がある:
2Cr+3Si→4Cr+3SiO
D.接着層およびイットリウム安定化ZrO保護層を有するスチール
セラミック層の接着を向上させるためにニッケル合金接着層を有するスチール1.4841の試料を用意した。ニッケル合金接着層(NiCrAlY)は、大気圧プラズマスプレープロセスを用いて堆積した。次に、試料は100μmのイットリウム安定化ZrOセラミック被膜で覆い、上記のようなHClおよびH(5:1)の存在下でシリコンビーズを含む流動床反応器をシミュレーションした条件で900℃に加熱した。100時間後、イットリウム安定化ZrO被膜したスチールを室温まで冷却した。SEM分析は、イットリウム安定化ZrOのセラミック被膜を有するスチール1.4841が腐食または劣化に耐久性を有することを示し、これによって、シリコン生成物の起こりうる汚染を最小限にしていたか、または排除していた。より具体的には、SEMデータは、NiCrAlY接着層の外側のアルミニウムの移動がなかったことを示した。同様に、スチール1.4841およびNiCrAlY接着層の外側のクロム、マンガン、およびニッケルの移動が無かった。加えて、SEM分析は、NiCrAlY接着層のベース中にスチール1.4841由来の鉄がごくわずかしか存在せず、イットリウム安定化ZrO保護層中に鉄の移動が無かったことを示した。よって、シリコン生成物の純度を脅かす、イットリウム安定化ZrO保護層の汚染はなかった。
E.接着層およびAl保護層を有するスチール
前述のように、ニッケル合金接着層に続いてAl保護層を付加したスチール1.4841の試料を用意した。用意した試料は、HClおよびH(5:1)で流動化したシリコンビーズを有する流動床反応器中で、100時間、900℃に加熱した。室温に冷やした後のSEM分析では、Al保護層がスチール試料の腐食を防いだことを示した。
(実施例2:放熱ヒーターによる熱伝達)
A.非処理ステンレス鋼
外径21.3mm、厚み2.77mm、約0.5m長のステンレス鋼チューブ(AISI316L)を用いて、放射熱伝達を測定した。内径40mmの放熱ヒーターは、鋼チューブの表面に接触させず、鋼チューブの周りに設置した。鋼チューブおよび放熱ヒーターは、厚み300mmのセラミックファイバーで覆った。15Kg/hの質量流量率のNガス流は、鋼チューブの内側に沿って水平に通過させた。サーモウェルを用いて、放熱ヒーターの温度、Nガス流の注入部位および排出部位での鋼チューブの外部温度、ならびに、注入部位および排出部位でのNガス流の温度を測定した。定常状態で、次の温度が測定された:N注入温度=21℃;N排出温度=315℃;注入口での外壁チューブ温度=569℃、および排出口での外壁チューブ温度=773℃。系に吸収された熱出力は、1.325Wであった。
B.サンドブラストで磨いたステンレス鋼
ステンレス鋼チューブを既述のように用意した後、鋼チューブの表面をサンドブラストで磨いた。サンドブラストで磨いた後、ステンレス鋼チューブから次の温度が測定された:N注入温度=20℃;N排出温度=445℃;注入口での外壁チューブ温度=953℃;排出口での外壁チューブ温度=1055℃。表面処理で、系に吸収された熱出力は、1.970Wであった。
分析では、サンドブラスト処理をしたときの熱出力伝達は、非処理の鋼チューブよりも約1.5倍大きかった。Nガス流への熱出力伝達は、ヒーターから鋼チューブの排出口の壁への放熱、鋼チューブの壁を介した伝導、および鋼チューブの内壁からNガス流への対流の組合せに起因する。表面処理によって鋼チューブの反射性の減少が起こり、鋼チューブの熱を吸収する機能が向上し、これにより鋼チューブの内側のガス流への熱伝達の効率が上昇した。新たな放射率の推定値は、放熱伝達、伝導熱伝達、および対流熱伝達の組合せを用いて計算した。理論的な熱出力伝達の値を計算し、放射率の新たな値を推定した。
いかなる特定の理論に縛られず、次の方程式を用いる計算モデルを使用した:
Dittus-Boelterの式:
Figure 2012519130
放熱に起因する、別の灰色体同等対流係数に完全に含まれる灰色体:
Figure 2012519130
管の注入口および排出口での熱伝達の普遍係数:
Figure 2012519130
UおよびΔTは熱変換器によって異なるので、計算モデルは熱伝達および温度の普遍係数の平均対数差の概念を導入した。
製造業者データシートによれば、ヒーターの放射率の値はε=0.7であった。ステンレス鋼の放射率は、500℃で0.18である。
第1テストの値を取得してモデルを調節し、第2段階では第2テストの値を取得して反復プロセスを通じて新たな放射率の値を得た。サンドブラストで磨いたステンレス鋼の算出された放射率は0.52であった。従って、サンドブラストの表面処理で、放射熱伝達率は約3倍増加した。
発明の根本的な原理から離れず、上記実施形態のあらゆる点に多くの変更を行うことができることは、当業者にとって明らかであろう。従って、本発明の範囲は、特許請求の範囲によってのみ決定されるべきである。

Claims (28)

  1. 金属合金からなる壁を有し、流動する粒子を含むことのできる寸法を有するチャンバと、
    前記チャンバ内で前記粒子を流動化させるガスを受けるように構成した前記チャンバのガス注入口と、
    排出物前記チャンバから除去可能に構成した前記チャンバ内の排出口と、
    前記チャンバの内表面の少なくとも一部上に堆積するセラミック保護層と、を含む流動床反応器であって、
    前記保護層は、セラミックまたは非シリコン組成物もしくは非炭素組成物を含み、前記流動ガスによる腐食に耐久性を有するように構成した流動床反応器。
  2. 前記金属合金は、ステンレス鋼合金およびクロムニッケル合金のうち少なくとも1つから選択される鉄合金である、請求項1に記載の流動床反応器。
  3. 前記金属合金は、マンガン、モリブデン、シリコン、コバルトおよびタングステンのうち少なくとも1つをさらに含む、請求項2に記載の流動床反応器。
