JP2012242054A - Heat exchanger and heat pump water heater - Google Patents

Heat exchanger and heat pump water heater Download PDF

Info

Publication number
JP2012242054A
JP2012242054A JP2011115191A JP2011115191A JP2012242054A JP 2012242054 A JP2012242054 A JP 2012242054A JP 2011115191 A JP2011115191 A JP 2011115191A JP 2011115191 A JP2011115191 A JP 2011115191A JP 2012242054 A JP2012242054 A JP 2012242054A
Authority
JP
Japan
Prior art keywords
heat exchange
heat
pipe
spiral
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011115191A
Other languages
Japanese (ja)
Other versions
JP5929012B2 (en
Inventor
Norihiro Hori
紀弘 堀
Takashi Wakatake
孝史 若竹
Hirobumi Tanaka
博文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2011115191A priority Critical patent/JP5929012B2/en
Publication of JP2012242054A publication Critical patent/JP2012242054A/en
Application granted granted Critical
Publication of JP5929012B2 publication Critical patent/JP5929012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To further miniaturize a heat exchanger by improving piping density by reducing clearance gaps while spirally configuring heat exchange pipes.SOLUTION: This heat exchanger includes two heat exchange pipes 15, 16 configured by fixing one or a plurality of refrigerant pipes 12 in which a refrigerant is circulated, around a water pipe 11 in which water is circulated, each of the heat exchange pipes 15, 16 is spirally formed with a clearance gap between an inner periphery and an outer periphery of the spiral, and two heat exchange pipes 15, 16 are assembled into the double spiral shape by vertically fitting each of two heat exchange pipes 15, 16 to the clearance gap of the other spiral.

Description

本発明は、凝縮熱交換器として好適に用いることができる熱交換器、並びに、ヒートポンプ給湯装置に関する。   The present invention relates to a heat exchanger that can be suitably used as a condensation heat exchanger, and a heat pump water heater.

近年、高い省エネ性能及び環境性能を発揮できる給湯装置として、自然冷媒ヒートポンプ給湯装置が開発されている。かかるヒートポンプ給湯装置のCOP(成績係数)を一層向上するためには、凝縮器として機能する給湯用熱交換器の性能向上が重要な課題の一つとされており、従来より、下記特許文献1〜3に例示されるような各種の熱交換器が提案されている。   In recent years, natural refrigerant heat pump hot water supply devices have been developed as hot water supply devices that can exhibit high energy saving performance and environmental performance. In order to further improve the COP (coefficient of performance) of such a heat pump hot water supply apparatus, it is regarded as one of the important issues to improve the performance of a hot water supply heat exchanger that functions as a condenser. Various heat exchangers as exemplified in 3 have been proposed.

特許第4437487号公報Japanese Patent No. 4437487 特許第3913629号公報Japanese Patent No. 3913629 特開2009−243792号公報JP 2009-243792 A

特許文献1に記載の捩り管形熱交換器は、水配管の外周に複数条の山谷底部を螺旋状に設け、この水配管の外周に複数の冷媒配管を螺旋状に巻き付け、この水配管を長円コイル状(同文献の図3参照)や長円渦巻状(同文献の図8参照)に構成してなるものである。   The twisted tube heat exchanger described in Patent Document 1 is provided with a plurality of mountain valley bottoms spirally around the outer periphery of the water pipe, and a plurality of refrigerant pipes are spirally wound around the outer periphery of the water pipe. It is configured in an elliptical coil shape (see FIG. 3 of the same document) or an elliptical spiral shape (see FIG. 8 of the same document).

特許文献2に記載の熱交換器は、冷媒が流動する流路を有する冷媒配管(第1伝熱管)と、水が流動する流路を有する水配管(第2伝熱管)とを備え、この水配管に冷媒配管を埋設一体化して結合管を形成し、この結合管を渦巻き状に折曲形成して熱交換器本体を構成してなるものである。   The heat exchanger described in Patent Document 2 includes a refrigerant pipe (first heat transfer pipe) having a flow path through which refrigerant flows, and a water pipe (second heat transfer pipe) having a flow path through which water flows. A refrigerant pipe is embedded and integrated in a water pipe to form a coupling pipe, and the coupling pipe is bent into a spiral shape to constitute a heat exchanger body.

特許文献3に記載の熱交換器は、複数本の第1伝熱管(水配管)と第2伝熱管(冷媒配管)とで構成された伝熱管群を備え、第1伝熱管は互いに接触する状態で一方向に配列され、第2伝熱管は第1伝熱管の片側に隣り合う第1伝熱管の双方に接触するように第1伝熱管に沿って配置され、この伝熱管群が、直線部と一定の曲げ半径で略90°曲がる屈曲部とを交互に繰り返しながら第2伝熱管側に巻き込む渦巻き状に形成されたものである。   The heat exchanger described in Patent Document 3 includes a heat transfer tube group including a plurality of first heat transfer tubes (water piping) and second heat transfer tubes (refrigerant piping), and the first heat transfer tubes are in contact with each other. The second heat transfer tubes are arranged along the first heat transfer tubes so as to come into contact with both of the first heat transfer tubes adjacent to one side of the first heat transfer tubes. It is formed in a spiral shape that is wound around the second heat transfer tube side while alternately repeating a portion and a bent portion that bends approximately 90 ° with a constant bending radius.

