JP2012249777A5 - - Google Patents

Download PDF

Info

Publication number
JP2012249777A5
JP2012249777A5 JP2011123922A JP2011123922A JP2012249777A5 JP 2012249777 A5 JP2012249777 A5 JP 2012249777A5 JP 2011123922 A JP2011123922 A JP 2011123922A JP 2011123922 A JP2011123922 A JP 2011123922A JP 2012249777 A5 JP2012249777 A5 JP 2012249777A5
Authority
JP
Japan
Prior art keywords
piezoelectric vibrator
groove
ultrasonic probe
layer
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011123922A
Other languages
English (en)
Other versions
JP5725978B2 (ja
JP2012249777A (ja
Filing date
Publication date
Application filed filed Critical
Priority to JP2011123922A priority Critical patent/JP5725978B2/ja
Priority claimed from JP2011123922A external-priority patent/JP5725978B2/ja
Priority to PCT/JP2012/064144 priority patent/WO2012165573A1/ja
Priority to CN201280004054.4A priority patent/CN103298409B/zh
Priority to US13/885,897 priority patent/US9566612B2/en
Publication of JP2012249777A publication Critical patent/JP2012249777A/ja
Publication of JP2012249777A5 publication Critical patent/JP2012249777A5/ja
Application granted granted Critical
Publication of JP5725978B2 publication Critical patent/JP5725978B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