  4. 前記金属合金は、ニッケルモリブデン合金およびニッケルクロムモリブデン合金のうち少なくとも1つから選択されるニッケル合金である、請求項1に記載の流動床反応器。
  5. 前記金属合金は、マンガン、モリブデン、シリコン、コバルトおよびタングステンのうち少なくとも1つをさらに含む、請求項4に記載の流動床反応器。
  6. 前記セラミック保護層は、アルミナ(Al)、二酸化ジルコニウム(ZrO)およびイットリウム安定化二酸化ジルコニウムのうち少なくとも1つを含む、請求項1の流動床反応器。
  7. 前記保護層と前記チャンバの内表面との間に位置する接着層をさらに含む、請求項1に記載の流動床反応器。
  8. 前記接着層は、ニッケル合金層およびニッケルクロムイットリウム層のうち少なくとも1つを含む、請求項7に記載の流動床反応器。
  9. 前記チャンバの前記内表面上に堆積した前記セラミック保護層は、熱射影、化学気相成長法、物理気相成長法、ゾルゲル、電気泳動析出およびエアロゾル熱スプレー法のうち少なくとも1つによって堆積される、請求項1に記載の流動床反応器。
  10. 前記チャンバは外表面を含み、前記チャンバの前記外表面の少なくとも一部は、前記チャンバの熱出力伝達効率が、非処理の外表面のものと比較して向上するように処理される、請求項1に記載の流動床反応器。
  11. 前記チャンバの前記外表面は、前記チャンバの熱出力伝達効率を向上させるためにサンドブラストで磨かれる、請求項10に記載の流動床反応器。
  12. 前記チャンバは、約50mbarから約5000mbarの範囲の内圧に耐久性を有する材料からなる、請求項1に記載の流動床反応器。
  13. 前記チャンバは、約500℃から約1200℃の範囲の温度に耐久性を有する材料からなる、請求項1に記載の流動床反応器。
  14. 前記粒子はシリコン粒子を含み、前記ガスは、水素、ヘリウム、アルゴン、四塩化シリコン、四臭化シリコン、四ヨウ化シリコン、モノシラン、ジシラン、トリシラン、トリクロロシラン、ジクロロシラン、モノクロロシラン、トリブロモシラン、ジブロモシラン、モノブロモシラン、トリヨードシラン、ジヨードシランおよびモノヨードシランのうち少なくとも1つを含む、請求項1に記載の流動床反応器。
  15. 少なくとも1つの反応器ヒーターをさらに含み、該少なくとも1つの反応器ヒーターは放熱ヒーターおよび伝導ヒーターのうち少なくとも1つを含む、請求項1に記載の流動床反応器。
  16. 前記チャンバの前記ガス注入口は、シリコン含有ガスも受けて前記チャンバの内部で前記粒子を流動させるよう構成する、請求項1に記載の流動床反応器。
  17. 金属合金からなり、ガス注入口及び排出物排出口を含むチャンバ、
    前記チャンバの内表面上に堆積したセラミック保護層、
    前記チャンバの中に配置したシリコンビーズの床、および
    少なくとも1つの反応器ヒーターを含む流動床反応器中に、
    少なくとも1つの流動ガスを注入する工程と、
    前記流動床反応器中に少なくとも1つのシリコン含有ガスを注入する工程と、
    前記少なくとも1つの反応器ヒーターにより、シリコンの熱分解に十分な温度まで前記流動床反応器を加熱する工程と、
    流動化した前記シリコンビーズ上に製造し堆積した、高純度のシリコンを回収する工程と、を含む高純度シリコンの製造方法であって、
    前記セラミック保護層は、前記少なくとも1つの流動ガスまたは前記少なくとも1つのシリコン含有ガスによる腐食に耐久性がある、高純度シリコンの製造方法。
  18. 前記金属合金は、ステンレス鋼合金およびクロミウムニッケル合金のうち少なくとも1つから選択される鉄合金である、請求項17の高純度シリコンの製造方法。
  19. 前記金属合金は、ニッケルモリブデン合金およびニッケルクロミウムモリブデン合金のうち少なくとも1つから選択されるニッケル合金である、請求項17に記載の高純度シリコンの製造方法。
  20. 前記セラミック保護層は、アルミナ(Al)、二酸化ジルコニウム(ZrO)およびイットリウム安定化二酸化ジルコニウムのうち少なくとも1つを含む、請求項17に記載の高純度シリコンの製造方法。
  21. 前記保護層と前記チャンバの内表面との間に位置する接着層をさらに含む、請求項17に記載の高純度シリコンの製造方法。
  22. 前記接着層はニッケル合金層またはニッケルクロムイットリウム合金層を含む、請求項21に記載の高純度シリコンの製造方法。
  23. 前記保護層は、熱射影、化学気相成長法、物理気相成長法、ゾルゲル、電気泳動析出およびエアロゾル熱スプレー法のうち少なくとも1つによって、前記チャンバの内表面上に堆積される、請求項17に記載の高純度シリコンの製造方法。
  24. 前記チャンバの外表面はサンドブラストで磨かれ、非処理の外表面のものと比較して前記チャンバの熱出力伝達効率が向上している、請求項17に記載の高純度シリコンの製造方法。
  25. 前記流動ガスは、水素、ヘリウム、アルゴン、四塩化シリコン、四臭化シリコン、および四ヨウ化シリコンのうち少なくとも1つである、請求項17に記載の高純度シリコンの製造方法。
  26. 前記シリコン含有ガスは、モノシラン、ジシラン、トリシラン、トリクロロシラン、ジクロロシラン、モノクロロシラン、トリブロモシラン、ジブロモシラン、モノブロモシラン、トリヨードシラン、ジヨードシランおよびモノヨードシランのうち少なくとも1つである、請求項17に記載の高純度シリコンの製造方法。
  27. 前記少なくとも1つの反応器ヒーターにより、シリコンの熱分解に十分な温度まで前記流動床反応器を加熱する工程は、約500℃から約1200℃の間の温度まで前記流動床反応器を加熱することを含む、請求項17に記載の高純度シリコンの製造方法。
  28. 前記流動床反応器を約700℃から約900℃の範囲の温度まで加熱する、請求項27に記載の高純度シリコンの製造方法。