上記特許文献1〜3のいずれも、水が流通する水配管の外周に冷媒配管を埋め込んだ結合管を渦巻き状に折曲げ形成することにより密度の高い巻き形状を実現しようとする着想は開示されている。しかし、自然冷媒ヒートポンプ給湯装置の熱交換器を構成する水配管及び冷媒配管を構成する銅管は、更なる熱交換効率の向上のためにより一層の薄肉化と高強度化とが要求されており、このような薄肉高強度の銅管を隙間無く渦巻き状に折曲げ加工することは困難であるため、渦巻き状に加工するとしても、特殊な加工機を用いなければ渦巻きの内周部と外周部との間に隙間を有するような形状にしか加工できないのが実情である。このように隙間を有する渦巻き状の構成では、配管密度を上げることができず、熱交換器を小型化することができない。   In any of the above-mentioned Patent Documents 1 to 3, the idea of realizing a high-density winding shape by folding a coupling pipe in which a refrigerant pipe is embedded in the outer periphery of a water pipe through which water flows is disclosed. ing. However, the water pipes that make up the heat exchanger of the natural refrigerant heat pump water heater and the copper pipes that make up the refrigerant pipes are required to be thinner and stronger in order to further improve heat exchange efficiency. Because it is difficult to bend a thin high-strength copper tube into a spiral shape without any gaps, even if it is processed into a spiral shape, if the special processing machine is not used, the inner and outer circumferences of the spiral The actual situation is that it can only be processed into a shape having a gap with the part. In such a spiral configuration having a gap, the pipe density cannot be increased, and the heat exchanger cannot be reduced in size.

そこで本発明は、熱交換配管を渦巻き状に構成しつつも、隙間が少なくなるようにして配管密度を向上させ、これにより熱交換器の小型化を図ることを目的とする。   Accordingly, an object of the present invention is to improve the pipe density by reducing the gap while forming the spiral shape of the heat exchange pipe, thereby reducing the size of the heat exchanger.

上記目的を達成するために、本発明は、次の技術的手段を講じた。   In order to achieve the above object, the present invention takes the following technical means.

すなわち、本発明の熱交換器は、第1の流体が流通する第1伝熱管の周囲に第2の流体が流通する一又は複数の第2伝熱管を伝熱可能に配置固定した2つの熱交換配管を備え、各熱交換配管は、渦巻きの内周部と外周部との間に隙間を有する渦巻き状に形成され、2つの熱交換配管が相互に他方の渦巻きの隙間に上下方向に嵌め込まれることにより2重渦巻き状に組付けられていることを特徴とするものである(請求項1)。   That is, the heat exchanger according to the present invention has two heat sources in which one or a plurality of second heat transfer tubes through which the second fluid flows are arranged and fixed so as to transfer heat around the first heat transfer tubes through which the first fluid flows. Each of the heat exchange pipes is formed in a spiral shape having a gap between the inner peripheral part and the outer peripheral part of the spiral, and the two heat exchange pipes are fitted into the other spiral gap in the vertical direction. Thus, it is assembled in a double spiral shape (claim 1).

かかる本発明の熱交換器によれば、各熱交換配管は隙間を有する渦巻き状に形成されているものであるため、特殊なパイプ加工装置を用いなくとも、同一方向への曲げ加工により比較的容易に形成することができる。そして、隙間を有する渦巻き状に曲げ加工された2つの熱交換配管を、相互に他方の渦巻きの隙間に嵌め込むことによって2重渦巻き状に組み付けたので、渦巻き状の曲げ加工時には隙間により作業効率を向上しつつも、組付け後には隙間は他方の熱交換配管によって埋められ、これにより高密度な配管構成が得られ、熱交換器の小型化を図りつつも熱交換効率の向上が図られる。   According to the heat exchanger of the present invention, each heat exchange pipe is formed in a spiral shape having a gap, so that it is relatively easy to bend in the same direction without using a special pipe processing device. It can be formed easily. And since two heat exchange pipes bent into a spiral shape with a gap are assembled into a double spiral shape by fitting them into the other spiral gap, work efficiency is improved by the gap during the spiral bending process. However, after assembly, the gap is filled with the other heat exchange pipe, so that a high-density pipe configuration can be obtained, and the heat exchange efficiency can be improved while reducing the size of the heat exchanger. .

なお、本発明の熱交換器をヒートポンプ給湯装置の凝縮器として用いる場合には、第1伝熱管を水配管(給湯用配管)とし、第2伝熱管を冷媒配管とすることが好ましく、また、各第2伝熱管は第1伝熱管よりも小径に構成するのが良い。   In addition, when using the heat exchanger of this invention as a condenser of a heat pump hot-water supply apparatus, it is preferable that a 1st heat exchanger tube is a water pipe (hot-water supply pipe), and a 2nd heat exchanger tube is a refrigerant | coolant pipe, Each second heat transfer tube is preferably configured to have a smaller diameter than the first heat transfer tube.

上記本発明の熱交換器において、渦巻きの中心部で両熱交換配管の内周側端部同士が接続されている構成とすることができる(請求項2)。これによれば、渦巻き中心部にはある程度の空洞部が生じることを許容せざるを得ないが、この渦巻き中心部の空洞部を両熱交換配管の接続部として利用することにより、より一層の配管密度の向上を図ることが可能となる。   In the heat exchanger of the present invention, inner end portions of both heat exchange pipes may be connected to each other at the center of the spiral (claim 2). According to this, it is necessary to allow a certain amount of cavity to be generated in the spiral center part, but by using the cavity part of the spiral center part as a connection part of both heat exchange pipes, it is possible to further increase the cavity part. It becomes possible to improve the piping density.