超音波プローブ
本発明の実施形態は、超音波プローブに関する。
被検体内を超音波で走査し、被検体内からの反射波である受信信号を基に当該被検体内の内部状態を画像化する超音波診断装置がある。このような超音波診断装置は、超音波プローブから被検体内に超音波を送信し、被検体内部で音響インピーダンスの不整合によって生じる反射波を超音波プローブで受信して受信信号を生成する。なお、超音波の送受信方向に直交する方向をレンズ方向、スライス方向、あるいはエレベーション方向という場合がある。また、超音波の送受信方向及びレンズ方向と直交する方向をアレイ方向という場合がある。
超音波プローブは、送信信号に基づいて振動して超音波を発生し、反射波を受けて受信信号を生成する圧電振動子を有している。アレイ方向に複数の素子が配置された圧電振動子は、1次元アレイ超音波振動子と称される。
1次元アレイ超音波振動子のレンズ方向音場のサイドローブ低減、均一音場化を目的として、圧電振動子3に対して送信音圧強度や受信感度を重み付けする技術がある。重み付けする技術をウェイティング技術という場合がある(例えば、特許文献1)
特開2005−328507号公報
しかしながら、ウェイティング技術の一例として、十分に強度があるとはいえないセラミックなどの脆性を有する圧電振動子に対して溝加工すると、圧電振動子が破損するといった圧電素子3に対する信頼性を低下させている。さらに、圧電振動子に対する加工性の制約からコスト高となると共に、溝加工に制限があり、十分かつ理想的な重み付けが難しいという問題がある。
この実施形態は、上記の問題を解決するものであり、安価でかつ高い信頼性で重み付けがされた超音波プローブを提供することを目的とする。
上記課題を解決するために、実施形態の超音波プローブは、圧電振動子及び層を有し、圧電振動子は超音波を送受信する。層は、圧電振動子の超音波を送受信する側の面とは反対側の背面に接合され、圧電振動子よりも大きな音響インピーダンスを有し、圧電振動子の背面にその溝口を向けるように配置された複数の溝を有し、複数の溝は、溝の容積が層の体積に対して占める割合を圧電振動子の背面の中央部から端部に沿う方向に増加させるように形成される。
第1の実施形態に係る超音波プローブをレンズ方向に切ったときの断面図。 超音波プローブをアレイ方向に切ったときの断面図。 超音波プローブの音響シミュレーションの結果(送信音圧最大値)を示す図。 第2の実施形態に係る超音波プローブをレンズ方向に切ったときの断面図。 第3の実施形態に係る超音波プローブをレンズ方向に切ったときの断面図。 超音波プローブの音響シミュレーションの結果(送信音圧最大値)を示す図。 比較例としての超音波プローブをレンズ方向に切ったときの断面図。 比較例としての音響シミュレーションの結果(送信音圧最大値)を示す図。
次に、実施形態に係る超音波プローブについて、各図を参照して説明する。
超音波プローブは、圧電振動子3とそれより大きい音響インピーダンスを有する中間層8を備えることで、圧電振動子3の厚さを超音波の波長λの1/4にした構造とする(以下、λ/4振動構造という)。なお、中間層8はハードバック(HardBack)とも称される。λ/4振動構造にしたことより、中間層8で反射する超音波が圧電振動子3に与える影響を抑えることが可能となる。
λ/4振動構造において、より高強度で加工性に優れた中間層8に対して溝加工することで、送受信感度を重み付けする。具体的には以下の構成が考えられる。ここで、中間層8の背面とは、中間層8の圧電振動子3側の面とは反対に位置する面をいう。
(1)圧電振動子3側の面から中間層8の厚みの中途までの深さを有する溝9を形成する(図1参照)。
(2)中間層8の背面から圧電振動子3側端面までの深さを有する溝9を形成する(図4参照)。
(3)中間層8の背面から圧電振動子3の厚みの中途までの深さを有する溝9を形成する(図5参照)。このときの圧電振動子3の溝9の深さは、比較例(図7参照)の溝9の深さより浅くてよい。
以下に各実施形態の構成について説明する。さらに、有限要素解析による音響シミュレーション結果について説明する。
[第1の実施形態]
次に、第1の実施形態に係る超音波プローブの構造及び製造方法について図1、図2及び図3を参照して説明する。
図1は超音波プローブをレンズ方向から切ったときの断面図、図2は超音波プローブをアレイ方向に切ったときの断面図である。なお、超音波プローブの代表例として1次元のセクタアレイプローブについて説明する。
図1及び図2に示すように、超音波プローブは、背面材1、信号引き出し用基板2、圧電振動子3、音響整合層、音響レンズ7、及び中間層8を有している。なお、信号引き出し用基板2をFPC(Flexible Print Circuit)という場合がある。
既知の背面材(図示省略)上に複数の圧電振動子3が設けられ、その圧電振動子3上には既知の音響整合層が設けられ、さらに、音響整合層の上にFPC(図示省略)を介して既知の音響レンズ7が設けられている。すなわち、背面材、圧電振動子3、音響整合層、FPC、音響レンズ7の順番で積層されている。圧電振動子3において、音響整合層が設けられている面が超音波の放射面側となり、その面の反対側の面(背面材が設けられている面)が背面側となる。圧電振動子3の放射面側には共通(GND)電極が接続され、背面側には信号電極が接続されている。圧電振動子3の背面側には中間層8が設けられ、その中間層8の下にFPC2が設けられ、さらに、FPC2の下に背面材1が設けられている。なお、中間層8の詳細については後述する。
圧電振動子3としては、圧電セラミック等の音響/電気可逆的変換素子等が使用され得る。例えば、チタン酸ジリコン酸鉛Pb(Zr、Ti)O、ニオブ酸リチウム(LiNbO)、チタン酸バリウム(BaTiO)又はチタン酸鉛(PbTiO)などのセラミック材料が好ましく用いられる。
音響整合層は、超音波振動子の音響インピーダンスと被検体の音響インピーダンスとの音響整合を良好にするために設けられる。音響整合層は、1層だけであってもよく、2層であってもよく、本実施形態のように、第一音響整合層4、第二音響整合層5、第三音響整合層6の3層以上であってもよい。
背面材1は、超音波振動子から後方への超音波の伝播を防止する。また、背面材1は、圧電波振動子3から発振された超音波振動や受信時の超音波振動のうち、超音波診断装置(図示省略)の画像抽出にとって必要でない超音波振動成分を減衰吸収する。背面材1には、一般的に、合成ゴム、エポキシ樹脂又はウレタンゴムなどにタングステン、フェライト、酸化亜鉛などの無機粒子粉末などを混入した材料が用いられる。
〔中間層〕
次に、中間層8について図1及び図2を参照して説明する。
図1及び図2に示すように、圧電振動子3の背面とFPC2との間には中間層8が配置されている。
中間層8は、音響インピーダンスが圧電振動子3(約30Mrayl)よりも大きく、ヤング率が圧電振動子3(約50GPa)よりも大きい、すなわちより固い材料が使用される。
中間層8に用いられる材料の一例としては、金、鉛、タングステン、サファイヤ、超硬合金などが用いられる。これらの材料により中間層8を形成することで、中間層8に溝9を形成することが容易となる。
中間層8には導電性を有する部材が設けられている。導電性を有する部材の一例としては、金、鉛、タングステン、超硬合金などが用いられる。導電性を有する部材により、中間層8を介して圧電振動子3の下面電極とFPC2とを接続することが可能となる。
(溝)
中間層8には、重み付けのための複数の溝9が設けられている。複数の溝9は、圧電振動子3の背面にその溝口を向けるように配置されている。複数の溝9は、複数の溝9は、溝9の容積が中間層8の体積に対して占める割合を圧電振動子3の背面の中央部から端部に沿う方向(レンズ方向、スライス方向)に増加させるように形成される。
ここで、圧電振動子3の背面の中央部及び端部に対応する中間層8の位置をA及びDとする。また、位置Aから位置Dまでの位置において、位置Aから任意の距離L及びその半分の距離L/2の位置をC及びBとする。さらに、A−B間の中間層8の体積、及びB−C間の中間層8の体積をV1及びV2とする。このとき、複数の溝9は、B−C間の溝98の容積V2がA−B間の溝9の容積V1以上になるように形成されている(V1<=V2)。なお、V2=V1となるのは、A−B間及びB−C間に溝9が形成されていないときである。
複数の溝9は、次の具体例のいずれかに基づき形成される。ここでは、中間層8は一定の厚さを有するものとする。
(例1)
複数の溝9は、隣接する溝9間の距離であるピッチがレンズ方向に狭く(粗から密に)なるように形成されている。すなわち、A−B間のピッチP1よりB−C間のピッチP2が狭い(P2<=P1)。
(例2)
また、複数の溝9は、その幅が広くなるように形成されている。すなわち、A−B間の溝9の幅W1よりB−C間の溝9の幅W2が広い(W1<=W2)。ここで、幅とはレンズ方向の長さをいう。
(例3)
また、複数の溝9は、その深さが深くなるように形成されている。すなわち、A−B間の溝9の深さD1よりB−C間の溝9の深さD2が深い(D1<=D2)。ここで、深さとはレンズ方向及びアレイ方向にそれぞれ直交する方向(超音波の送受信方向)の長さをいう。
(例4)
また、複数の溝9は、例1〜3のいずれか二以上の組み合わせにより形成されている。
〔超音波プローブの製造方法〕
中間層8に貫通しない溝9を加工形成する。中間層8の溝9を形成した面と圧電振動子3の背面とを積層する。さらに、中間層8の背面にFPC2及び背面材1を接合する。接合の一般例としてはエポキシ系接着剤などを用いた接着接合である。この結果、中間層8の溝9間にはエポキシ樹脂が充填される。単独で溝加工した中間層8をその後FPC2と接合するので、加工し易い。また、溝9にエポキシ系樹脂剤を充填したので、溝9でのアンカー効果により中間層8の接着強度が向上する。
その後、圧電振動子3の音響放射面側に音響整合層(第一音響整合層4、第二音響整合層5、第三音響整合層6)を積層する。この積層構造について音響整合層側からダイシングにて素子アレイ化した後、音響レンズ7を接合することにより超音波プローブとして完成する。
〔音響シミュレーションの結果〕
次に、第1の実施形態に係る超音波プローブの音響シミュレーションの結果について図3を参照して説明する。図3は、超音波プローブの音響シミュレーションの結果(送信音圧最大値)を示す図である。
圧電振動子3をインパルス波形にて振動させ、媒体を水としたときの第三整合層表面における送信音圧の最大値をプロットしたものである。圧電振動子3の厚みを“1”としたとき、1未満の深さを有する溝9による影響を確認した。溝9は、例1に示すように形成されている。
図3では、縦軸にデシベル[dB]を示し、横軸に中央部からレンズ方向の端部にかけての位置[mm]を示す。たとえば、中央部の位置を0[mm]、端部の位置を6[mm]、−6[mm]で表す。また、圧電振動子3の厚みに対する溝9の深さの値を、”0”、”1/7”、”1/2”、”9/10”で示す。
図3に示すように、溝9が加工されない場合、すなわち、圧電振動子3の厚みに対する溝9の深さを0としたときと比較して、”1/7”から”9/10”のように溝9が深くなるにつれて、中央部(0[mm])に対してレンズ方向の端部(5[mm]、−5[mm])での感度が低下し、送信感度の重み付けの効果が上がっていることがわかる。
[第2の実施形態]
次に、第2の実施形態に係る超音波プローブの構造及び製造方法について図3及び図4を参照して説明する。図4は第2の実施形態に係る超音波プローブをレンズ方向に切ったときの断面図である。
超音波プローブの基本的な構成は実施例1と同様である。第1の実施形態では中間層8の溝9は圧電振動子3側から中間層8厚みに対して貫通しないように形成されたが、ここでは貫通するケースについて説明する。この場合、圧電振動子3と中間層8を先に接合した後に中間層8側から所定の溝9を形成する、あるいはFPC2と中間層8を先に接合した後に中間層8側から所定の溝9を形成する。その後の製法は第1の実施形態例と同じである。
〔音響シミュレーションの結果〕
次に、第2の実施形態に係る超音波プローブの音響シミュレーションの結果について図3を参照して説明する。
図3では、圧電振動子3の厚みに対する溝9の深さの値を”1/1”として示す。圧電振動子3の厚みに対して貫通するように加工される溝9による影響を確認した。図3に示すように、中央部(0[mm])に対してレンズ方向の端部(5[mm]、−5[mm])での感度が低下し、送信感度の重み付けの効果が上がっていることがわかる。
[第3の実施形態]
次に、第3の実施形態に係る超音波プローブの構造及び製造方法について図5及び図6を参照して説明する。図5は超音波プローブをレンズ方向に切ったときの断面図である。
第3の実施形態に係る超音波プローブの基本的な構成は第1の実施形態と同様である。第1、2の実施形態では中間層8のみに溝9形成したが、ここでは圧電振動子3も含めて溝9を形成する。この場合、圧電振動子3と中間層8を先に接合した後に中間層8から所定の溝9を形成する。その後の製法は第1の実施形態と同じである。
〔音響シミュレーションの結果〕
次に、第3の実施形態に係る超音波プローブの音響シミュレーションの結果について図6を参照して説明する。図6は超音波プローブの音響シミュレーションの結果(送信音圧最大値)を示す図である。
図6では、縦軸にデシベル[dB]を示し、横軸に中央部からレンズ方向の端部までの位置を示す。たとえば、中央部の位置を0、端部の位置を6、−6で表す。また、圧電振動子3の厚みに対する圧電振動子3の溝9の深さの値を、”1/20”、”1/4”、”1/2”、”1/1”で示す。
図6に示すように、中間層8のみでなく、圧電振動子3にも溝9を加工した場合、中央部(0[mm])に対してレンズ方向の端部(5[mm]、−5[mm])での感度が低下し、送信感度の重み付けの効果が上がっていることが分かる。
[比較例]
次に、比較例に係る超音波プローブの構成について図7を参照して簡単に説明する。図7は、比較例としての超音波プローブをレンズ方向に切ったときの断面図である。
図7に示すように、比較例の構成が上記実施形態と異なるのは、中間層8を有しない点、及び圧電振動子3にのみ溝9が加工されている点である。
実施形態に係る溝9と同様に、圧電振動子3に加工される溝9は、溝9の幅、深さ、ピッチを変化させることにより、圧電振動子3の中央部からレンズ方向での端部にかけて、溝9の容積が圧電振動子3の体積に対し占める割合を増加させていくように形成されている。それにより、圧電振動子3に対し、スライス方向(レンズ方向)の重み付けをすることが可能となる。
なお、脆性を有する圧電振動子3に溝加工をすると、溝加工に制限等の問題があることについては前述したが、ここでは、比較例に係る圧電振動子3において、溝加工の制限等がなく、十分な重み付けがされているものとする。
〔比較例に係る音響シミュレーションの結果〕
図8は、比較例に係る超音波プローブの音響シミュレーション結果を示す図である。圧電振動子3をインパルス波形に駆動させ、媒体を水としたときの第三音響整合層6の表面における送信音圧の最大値をプロットしたものである。音響シミュレーション結果により、溝9の深さによる影響を確認した。
図8では、縦軸にデシベル[dB]を示し、横軸に中央部からレンズ方向の端部にかけての位置[mm]を示す。たとえば、中央部の位置を0[mm]、端部を6[mm]−6[mm]で表す。また、圧電振動子3の厚み対する溝9の深さの値を”1/20”、”1/4”、”1/2”、”1/1”で示す。
図8に”1/20”から”1/1”に示すように、溝9が深くなるにつれて中央部に対し端部での感度が低下し、送信感度の重み付けがされていることが分かる。
[音響シミュレーションの結果比較]
次に、第1、2の実施形態に係る音響シミュレーションの結果と、比較例に係る音響シミュレーション結果との比較について、図3及び図8を参照して説明する。
図3に示すように、実施形態により圧電振動子3に形成される溝9の深さが例えば、”9/10”(第1の実施形態)、”1/1”(第2の実施形態)であるとき、端部(5[mm]、−5[mm])での送信感度はそれぞれ約−4.5[dB]である。一方、図8に示すように、比較例の圧電振動子3に形成される溝9の深さが例えば”1/1”であるとき、端部(5[mm]、−5[mm])での送信感度は約−5.5[dB]である。
この結果により、第1、2の実施形態においては、中間層8に溝9を形成することで、比較例と同等の送信感度の重み付けの効果を得ることができる。圧電振動子3に溝9を形成する必要がないため、圧電振動子3が破損するといったことがなく、圧電振動子3に対する信頼性を上げることが能となる。また、圧電振動子3に対する加工性の制約が緩和されるため、コストを低減することが可能となる。
次に、第3の実施形態に係る音響シミュレーションの結果と、比較例に係る音響シミュレーション結果との比較について、図6及び図8を参照して説明する。
図6に示すように、第3の実施形態により圧電振動子3に形成される溝9の深さが例えば、”1/20”、”1/4”であるとき、端部(5[mm]、−5[mm])での送信感度はそれぞれ約−4[dB]、約−5[dB]である。一方、図8に示すように、比較例の圧電振動子3に形成される溝9の深さが例えば”1/1”であるとき、端部(5[mm]、−5[mm])での送信感度は約−5.5[dB]である。
この結果により、比較例と同等の送信感度の重み付けの効果を得るときに、圧電振動子3に形成される溝9の深さが浅くてもよいため、圧電振動子3が破損するといったことがなく、圧電振動子3に対する信頼性を上げることが能となる。また、圧電振動子3に対する加工性の制約が緩和されるため、コストを低減することが可能となる。
以上説明したように、実施形態の構成によれば、超音波プローブに対し、安価でかつ高い信頼性で重み付けをすることが可能となる。
さらに、第1、第2の実施形態の構成によれば、圧電振動子3に溝加工せず、溝加工による圧電振動子3の破損がないため、圧電振動子3に対する信頼性を上げることが可能となる。また、溝加工の制限が緩和されるため、比較例の溝加工よりも狭いピッチにて中間層8に溝加工をすることができることから、十分な重み付けが可能となる。
さらに、第3の実施形態の構成では圧電振動子3に形成される溝9の深さが、比較例の圧電振動子3に形成される溝9の深さより浅くても、比較例と同等の重み付けの効果が得られるとともに、溝9が浅くて済むため、溝加工するときに圧電振動子3が破損するといったことが防止され、圧電振動子3に対する信頼性を上げることが可能となる。
なお、前記実施形態では、形成する溝9の深さはそれぞれ一定としたが、必ずしもその限りではなく、たとえば中間層8中央部と端部とで形成される溝9の深さが異なっていてもよい。
また、実施形態では、音響シミュレーション結果として送信強度に関して記載したが、被検体内で反射した超音波を本実施形態による超音波プローブにて受信する際にも、送信感度と同様に受信感度の重み付けがされると考えられる。
本発明のいくつかの実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるととともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 背面材
2 FPC
3 圧電振動子
4 第一音響整合層
5 第二音響整合層
6 第三音響整合層
7 音響レンズ
8 中間層
9 溝

Claims (9)

  1. 超音波を送受信する圧電振動子と、
    前記圧電振動子における超音波を送受信する側の面とは反対側の背面に接合され、前記圧電振動子よりも大きな音響インピーダンスを有する層と、
    を有し、
    前記層は、前記圧電振動子の背面にその溝口を向けるように形成された複数の溝を有し、
    前記複数の溝は、当該溝の容積が前記層の体積に対して占める割合を前記圧電振動子の背面の中央部から端部に沿う方向に増加させるように形成される
    ことを特徴とする超音波プローブ。
  2. 前記層は、前記圧電振動子よりも大きなヤング率を有する
    ことを特徴とする請求項1に記載の超音波プローブ。
  3. 前記複数の溝は、前記圧電振動子の背面の中央部から端部に沿う方向に前記溝のピッチが狭くなるように、前記溝の幅が広くなるように、もしくは、前記溝の深さが深くなるように、または、これらの二以上の組み合わせになるように形成されている
    ことを特徴とする請求項1に記載の超音波プローブ。
  4. 前記溝の深さは、前記層の厚さよりも小である
    ことを特徴とする請求項1、2またはに記載の超音波プローブ。
  5. 前記溝は、前記層を貫通している
    ことを特徴とする請求項1、2または3に記載の超音波プローブ。
  6. 前記圧電振動子の背面には、前記層の前記複数の溝の位置に対応させて、前記圧電振動子の厚さに相当する深さより浅い複数の溝が形成されている
    ことを特徴とする請求項1、2または3に記載の超音波プローブ。
  7. 前記溝には、樹脂材が充填されていることを特徴とする請求項1から請求項のいずれかに記載の超音波プローブ。
  8. 前記層は、音響インピーダンスが30[Mrayl]以上、及び/または、ヤング率が50[GPa]以上であることを特徴とする請求項1から請求項6のいずれかに記載の超音波プローブ。
  9. 前記層は、導電体を有することを特徴とする請求項1から請求項のいずれかに記載の超音波プローブ。
JP2011123922A 2011-06-02 2011-06-02 超音波プローブ Active JP5725978B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011123922A JP5725978B2 (ja) 2011-06-02 2011-06-02 超音波プローブ
PCT/JP2012/064144 WO2012165573A1 (ja) 2011-06-02 2012-05-31 超音波プローブ
CN201280004054.4A CN103298409B (zh) 2011-06-02 2012-05-31 超声波探头
US13/885,897 US9566612B2 (en) 2011-06-02 2012-05-31 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123922A JP5725978B2 (ja) 2011-06-02 2011-06-02 超音波プローブ

Publications (3)

Publication Number Publication Date
JP2012249777A JP2012249777A (ja) 2012-12-20
JP2012249777A5 true JP2012249777A5 (ja) 2014-06-19
JP5725978B2 JP5725978B2 (ja) 2015-05-27

Family

ID=47259425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123922A Active JP5725978B2 (ja) 2011-06-02 2011-06-02 超音波プローブ

Country Status (4)

Country Link
US (1) US9566612B2 (ja)
JP (1) JP5725978B2 (ja)
CN (1) CN103298409B (ja)
WO (1) WO2012165573A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026734B1 (fr) * 2014-10-02 2023-01-06 Commissariat Energie Atomique Structure mecanique comprenant un actionneur et des moyens d'amplification mecanique et procede de fabrication
WO2020079855A1 (ja) * 2018-10-19 2020-04-23 オリンパス株式会社 超音波プローブ及び超音波内視鏡
JP7367360B2 (ja) * 2019-07-17 2023-10-24 コニカミノルタ株式会社 超音波プローブ、超音波プローブの製造方法および超音波診断装置
JP7415785B2 (ja) 2020-05-14 2024-01-17 コニカミノルタ株式会社 超音波探触子及び超音波診断装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615132B2 (ja) * 1988-05-19 1997-05-28 富士通株式会社 超音波探触子
US5212671A (en) * 1989-06-22 1993-05-18 Terumo Kabushiki Kaisha Ultrasonic probe having backing material layer of uneven thickness
JP2919508B2 (ja) * 1989-11-10 1999-07-12 テルモ株式会社 超音波探触子
JP2917473B2 (ja) * 1990-09-19 1999-07-12 富士電機株式会社 電子写真用感光体
US5371717A (en) * 1993-06-15 1994-12-06 Hewlett-Packard Company Microgrooves for apodization and focussing of wideband clinical ultrasonic transducers
US5882309A (en) 1997-05-07 1999-03-16 General Electric Company Multi-row ultrasonic transducer array with uniform elevator beamwidth
JP2000271116A (ja) * 1999-03-23 2000-10-03 Aloka Co Ltd 超音波探触子
JP4610790B2 (ja) * 2001-05-30 2011-01-12 セイコーインスツル株式会社 圧電トランスデューサの製造方法
US6859984B2 (en) * 2002-09-05 2005-03-01 Vermon Method for providing a matrix array ultrasonic transducer with an integrated interconnection means
JP4338568B2 (ja) * 2004-03-30 2009-10-07 アロカ株式会社 超音波探触子及び超音波診断装置
JP4795707B2 (ja) * 2004-04-16 2011-10-19 株式会社東芝 超音波プローブおよび超音波診断装置
JP2005328507A (ja) * 2004-04-16 2005-11-24 Toshiba Corp 超音波プローブ及び超音波診断装置
US7348712B2 (en) * 2004-04-16 2008-03-25 Kabushiki Kaisha Toshiba Ultrasonic probe and ultrasonic diagnostic apparatus
CN1322050C (zh) * 2004-06-15 2007-06-20 株式会社东芝 吸声衬垫组合物、超声波探针及超声波诊断装置
JP2006313977A (ja) 2005-05-06 2006-11-16 Sumitomo Electric Ind Ltd 複合圧電材料およびその製造方法
US20080125658A1 (en) * 2006-09-01 2008-05-29 General Electric Company Low-profile acoustic transducer assembly
US20080238259A1 (en) * 2007-04-02 2008-10-02 Fujifilm Corporation Ultrasonic probe and production method thereof
JP2009082612A (ja) * 2007-10-02 2009-04-23 Toshiba Corp 超音波探触子及び圧電振動子
KR101269459B1 (ko) * 2011-12-13 2013-05-30 삼성전자주식회사 초음파 프로브 및 그 제조방법
KR101354604B1 (ko) * 2012-01-16 2014-01-23 삼성메디슨 주식회사 초음파 프로브 및 그 제조방법

Similar Documents

Publication Publication Date Title
US20240164754A1 (en) Ultrasound transducer assembly
JP3556582B2 (ja) 超音波診断装置
KR100966194B1 (ko) 초음파 탐촉자
EP1728563B1 (en) Ultrasonic probe and ultrasonic probe manufacturing method
KR102044705B1 (ko) 복합 구조의 정합층을 가진 초음파 트랜스듀서 및 그 제조방법
JPH09238399A (ja) 超音波探触子及びその製造方法
WO2012157769A1 (ja) 超音波トランスデューサ、超音波プローブおよび超音波トランスデューサの製造方法
CN101909230A (zh) 金属与压电陶瓷和聚合物复合材料宽带水声换能器
JP5725978B2 (ja) 超音波プローブ
CN107005768A (zh) 具有包括厚金属层的柔性印刷电路板的超声波换能器及其制造方法
JP4764057B2 (ja) 超音波プローブ及びその製造方法
JP2012249777A5 (ja)
JP5477630B2 (ja) アレイ走査型超音波探触子
JP2009082612A (ja) 超音波探触子及び圧電振動子
US8717848B2 (en) Ultrasound probe
JP2012205726A (ja) 超音波プローブ及び超音波プローブの製造方法
JP4134911B2 (ja) 超音波送受波器、及びその製造方法
US6359375B1 (en) Method to build a high bandwidth, low crosstalk, low EM noise transducer
US20200128333A1 (en) Diagonal resonance sound and ultrasonic transducer
JP2009201053A (ja) 超音波探触子、その製造方法およびその超音波探触子を用いた超音波診断装置
JP2007288396A (ja) 超音波用探触子
KR101898312B1 (ko) 글라스-세라믹 레이어를 음향 매칭 레이어로 포함하는 초음파 트랜스듀서 어레이
KR101753492B1 (ko) 상이한 음향 임피던스의 물질들로 구성된 후면층을 갖는 초음파 변환자 및 그 제조 방법
JP4291500B2 (ja) 広帯域送受波器
JPH11146492A (ja) 超音波探触子