JP2011552017A 2009-02-26 2009-11-20 高純度シリコンを製造するための流動床反応器 Pending JP2012519130A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/393,852 2009-02-26
US12/393,852 US8168123B2 (en) 2009-02-26 2009-02-26 Fluidized bed reactor for production of high purity silicon
PCT/US2009/065345 WO2010098797A1 (en) 2009-02-26 2009-11-20 Fluidized bed reactor for production of high purity silicon

Publications (1)

Publication Number Publication Date
JP2012519130A true JP2012519130A (ja) 2012-08-23

Family

ID=42631134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011552017A Pending JP2012519130A (ja) 2009-02-26 2009-11-20 高純度シリコンを製造するための流動床反応器

Country Status (12)

Country Link
US (3) US8168123B2 (ja)
EP (1) EP2318313A4 (ja)
JP (1) JP2012519130A (ja)
KR (1) KR20110132338A (ja)
CN (1) CN102239115A (ja)
AU (1) AU2009341100A1 (ja)
BR (1) BRPI0924261A2 (ja)
CA (1) CA2753354A1 (ja)
MX (1) MX2011008790A (ja)
RU (1) RU2011139109A (ja)
TW (1) TW201034757A (ja)
WO (1) WO2010098797A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787336B (zh) 2008-09-16 2016-09-14 储晞 生产高纯颗粒硅的方法
JP2010171388A (ja) * 2008-12-25 2010-08-05 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法及び基板処理用反応管
US8168123B2 (en) 2009-02-26 2012-05-01 Siliken Chemicals, S.L. Fluidized bed reactor for production of high purity silicon
WO2010108065A1 (en) * 2009-03-19 2010-09-23 Ae Polysilicon Corporation Silicide - coated metal surfaces and methods of utilizing same
WO2010123869A1 (en) * 2009-04-20 2010-10-28 Ae Polysilicon Corporation Methods and system for cooling a reaction effluent gas
WO2010123873A1 (en) * 2009-04-20 2010-10-28 Ae Polysilicon Corporation A reactor with silicide-coated metal surfaces
US8029756B1 (en) * 2010-03-30 2011-10-04 Peak Sun Sillcon Corporation Closed-loop silicon production
CN101935038B (zh) * 2010-08-13 2013-04-10 镇江环太硅科技有限公司 硅锭切割废料回收方法
US20120148728A1 (en) * 2010-12-09 2012-06-14 Siliken Sa Methods and apparatus for the production of high purity silicon
KR20140005199A (ko) * 2011-01-19 2014-01-14 알이씨 실리콘 인코포레이티드 반응기 시스템 및 이를 사용한 다결정 실리콘 제조 방법
DE102011077970A1 (de) * 2011-06-22 2012-12-27 Wacker Chemie Ag Vorrichtung und Verfahren zur Temperaturbehandlung von korrosiven Gasen
US8875728B2 (en) 2012-07-12 2014-11-04 Siliken Chemicals, S.L. Cooled gas distribution plate, thermal bridge breaking system, and related methods
US20150290650A1 (en) * 2012-08-13 2015-10-15 Jiangsu Zhongneng Polysilicon Technology Development Co., Ltd. Method for generating high sphericity seed and fluidized bed granular silicon
US9452403B2 (en) * 2012-10-19 2016-09-27 Sunedison, Inc. Using wavelet decomposition to determine the fluidization quality in a fluidized bed reactor