さらに、2重渦巻き状に組み付けられた熱交換配管をさらに複数段積層配置することができる(請求項3)。これによれば、渦巻きの外周の大きさを大きくすることなく、配管長を積層段数に応じた倍数にすることができ、限られた設置面積でより一層の配管密度の向上を図ることができる。   Further, the heat exchange pipes assembled in a double spiral shape can be further stacked in a plurality of stages (Claim 3). According to this, the pipe length can be made a multiple according to the number of stacked stages without increasing the size of the outer periphery of the spiral, and the pipe density can be further improved with a limited installation area. .

また、上記本発明の熱交換器を凝縮器として備えたヒートポンプ給湯装置によれば(請求項4)、凝縮器の小型化により給湯装置全体の小型化が図ることができるものでありながら、凝縮器の高密度化によりCOPの更なる向上が図られる。   Moreover, according to the heat pump water heater provided with the heat exchanger of the present invention as a condenser (Claim 4), it is possible to reduce the size of the whole water heater by reducing the size of the condenser. The COP can be further improved by increasing the density of the vessel.

以上説明したように、本発明の請求項1に係る熱交換器によれば、隙間を有する渦巻き状に曲げ加工された2つの熱交換配管を、相互に他方の渦巻きの隙間に嵌め込むことによって2重渦巻き状に組み付けたので、渦巻き状の曲げ加工時には隙間により作業効率を向上しつつも、組付け後には隙間は他方の熱交換配管によって埋められ、これにより高密度な配管構成が得られ、熱交換器の小型化を図りつつも熱交換効率の向上を図ることができる。   As described above, according to the heat exchanger according to claim 1 of the present invention, the two heat exchange pipes bent into a spiral shape having a gap are fitted into the other spiral gap. Since it is assembled in a double spiral shape, the work efficiency is improved by the gap during the spiral bending process, but after the assembly, the gap is filled with the other heat exchange pipe, resulting in a high-density pipe configuration. Further, it is possible to improve the heat exchange efficiency while reducing the size of the heat exchanger.

また、本発明の請求項2に係る熱交換器によれば、渦巻き中心部の空洞部を両熱交換配管の接続部として利用することにより、より一層の配管密度の向上を図ることができる。   Moreover, according to the heat exchanger which concerns on Claim 2 of this invention, the further improvement of piping density can be aimed at by utilizing the hollow part of a spiral center part as a connection part of both heat exchange piping.

また、本発明の請求項3に係る熱交換器によれば、渦巻きの外周の大きさを大きくすることなく、配管長を積層段数に応じた倍数にすることができ、限られた設置面積でより一層の配管密度の向上を図ることができる。   Further, according to the heat exchanger according to claim 3 of the present invention, the pipe length can be made a multiple according to the number of stacked stages without increasing the size of the outer periphery of the spiral, and the installation area is limited. It is possible to further improve the piping density.

また、本発明の請求項4に係る熱交換器によれば、凝縮器の小型化により給湯装置全体の小型化が図ることができるものでありながら、凝縮器の高密度化によりCOPの更なる向上を図ることができる。   Moreover, according to the heat exchanger which concerns on Claim 4 of this invention, while the size reduction of the whole hot water supply apparatus can be achieved by size reduction of a condenser, further increase of COP by density increase of a condenser is attained. Improvements can be made.

本発明の一実施形態に係る熱交換器の全体斜視図である。1 is an overall perspective view of a heat exchanger according to an embodiment of the present invention. 同熱交換器を構成する熱交換配管組付体の全体斜視図である。It is a whole perspective view of the heat exchange piping assembly which comprises the heat exchanger. 同熱交換配管組付体の全体図を示し、(a)は平面図、(b)は正面図である。The whole heat exchange piping assembly | attachment body is shown, (a) is a top view, (b) is a front view. 同熱交換配管組付体を構成する第1の熱交換配管の平面図である。It is a top view of the 1st heat exchange piping which comprises the same heat exchange piping assembly. 同熱交換配管組付体を構成する第2の熱交換配管の平面図である。It is a top view of the 2nd heat exchange piping which comprises the same heat exchange piping assembly. 同熱交換器を凝縮器として用いるヒートポンプ給湯装置の配管回路図である。It is a piping circuit diagram of the heat pump hot-water supply apparatus which uses the same heat exchanger as a condenser.

以下、本発明の好適な実施形態を図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.