US9212421B2 (en) 2013-07-10 2015-12-15 Rec Silicon Inc Method and apparatus to reduce contamination of particles in a fluidized bed reactor
JP2016503377A (ja) * 2012-11-06 2016-02-04 アールイーシー シリコン インコーポレイテッド 流動床反応器中の粒子の汚染を低減する方法及び装置
US9587993B2 (en) 2012-11-06 2017-03-07 Rec Silicon Inc Probe assembly for a fluid bed reactor
KR20150096458A (ko) * 2012-12-21 2015-08-24 알이씨 실리콘 인코포레이티드 유동상 반응기 설비용 고온 등급 스틸
US9297765B2 (en) * 2013-03-14 2016-03-29 Sunedison, Inc. Gas decomposition reactor feedback control using Raman spectrometry
DE102013206339A1 (de) * 2013-04-10 2014-10-16 Wacker Chemie Ag Vorrichtung und Verfahren zum Ausbau von polykristallinen Siliciumstäben aus einem Reaktor
US20170021319A1 (en) * 2014-03-10 2017-01-26 Sitec Gmbh Hydrochlorination reactor
US9446367B2 (en) 2014-08-15 2016-09-20 Rec Silicon Inc Joint design for segmented silicon carbide liner in a fluidized bed reactor
US9238211B1 (en) 2014-08-15 2016-01-19 Rec Silicon Inc Segmented silicon carbide liner
US20160045881A1 (en) * 2014-08-15 2016-02-18 Rec Silicon Inc High-purity silicon to form silicon carbide for use in a fluidized bed reactor
US9662628B2 (en) 2014-08-15 2017-05-30 Rec Silicon Inc Non-contaminating bonding material for segmented silicon carbide liner in a fluidized bed reactor
CN105498664B (zh) * 2014-11-20 2017-09-12 江苏科技大学 一种磁流化床装置的控制方法
DE102015205727A1 (de) 2015-03-30 2016-10-06 Wacker Chemie Ag Wirbelschichtreaktor zur Herstellung von Chlorsilanen
WO2016205196A2 (en) * 2015-06-16 2016-12-22 Air Products And Chemicals, Inc. Halidosilane compounds and compositions and processes for depositing silicon-containing films using same
MA46932A (fr) * 2015-10-09 2019-10-09 Milwaukee Silicon Llc Silicium purifié, dispositifs et systèmes permattant sa production
EP3700860A4 (en) 2017-10-27 2021-08-11 Northern Silicon Inc. SYSTEM AND PROCESS FOR MANUFACTURING HIGHLY PURE SILICON
RU2744449C1 (ru) * 2019-12-27 2021-03-09 Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской Академии наук (ФГБУН ИПХФ РАН) Кремнийсодержащий активный материал для отрицательного электрода и способ его получения
US20230338915A1 (en) * 2020-09-21 2023-10-26 Dsm Ip Assets B.V. Ceramic coating on metal parts to reduce deposit of metallic transition metals in hydrogenation reactions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259211A (ja) * 1995-03-24 1996-10-08 Tokuyama Corp シラン類の分解・還元反応装置および高純度結晶シリコンの製造方法

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2843458A (en) * 1955-10-20 1958-07-15 Cabot Godfrey L Inc Process for producing silicon tetrachloride
GB1159823A (en) * 1965-08-06 1969-07-30 Montedison Spa Protective Coatings
US4393013A (en) * 1970-05-20 1983-07-12 J. C. Schumacher Company Vapor mass flow control system
US3906605A (en) * 1973-06-18 1975-09-23 Olin Corp Process for preparing heat exchanger tube
US4084024A (en) * 1975-11-10 1978-04-11 J. C. Schumacher Co. Process for the production of silicon of high purity
US4298037A (en) * 1976-12-02 1981-11-03 J. C. Schumacher Co. Method of shipping and using semiconductor liquid source materials
US4134514A (en) * 1976-12-02 1979-01-16 J C Schumacher Co. Liquid source material container and method of use for semiconductor device manufacturing
US4140735A (en) * 1977-08-15 1979-02-20 J. C. Schumacher Co. Process and apparatus for bubbling gas through a high purity liquid
US4341610A (en) * 1978-06-22 1982-07-27 Schumacher John C Energy efficient process for continuous production of thin semiconductor films on metallic substrates
US4227291A (en) * 1978-06-22 1980-10-14 J. C. Schumacher Co. Energy efficient process for continuous production of thin semiconductor films on metallic substrates
US4318942A (en) * 1978-08-18 1982-03-09 J. C. Schumacher Company Process for producing polycrystalline silicon
US4298942A (en) * 1979-12-19 1981-11-03 The United States Of America As Represented By The Secretary Of The Air Force Nonlinear amplitude detector
US4436674A (en) * 1981-07-30 1984-03-13 J.C. Schumacher Co. Vapor mass flow control system
US4891201A (en) * 1982-07-12 1990-01-02 Diamond Cubic Liquidation Trust Ultra-pure epitaxial silicon
US4818495A (en) * 1982-11-05 1989-04-04 Union Carbide Corporation Reactor for fluidized bed silane decomposition
US4859375A (en) * 1986-12-29 1989-08-22 Air Products And Chemicals, Inc. Chemical refill system
US4979643A (en) * 1985-06-21 1990-12-25 Air Products And Chemicals, Inc. Chemical refill system
KR880000618B1 (ko) * 1985-12-28 1988-04-18 재단법인 한국화학연구소 초단파 가열 유동상 반응에 의한 고순도 다결정 실리콘의 제조 방법
US4883687A (en) * 1986-08-25 1989-11-28 Ethyl Corporation Fluid bed process for producing polysilicon
US4820587A (en) * 1986-08-25 1989-04-11 Ethyl Corporation Polysilicon produced by a fluid bed process
JPS63117906A (ja) * 1986-11-07 1988-05-21 Shin Etsu Chem Co Ltd 多結晶シリコン製造装置用部材
JPS63230504A (ja) * 1987-03-18 1988-09-27 Mitsui Toatsu Chem Inc 塩素の製造方法
DE3711444A1 (de) * 1987-04-04 1988-10-13 Huels Troisdorf Verfahren und vorrichtung zur herstellung von dichlorsilan
US5139762A (en) * 1987-12-14 1992-08-18 Advanced Silicon Materials, Inc. Fluidized bed for production of polycrystalline silicon
US5326547A (en) * 1988-10-11 1994-07-05 Albemarle Corporation Process for preparing polysilicon with diminished hydrogen content by using a two-step heating process