図1〜図5は、本発明の実施形態に係る熱交換器1を示し、図6は、この熱交換器1を凝縮器として用いた自然冷媒ヒートポンプ給湯装置の配管回路構成を示す。まず、ヒートポンプ給湯装置の全体構成について説明すると、図6に示すように、ヒートポンプ給湯装置は冷媒循環回路2と給湯回路3とを組み合わせたものであり、単段蒸気圧縮冷凍サイクルを利用して給湯回路3の水を熱交換加熱し得るようになっている。冷媒循環回路2は圧縮機21と、凝縮器(凝縮熱交換器)1と、減圧手段としての膨張弁22と、蒸発器(熱源用熱交換器)23とを冷媒循環配管24で順に接続したものである。冷媒循環回路2を循環させる冷媒としては、プロパンなどのHC系冷媒や、COなどの適宜のものを採用できる。又、給湯回路3は、貯湯タンク31と、貯湯タンク31内に貯留された湯水を凝縮器1との間で循環させる水循環配管32と、貯湯タンク31の底部から水を凝縮器32へ圧送し、加熱後に凝縮器1から貯湯タンク31の頂部へと導く給水ポンプ33とを備えて構成されている。そして、これら冷媒循環回路2と給湯回路3とがコントローラ4により作動制御されて、凝縮器1において水がリモコン(図示省略)に入力設定された設定出湯温度に加熱されて貯湯タンク31に貯湯されるようになっている。 FIGS. 1-5 shows the heat exchanger 1 which concerns on embodiment of this invention, FIG. 6 shows the piping circuit structure of the natural refrigerant | coolant heat pump hot water supply apparatus which used this heat exchanger 1 as a condenser. First, the overall configuration of the heat pump hot water supply apparatus will be described. As shown in FIG. 6, the heat pump hot water supply apparatus is a combination of a refrigerant circulation circuit 2 and a hot water supply circuit 3, and uses a single-stage vapor compression refrigeration cycle to supply hot water. The water of the circuit 3 can be heat exchange heated. In the refrigerant circulation circuit 2, a compressor 21, a condenser (condensation heat exchanger) 1, an expansion valve 22 as a pressure reducing means, and an evaporator (heat source heat exchanger) 23 are connected in order through a refrigerant circulation pipe 24. Is. As the refrigerant circulating in the refrigerant circuit 2, an HC refrigerant such as propane or an appropriate refrigerant such as CO 2 can be used. The hot water supply circuit 3 pressure-feeds water from the hot water storage tank 31, a water circulation pipe 32 that circulates hot water stored in the hot water storage tank 31 between the condenser 1 and the bottom of the hot water storage tank 31 to the condenser 32. A water supply pump 33 that leads from the condenser 1 to the top of the hot water storage tank 31 after heating is provided. Then, the refrigerant circulation circuit 2 and the hot water supply circuit 3 are controlled by the controller 4 so that the water in the condenser 1 is heated to a set hot water temperature set in a remote controller (not shown) and stored in the hot water storage tank 31. It has become so.

圧縮機21は電動モータにより作動され、その回転数を作動制御量としてコントローラ4により作動制御されるようになっている。回転数は、コントローラ4から与える運転周波数を変更することで変更制御される。より高圧に圧縮するには回転数を上げ、より低圧にするには回転数を下げることになる。この圧縮機21で圧縮されることで高温気相状態の冷媒が圧縮機21から冷媒循環配管24に吐出され、その吐出温度が吐出温度センサ25により検出されて検出吐出温度がコントローラ4に出力されることになる。   The compressor 21 is operated by an electric motor, and the operation of the compressor 21 is controlled by the controller 4 with the rotation speed as an operation control amount. The number of revolutions is changed and controlled by changing the operating frequency given from the controller 4. In order to compress to a higher pressure, the rotational speed is increased, and to lower the pressure, the rotational speed is decreased. By being compressed by the compressor 21, the high-temperature gas-phase refrigerant is discharged from the compressor 21 to the refrigerant circulation pipe 24, the discharge temperature is detected by the discharge temperature sensor 25, and the detected discharge temperature is output to the controller 4. Will be.

凝縮器1は、水循環配管22に接続されて水(第1の流体)が流通する第1伝熱管(水管)11と、冷媒循環配管24に接続されて冷媒(第2の流体)が流通する第2伝熱管(冷媒管)12との間で熱交換するように構成されている。すなわち、冷媒循環配管24に圧縮機21から吐出された高温気相状態の冷媒と、給水ポンプ33により貯湯タンク31の底部から供給された水とが熱交換され、水が熱交換加熱により湯となり、その熱交換により熱が奪われた冷媒は凝縮して液相に相変化する。この相変化のときの凝縮温度が凝縮温度センサ13により検出され、この検出凝縮温度がコントローラ4に出力されることになる。この凝縮温度センサ13による凝縮温度の検出は、凝縮器1における熱交換過程の中間位置での冷媒の温度を検出するものである。   The condenser 1 is connected to a water circulation pipe 22 so that water (first fluid) flows, and the condenser 1 is connected to a refrigerant circulation pipe 24 and refrigerant (second fluid) flows. Heat exchange is performed with the second heat transfer tube (refrigerant tube) 12. That is, the high-temperature gas-phase refrigerant discharged from the compressor 21 to the refrigerant circulation pipe 24 and the water supplied from the bottom of the hot water storage tank 31 by the water supply pump 33 are heat-exchanged, and the water becomes hot water by heat exchange heating. The refrigerant that has been deprived of heat by the heat exchange condenses and changes into a liquid phase. The condensation temperature at the time of this phase change is detected by the condensation temperature sensor 13, and this detected condensation temperature is output to the controller 4. The detection of the condensing temperature by the condensing temperature sensor 13 is to detect the temperature of the refrigerant at an intermediate position in the heat exchange process in the condenser 1.

膨張弁22は凝縮器1で液相状態になった冷媒を減圧するものである。この膨張弁22は、その開度を作動制御量としてコントローラ4により作動制御される。   The expansion valve 22 depressurizes the refrigerant that has become a liquid phase in the condenser 1. The operation of the expansion valve 22 is controlled by the controller 4 using the opening degree as an operation control amount.

蒸発器23は、その回転作動により外気を送風するファン23aを備え、この外気と、膨張弁22により減圧された冷媒とを熱交換させることで、冷媒を蒸発させて気相状態に変換するようになっている。この気相状態になった冷媒が再び前記の圧縮機21において圧縮されて高温気相状態になる。   The evaporator 23 includes a fan 23a that blows outside air by its rotational operation, and heat exchange is performed between the outside air and the refrigerant decompressed by the expansion valve 22, so that the refrigerant is evaporated and converted into a gas phase state. It has become. The refrigerant in the gas phase is compressed again in the compressor 21 to be in a high temperature gas phase.