US5242671A (en) * 1988-10-11 1993-09-07 Ethyl Corporation Process for preparing polysilicon with diminished hydrogen content by using a fluidized bed with a two-step heating process
JPH02233514A (ja) * 1989-03-06 1990-09-17 Osaka Titanium Co Ltd 多結晶シリコンの製造方法
US5284676A (en) * 1990-08-17 1994-02-08 Carbon Implants, Inc. Pyrolytic deposition in a fluidized bed
GB2271518B (en) * 1992-10-16 1996-09-25 Korea Res Inst Chem Tech Heating of fluidized bed reactor by microwave
JPH06127922A (ja) * 1992-10-16 1994-05-10 Tonen Chem Corp 多結晶シリコン製造用流動層反応器
US5445742A (en) * 1994-05-23 1995-08-29 Dow Corning Corporation Process for purifying halosilanes
US5516345A (en) * 1994-06-30 1996-05-14 Iowa State University Research Foundation, Inc. Latent heat-ballasted gasifier method
FI96541C (fi) * 1994-10-03 1996-07-10 Ahlstroem Oy Järjestely seinämässä sekä menetelmä seinämän pinnoittamiseksi
US5810934A (en) * 1995-06-07 1998-09-22 Advanced Silicon Materials, Inc. Silicon deposition reactor apparatus
US5976247A (en) * 1995-06-14 1999-11-02 Memc Electronic Materials, Inc. Surface-treated crucibles for improved zero dislocation performance
US5776416A (en) * 1995-11-14 1998-07-07 Tokuyama Corporation Cyclone and fluidized bed reactor having same
US6060021A (en) * 1997-05-07 2000-05-09 Tokuyama Corporation Method of storing trichlorosilane and silicon tetrachloride
DE19735378A1 (de) * 1997-08-14 1999-02-18 Wacker Chemie Gmbh Verfahren zur Herstellung von hochreinem Siliciumgranulat
US5910295A (en) * 1997-11-10 1999-06-08 Memc Electronic Materials, Inc. Closed loop process for producing polycrystalline silicon and fumed silica
GB9902099D0 (en) 1999-01-29 1999-03-24 Boc Group Plc Vacuum pump systems
DE19948395A1 (de) * 1999-10-06 2001-05-03 Wacker Chemie Gmbh Strahlungsbeheizter Fliessbettreaktor
KR100731558B1 (ko) * 2000-08-02 2007-06-22 미쯔비시 마테리알 폴리실리콘 가부시끼가이샤 육염화이규소의 제조 방법
AU2001291837A1 (en) * 2000-09-14 2002-03-26 Solarworld Ag Method for producing trichlorosilane
DE10057481A1 (de) * 2000-11-20 2002-05-23 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularem Silizium
DE10060469A1 (de) * 2000-12-06 2002-07-04 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularem Silizium
DE10061680A1 (de) * 2000-12-11 2002-06-20 Solarworld Ag Verfahren zur Herstellung von Silan
DE10062419A1 (de) * 2000-12-14 2002-08-01 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularem Silizium
DE10063862A1 (de) * 2000-12-21 2002-07-11 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularen Silizium
KR100411180B1 (ko) * 2001-01-03 2003-12-18 한국화학연구원 다결정실리콘의 제조방법과 그 장치
DE10118483C1 (de) * 2001-04-12 2002-04-18 Wacker Chemie Gmbh Staubrückführung bei der Direktsynthese von Chlor- und Methylchlorsilanen in Wirbelschicht
DE10124848A1 (de) * 2001-05-22 2002-11-28 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularem Silizium in einer Wirbelschicht
US20020187096A1 (en) * 2001-06-08 2002-12-12 Kendig James Edward Process for preparation of polycrystalline silicon
US7033561B2 (en) * 2001-06-08 2006-04-25 Dow Corning Corporation Process for preparation of polycrystalline silicon
AU2002354349B2 (en) * 2001-10-19 2007-04-05 Tokuyama Corporation Method for producing silicon
WO2003069027A2 (en) * 2002-02-14 2003-08-21 Advanced Silicon Materials Llc Energy efficient method for growing polycrystalline silicon
AU2003264408A1 (en) * 2002-09-12 2004-05-04 Takayuki Shimamune Process for producing high-purity silicon and apparatus
NO321276B1 (no) * 2003-07-07 2006-04-18 Elkem Materials Fremgangsmate for fremstilling av triklorsilan og silisium for bruk ved fremstilling av triklorsilan
GB0327169D0 (en) * 2003-11-21 2003-12-24 Statoil Asa Method
JP2007522649A (ja) * 2003-12-23 2007-08-09 ジョン シー. シューマカー、 半導体反応器用の排気調整システム
US20070178028A1 (en) 2004-02-23 2007-08-02 Eiichi Fukasawa Apparatus for production of metal chloride
DE102004010055A1 (de) 2004-03-02 2005-09-22 Degussa Ag Verfahren zur Herstellung von Silicium
US7141114B2 (en) * 2004-06-30 2006-11-28 Rec Silicon Inc Process for producing a crystalline silicon ingot
US20060105105A1 (en) * 2004-11-12 2006-05-18 Memc Electronic Materials, Inc. High purity granular silicon and method of manufacturing the same
US8029914B2 (en) * 2005-05-10 2011-10-04 Exxonmobile Research And Engineering Company High performance coated material with improved metal dusting corrosion resistance
US7462211B2 (en) * 2005-06-29 2008-12-09 Exxonmobil Chemical Patents Inc. Gas-solids separation device and method
WO2007012027A2 (en) 2005-07-19 2007-01-25 Rec Silicon Inc Silicon spout-fluidized bed
DE102005039118A1 (de) * 2005-08-18 2007-02-22 Wacker Chemie Ag Verfahren und Vorrichtung zum Zerkleinern von Silicium
DE102005042753A1 (de) * 2005-09-08 2007-03-15 Wacker Chemie Ag Verfahren und Vorrichtung zur Herstellung von granulatförmigem polykristallinem Silicium in einem Wirbelschichtreaktor
NO20054402L (no) 2005-09-22 2007-03-23 Elkem As Method for production of trichlorosilane and silicon for use in the production of trichlorosilane
BRPI0709288A2 (pt) * 2006-03-15 2011-07-05 Reaction Sciances Inc método para produzir silìcio tendo alta pureza, método para preparar sìlicio de alta pureza, método para prepara sìlica de alta pureza e método para purificar silìcio de baixo grau para silìcio de alto grau