一方、給湯回路3では、給水ポンプ33の作動により貯湯タンク31内の水が凝縮器1に圧送される際に、凝縮器1の入口前で入水温度センサ34により熱交換加熱前の入水温度が検出され、この検出入水温度がコントローラ3に出力されるようになっている。又、凝縮器1を通過することで熱交換加熱されて出湯した際に、凝縮器1の出口側で出湯温度センサ35により出湯温度が検出され、この検出出湯温度がコントローラ4に出力されるようになっている。併せて、外気温が外気温センサ36により検出されて、コントローラ4に出力されるようになっている。凝縮器1で加熱された湯は貯湯タンク31の頂部側に戻されて貯留され、以後の給湯に利用されることになる。給湯により貯湯タンク31内の湯水量が減れば、その分だけ給水されるようになっている。   On the other hand, in the hot water supply circuit 3, when the water in the hot water storage tank 31 is pumped to the condenser 1 by the operation of the water supply pump 33, the incoming water temperature before heat exchange heating is measured by the incoming water temperature sensor 34 before the inlet of the condenser 1. The detected incoming water temperature is output to the controller 3. Further, when the hot water is heated by heat exchange by passing through the condenser 1, the hot water temperature is detected by the hot water temperature sensor 35 on the outlet side of the condenser 1, and this detected hot water temperature is output to the controller 4. It has become. In addition, the outside air temperature is detected by the outside air temperature sensor 36 and output to the controller 4. The hot water heated by the condenser 1 is returned to the top side of the hot water storage tank 31 and stored, and used for subsequent hot water supply. If the amount of hot water in the hot water storage tank 31 decreases due to hot water supply, water is supplied accordingly.

次に、上記ヒートポンプ給湯装置において凝縮器として用いられている熱交換器1の好ましい実施形態について図1〜図5を参照しつつ詳細に説明する。   Next, a preferred embodiment of the heat exchanger 1 used as a condenser in the heat pump water heater will be described in detail with reference to FIGS.

本実施形態の熱交換器1は、断面円形の第1伝熱管11の周囲に4本の断面円形の第2伝熱管12を伝熱可能に配置固定した熱交換配管により構成されており、特に、図2及び図3に示す2重渦巻き状に構成された熱交換配管組付体14を、図1に示すように3段に積層配置することによって構成されている。各熱交換配管組付体14は、図4に示す渦巻状に形成された第1の熱交換配管15と、図5に示す渦巻状に形成された第2の熱交換配管16とを2重渦巻状に組み付けることによって構成されている。   The heat exchanger 1 of the present embodiment is configured by a heat exchange pipe in which four second circular heat transfer pipes 12 are arranged and fixed so as to be capable of heat transfer around a first heat transfer pipe 11 having a circular cross section. 2 and FIG. 3, the heat exchange pipe assembly 14 configured in a double spiral shape is stacked and arranged in three stages as shown in FIG. Each heat exchange pipe assembly 14 includes a first heat exchange pipe 15 formed in a spiral shape shown in FIG. 4 and a second heat exchange pipe 16 formed in a spiral shape shown in FIG. It is configured by assembling in a spiral shape.

各熱交換配管15,16は、渦巻の内周部と外周部との間に隙間を有する渦巻状に形成されており、本実施形態においては平面視ほぼ長方形状の渦巻状に形成されている。上記の渦巻の隙間は、各熱交換配管15,16の渦巻の中途部の断面幅よりも若干大きな寸法となされている。このような長方形状の渦巻状は、直管を所定寸法毎の数カ所において一方向に折曲げ加工することによって得ることができ、また、上記の隙間の存在により作業効率も良く、容易に高い生産性で各熱交換配管15,16を加工できる。また、第1伝熱管11と第2伝熱管12とを個別に渦巻き状に曲げ加工した上で両伝熱管をロウ付け等により固定することにより各熱交換配管15,16を構成してもよく、第1伝熱管11の周囲に第2伝熱管12を固定した上で両伝熱管11,12を同時に渦巻き状に曲げ加工してもよい。   Each of the heat exchange pipes 15 and 16 is formed in a spiral shape having a gap between the inner peripheral portion and the outer peripheral portion of the spiral, and is formed in a substantially rectangular spiral shape in a plan view in the present embodiment. . The space between the spirals is slightly larger than the cross-sectional width of the midway portion of the spiral of each of the heat exchange pipes 15 and 16. Such a rectangular spiral shape can be obtained by bending a straight pipe in one direction at several locations for each predetermined dimension. Also, the presence of the above-mentioned gap improves work efficiency and facilitates high production. Therefore, the heat exchange pipes 15 and 16 can be processed. Further, the heat exchange pipes 15 and 16 may be configured by individually bending the first heat transfer pipe 11 and the second heat transfer pipe 12 into a spiral shape and then fixing both heat transfer pipes by brazing or the like. Alternatively, the second heat transfer tube 12 may be fixed around the first heat transfer tube 11 and the heat transfer tubes 11 and 12 may be simultaneously bent into a spiral shape.