EP2021279A2 (en) * 2006-04-13 2009-02-11 Cabot Corporation Production of silicon through a closed-loop process
US7935327B2 (en) * 2006-08-30 2011-05-03 Hemlock Semiconductor Corporation Silicon production with a fluidized bed reactor integrated into a siemens-type process
DE102007021003A1 (de) * 2007-05-04 2008-11-06 Wacker Chemie Ag Verfahren zur kontinuierlichen Herstellung von polykristallinem hochreinen Siliciumgranulat
US7927984B2 (en) * 2008-11-05 2011-04-19 Hemlock Semiconductor Corporation Silicon production with a fluidized bed reactor utilizing tetrachlorosilane to reduce wall deposition
US8168123B2 (en) 2009-02-26 2012-05-01 Siliken Chemicals, S.L. Fluidized bed reactor for production of high purity silicon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259211A (ja) * 1995-03-24 1996-10-08 Tokuyama Corp シラン類の分解・還元反応装置および高純度結晶シリコンの製造方法

Also Published As

Publication number Publication date
EP2318313A4 (en) 2013-05-01
US20120171102A1 (en) 2012-07-05
MX2011008790A (es) 2011-12-14
US8158093B2 (en) 2012-04-17
WO2010098797A1 (en) 2010-09-02
US20100215562A1 (en) 2010-08-26
TW201034757A (en) 2010-10-01
CA2753354A1 (en) 2010-09-02
US8168123B2 (en) 2012-05-01
US20110027160A1 (en) 2011-02-03
AU2009341100A1 (en) 2011-09-08
EP2318313A1 (en) 2011-05-11
RU2011139109A (ru) 2013-11-20
CN102239115A (zh) 2011-11-09
BRPI0924261A2 (pt) 2015-08-25
KR20110132338A (ko) 2011-12-07

Similar Documents

Publication Publication Date Title
JP2012519130A (ja) 高純度シリコンを製造するための流動床反応器
TWI555888B (zh) 流化床反應器和用於製備粒狀多晶矽的方法
US8425855B2 (en) Reactor with silicide-coated metal surfaces
JP2012524022A (ja) 高純度ポリシリコンの製造方法及び装置
TW201221474A (en) Production of polycrystalline silicon by the thermal decomposition of trichlorosilane in a fluidized bed reactor
KR20140071394A (ko) 유동층 반응기에서의 실란의 열 분해에 의한 다결정 실리콘의 제조
JPWO2010090203A1 (ja) 多結晶シリコンの製造法
CN107253723B (zh) 通过使硅烷在流化床反应器中热分解而制备多晶硅
US7727483B2 (en) Reactor for chlorosilane compound
US20180297852A1 (en) Fluidized bed reactor and process for producing polycrystalline silicon granules
TWI654027B (zh) 用於製備氯矽烷的流化床反應器
JP3958092B2 (ja) シリコン生成用反応装置
WO2016105507A1 (en) Mechanically fluidized deposition systems and methods
JP5319681B2 (ja) カーボン製反応装置
US20190032203A1 (en) Method for depositing an in situ coating onto thermally and chemically loaded components of a fluidized bed reactor for producing high-purity polysilicon
JP4804354B2 (ja) クロロシラン類の反応装置
US20220274840A1 (en) Trichlorosilane production method, and pipes
JPH06115921A (ja) 多結晶シリコンの製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112