また、各熱交換配管15,16の第2伝熱管(冷媒管)12は、第1伝熱管(水管)11よりも小径とされているとともに、両者の軸方向は平行に配置されている。4本の第2伝熱管12は、第1伝熱管11の渦巻外周側上部、渦巻外周側下部、渦巻内周側上部及び渦巻内周側下部にそれぞれ配設されている。   The second heat transfer pipe (refrigerant pipe) 12 of each heat exchange pipe 15, 16 has a smaller diameter than the first heat transfer pipe (water pipe) 11, and the axial directions of both are arranged in parallel. The four second heat transfer tubes 12 are respectively disposed on the spiral outer peripheral side upper portion, the spiral outer peripheral side lower portion, the spiral inner peripheral side upper portion, and the spiral inner peripheral side lower portion of the first heat transfer tube 11.

そして、これら熱交換配管15,16は相互に他方の渦巻きの隙間に上下方向から嵌め込まれ、これにより上記熱交換配管組付体14が構成されている。この組付体14において、図3に示すように、第1及び第2の熱交換配管15,16の第1伝熱管11同士、及び、第2伝熱管12同士の間には微小な隙間を有して組み付けられており、これにより水及び冷媒の循環経路の途中で熱がリークすることを回避している。なお、かかる微小隙間を安定的に確保するために、所定部位にスペーサを埋め込んでもよいし、また、第1及び第2の熱交換配管11,12を組付け後に互いにロウ付け固定してもよい。   These heat exchange pipes 15 and 16 are fitted into the other spiral space from above and below to constitute the heat exchange pipe assembly 14. In this assembly 14, as shown in FIG. 3, a minute gap is formed between the first heat transfer pipes 11 and the second heat transfer pipes 12 of the first and second heat exchange pipes 15 and 16. This prevents heat from leaking in the middle of the water and refrigerant circulation paths. In order to stably secure such a minute gap, a spacer may be embedded in a predetermined portion, or the first and second heat exchange pipes 11 and 12 may be brazed and fixed together. .

また、各熱交換配管15,16の第1及び第2伝熱管11,12は、渦巻形状の中心部においてそれらの内周側端部同士が相互に接続されており、第1及び第2の熱交換配管15,16のいずれか一方の外周側端部から流入した水及び冷媒は、両熱交換配管15,16を通過する間に水と冷媒との間で熱交換して水を加熱し、その後他方の外周側端部から流出されるようになっている。なお、水と冷媒とは、熱交換配管15,16における流れ方向を逆方向とするのが良い。   In addition, the first and second heat transfer tubes 11 and 12 of the heat exchange pipes 15 and 16 are connected to each other at their inner peripheral ends at the spiral central part, and the first and second heat transfer pipes 15 and 16 are connected to each other. The water and the refrigerant that have flowed from the outer peripheral end of either one of the heat exchange pipes 15 and 16 heat the water by exchanging heat between the water and the refrigerant while passing through both the heat exchange pipes 15 and 16. Then, it flows out from the other outer peripheral side end. In addition, it is good for the flow direction in the heat exchange piping 15 and 16 to make water and a refrigerant | coolant reverse.

第1及び第2伝熱管11,12の渦巻中心部での接続方法はどのようなものでもよいが、本実施形態では、一方の熱交換配管16の内周側端部に軸方向にスライド可能な接続管19,20を設けておき、両熱交換配管15,16を上下方向から組み付ける際は接続管19,20を後退させておき、組付け後に接続管19,20を他方の熱交換配管15の内周側端部に向けてスライドさせることによって接続している。この接続管19,20は、接続後にロウ付け固定しておくことが好ましい。   Any connection method may be used at the spiral center of the first and second heat transfer tubes 11 and 12, but in this embodiment, the first heat exchange pipe 16 can be slid in the axial direction on the inner peripheral side end of one heat exchange pipe 16. Connecting pipes 19 and 20 are provided, and when assembling both heat exchange pipes 15 and 16 from above and below, the connection pipes 19 and 20 are retracted, and after assembling, the connection pipes 19 and 20 are connected to the other heat exchange pipe. The connection is made by sliding toward the inner peripheral side end of 15. The connection pipes 19 and 20 are preferably brazed and fixed after connection.

各熱交換配管15,16の外周側端部は、周方向にほぼ同じ位置に開口形成されている。その外周側に位置する熱交換配管15においては、その第1伝熱管11の外周側端部は直管状に突設され、第2伝熱管12の外周側端部は前後外方に屈曲形成されている。また、外周側端部において内周側に位置する熱交換配管16においては、その第1伝熱管11の外周側端部は同様に直管状に突設されているが、外周側の熱交換配管16の第1伝熱管11よりも短く形成されており、また、内周側の熱交換配管16の第2伝熱管12は前後内方に向けて屈曲形成されている。   The end portions on the outer peripheral side of the heat exchange pipes 15 and 16 are formed at substantially the same position in the circumferential direction. In the heat exchange pipe 15 located on the outer peripheral side, the outer peripheral side end portion of the first heat transfer tube 11 protrudes in a straight tube shape, and the outer peripheral side end portion of the second heat transfer tube 12 is bent and formed outward and forward. ing. Further, in the heat exchange pipe 16 located on the inner peripheral side at the outer peripheral side end, the outer peripheral side end of the first heat transfer pipe 11 is similarly projected in a straight tube shape, but the outer heat exchange pipe The first heat transfer tubes 11 are shorter than the first heat transfer tubes 11, and the second heat transfer tubes 12 of the heat exchange pipes 16 on the inner peripheral side are bent toward the front and rear and the inside.

そして図1に示すように、最下段の第1の熱交換配管15の第1伝熱管11と中段の第1の熱交換配管15の第1伝熱管11、中段の第2の熱交換配管16の第1伝熱管11と最上段の第2の熱交換配管16の第1伝熱管11、最下段の第1の熱交換配管15の第2伝熱管12と中段の第1の熱交換配管15の第2伝熱管12、及び、中段の第2の熱交換配管16の第2伝熱管12と最上段の第2の熱交換配管16の第2伝熱管12が、それぞれU字状の管接続部材17,18によって接続されている。これにより、最下段の第2の熱交換配管16の第1伝熱管11の外周側端部から流入した水は、最下段の第2の熱交換配管16、最下段の第1の熱交換配管15、中段の第1の熱交換配管15、中段の第2の熱交換配管16、最上段の第2の熱交換配管16及び最上段の第1の熱交換配管15を順次経由して、最上段の第1の熱交換配管15の第1伝熱管11の外周側端部から流出される。   As shown in FIG. 1, the first heat transfer pipe 11 of the lowermost first heat exchange pipe 15, the first heat transfer pipe 11 of the middle first heat exchange pipe 15, and the second heat exchange pipe 16 of the middle stage. The first heat transfer pipe 11 and the first heat transfer pipe 11 of the uppermost second heat exchange pipe 16, the second heat transfer pipe 12 of the lowermost first heat exchange pipe 15 and the first heat exchange pipe 15 of the middle stage. The second heat transfer pipe 12, the second heat transfer pipe 12 of the second heat exchange pipe 16 in the middle stage, and the second heat transfer pipe 12 of the second heat exchange pipe 16 in the uppermost stage are respectively U-shaped pipe connections. The members 17 and 18 are connected. Thereby, the water which flowed in from the outer peripheral side end part of the 1st heat exchanger tube 11 of the 2nd bottom heat exchange pipe 16 is the 2nd bottom heat exchange pipe 16 and the 1st bottom heat exchange pipe. 15, the first heat exchange pipe 15 in the middle stage, the second heat exchange pipe 16 in the middle stage, the second heat exchange pipe 16 in the uppermost stage, and the first heat exchange pipe 15 in the uppermost stage in order, It flows out from the outer peripheral side end of the first heat transfer pipe 11 of the upper first heat exchange pipe 15.

本発明は上記実施形態に限定されるものではなく、適宜設計変更できる。例えば、第2伝熱管は、第1伝熱管の周囲に1本のみ配置固定してもよく、2本、3本或いは5本以上の適宜の本数とすることができる。また、上記実施形態では、第1伝熱管及び第2伝熱管は断面円形の直管を渦巻状に加工したものを採用したが、上記特許文献1及び2に記載されているような結合管を採用することも可能である。また、第1及び第2の熱交換配管15,16同士を、上記実施形態では渦巻の中心部で接続したが、渦巻の外周端部で接続して、渦巻の中心部の開口端部を各流体(水及び冷媒)の流出入口として用いることもできる。   The present invention is not limited to the above-described embodiment, and the design can be changed as appropriate. For example, only one second heat transfer tube may be arranged and fixed around the first heat transfer tube, and the number of the second heat transfer tubes may be two, three, or five or more. In the above embodiment, the first heat transfer tube and the second heat transfer tube are formed by processing a straight tube having a circular cross section into a spiral shape. However, a coupling tube as described in Patent Documents 1 and 2 is used. It is also possible to adopt. Further, in the above embodiment, the first and second heat exchange pipes 15 and 16 are connected to each other at the center portion of the spiral, but are connected at the outer peripheral end portion of the spiral, and the opening end portion of the spiral center portion is connected to each other. It can also be used as an inlet / outlet for fluid (water and refrigerant).

1 熱交換器(凝縮器)
11 第1伝熱管(水管)
12 第2伝熱管(冷媒管)
15 第1の熱交換配管
16 第2の熱交換配管
1 Heat exchanger (condenser)
11 1st heat transfer tube (water tube)
12 Second heat transfer tube (refrigerant tube)
15 1st heat exchange piping 16 2nd heat exchange piping

Claims (4)

第1の流体が流通する第1伝熱管の周囲に第2の流体が流通する一又は複数の第2伝熱管を伝熱可能に配置固定した2つの熱交換配管を備え、各熱交換配管は、渦巻きの内周部と外周部との間に隙間を有する渦巻き状に形成され、該2つの熱交換配管が相互に他方の渦巻きの隙間に上下方向に嵌め込まれることにより2重渦巻き状に組付けられていることを特徴とする熱交換器。   The heat exchange pipe includes two heat exchange pipes in which one or a plurality of second heat transfer pipes through which the second fluid flows circulates and is fixed around the first heat transfer pipe through which the first fluid flows. The spiral is formed in a spiral shape having a gap between the inner peripheral portion and the outer peripheral portion of the spiral, and the two heat exchange pipes are vertically fitted into the other spiral gap to form a double spiral. A heat exchanger characterized by being attached. 請求項1に記載の熱交換器において、渦巻きの中心部で両熱交換配管の内周側端部同士が接続されていることを特徴とする熱交換器。   The heat exchanger according to claim 1, wherein inner end portions of both heat exchange pipes are connected to each other at the center of the spiral. 請求項1又は2に記載の熱交換器において、2重渦巻き状に組み付けられた熱交換配管をさらに複数段積層配置したことを特徴とする熱交換器。   The heat exchanger according to claim 1 or 2, further comprising a plurality of stacked layers of heat exchange pipes assembled in a double spiral shape. 請求項1,2又は3に記載の熱交換器を凝縮器として備えたヒートポンプ給湯装置。   A heat pump hot water supply apparatus comprising the heat exchanger according to claim 1 as a condenser.
JP2011115191A 2011-05-23 2011-05-23 Heat exchanger and heat pump water heater Expired - Fee Related JP5929012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115191A JP5929012B2 (en) 2011-05-23 2011-05-23 Heat exchanger and heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115191A JP5929012B2 (en) 2011-05-23 2011-05-23 Heat exchanger and heat pump water heater

Publications (2)

Publication Number Publication Date
JP2012242054A true JP2012242054A (en) 2012-12-10
JP5929012B2 JP5929012B2 (en) 2016-06-01

Family

ID=47463949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115191A Expired - Fee Related JP5929012B2 (en) 2011-05-23 2011-05-23 Heat exchanger and heat pump water heater

Country Status (1)

Country Link
JP (1) JP5929012B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019651A (en) * 2011-07-14 2013-01-31 Rinnai Corp Heat exchanger
JP2015121371A (en) * 2013-12-24 2015-07-02 株式会社ノーリツ Double pipe heat exchanger
CN106196880A (en) * 2016-08-23 2016-12-07 汕头市富澜正东自动售货设备有限公司 A kind of heat exchange module of direct-cooling type beverage machine
RU169891U1 (en) * 2016-03-29 2017-04-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный политехнический университет" STEAM GENERATOR

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2300634A (en) * 1941-04-26 1942-11-03 Comb Eng Co Inc Tube coils
US4883117A (en) * 1988-07-20 1989-11-28 Sundstrand Corporation Swirl flow heat exchanger with reverse spiral configuration
JP2005201625A (en) * 2003-12-17 2005-07-28 Furukawa Electric Co Ltd:The Heat exchanger and its manufacturing method
JP3913629B2 (en) * 2002-07-25 2007-05-09 三洋電機株式会社 Heat exchanger and heat pump water heater equipped with the heat exchanger
US20100270009A1 (en) * 2009-04-22 2010-10-28 Gomyung-Enertech Co., Ltd. Apparatus for recycling wasted heat using waste hot water
JP2011511920A (en) * 2008-02-12 2011-04-14 ギルバート,パトリック Heat exchanger
JP2011089762A (en) * 2009-10-22 2011-05-06 Tai-Her Yang Heat absorbing/releasing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2300634A (en) * 1941-04-26 1942-11-03 Comb Eng Co Inc Tube coils
US4883117A (en) * 1988-07-20 1989-11-28 Sundstrand Corporation Swirl flow heat exchanger with reverse spiral configuration
JP3913629B2 (en) * 2002-07-25 2007-05-09 三洋電機株式会社 Heat exchanger and heat pump water heater equipped with the heat exchanger
JP2005201625A (en) * 2003-12-17 2005-07-28 Furukawa Electric Co Ltd:The Heat exchanger and its manufacturing method
JP2011511920A (en) * 2008-02-12 2011-04-14 ギルバート,パトリック Heat exchanger
US20100270009A1 (en) * 2009-04-22 2010-10-28 Gomyung-Enertech Co., Ltd. Apparatus for recycling wasted heat using waste hot water
JP2011089762A (en) * 2009-10-22 2011-05-06 Tai-Her Yang Heat absorbing/releasing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019651A (en) * 2011-07-14 2013-01-31 Rinnai Corp Heat exchanger
JP2015121371A (en) * 2013-12-24 2015-07-02 株式会社ノーリツ Double pipe heat exchanger
RU169891U1 (en) * 2016-03-29 2017-04-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный политехнический университет" STEAM GENERATOR
CN106196880A (en) * 2016-08-23 2016-12-07 汕头市富澜正东自动售货设备有限公司 A kind of heat exchange module of direct-cooling type beverage machine
CN106196880B (en) * 2016-08-23 2018-10-09 汕头市富澜正东自动售货设备有限公司 A kind of heat exchange module of direct-cooling type beverage dispenser

Also Published As

Publication number Publication date
JP5929012B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP2007278688A (en) Internal heat exchanger having spiral standardized fin tube
TWI740871B (en) Heat exchanger with water box
JP6687022B2 (en) Refrigeration cycle equipment
JP5929012B2 (en) Heat exchanger and heat pump water heater
JP5899679B2 (en) Heat exchanger and manufacturing method thereof
JP6573210B2 (en) Double tube heat exchanger and heat pump heat source machine equipped with the same
JP2008069993A (en) Heat exchanger and heat pump water heater using the same
JP2005133999A (en) Heat pump type hot-water supplier
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
JP2014163567A (en) Water heater
JP2014163566A (en) Water heater
JP5785883B2 (en) Heat exchanger and heat pump type water heater using the same
JP2004226036A (en) Heat pump type hot water supply system
JP4063237B2 (en) Heat exchange device and heat pump water heater using the same
JP2010038429A (en) Heat exchanger
JP2010169290A (en) Heat pump type water heater
JP2009133530A (en) Heat exchanger and heat pump hot water supply machine
JP5513738B2 (en) Heat exchanger and heat pump water heater
WO2015020049A1 (en) Heat exchanger and thermal cycle device provided with same
CN104896974A (en) Transcritical CO<2> heat pump one-piece heat exchanger, water tank and water heating all-in-one machine
JP5857197B2 (en) Double-pipe heat exchanger and heat pump hot water generator equipped with the same
JP3906797B2 (en) Heat exchanger
JP2010060214A (en) Refrigeration system
JP2007333319A (en) Heat exchanger
JP4985456B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees