JP2011089762A - Heat absorbing/releasing device - Google Patents

Heat absorbing/releasing device Download PDF

Info

Publication number
JP2011089762A
JP2011089762A JP2010236586A JP2010236586A JP2011089762A JP 2011089762 A JP2011089762 A JP 2011089762A JP 2010236586 A JP2010236586 A JP 2010236586A JP 2010236586 A JP2010236586 A JP 2010236586A JP 2011089762 A JP2011089762 A JP 2011089762A
Authority
JP
Japan
Prior art keywords
heat
fluid
phase
absorbs
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010236586A
Other languages
Japanese (ja)
Inventor
Tai-Her Yang
泰和 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2011089762A publication Critical patent/JP2011089762A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/10Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by imparting a pulsating motion to the flow, e.g. by sonic vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/10Particular layout, e.g. for uniform temperature distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Thermal Insulation (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat absorbing/releasing device in which heat conductive fluid forms comparatively large temperature difference at respective positions of a heat absorbing element or a heat releasing element. <P>SOLUTION: The device is composed by installing parallel or almost parallel fluid conduits (101) made by one-way or more serial or parallel connection. One or more specified double scrolls are arranged in each conduit to transport the heat conductive fluid (110). A fluid flow passage where temperature difference is uniform is constituted of the fluid conduits (101) of the double scrolls. Fluids passing through conduits of adjacent arrays are made to flow to the reverse directions so as to generate a heat absorbing function or a heat releasing function with respect to an object or a space (200) which passively releases or absorbs heat. The object or the space (200) which passively releases or absorbs heat is comparatively uniformly distributed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は吸放熱装置に関する。   The present invention relates to a heat absorbing / dissipating device.

従来の吸熱または放熱体の気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体が通過することにより、吸熱または放熱を生じさせる応用装置、例えばエンジンルームのラジエーター、熱伝導流体を利用して熱エネルギーを吸収する冷熱エネルギー発生装置、または、熱伝導流体を利用して熱エネルギーを放出する熱エネルギー発生装置、例えば暖房器具、加熱装置、または、熱エネルギー伝送装置を形成し、その熱伝導流体の流向は固定である。   The conventional endothermic or heat-dissipating gas phase fluid, liquid phase fluid, fluid that changes from gas phase to liquid phase, or heat transfer fluid that is composed of fluid that changes from liquid phase to gas phase passes through the heat absorption. Or an application device that generates heat, such as a radiator in an engine room, a cold energy generator that absorbs heat energy using a heat transfer fluid, or a heat energy generator that releases heat energy using a heat transfer fluid, For example, a heating appliance, a heating device, or a thermal energy transmission device is formed, and the flow direction of the heat transfer fluid is fixed.

熱伝導流体が吸熱または放熱体の各位置において、比較的大きな温度差を形成する吸放熱装置を提供する。   Provided is a heat absorbing / dissipating device in which a heat conduction fluid forms a relatively large temperature difference at each position of heat absorption or radiator.

請求項1に係る吸放熱装置は、平行または平行に近いワンウェイー以上の直列接続または並列接続する流体管路を設置することにより構成されている。各管路に特定する一個以上のダブルスクロールを配列させ、温度差を持つ気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体を輸送し、ダブルスクロールの流体管路を通して、温度差が均一である流体流路を構成する。隣合う配列の管路を通過する流体を逆方向に流動させ、受動的に放熱または吸熱する物体または空間に対して、吸熱または放熱機能を生じさせ、受動的に放熱または吸熱する物体または空間を比較的均一に分布させる吸放熱装置である。熱エネルギー伝送体は、固相、ゴム相、液相、または気相の熱伝導性材料により構成され、ダブルスクロール管路の配列と結合し、温度差を持つ流向の異なる流体の流体管路(101)の内部を流通する気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)の熱エネルギーを輸送、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、吸熱機能または放熱機能を作動させる。流体管路(101)は、熱導材料により構成され、平行または平行に近いダブルスクロール管路およびダブルスクロール管路配列は温度差を持つ流向が異なる流体輸送管路を隣合う管路とし、熱伝導流体の吸熱または放熱体の温度分布状態を比較的均一に形成させ、受動的に放熱または吸熱する物体または空間に対して、吸熱または放熱機能を生じさせ、ダブルスクロール分布の管路の外リングは管路の出入り端側であり、流体入口(111)及び流体出口(112)が設けられ、かつスクロール状の中心部の流体管路は、逆方向に曲がることにより、伝送流体の管路の転向構造(103)とし、流体管路兩端の流体入口(111)及び流体出口(112)により、気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の流体管路を通過する流体を逆方向に流動させ、吸熱または放熱する熱エネルギー伝送体(100)を経て、熱エネルギーを固相、ゴム相、液相、または、気相の熱伝導材料により構成される受動的な放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)へ伝送する。また、流体管路(101)は、ワンウェイー以上の直列接続または並列接続により構成され、各管路に一個以上のダブルスクロールを配列させ、流体管路(101)の両端にある流体入口(111)及び流体出口(112)により気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の管路を通過する流体管路(101)の熱伝導流体(110)を逆方向に流動させ、熱エネルギーを固相、ゴム相、液相、または、気相の熱伝導材料により構成される吸熱または放熱する熱エネルギー伝送体(100)へ伝送する。流体管路(101)は、平行または平行に近い平面状または立体状であることができ、吸熱または放熱する熱エネルギー伝送体(100)を形成し、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、吸熱または放熱する。   The heat-absorbing / dissipating device according to claim 1 is configured by installing fluid lines that are connected in series or in parallel in parallel or near one-way. One or more double scrolls specified for each pipe line are arranged and composed of a gas phase fluid with a temperature difference, a liquid phase fluid, a fluid that changes from a gas phase to a liquid phase, or a fluid that changes from a liquid phase to a gas phase The heat transfer fluid is transported, and a fluid flow path having a uniform temperature difference is formed through the double scroll fluid conduit. The fluid passing through the pipes in the adjacent arrangement is flowed in the opposite direction, and the object or space that passively radiates or absorbs heat is created by causing the object or space that passively radiates or absorbs heat to generate heat absorption or heat dissipation. It is a heat absorbing / dissipating device that distributes relatively uniformly. The thermal energy transfer body is composed of a thermally conductive material in a solid phase, a rubber phase, a liquid phase, or a gas phase, combined with an array of double scroll pipelines, and fluid pipelines of fluids with different flow directions having temperature differences ( 101) the heat energy of the heat transfer fluid (110) constituted by the gas phase fluid, the liquid phase fluid, the fluid changing from the gas phase to the liquid phase, or the fluid changing from the liquid phase to the gas phase. An endothermic function or a heat dissipation function is activated for a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that transports, passively radiates or absorbs heat. The fluid pipe (101) is made of a heat conductive material, and the double scroll pipe and the double scroll pipe arrangement which are parallel or nearly parallel are adjacent to each other with a fluid transport pipe having a different flow direction having a temperature difference as an adjacent pipe. The heat sink of the conduction fluid or the temperature distribution state of the radiator is formed relatively uniformly, and the object or space that passively radiates or absorbs heat has a function of absorbing or radiating heat. Is the inlet / outlet end side of the pipe line, provided with a fluid inlet (111) and a fluid outlet (112), and the fluid pipe line at the center of the scroll is bent in the opposite direction, thereby The turning structure (103) has a gas phase fluid, a liquid phase fluid, a fluid changing from a gas phase to a liquid phase, or a gas phase to a gas phase by a fluid inlet (111) and a fluid outlet (112) at the end of the fluid conduit. phase The heat conduction fluid (110) constituted by the changing fluid is transported, the fluid passing through the fluid pipes in the adjacent arrangement is flowed in the opposite direction, and the heat is transferred through the thermal energy transmission body (100) that absorbs or dissipates heat. Solid-state, rubber-phase, liquid-phase, or gas-phase object or space that dissipates or absorbs heat passively by a solid-state, rubber-phase, liquid-phase, or gas-phase heat conduction material (200) Transmit to. Further, the fluid pipe (101) is configured by one-way or more series connection or parallel connection, and one or more double scrolls are arranged in each pipe, and the fluid inlets (111) at both ends of the fluid pipe (101) are arranged. And a fluid outlet (112) for transporting a gas phase fluid, a liquid phase fluid, a fluid changing from the gas phase to the liquid phase, or a heat transfer fluid (110) composed of a fluid changing from the liquid phase to the gas phase, The heat conduction fluid (110) of the fluid pipe line (101) passing through the adjacent arrangement of pipe lines is caused to flow in the opposite direction, and the heat energy is generated by a solid phase, rubber phase, liquid phase, or gas phase heat conduction material. The heat is transmitted to the heat energy transmitting body (100) that absorbs or dissipates heat. The fluid conduit (101) can be parallel or nearly parallel to a plane or three-dimensional, and forms a thermal energy transmission body (100) that absorbs or dissipates heat, and passively dissipates or absorbs a solid phase, rubber Endothermic or dissipate heat to a phase, liquid phase, or gas phase object or space (200).

従来の吸熱または放熱する気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体を通して、固定流向の熱伝導流体により構成される吸熱または放熱装置を通過する構造説明図。Heat transfer fluid in a fixed flow direction through a conventional heat transfer fluid composed of a gas phase fluid that absorbs heat or dissipates, a liquid phase fluid, a fluid that changes from a gas phase to a liquid phase, or a fluid that changes from a liquid phase to a gas phase Structure explanatory drawing which passes the heat absorption or heat radiating device comprised by this. 図1の吸熱する冷熱エネルギー発生装置の作動中の温度差分布図。FIG. 2 is a temperature difference distribution diagram during operation of the cold energy generating apparatus that absorbs heat in FIG. 1. 図1の放熱する熱エネルギー発生装置の作動中の温度差分布図。FIG. 2 is a temperature difference distribution diagram during operation of the heat energy generating device for radiating heat in FIG. 1. 本発明の第1実施形態の構造説明図。Structure explanatory drawing of 1st Embodiment of this invention. 図4に示した吸熱する冷熱エネルギー発生装置の作動中の温度差分布図。FIG. 5 is a temperature difference distribution diagram during operation of the cold energy generating apparatus that absorbs heat shown in FIG. 4. 図4に示した放熱する熱エネルギー発生装置の作動中の温度差分布図。FIG. 5 is a temperature difference distribution diagram during operation of the heat energy generating device for radiating heat shown in FIG. 4. 本発明の第2実施形態の構造説明図。Structure explanatory drawing of 2nd Embodiment of this invention. 図7に示した吸熱する冷熱エネルギー発生装置の作動中の温度差分布図。FIG. 8 is a temperature difference distribution diagram during operation of the cold energy generating apparatus that absorbs heat shown in FIG. 7. 図7に示した放熱する熱エネルギー発生装置の作動中の温度差分布図。FIG. 8 is a temperature difference distribution diagram during operation of the heat energy generating device for radiating heat shown in FIG. 7. 本発明の第3実施形態の構造説明図。Structure explanatory drawing of 3rd Embodiment of this invention. 図10に示した吸熱する冷熱エネルギー発生装置の作動中の温度差分布図。FIG. 11 is a temperature difference distribution diagram during operation of the cold energy generating apparatus that absorbs heat shown in FIG. 10. 図10に示した放熱する熱エネルギー発生装置の作動中の温度差分布図。FIG. 11 is a temperature difference distribution diagram during operation of the heat energy generating device for radiating heat shown in FIG. 10. 図4に示した直接受動的に放熱または吸熱する物体または空間に対して、熱エネルギーを伝送する主な構造説明図。FIG. 5 is an explanatory diagram of main structures for transmitting thermal energy to the object or space that directly and passively radiates or absorbs heat shown in FIG. 4. 図7に示した直接受動的に放熱または吸熱する物体または空間に対して、熱エネルギーを伝送する主な構造説明図である。It is main structure explanatory drawing which transmits a thermal energy with respect to the object or space which directly thermally radiates or absorbs heat shown in FIG. は図10に示した直接受動的に放熱または吸熱する物体または空間に対して、熱エネルギーを伝送する主な構造説明図である。FIG. 11 is a main structural explanatory diagram for transmitting thermal energy to the object or space that directly and passively radiates or absorbs heat shown in FIG. 10. 本発明の図4に示す流体管路(101)が吸熱または放熱する熱エネルギー伝送体(100)を通して、受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)と組合せる形態を示す。The fluid conduit (101) shown in FIG. 4 of the present invention is combined with a conduit structure (100 ′) that transmits a heat conduction fluid that passively radiates or absorbs heat through a thermal energy transmitter (100) that absorbs or dissipates heat. The form is shown. 本発明の図7に示す流体管路(101)が吸熱または放熱する熱エネルギー伝送体(100)を通して、受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)と組合せる形態を示す。The fluid conduit (101) shown in FIG. 7 of the present invention is combined with a conduit structure (100 ′) that transmits a heat conduction fluid that passively radiates or absorbs heat through a thermal energy transmitter (100) that absorbs or radiates heat. The form is shown. 本発明の図10に示す流体管路(101)が吸熱または放熱する熱エネルギー伝送体(100)を通して、受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)と組合せる形態を示す。The fluid conduit (101) shown in FIG. 10 of the present invention is combined with a conduit structure (100 ′) that transmits a heat conduction fluid that passively radiates or absorbs heat through a thermal energy transmitter (100) that absorbs or radiates heat. The form is shown. 本発明の図4に示す流体管路(101)が吸熱または放熱する熱エネルギー伝送体(100)を通して、数セットの受動的な放熱または吸熱する熱伝導流体を伝送するパイプ構造体(100’)と組合せる形態の一を示す。Pipe structure (100 ′) for transmitting several sets of passive heat dissipation or heat absorption heat conduction fluid through heat energy transmission body (100) that absorbs or dissipates heat through fluid conduit (101) shown in FIG. 4 of the present invention. One of the forms combined with is shown. 本発明の図7に示す流体管路(101)が吸熱または放熱する熱エネルギー伝送体(100)を通して、数セットの受動的な放熱または吸熱する熱伝導流体を伝送するパイプ構造体(100’)と組合せる形態を示す。The pipe structure (100 ') for transmitting several sets of passive heat dissipation or heat absorption heat conduction fluid through the heat energy transmission body (100) that absorbs or dissipates heat through the fluid conduit (101) shown in FIG. 7 of the present invention. The form combined with is shown. 本発明の図10に示す流体管路(101)が吸熱または放熱する熱エネルギー伝送体(100)を通して、数セットの受動的な放熱または吸熱する熱伝導流体を伝送するパイプ構造体(100’)と組合せる形態を示す。Pipe structure (100 ′) for transmitting several sets of passive heat dissipation or heat absorption heat conduction fluid through heat energy transmission body (100) that absorbs or dissipates heat through fluid conduit (101) shown in FIG. 10 of the present invention. The form combined with is shown. 本発明の流体管路(101)に、独立した熱伝導性板(300)を付け加える実施形態を示す説明図である。It is explanatory drawing which shows embodiment which adds the independent heat conductive board (300) to the fluid pipe line (101) of this invention. 図22のA−A断面図である。It is AA sectional drawing of FIG. 本発明の流体管路(101)に共熱伝導性板(400)を設置する実施形態を示す説明図である。It is explanatory drawing which shows embodiment which installs a co-heat conductive board (400) in the fluid pipe line (101) of this invention. 図24のB−B断面図である。It is BB sectional drawing of FIG. 本発明の流体管路(101)に耐熱槽を持つ熱伝導性板(350)を設置する実施形態を示す説明図である。It is explanatory drawing which shows embodiment which installs the heat conductive board (350) which has a heat-resistant tank in the fluid pipe line (101) of this invention. 図26のC−C断面図である。It is CC sectional drawing of FIG. 本発明が二方向にポンプを通して、二方向に周期的に圧送する熱伝導流体(110)の作動システムを示す説明図である。It is explanatory drawing which shows the action | operation system of the heat transfer fluid (110) which this invention pumps in two directions periodically and pumps in two directions.

本発明による実施形態を図に基づいて説明する。本発明による実施形態を説明する前に、従来の吸放熱装置について説明する。
図1は従来の吸熱または放熱する気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体を通して、固定流向の熱伝導流体により構成される吸熱または放熱装置が通過する主な構造説明図である。図1に示すのは、伝統的な固定流向の気相流体、液相流体、液相から気相に変化し、または、気相から液相に変化する流体を輸送する熱伝導流体(110)が、流体管路(101)を通過し、吸熱または放熱する熱エネルギー伝送体(100)と結合することにより構成される吸熱または放熱装置のアセンブリー構造である。1)流体管路(101)を通過する熱伝導流体(110)により、吸熱または放熱する熱エネルギー伝送体(100)を通して、受動的に放熱または吸熱する固相、ゴム相、液相、または気相の物体または空間(200)に対して、冷却または加熱の機能を働く。2)流体管路(101)を通過する熱伝導流体(110)により逆方向に吸熱または放熱する熱エネルギー伝送体(100)の周辺から来る冷エネルギーまたは熱エネルギーを冷却または加熱する。前述の1)でよく見られるのは例えばエンジンルームのラジエーター、熱伝導流体(110)を通して吸熱する冷熱エネルギー発生装置、熱伝導流体(110)を通して放熱する熱エネルギー発生装置、例えば暖房器具、加熱装置、蒸発器、凝結器、または、冷熱エネルギーまたは熱エネルギー伝送装置へ応用する。後者の2)でよく見られるのは冷エネルギーまたは熱エネルギー伝送装置への応用である。1)へ応用するとき、熱伝導流体(110)は吸熱または放熱する熱エネルギー伝送体(100)の片側の側端にある流体管路(101)の入口から熱伝導流体(110)を入れ、他端から出せ、吸熱または放熱する熱エネルギー伝送体(100)の流体管路(101)の入口にある熱伝導流体(110)と流体管路(101)の出口にある熱伝導流体(110)間を通過し、比較的大きな温度差を形成する。同じ様に(2)へ応用するとき、流体管路(101)の入口及び流体管路(101)の出口に、比較的大きな温度差を形成することは、その欠点である。
An embodiment according to the present invention will be described with reference to the drawings. Prior to describing an embodiment according to the present invention, a conventional heat absorbing / dissipating device will be described.
FIG. 1 shows a conventional flow direction through a heat transfer fluid composed of a heat absorbing or radiating gas phase fluid, a liquid phase fluid, a fluid changing from the gas phase to the liquid phase, or a fluid changing from the liquid phase to the gas phase. It is main structure explanatory drawing through which the heat absorption or heat radiating device comprised with a heat transfer fluid passes. Illustrated in FIG. 1 is a traditional fixed flow gas phase fluid, a liquid phase fluid, a heat transfer fluid (110) that transports a fluid that changes from liquid phase to gas phase, or changes from gas phase to liquid phase. Is an assembly structure of an endothermic or heat radiating device configured by coupling with a thermal energy transmission body (100) that passes through the fluid pipe (101) and absorbs or radiates heat. 1) A solid, rubber, liquid, or gas that passively radiates or absorbs heat through a thermal energy transfer body (100) that absorbs or dissipates heat by a heat transfer fluid (110) that passes through the fluid pipe (101). It acts as a cooling or heating function for the phase object or space (200). 2) Cool or heat the cold energy or heat energy coming from the periphery of the thermal energy transmission body (100) that absorbs or dissipates heat in the opposite direction by the heat transfer fluid (110) passing through the fluid pipe (101). For example, a radiator of an engine room, a cold energy generator that absorbs heat through the heat transfer fluid (110), and a heat energy generator that dissipates heat through the heat transfer fluid (110), such as a heating appliance and a heating device, are often seen in the above 1). , Evaporators, condensers, or cold energy or thermal energy transmission devices. The latter 2) is often applied to cold energy or thermal energy transmission devices. When applying to 1), the heat transfer fluid (110) enters the heat transfer fluid (110) from the inlet of the fluid conduit (101) at the side end of one side of the heat energy transfer body (100) that absorbs or dissipates heat, A heat transfer fluid (110) at the inlet of the fluid conduit (101) of the thermal energy transmission body (100) that can be taken out from the other end and absorbs or dissipates heat and a heat transfer fluid (110) at the outlet of the fluid conduit (101) Pass through and form a relatively large temperature difference. Similarly, when applied to (2), forming a relatively large temperature difference at the inlet of the fluid line (101) and the outlet of the fluid line (101) is a disadvantage.

図2は図1の吸熱する冷熱エネルギー発生装置の作動中の温度差分布図である。図2に示すように従来の一方向流動の熱伝導流体(110)の輸送を利用し、熱エネルギーを吸熱または放熱中に、一方向流動の流路を形成させ、また熱伝導流体(110)が流体管路(101)を通過するとき、吸熱または放熱する熱エネルギー伝送体(100)の熱伝導流体(110)の入口と熱伝導流体(110)の出口の間に、比較的大きな温度差の分布状態を形成する。   FIG. 2 is a temperature difference distribution diagram during operation of the cold energy generating apparatus that absorbs heat shown in FIG. As shown in FIG. 2, a conventional unidirectionally flowing heat transfer fluid (110) is used to form a unidirectional flow path while absorbing or releasing heat energy, and the heat transfer fluid (110). Relatively large temperature difference between the inlet of the heat transfer fluid (110) and the outlet of the heat transfer fluid (110) of the heat energy transfer body (100) that absorbs or dissipates heat when the fluid passes through the fluid conduit (101). Form a distribution state.

図3は図1の放熱する熱エネルギー発生装置が作動中の温度差分布図である。図3に示しように、伝統的な一方向流動の熱伝導流体(110)の輸送を利用し、冷熱エネルギーを吸熱または放熱中に、一方向流動の流路を形成させ、また熱伝導流体(110)が流体管路(101)を通過するとき、吸熱または放熱する熱エネルギー伝送体(100)の熱伝導流体(110)の入口と熱伝導流体(110)の出口の間に、比較的大きな温度差の分布状態を形成する。   FIG. 3 is a temperature difference distribution diagram during operation of the heat energy generating device of FIG. As shown in FIG. 3, a traditional one-way flow of heat transfer fluid (110) is used to form a one-way flow path while absorbing or radiating cold energy, and heat transfer fluid ( 110) is relatively large between the inlet of the heat transfer fluid (110) and the outlet of the heat transfer fluid (110) of the thermal energy transfer body (100) that absorbs or dissipates heat when passing through the fluid line (101). A temperature difference distribution state is formed.

上述の現象に対して、本発明は一種の史上初の熱伝導流体を使用することにより、放熱または吸熱する装置であり、かつダブルスクロール管路の配列を使用し、温度差により異なる流向の温度差を持つ流体を輸送し、受動的に放熱または吸熱する物体または空間に対して、吸熱または放熱機能を生じさせ、熱伝導流体の吸熱または放熱体を比較的均一に分布させる温度分布状態を形成する。   In contrast to the above-described phenomenon, the present invention is a device that radiates or absorbs heat by using a kind of heat transfer fluid that is the first in history, and uses an arrangement of double scroll pipes, and the temperature of the flow direction varies depending on the temperature difference. Transporting fluids with differences, creating heat absorption or heat dissipation function for objects or spaces that passively dissipate or absorb heat, and form a temperature distribution state that distributes heat absorption or heat dissipation of heat conduction fluid relatively evenly To do.

(第1実施形態)
図4は本発明の第1実施形態に主な構造説明図である。吸熱または放熱する熱エネルギー伝送体(100)は、固相、ゴム相、液相、または気相の熱伝導性材料により構成され、ダブルスクロール管路の配列と結合し、温度差を持つ流向の異なる流体の流体管路(101)の内部を流通する気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)の熱エネルギーを輸送、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、吸熱機能または放熱機能を作動させる。吸熱または放熱する熱エネルギー伝送体(100)は一個または一個以上有することができる。
(First embodiment)
FIG. 4 is an explanatory view of the main structure of the first embodiment of the present invention. The thermal energy transmission body (100) that absorbs or dissipates heat is made of a thermally conductive material in a solid phase, a rubber phase, a liquid phase, or a gas phase, combined with an array of double scroll pipes, and having a flow direction having a temperature difference. Heat conduction fluid constituted by a gas phase fluid, a liquid phase fluid, a fluid that changes from a gas phase to a liquid phase, or a fluid that changes from a liquid phase to a gas phase, which circulates in the fluid conduit (101) of different fluids The heat absorption function or the heat radiation function is activated for a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that transports, passively releases or absorbs thermal energy of (110). One or more thermal energy transmission bodies (100) that absorb or dissipate heat may be included.

流体管路(101)は、熱導材料により構成され、平行または平行に近いダブルスクロール管路かつダブルスクロール管路配列は温度差を持つ流向の異なる流体輸送管路を隣合う管路とし、熱伝導流体の吸熱または放熱体の温度分布状態を比較的均一に形成させ、受動的に放熱または吸熱する物体または空間に対して、吸熱または放熱機能を生じさせ、ダブルスクロール分布の管路の外リングは管路の出入り端側であり、流体入口(111)及び流体出口(112)が設けられ、かつスクロール状の中心部の流体管路は、逆方向に曲がることにより、伝送流体の管路の転向構造(103)とし、流体管路兩端の流体入口(111)及び流体出口(112)により、気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の流体管路を通過する流体を逆方向に流動させ、吸熱または放熱する熱エネルギー伝送体(100)を経て、熱エネルギーを固相、ゴム相、液相、または、気相の熱伝導材料により構成される受動的な放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)へ伝送する。   The fluid pipe (101) is made of a heat conductive material, and the double scroll pipe line and the double scroll pipe arrangement in parallel or nearly parallel are arranged with adjacent fluid transport pipes having different flow directions having temperature differences as the adjacent pipe lines. The heat sink of the conduction fluid or the temperature distribution state of the radiator is formed relatively uniformly, and the object or space that passively radiates or absorbs heat has a function of absorbing or radiating heat. Is the inlet / outlet end side of the pipe line, provided with a fluid inlet (111) and a fluid outlet (112), and the fluid pipe line at the center of the scroll is bent in the opposite direction, thereby The turning structure (103) has a gas phase fluid, a liquid phase fluid, a fluid changing from a gas phase to a liquid phase, or a gas phase to a gas phase by a fluid inlet (111) and a fluid outlet (112) at the end of the fluid conduit. In phase The heat conduction fluid (110) constituted by the fluid to be converted is transported, the fluid passing through the fluid pipes in the adjacent arrangement is caused to flow in the reverse direction, and the heat is passed through the thermal energy transmission body (100) that absorbs or dissipates heat. Solid-state, rubber-phase, liquid-phase, or gas-phase object or space that dissipates or absorbs heat passively by a solid-state, rubber-phase, liquid-phase, or gas-phase heat conduction material (200) Transmit to.

上述の流体管路(101)は、ワンウェイー以上の直列接続または並列接続により構成され、各管路に一個以上のダブルスクロールを配列させ、流体管路(101)の両端にある流体入口(111)及び流体出口(112)により気相流体、液相流体、気相から液相に変化する流体、または液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の管路を通過する流体管路(101)の熱伝導流体(110)を逆方向に流動させ、熱エネルギーを固相、ゴム相、液相、または、気相の熱伝導材料により構成される吸熱または放熱する熱エネルギー伝送体(100)へ伝送する。   The above-described fluid pipe (101) is configured by one-way or more series connection or parallel connection, and one or more double scrolls are arranged in each pipe, and fluid inlets (111) at both ends of the fluid pipe (101). And a fluid outlet (112) for transporting a heat transfer fluid (110) composed of a gas phase fluid, a liquid phase fluid, a fluid changing from a gas phase to a liquid phase, or a fluid changing from a liquid phase to a gas phase. The heat conduction fluid (110) of the fluid pipe (101) passing through the pipes of the matching arrangement is caused to flow in the reverse direction, and the thermal energy is constituted by a solid phase, rubber phase, liquid phase, or gas phase heat conduction material. The heat is transmitted to the heat energy transmitting body (100) that absorbs or dissipates heat.

流体管路(101)は、平行または平行に近い平面状または立体状であることができ、吸熱または放熱する熱エネルギー伝送体(100)を形成し、受動的に放熱または吸熱する固相、ゴム相、液相、または気相物体または空間(200)に対して、吸熱または放熱する。   The fluid conduit (101) can be parallel or nearly parallel to a plane or three-dimensional, and forms a thermal energy transmission body (100) that absorbs or dissipates heat, and passively dissipates or absorbs a solid phase, rubber Endothermic or radiate heat to the phase, liquid phase, or gas phase object or space (200).

図4に示す吸熱または放熱する熱エネルギー伝送体(100)と流体管路(101)は、
1)吸熱または放熱する熱エネルギー伝送体(100)と流体管路(101)を組み立てる構造、
2)吸熱または放熱する熱エネルギー伝送体(100)と流体管路(101)の一体構造により構成される構造、
3)流体管路(101)が直接吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
4)流体管路(101)と隣合う管路間と連接していない独立した熱伝導性板(300)を追加設置することにより、吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
5)周りの流体管路(101)の間に、共熱伝導性板(400)を連結させ、吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
6)周りの流体管路(101)の間に、耐熱槽を持つ熱伝導性板(350)を連結させ、吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、のうち一種以上の構造を有する。
The thermal energy transmission body (100) and the fluid pipe (101) for absorbing or radiating heat shown in FIG.
1) a structure for assembling a heat energy transmission body (100) that absorbs or dissipates heat and a fluid pipe (101);
2) a structure constituted by an integral structure of a heat energy transmission body (100) that absorbs or dissipates heat and a fluid pipe (101);
3) A structure having a function of a thermal energy transmission body (100) in which the fluid pipe (101) directly absorbs or dissipates heat,
4) It has the function of a thermal energy transmission body (100) that absorbs or dissipates heat by additionally installing an independent thermal conductive plate (300) that is not connected to the fluid pipeline (101) and the adjacent pipeline. Construction,
5) A structure having a function of a thermal energy transmission body (100) for connecting or absorbing heat between the surrounding fluid conduits (101) and absorbing or radiating heat.
6) One or more of the structures having the function of a thermal energy transmission body (100) that absorbs or dissipates heat by connecting a heat conductive plate (350) having a heat-resistant tank between the surrounding fluid pipes (101) It has the following structure.

図5は図4に示した吸熱する冷熱エネルギー発生装置が作動中の温度差分布図を示す。図5に示すように、吸熱または放熱する熱エネルギー伝送体(100)の中で、流体管路(101)の送入端を経過する熱伝導流体(110)は比較的低温であり、送出端の熱伝導流体(110)は比較的高温である。、かつ吸熱または放熱する熱エネルギー伝送体(100)の温度は、熱伝導流体(110)の送入温度と熱伝導流体(110)の送出温度との間の中間温度であり、吸熱または放熱する熱エネルギー伝送体(100)に均一に分布されている。受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、熱エネルギーを吸熱または放熱させることにより、局部的な低温を避ける。   FIG. 5 shows a temperature difference distribution diagram during operation of the cold energy generating apparatus that absorbs heat shown in FIG. As shown in FIG. 5, in the thermal energy transmission body (100) that absorbs or dissipates heat, the heat transfer fluid (110) passing through the inlet end of the fluid pipe (101) has a relatively low temperature, and the outlet end The heat transfer fluid (110) is relatively hot. In addition, the temperature of the thermal energy transmission body (100) that absorbs or dissipates heat is an intermediate temperature between the feeding temperature of the heat conduction fluid (110) and the sending temperature of the heat conduction fluid (110), and absorbs heat or dissipates heat. The heat energy transfer body (100) is uniformly distributed. A local low temperature is avoided by absorbing or radiating thermal energy to a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that passively radiates or absorbs heat.

図6は、図4に示した放熱する熱エネルギー発生装置が作動中の温度差分布図を示す。図6に示すように、吸熱または放熱する熱エネルギー伝送体(100)の中で、流体管路(101)の送入端を経過する熱伝導流体(110)は比較的高温であり、送出端の熱伝導流体(110)は比較的低温である。かつ吸熱または放熱する熱エネルギー伝送体(100)の温度は、熱伝導流体(110)の送入温度と熱伝導流体(110)の送出温度との間の中間温度であり、吸熱または放熱する熱エネルギー伝送体(100)に均一に分布されている。受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、熱エネルギーを吸熱または放熱させることにより、局部的な高温を避ける。   6 shows a temperature difference distribution diagram during operation of the heat energy generating device for radiating heat shown in FIG. As shown in FIG. 6, in the thermal energy transmission body (100) that absorbs or dissipates heat, the heat transfer fluid (110) that passes through the inlet end of the fluid pipe (101) has a relatively high temperature, and the outlet end The heat transfer fluid (110) has a relatively low temperature. In addition, the temperature of the heat energy transmission body (100) that absorbs or dissipates heat is an intermediate temperature between the feeding temperature of the heat conduction fluid (110) and the sending temperature of the heat conduction fluid (110), and heat that absorbs or dissipates heat. It is uniformly distributed in the energy transmission body (100). A local high temperature is avoided by absorbing or dissipating thermal energy to a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that passively radiates or absorbs heat.

(第2実施形態)
図7は本発明の第2実施形態の構造説明図を示す。
吸熱または放熱する熱エネルギー伝送体(100)は、固相、ゴム相、液相、または、気相の熱伝導性材料により構成され、ダブルスクロール管路の配列と結合し、温度差を持つ流向の異なる流体の流体管路(101)の内部を流通する気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)の熱エネルギーを輸送、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、冷熱エネルギーの吸熱機能または放熱機能を作動させる。吸熱または放熱する熱エネルギー伝送体(100)は一個または一個以上に有することができる。
(Second Embodiment)
FIG. 7 shows a structure explanatory diagram of the second embodiment of the present invention.
The thermal energy transmission body (100) that absorbs or dissipates heat is composed of a solid phase, rubber phase, liquid phase, or gas phase thermal conductive material, combined with an array of double scroll lines, and having a temperature difference. Conduction composed of a gas phase fluid, a liquid phase fluid, a fluid that changes from a gas phase to a liquid phase, or a fluid that changes from a liquid phase to a gas phase. For the solid phase, rubber phase, liquid phase, or gas phase object or space (200) that transports, passively dissipates or absorbs the heat energy of the fluid (110), it has a heat absorption function or a heat dissipation function for cold energy. Operate. One or more thermal energy transmission bodies (100) that absorb or dissipate heat may be included.

流体管路(101)は、熱導材料により構成され、平行または平行に近いダブルスクロール管路かつダブルスクロール管路配列は温度差を持つ流向の異なる流体輸送管路を隣合う管路とし、熱伝導流体の吸熱または放熱体の温度分布状態を比較的均一に形成させ、受動的に放熱または吸熱する物体または空間に対して、吸熱または放熱機能を生じさせる。ダブルスクロール分布の管路の外リングは管路の出入り端側であり、流体入口(111)及び流体出口(112)が設けられ、かつスクロール状の中心部の流体管路は、逆方向に曲がることにより、伝送流体の管路の転向構造(103)とし、流体管路兩端の流体入口(111)及び流体出口(112)から、気相流体、液相流体、気相から液相に変化する流体、または液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の流体管路を通過する流体を逆方向に流動させ、吸熱または放熱する熱エネルギー伝送体(100)を経て、熱エネルギーを固相、ゴム相、液相、または、気相の熱伝導材料により構成される受動的な放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)へ伝送する。   The fluid pipe (101) is made of a heat conductive material, and the double scroll pipe line and the double scroll pipe arrangement in parallel or nearly parallel are arranged with adjacent fluid transport pipes having different flow directions having temperature differences as the adjacent pipe lines. The heat absorption of the conduction fluid or the temperature distribution state of the heat radiating body is formed relatively uniformly, and a heat absorption or heat radiation function is generated for an object or space that passively radiates or absorbs heat. The outer ring of the double-scroll distribution pipe is on the inlet / outlet side of the pipe, is provided with a fluid inlet (111) and a fluid outlet (112), and the fluid pipe at the center of the scroll is bent in the opposite direction. As a result, the transmission fluid pipe turning structure (103) changes from the fluid inlet (111) and the fluid outlet (112) at the end of the fluid pipe to the gas phase fluid, the liquid phase fluid, and the gas phase to the liquid phase. Heat or heat transfer fluid (110) composed of a fluid that changes from a liquid phase to a gas phase, and a fluid passing through adjacent fluid conduits in the opposite direction to flow in the opposite direction to absorb or dissipate heat. Through the energy transmission body (100), the solid phase, rubber phase, liquid phase, or the solid phase, rubber phase, liquid phase, or the solid phase that absorbs or absorbs heat passively composed of the heat conducting material in the solid phase, rubber phase, liquid phase, or gas phase , Gas phase objects or spaces (20 ) To be transmitted.

流体管路(101)は、ワンウェイー以上の直列接続または並列接続により構成され、各管路に一個以上のダブルスクロールを配列させ、流体管路(101)の両端にある流体入口(111)及び流体出口(112)により気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の管路を通過する流体管路(101)の熱伝導流体(110)を逆方向に流動させ、熱エネルギーを固相、ゴム相、液相、または、気相の熱伝導材料により構成される吸熱または放熱する熱エネルギー伝送体(100)へ伝送する。   The fluid conduit (101) is configured by one-way or more series connection or parallel connection, and one or more double scrolls are arranged in each conduit, and the fluid inlet (111) and the fluid at both ends of the fluid conduit (101) are arranged. The exit (112) transports a gas-phase fluid, a liquid-phase fluid, a fluid that changes from a gas phase to a liquid phase, or a heat transfer fluid (110) that is composed of a fluid that changes from a liquid phase to a gas phase. The heat conduction fluid (110) of the fluid pipe (101) passing through the pipes of the array is caused to flow in the opposite direction, and the heat energy is constituted by a solid phase, rubber phase, liquid phase, or gas phase heat conduction material. The heat is transmitted to the heat energy transmitting body (100) that absorbs or dissipates heat.

流体管路(101)は、平行または平行に近い平面状または立体状であることができ、吸熱または放熱する熱エネルギー伝送体(100)を形成し、受動的に放熱または吸熱する固相、ゴム相、液相、または気相物体または空間(200)に対して、吸熱または放熱する。   The fluid conduit (101) can be parallel or nearly parallel to a plane or three-dimensional, and forms a thermal energy transmission body (100) that absorbs or dissipates heat, and passively dissipates or absorbs a solid phase, rubber Endothermic or radiate heat to the phase, liquid phase, or gas phase object or space (200).

図7に示した吸熱または放熱する熱エネルギー伝送体(100)と流体管路(101)は、
1)吸熱または放熱する熱エネルギー伝送体(100)と流体管路(101)を組み立てる構造、
2)吸熱または放熱する熱エネルギー伝送体(100)と流体管路(101)の一体構造により構成される構造、
3)流体管路(101)が直接吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
4)流体管路(101)と隣合う管路間と連接していない独立した熱伝導性板(300)を追加設置することにより、吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
5)周りの流体管路(101)の間に、共熱伝導性板(400)を連結させ、吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
6)周りの流体管路(101)の間に、耐熱槽を持つ熱伝導性板(350)を連結させ、吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、のうち一種以上の構造を有する。
The thermal energy transmission body (100) and the fluid pipe (101) for absorbing or radiating heat shown in FIG.
1) a structure for assembling a heat energy transmission body (100) that absorbs or dissipates heat and a fluid pipe (101);
2) a structure constituted by an integral structure of a heat energy transmission body (100) that absorbs or dissipates heat and a fluid pipe (101);
3) A structure having a function of a thermal energy transmission body (100) in which the fluid pipe (101) directly absorbs or dissipates heat,
4) It has the function of a thermal energy transmission body (100) that absorbs or dissipates heat by additionally installing an independent thermal conductive plate (300) that is not connected to the fluid pipeline (101) and the adjacent pipeline. Construction,
5) A structure having a function of a thermal energy transmission body (100) for connecting or absorbing heat between the surrounding fluid conduits (101) and absorbing or radiating heat.
6) One or more of the structures having the function of a thermal energy transmission body (100) that absorbs or dissipates heat by connecting a heat conductive plate (350) having a heat-resistant tank between the surrounding fluid pipes (101) It has the following structure.

図8は、図7に示した吸熱する冷熱エネルギー発生装置が作動中の温度差分布図を示す。図8に示すように、吸熱または放熱する熱エネルギー伝送体(100)の中で、流体管路(101)の送入端を経過する熱伝導流体(110)は比較的低温であり、熱伝導流体(110)の送出端は比較的高温である。かつ吸熱または放熱する熱エネルギー伝送体(100)の温度は、熱伝導流体(110)の送入温度と熱伝導流体(110)の送出温度との間の中間温度であり吸熱または放熱する熱エネルギー伝送体(100)に均一に分布されている。受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、熱エネルギーを吸熱または放熱させることにより、局部的な低温を避ける。   FIG. 8 shows a temperature difference distribution diagram during operation of the cold energy generating apparatus that absorbs heat shown in FIG. As shown in FIG. 8, in the heat energy transmission body (100) that absorbs or dissipates heat, the heat conduction fluid (110) that passes through the inlet end of the fluid pipe (101) has a relatively low temperature, and heat conduction. The delivery end of the fluid (110) is relatively hot. In addition, the temperature of the heat energy transmission body (100) that absorbs or dissipates heat is an intermediate temperature between the temperature at which the heat transfer fluid (110) is fed and the temperature at which the heat transfer fluid (110) is sent, and the heat energy that absorbs or dissipates heat. The transmitter (100) is uniformly distributed. A local low temperature is avoided by absorbing or dissipating thermal energy to a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that passively radiates or absorbs heat.

図9は図7に示した放熱する熱エネルギー発生装置が作動中の温度差分布図を示す。図9に示すように、吸熱または放熱する熱エネルギー伝送体(100)の中で、流体管路(101)の送入端を経過する熱伝導流体(110)は比較的高温であり、熱伝導流体(110)の送出端は比較的低温である。かつ吸熱または放熱する熱エネルギー伝送体(100)の温度は、熱伝導流体(110)の送入温度と熱伝導流体(110)の送出温度との間の中間温度であり、吸熱または放熱する熱エネルギー伝送体(100)に均一に分布されている。受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、熱エネルギーを吸熱または放熱させることにより、局部的な高温を避ける。   FIG. 9 shows a temperature difference distribution diagram during operation of the heat energy generating device for radiating heat shown in FIG. As shown in FIG. 9, in the thermal energy transmission body (100) that absorbs or dissipates heat, the heat conduction fluid (110) that passes through the inlet end of the fluid pipe (101) has a relatively high temperature. The delivery end of the fluid (110) is relatively cold. In addition, the temperature of the heat energy transmission body (100) that absorbs or dissipates heat is an intermediate temperature between the feeding temperature of the heat conduction fluid (110) and the sending temperature of the heat conduction fluid (110), and heat that absorbs or dissipates heat. It is uniformly distributed in the energy transmission body (100). A local high temperature is avoided by absorbing or dissipating thermal energy to a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that passively radiates or absorbs heat.

(第3実施形態)
図10は本発明の第3実施形態の構造説明図を示す。
吸熱または放熱する熱エネルギー伝送体(100)は、固相、ゴム相、液相、気相の熱伝導性材料により構成され、ダブルスクロール管路の配列と結合し、温度差を持つ流向の異なる流体の流体管路(101)の内部を流通する気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)の熱エネルギーを輸送、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、冷熱エネルギーの吸熱機能または放熱機能を作動させる。吸熱または放熱する熱エネルギー伝送体(100)は一個または一個以上有することができる。
(Third embodiment)
FIG. 10 shows a structure explanatory diagram of the third embodiment of the present invention.
The thermal energy transmission body (100) that absorbs or dissipates heat is composed of a solid-phase, rubber-phase, liquid-phase, and gas-phase thermally conductive material, and is combined with an array of double scroll pipes and has a different flow direction with a temperature difference. A heat conduction fluid (a fluid that flows through the fluid conduit (101), a liquid phase fluid, a fluid that changes from a gas phase to a liquid phase, or a fluid that changes from a liquid phase to a gas phase ( 110) The heat absorption function or the heat dissipation function of the cold energy is activated for the solid phase, rubber phase, liquid phase, or gas phase object or space (200) that transports, passively releases or absorbs the thermal energy of 110). . One or more thermal energy transmission bodies (100) that absorb or dissipate heat may be included.

流体管路(101)は、熱導材料により構成され、平行または平行に近いダブルスクロール管路かつダブルスクロール管路配列は温度差を持つ流向の異なる流体輸送管路を隣合う管路とし、熱伝導流体の吸熱または放熱体の温度分布状態を比較的均一に形成させ、受動的に放熱または吸熱する物体または空間に対して、吸熱または放熱機能を生じさせる。ダブルスクロール分布の管路の外リングは管路の転向構造(103)であり、ダブルスクロール分布の管路の片側に近い中間部分を送出・送入端側とし、流体入口(111)及び流体出口(112)が設けられ、かつスクロール状の中心部の流体管路は、逆方向に曲がることにより、伝送流体の管路の転向構造(103)とし、流体管路兩端の流体入口(111)及び流体出口(112)から、気相流体、液相流体、気相から液相に変化する流体、または液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の流体管路を通過する流体を逆方向に流動させ、吸熱または放熱する熱エネルギー伝送体(100)を経て、熱エネルギーを固相、ゴム相、液相、または気相の熱伝導材料により構成される受動的な放熱または吸熱する固相、ゴム相、液相、または気相の物体または空間(200)へ伝送する。   The fluid pipe (101) is made of a heat conductive material, and the double scroll pipe line and the double scroll pipe arrangement in parallel or nearly parallel are arranged with adjacent fluid transport pipes having different flow directions having temperature differences as the adjacent pipe lines. The heat absorption of the conduction fluid or the temperature distribution state of the heat radiating body is formed relatively uniformly, and a heat absorption or heat radiation function is generated for an object or space that passively radiates or absorbs heat. The outer ring of the double-scroll distribution pipe is a pipe turning structure (103), and an intermediate portion close to one side of the double-scroll distribution pipe is set as the sending / inlet end side, and the fluid inlet (111) and the fluid outlet (112) is provided, and the fluid pipe line in the central part of the scroll shape is bent in the opposite direction to form a turning structure (103) of the pipe line of the transmission fluid, and the fluid inlet (111) at the end of the fluid pipe line And from the fluid outlet (112) transport a heat transfer fluid (110) composed of a gas phase fluid, a liquid phase fluid, a fluid changing from the gas phase to the liquid phase, or a fluid changing from the liquid phase to the gas phase, The fluid passing through the fluid pipes in the adjacent arrangement flows in the opposite direction, and passes through the thermal energy transmission body (100) that absorbs or dissipates heat, and the thermal energy is transferred in the solid phase, rubber phase, liquid phase, or gas phase. Passive composed of materials Solid phase to heat dissipation or absorption, rubber phase, liquid phase, or transmitted to the object or space gas phase (200).

流体管路(101)は、ワンウェイー以上の直列接続または並列接続により構成され、各管路に一個以上のダブルスクロールを配列させ、流体管路(101)の両端にある流体入口(111)及び流体出口(112)により気相流体、液相流体、気相から液相に変化する流体、または液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の管路を通過する流体管路(101)の熱伝導流体(110)を逆方向に流動させ、熱エネルギーを固相、ゴム相、液相、または気相の熱伝導材料により構成される吸熱または放熱する熱エネルギー伝送体(100)へ伝送する。   The fluid conduit (101) is configured by one-way or more series connection or parallel connection, and one or more double scrolls are arranged in each conduit, and the fluid inlet (111) and the fluid at both ends of the fluid conduit (101) are arranged. Adjacent arrangement for transporting a heat transfer fluid (110) composed of a gas phase fluid, a liquid phase fluid, a fluid changing from a gas phase to a liquid phase, or a fluid changing from a liquid phase to a gas phase by an outlet (112) The heat conduction fluid (110) of the fluid pipe line (101) passing through the pipe line flows in the opposite direction, and the heat energy is absorbed by a solid phase, rubber phase, liquid phase, or gas phase heat conduction material. Or it transmits to the thermal energy transmission body (100) which dissipates heat.

流体管路(101)は、平行または平行に近い平面状または立体状であることができ、吸熱または放熱する熱エネルギー伝送体(100)を形成し、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、吸熱または放熱する。   The fluid conduit (101) can be parallel or nearly parallel to a plane or three-dimensional, and forms a thermal energy transmission body (100) that absorbs or dissipates heat, and passively dissipates or absorbs a solid phase, rubber Endothermic or dissipate heat to a phase, liquid phase, or gas phase object or space (200).

図10に示す吸熱または放熱する熱エネルギー伝送体(100)と流体管路(101)は、
1)吸熱または放熱する熱エネルギー伝送体(100)と流体管路(101)を組み立てる構造、
2)吸熱または放熱する熱エネルギー伝送体(100)と流体管路(101)の一体構造により構成される構造、
3)流体管路(101)が直接吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
4)流体管路(101)と隣合う管路間と連接していない独立した熱伝導性板(300)を追加設置することにより、吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
5)周りの流体管路(101)の間に、共熱伝導性板(400)を連結させ、吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
6)周りの流体管路(101)の間に、耐熱槽を持つ熱伝導性板(350)を連結させ、吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、のうち一種以上の構造を有する。
The thermal energy transmission body (100) and the fluid pipe (101) for absorbing or radiating heat shown in FIG.
1) a structure for assembling a heat energy transmission body (100) that absorbs or dissipates heat and a fluid pipe (101);
2) a structure constituted by an integral structure of a heat energy transmission body (100) that absorbs or dissipates heat and a fluid pipe (101);
3) A structure having a function of a thermal energy transmission body (100) in which the fluid pipe (101) directly absorbs or dissipates heat,
4) It has the function of a thermal energy transmission body (100) that absorbs or dissipates heat by additionally installing an independent thermal conductive plate (300) that is not connected to the fluid pipeline (101) and the adjacent pipeline. Construction,
5) A structure having a function of a thermal energy transmission body (100) for connecting or absorbing heat between the surrounding fluid conduits (101) and absorbing or radiating heat.
6) One or more of the structures having the function of a thermal energy transmission body (100) that absorbs or dissipates heat by connecting a heat conductive plate (350) having a heat-resistant tank between the surrounding fluid pipes (101) It has the following structure.

図11は、図10に示した吸熱する冷熱エネルギー発生装置が作動中の温度差分布図を示す。図11に示すように、吸熱または放熱する熱エネルギー伝送体(100)の中で、流体管路(101)の送入端を経過する熱伝導流体(110)は比較的低温であり、送出端の熱伝導流体(110)は比較的高温である。かつ吸熱または放熱する熱エネルギー伝送体(100)の温度は、熱伝導流体(110)の送入温度と熱伝導流体(110)の送出温度との間の中間であり、吸熱または放熱する熱エネルギー伝送体(100)に均一に分布されている。受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、熱エネルギーを吸熱または放熱させることにより、局部的な低温を避ける。   FIG. 11 shows a temperature difference distribution diagram during operation of the cold energy generating apparatus that absorbs heat shown in FIG. As shown in FIG. 11, in the thermal energy transmission body (100) that absorbs or dissipates heat, the heat transfer fluid (110) passing through the inlet end of the fluid pipe (101) has a relatively low temperature, and the outlet end The heat transfer fluid (110) is relatively hot. The temperature of the heat energy transmission body (100) that absorbs or dissipates heat is intermediate between the temperature at which the heat transfer fluid (110) is fed and the temperature at which the heat transfer fluid (110) is sent, and the heat energy that absorbs or dissipates heat. The transmitter (100) is uniformly distributed. A local low temperature is avoided by absorbing or dissipating thermal energy to a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that passively radiates or absorbs heat.

図12は図10に示した放熱する熱エネルギー発生装置が作動中の温度差分布図を示す。図12に示すように、吸熱または放熱する熱エネルギー伝送体(100)の中で、流体管路(101)の送入端を経過する熱伝導流体(110)は比較的高温であり、送出端の熱伝導流体(110)は比較的低温である。かつ吸熱または放熱する熱エネルギー伝送体(100)の温度は、熱伝導流体(110)の送入温度と熱伝導流体(110)の送出温度との間の中間温度であり、吸熱または放熱する熱エネルギー伝送体(100)に均一に分布されている。受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、熱エネルギーを吸熱または放熱させることにより、局部的な高温を避ける。   12 shows a temperature difference distribution diagram during operation of the heat energy generating device for radiating heat shown in FIG. As shown in FIG. 12, in the thermal energy transmission body (100) that absorbs or dissipates heat, the heat transfer fluid (110) passing through the inlet end of the fluid conduit (101) is relatively hot, and the outlet end The heat transfer fluid (110) has a relatively low temperature. In addition, the temperature of the heat energy transmission body (100) that absorbs or dissipates heat is an intermediate temperature between the feeding temperature of the heat conduction fluid (110) and the sending temperature of the heat conduction fluid (110), and heat that absorbs or dissipates heat. It is uniformly distributed in the energy transmission body (100). A local high temperature is avoided by absorbing or dissipating thermal energy to a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that passively radiates or absorbs heat.

吸放熱装置は、吸熱または放熱する熱エネルギー伝送体(100)を通して熱エネルギーを伝送する以外に、流体管路(101)を平行または平行に近い平面状または立体状に配列し、かつ直接構造体を構成することにより、温度差を持つ気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)を通過させ、直接受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、熱エネルギーを吸収または放出する。   In addition to transmitting heat energy through a heat energy transmission body (100) that absorbs or dissipates heat, the heat absorbing / dissipating device arranges the fluid pipes (101) in a parallel or parallel plane or three-dimensional shape, and directly forms a structure. The heat conduction fluid (110) composed of a gas phase fluid having a temperature difference, a liquid phase fluid, a fluid changing from the gas phase to the liquid phase, or a fluid changing from the liquid phase to the gas phase Thermal energy is absorbed or released to a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that passes through and directly passively dissipates or absorbs heat.

図13は図4に示した直接ダブルスクロール管路により構成された構造体を示し、直接受動的に放熱または吸熱する物体または空間に対して、エネルギーを伝送する構造説明図を示す。
図14は図7に示した直接受動的に放熱または吸熱する物体または空間に対して、エネルギーを伝送する構造説明図である。
図15は図10に示した直接受動的に放熱または吸熱する物体または空間に対して、熱エネルギーを伝送する構造説明図である。
FIG. 13 shows a structure constituted by the direct double scroll pipe shown in FIG. 4 and shows a structure explanatory diagram for transmitting energy to an object or space that directly and passively radiates or absorbs heat.
FIG. 14 is an explanatory diagram of a structure for transmitting energy to the object or space that directly and passively radiates or absorbs heat shown in FIG.
FIG. 15 is an explanatory diagram of a structure for transmitting thermal energy to the object or space directly and passively radiating or absorbing heat shown in FIG.

流体管路(101)により、熱伝導流体(110)を伝送かつ流動させることによって、流体管路(101)は平行または平行に近い平面状または立体状に配列され、共同構造体を構成し、その共同構造体の全体の温度差を均一に分布させ、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、吸熱または放熱する。
吸放熱装置の受動的な放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)と流体管路(101)の構造関係は、流体管路(101)と受動的な放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)により、直接に共同構造体を構成する。そして、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相物の体または空間(200)に対して、熱エネルギーことを伝送する。
By transferring and flowing the heat transfer fluid (110) through the fluid pipe (101), the fluid pipes (101) are arranged in a parallel or parallel plane or three-dimensional shape to form a joint structure, The entire temperature difference of the joint structure is uniformly distributed, and heat is absorbed or dissipated to a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that passively dissipates or absorbs heat. .
The structural relationship between a solid phase, a rubber phase, a liquid phase, or a gas phase object or space (200) and a fluid conduit (101) that passively radiates or absorbs heat of the heat absorbing and radiating device is the same as that of the fluid conduit (101). The joint structure is directly constituted by a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that passively radiates or absorbs heat. Then, heat energy is transmitted to the solid phase, rubber phase, liquid phase, or vapor phase body or space (200) that passively radiates or absorbs heat.

関連する流体管路を平行または平行に近い平面状、または、立体状に形成させ、受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)を構成することにより、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に取って代わる。
流体管路(101)により気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)の伝送によって、吸熱または放熱する熱エネルギー伝送体(100)を経て、熱エネルギーを伝送することにより、受動的に放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)を受動的に放熱または吸熱させる。
By forming a pipe structure (100 ′) for transmitting a heat conducting fluid that passively dissipates or absorbs heat by forming related fluid pipes in parallel or nearly parallel plane or three-dimensional form, passive Instead of a solid, rubber, liquid, or gas phase object or space (200) that radiates or absorbs heat.
By transmission of a heat transfer fluid (110) composed of a gas phase fluid, a liquid phase fluid, a fluid changing from the gas phase to the liquid phase, or a fluid changing from the liquid phase to the gas phase by the fluid line (101), Passing heat energy through the heat energy transmitting body (100) that absorbs or dissipates heat, the pipe structure (100 ') that transmits heat conduction fluid that passively dissipates or absorbs heat passively dissipates or absorbs heat. Let

図16は本発明の図4中の流体管路(101)が、吸熱または放熱する熱エネルギー伝送体(100)によって、受動的に放熱または吸熱する熱伝導流体を伝送するパイプ構造体(100’)と組合せる形態を示す。
図17は本発明の図7中の流体管路(101)が、吸熱または放熱する熱エネルギー伝送体(100)によって、受動的に放熱または吸熱する熱伝導流体を伝送するパイプ構造体(100’)と組合せる形態を示す。
図18は本発明の図10中の流体管路(101)が、吸熱または放熱する熱エネルギー伝送体(100)によって、受動的に放熱または吸熱する熱伝導流体を伝送するパイプ構造体(100’)と組合せる形態を示す。
図19は本発明の図4中の流体管路(101)が、吸熱または放熱する熱エネルギー伝送体(100)によって、数セットの受動的な放熱または吸熱する熱伝導流体のパイプ構造体(100’)と組合せる形態を示す。
図20は本発明の図7中の流体管路(101)が、吸熱または放熱する熱エネルギー伝送体(100)によって、数セットの受動的な放熱または吸熱する熱伝導流体のパイプ構造体(100’)と組合せる形態を示す。
図21は本発明の図10中の流体管路(101)が、吸熱または放熱する熱エネルギー伝送体(100)によって、数セットの受動的な放熱または吸熱する熱伝導流体の管路構造体(100’)と組合せる形態を示す。
FIG. 16 shows a pipe structure (100 ′) in which the fluid conduit (101) in FIG. 4 of the present invention transmits a heat conduction fluid that passively dissipates or absorbs heat by means of a heat energy transmitter (100) that absorbs or dissipates heat. ) In combination.
FIG. 17 shows a pipe structure (100 ′) in which the fluid conduit (101) in FIG. 7 of the present invention transmits a heat conduction fluid that passively dissipates or absorbs heat by means of a heat energy transmitter (100) that absorbs or dissipates heat. ) In combination.
FIG. 18 shows a pipe structure (100 ′) in which the fluid conduit (101) in FIG. 10 of the present invention transmits a heat conduction fluid that passively dissipates or absorbs heat by means of a heat energy transmitter (100) that absorbs or dissipates heat. ) In combination.
FIG. 19 shows a pipe structure (100) of a heat conduction fluid in which the fluid conduit (101) in FIG. 4 of the present invention absorbs or dissipates heat by several sets of heat energy transfer bodies (100). ') Indicates the form combined with.
FIG. 20 shows a pipe structure (100) of a heat conduction fluid in which the fluid conduit (101) in FIG. 7 of the present invention passively radiates or absorbs heat by several heat energy transmitters (100) that absorb or radiate heat. ') Indicates the form combined with.
FIG. 21 shows a pipe structure of a heat conduction fluid in which the fluid pipe (101) in FIG. 10 of the present invention absorbs or dissipates heat by several sets of heat conduction fluid (100). 100 ′).

吸放熱装置は、吸熱または放熱効果を一層高めるために、流体管路(101)、及び、受動的に放熱または吸熱する熱伝導流体を伝送するパイプ構造体(100’)の少なくとも一方に、独立の熱伝導性板(300)を追加設置することにより、放熱または吸熱効果を一層高めることができる。
図22は流体管路(101)に、独立した熱伝導性板(300)を付け加える形態を示す。
図23は図22のA−A断面図である。
In order to further enhance the heat absorption or heat dissipation effect, the heat absorption and heat dissipation device is independent of at least one of the fluid conduit (101) and the pipe structure (100 ′) that transmits the heat conduction fluid that passively dissipates or absorbs heat. By additionally installing the heat conductive plate (300), the heat dissipation or heat absorption effect can be further enhanced.
FIG. 22 shows a configuration in which an independent heat conductive plate (300) is added to the fluid pipe (101).
23 is a cross-sectional view taken along the line AA in FIG.

吸放熱装置は、吸熱または放熱効果を一層高めるために、流体管路(101)及び受動的に放熱または吸熱する熱伝導流体を伝送するパイプ構造体(100’)の少なくとも一方に、共熱伝導性板(400)を追加設置することにより、≡進放熱または吸熱効果を一層高めることができる。   In order to further enhance the heat absorption or heat dissipation effect, the heat absorption and heat dissipation device transmits heat to the fluid pipe line (101) and at least one of the pipe structure (100 ′) that transmits the heat conduction fluid that passively dissipates or absorbs heat. By additionally installing the property plate (400), the ≡advance heat dissipation or endothermic effect can be further enhanced.

図24は流体管路(101)に共熱伝導性板(400)を設置する形態を示す説明図である。
図25は図24のB−B断面図である。
吸放熱装置は、構造の安定性、製造過程及び独立した熱伝導機能の必要性を兼ね備え、流体管路(101)の間に、耐熱槽を持つ熱伝導性板(350)を設置し、放熱または吸熱効果を一層高めることができる。
図26は流体管路(101)に耐熱槽を持つ熱伝導性板(350)を設置する形態を示す説明図である。
図27は図26のC−C断面図である。
FIG. 24 is an explanatory view showing a form in which the cothermally conductive plate (400) is installed in the fluid conduit (101).
25 is a cross-sectional view taken along the line BB of FIG.
The heat-absorbing / dissipating device combines the stability of the structure, the manufacturing process, and the need for an independent heat-conducting function. A heat-conducting plate (350) having a heat-resistant tank is installed between the fluid pipes (101) to dissipate heat. Alternatively, the endothermic effect can be further enhanced.
FIG. 26 is an explanatory view showing a form in which a heat conductive plate (350) having a heat-resistant tank is installed in the fluid pipe (101).
27 is a cross-sectional view taken along the line CC of FIG.

吸放熱装置の中に、流体管路(101)、及び受動的に放熱または吸熱する熱伝導流体を伝送するパイプ構造体(100’)の少なくとも一方の流体は、制御装置(500)の制御によって、二方向流体ポンピング装置(600)に駆動され、周期的に正逆方向へ圧送し、二方向に熱伝導流体(110)を圧送されることにより、その均温効果を高める。   At least one fluid of the fluid conduit (101) and the pipe structure (100 ′) that transmits the heat conduction fluid that passively radiates or absorbs heat is controlled by the control device (500). Driven by the two-way fluid pumping device (600), periodically pumps in the forward and reverse directions, and pumps the heat transfer fluid (110) in two directions, thereby enhancing the temperature equalizing effect.

上述の二方向流体ポンピング装置(600)は、機電装置、電子装置、または、マイクロコンピュータ及び関連ソフトにより構成される制御装置(500)により制御され、周期的に正逆方向へ圧送する。
図28は、二方向にポンプを通して、二方向に周期的に圧送される熱伝導流体(110)の作動システムを示す説明図である。
The bi-directional fluid pumping device (600) described above is controlled by a control device (500) configured by an electromechanical device, an electronic device, or a microcomputer and related software, and periodically pumps in the forward and reverse directions.
FIG. 28 is an explanatory diagram showing an operating system of the heat transfer fluid (110) pumped in two directions and periodically pumped in two directions.

吸放熱装置を応用するとき、応用のニーズ、需要構造、コスト考量に応じて、前述の作動原理に基づいて、下記の一種または一種以上の製作が可能である。   When applying the heat-absorbing / dissipating device, one or more of the following types can be manufactured based on the aforementioned operating principle, depending on application needs, demand structure, and cost consideration.

吸放熱装置の流体管路(101)及び受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)のうち少なくとも一方と、吸熱または放熱する熱エネルギー伝送体(100)とを一体構造にすることができる;   At least one of a fluid conduit (101) of the heat absorbing / dissipating device and a pipe structure (100 ′) for transmitting a heat conduction fluid that passively radiates or absorbs heat, and a thermal energy transmitter (100) that absorbs or radiates heat Can be a unitary structure;

吸放熱装置の流体管路(101)、及び、は受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)のうち少なくとも一方と、吸熱または放熱する熱エネルギー伝送体(100)とを組合せ構造により構成されることができる;   The fluid pipe (101) of the heat absorbing / dissipating device and the pipe structure (100 ′) that transmits a heat conduction fluid that passively radiates or absorbs heat and a thermal energy transmitter (that absorbs or radiates heat) 100) can be constituted by a combination structure;

吸放熱装置の流体管路(101)、及び、受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)での結合うち少なくとも一方と、吸熱または放熱する熱エネルギー伝送体(100)とは、板状、塊状、多翼状の構造ユニットを構成し、または、翼片との組合せにより構造ユニットを構成し、または少なくとも一個の構造ユニットにより構成されることができる。   At least one of the coupling in the fluid pipe (101) of the heat absorbing / dissipating device and the pipe structure (100 ') for transmitting the heat conduction fluid that passively radiates or absorbs heat, and the thermal energy transmitter that absorbs or radiates heat (100) can constitute a plate-like, block-like, multi-wing-like structural unit, or a structural unit by combination with a blade piece, or can be constituted by at least one structural unit.

吸放熱装置は、一個以上により組立てられ、個別パーツは流体管路(101)が通過する流体管路の間で、直列、並列、または、直並列に接続され、または、並列または重なり合うようにして各種幾何形状にすることができる。   The heat-absorbing / dissipating device is assembled by one or more, and the individual parts are connected in series, in parallel, or in series-parallel, or in parallel or overlapping between the fluid lines through which the fluid line (101) passes. Various geometric shapes can be used.

吸放熱装置の流体管路(101)、及び、受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)のうち少なくとも一つの熱伝導流体(110)は、圧送、蒸発、及び、冷熱のうち少なくとも一つの自然対流方式で熱伝導流体(110)を輸送することを含む。   At least one heat conducting fluid (110) of the fluid conduit (101) of the heat sink / heat dissipator and the pipe structure (100 ′) that transmits the heat conducting fluid that passively radiates or absorbs heat is pumped and evaporated. And transporting the heat transfer fluid (110) in at least one natural convection mode of cold.

吸放熱装置は、流体の冷熱温度差、自然対流、強制的に流体をポンピングすることにより生じさせる対流、輻射、伝導のうち少なくとも一つの熱伝送機能または伝動方式によって、流体状態の受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、熱エネルギーを吸収または放出する。   The heat-absorbing / dissipating device passively dissipates heat in the fluid state by at least one of the heat transfer function or transmission system among the cooling temperature difference of the fluid, natural convection, and forced convection, radiation, and conduction. Alternatively, it absorbs or releases thermal energy to a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that absorbs heat.

吸放熱装置の流体管路(101)、及び受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)のうち少なくとも一方の熱伝導流体(110)は、密閉式循環または開放式環境を流れる。   At least one of the heat transfer fluid (110) of the fluid pipe (101) of the heat dissipation and heat dissipation device and the pipe structure (100 ′) that transmits the heat transfer fluid that passively dissipates or absorbs heat is hermetically circulated or Flows through an open environment.

吸放熱装置の各流体管路の流体入口と流体出口とは、3次元空間中で、同じ方向または異なる方向に開口する。   The fluid inlet and the fluid outlet of each fluid conduit of the heat absorbing / dissipating device open in the same direction or different directions in the three-dimensional space.

吸放熱装置の流体管路は、管状構造、板片状構造、または、トンネル状流体管路の塊状構造により構成される。   The fluid conduit of the heat absorbing / dissipating device is configured by a tubular structure, a plate-like structure, or a massive structure of a tunnel-like fluid conduit.

吸放熱装置は、熱伝導応用装置、熱エネルギー吸収装置、熱エネルギー放出装置、加熱装置、熱エネルギー伝送装置、建物の加熱または冷卻、太陽光パネルの冷卻、電機または動力機械の加熱または冷卻、マシンシェルの吸熱または散熱するヒートパイプ構造のボディシェルの吸熱または散熱、ボディシェルの吸熱または散熱、チップまたは半導体素子の吸熱または散熱、通風装置、情報装置、ステレオまたは画像装置の吸熱または散熱または熱エネルギー伝送、各種灯具または発光ダイオード(LED)の吸熱または散熱または熱エネルギー伝送、空調装置の蒸発器の吸熱または冷凝器の散熱または熱エネルギー伝送、機械装置の熱エネルギー伝送、摩擦熱による損失の散熱、電暖装置またはその他電熱家電の装置または電熱式炊飯器の散熱または熱エネルギー伝送、火炎加熱のストーブまたは炊具の吸熱または熱エネルギー伝送、地層または水中での熱エネルギーの吸収または散熱または熱エネルギー伝送、工場建物または家屋建物または建築材料または建築空間の吸熱または散熱または熱エネルギー伝送、水塔の吸熱または散熱、バッテリーまたは燃料電池の吸熱または散熱または熱エネルギー伝送へ応用可能である。
また、吸放熱装置は、家電商品、工業商品、電子商品、機械装置、発電設備、建築体、空調装置、生産設備または産業の製造過程中の熱エネルギー伝送への応用可能である。
Heat-absorbing / dissipating devices include heat conduction application devices, heat energy absorption devices, heat energy release devices, heating devices, heat energy transmission devices, building heating or cooling, solar panel cooling, electric or power machine heating or cooling, machines Body shell heat absorption or heat dissipation, heat absorption or heat dissipation of the heat pipe structure that absorbs or dissipates the shell, heat absorption or heat dissipation of the body shell, heat absorption or heat dissipation of the chip or semiconductor element, heat absorption or heat dissipation of the ventilator, information device, stereo or imaging device Heat transfer, heat absorption or heat dissipation of various lamps or light emitting diodes (LEDs), heat absorption of the evaporator of the air conditioner or heat dissipation or heat energy transfer of the cooler, heat energy transfer of mechanical devices, heat dissipation of losses due to frictional heat, Electric heating equipment or other electric appliances or electric rice cookers Or heat energy transfer, flame heating stove or cookware heat absorption or heat energy transfer, heat energy absorption or heat dissipation in the formation or water, heat absorption or heat energy transfer, factory building or house building or building material or building space heat absorption or heat dissipation or It can be applied to heat energy transfer, heat absorption or heat dissipation of water towers, heat absorption or heat dissipation of batteries or fuel cells, or heat energy transfer.
In addition, the heat absorbing / dissipating device can be applied to household appliances, industrial products, electronic products, mechanical devices, power generation facilities, buildings, air conditioners, production facilities, or thermal energy transmission during the manufacturing process of industries.

100・・・吸熱または放熱する熱エネルギー伝送体
100’・・・受動的に放熱または吸熱する熱伝導流体を伝送する管路構造体
101・・・流体管路
103・・・管路の転向構造
110・・・熱伝導流体
111・・・流体入口
112・・・流体出口
200・・・受動的な放熱または吸熱する固相、またはゴム相、または液相、または気相物体または空間
300・・・独立した熱伝導性板
350・・・耐熱槽を持つ熱伝導性板
400・・・共熱伝導性板
500・・・制御装置
600・・・二方向流体ポンピング装置
DESCRIPTION OF SYMBOLS 100 ... Thermal energy transmission body 100 'that absorbs or dissipates heat Pipe line structure 101 that transmits heat conduction fluid that passively dissipates or absorbs heat ... Fluid pipe line 103 ... Diversion structure of the pipe line 110 ... heat conduction fluid 111 ... fluid inlet 112 ... fluid outlet 200 ... a solid phase, a rubber phase, a liquid phase, or a gas phase object or space 300 that passively radiates or absorbs heat Independent thermal conductive plate 350 ... thermal conductive plate 400 having a heat-resistant tank ... co-thermal conductive plate 500 ... control device 600 ... bidirectional fluid pumping device

Claims (18)

平行または略平行なワンウェイー以上の直列接続または並列接続する流体管路を設置することにより構成され、各管路に特定する一個以上のダブルスクロールを配列させ、温度差を持つ気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体を輸送し、ダブルスクロールの流体管路を通して、温度差が均一である流体流路を構成し、隣合う配列の管路を通過する流体を逆方向に流動させ、受動的に放熱または吸熱する物体または空間に対して、吸熱または放熱機能を生じさせ、受動的に放熱または吸熱する物体または空間を比較的均一に分布させる吸放熱装置であって、
固相、ゴム相、液相、または気相の熱伝導性材料により構成され、ダブルスクロール管路の配列と結合し、温度差を持つ流向の異なる流体の流体管路(101)の内部を流通する気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)の熱エネルギーを輸送、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、吸熱機能または放熱機能を作動させる熱エネルギー伝送体(100)と、
熱導材料により構成され、平行または略平行なダブルスクロール管路およびダブルスクロール管路配列は温度差を持つ流向の異なる流体輸送管路を隣合う管路とし、熱伝導流体の吸熱または放熱体の温度分布状態を比較的均一に形成させ、受動的に放熱または吸熱する物体または空間に対して、吸熱または放熱機能を生じさせ、ダブルスクロール分布の管路の外リングは管路の出入り端側であり、流体入口(111)及び流体出口(112)が設けられ、かつスクロール状の中心部の流体管路は、逆方向に曲がることにより、伝送流体の管路の転向構造(103)とし、流体管路兩端の流体入口(111)及び流体出口(112)により、気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の流体管路を通過する流体を逆方向に流動させ、吸熱または放熱する熱エネルギー伝送体(100)を経て、熱エネルギーを固相、ゴム相、液相、または、気相の熱伝導材料により構成される受動的な放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)へ伝送する流体管路(101)とを備え、
流体管路(101)は、ワンウェイー以上の直列接続または並列接続により構成され、各管路に一個以上のダブルスクロールを配列させ、流体管路(101)の両端にある流体入口(111)及び流体出口(112)により気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の管路を通過する流体管路(101)の熱伝導流体(110)を逆方向に流動させ、熱エネルギーを固相、ゴム相、液相、または、気相の熱伝導材料により構成される吸熱または放熱する熱エネルギー伝送体(100)へ伝送し、
流体管路(101)は、平行または略平行な平面状または立体状であることができ、吸熱または放熱する熱エネルギー伝送体(100)を形成し、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、吸熱または放熱することを特徴とする吸放熱装置。
One or more parallel or nearly parallel series or parallel fluid pipelines are installed, and one or more double scrolls specified for each pipeline are arranged to provide a gas phase fluid or liquid phase with a temperature difference. A fluid flow that transports a fluid, a fluid that changes from a gas phase to a liquid phase, or a heat transfer fluid that is composed of a fluid that changes from a liquid phase to a gas phase, and that has a uniform temperature difference through a fluid line of a double scroll. Constructs a path and causes the fluid passing through the adjacent lines of pipes to flow in the opposite direction, creating heat absorption or heat dissipation function for objects or spaces that passively radiate or absorb heat, and passively radiate or absorb heat A heat absorbing / dissipating device that distributes an object or space relatively uniformly,
Consists of a solid phase, rubber phase, liquid phase, or gas phase thermally conductive material, combined with an array of double scroll pipelines, and circulates inside the fluid pipeline (101) of fluids with different flow directions with temperature differences Transports heat energy of a heat transfer fluid (110) composed of a gas phase fluid, a liquid phase fluid, a fluid that changes from a gas phase to a liquid phase, or a fluid that changes from a liquid phase to a gas phase. Or a thermal energy transmission body (100) that operates an endothermic function or a heat radiation function on a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that absorbs heat;
Consisting of parallel or substantially parallel double scroll pipes and double scroll pipe arrangements composed of heat conducting materials, adjacent fluid transport pipes with different flow directions with temperature differences are used to absorb heat from heat conduction fluid or heat sinks. A temperature distribution state is formed relatively uniformly, and an object or space that passively dissipates or absorbs heat is caused to absorb heat or dissipate, and the outer ring of the double scroll distribution line is located at the entrance and exit ends of the line. A fluid inlet (111) and a fluid outlet (112) are provided, and the fluid conduit in the center of the scroll shape is bent in the opposite direction to form a turning structure (103) for the transmission fluid conduit, Consists of gas phase fluid, liquid phase fluid, fluid changing from gas phase to liquid phase, or fluid changing from liquid phase to gas phase by fluid inlet (111) and fluid outlet (112) at the end of the pipeline The heat conduction fluid (110) is transported, the fluid passing through the fluid pipes in the adjacent arrangement is flowed in the reverse direction, and the heat energy is absorbed or dissipated through the heat energy transmission body (100), the heat energy is solid phase, rubber A fluid conduit that transfers to a solid, rubber, liquid, or gas phase object or space (200) that is passively dissipating or absorbing heat composed of a phase, liquid phase, or gas phase heat transfer material (101)
The fluid conduit (101) is configured by one-way or more series connection or parallel connection, and one or more double scrolls are arranged in each conduit, and the fluid inlet (111) and the fluid at both ends of the fluid conduit (101) are arranged. The exit (112) transports a gas-phase fluid, a liquid-phase fluid, a fluid that changes from a gas phase to a liquid phase, or a heat transfer fluid (110) that is composed of a fluid that changes from a liquid phase to a gas phase. The heat conduction fluid (110) of the fluid pipe (101) passing through the pipes of the array is caused to flow in the opposite direction, and the heat energy is constituted by a solid phase, rubber phase, liquid phase, or gas phase heat conduction material. Transmit to the heat energy transfer body (100) that absorbs or dissipates heat,
The fluid pipe (101) can be parallel or substantially parallel plane or three-dimensional, and forms a thermal energy transmission body (100) that absorbs or dissipates heat, and passively dissipates or absorbs a solid phase, rubber A heat absorbing / dissipating device that absorbs heat or dissipates heat from a phase, liquid phase, or gas phase object or space (200).
吸熱または放熱する熱エネルギー伝送体(100)と流体管路(101)は、
1)吸熱または放熱する熱エネルギー伝送体(100)と流体管路(101)を組み立てる構造、
2)吸熱または放熱する熱エネルギー伝送体(100)と流体管路(101)の一体構造により構成される構造、
3)流体管路(101)が直接吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
4)流体管路(101)と隣合う管路間と連接していない独立した熱伝導性板(300)を追加設置することにより、吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
5)周りの流体管路(101)の間に、共熱伝導性板(400)を連結させ、吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
6)周りの流体管路(101)の間に、耐熱槽を持つ熱伝導性板(350)を連結させ、吸熱または放熱する熱エネルギー伝送体(100)の機能を有する構造、
のうち一種以上の構造を有することを特徴とする請求項1記載の吸放熱装置。
The thermal energy transmission body (100) and the fluid pipe (101) that absorb or dissipate heat are:
1) a structure for assembling a heat energy transmission body (100) that absorbs or dissipates heat and a fluid pipe (101);
2) a structure constituted by an integral structure of a heat energy transmission body (100) that absorbs or dissipates heat and a fluid pipe (101);
3) A structure having a function of a thermal energy transmission body (100) in which the fluid pipe (101) directly absorbs or dissipates heat,
4) It has the function of a thermal energy transmission body (100) that absorbs or dissipates heat by additionally installing an independent thermal conductive plate (300) that is not connected to the fluid pipeline (101) and the adjacent pipeline. Construction,
5) A structure having a function of a thermal energy transmission body (100) for connecting or absorbing heat between the surrounding fluid conduits (101) and absorbing or radiating heat.
6) A structure having a function of a thermal energy transmission body (100) that absorbs or dissipates heat by connecting a thermal conductive plate (350) having a heat-resistant tank between the surrounding fluid pipes (101).
The heat absorbing / dissipating device according to claim 1, having one or more structures.
固相、ゴム相、液相、または、気相の熱伝導性材料により構成され、ダブルスクロール管路の配列と結合し、温度差を持つ流向の異なる流体の流体管路(101)の内部を流通する気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)の熱エネルギーを輸送、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、冷熱エネルギーの吸熱機能または放熱機能を作動させる熱エネルギー伝送体(100)と、
熱導材料により構成され、平行または略平行なダブルスクロール管路およびダブルスクロール管路配列は温度差を持つ流向の異なる流体輸送管路を隣合う管路とし、熱伝導流体の吸熱または放熱体の温度分布状態を比較的均一に形成させ、受動的に放熱または吸熱する物体または空間に対して、吸熱または放熱機能を生じさせ、ダブルスクロール分布の管路の外リングは管路の出入り端側であり、流体入口(111)及び流体出口(112)が設けられ、かつスクロール状の中心部の流体管路は、逆方向に曲がることにより、伝送流体の管路の転向構造(103)とし、流体管路兩端の流体入口(111)及び流体出口(112)により、気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の流体管路を通過する流体を逆方向に流動させ、吸熱または放熱する熱エネルギー伝送体(100)を経て、熱エネルギーを固相、ゴム相、液相、または、気相の熱伝導材料により構成される受動的な放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)へ伝送する流体管路(101)とをさらに備え、
流体管路(101)は、ワンウェイー以上の直列接続または並列接続により構成され、各管路に一個以上のダブルスクロールを配列させ、流体管路(101)の両端にある流体入口(111)及び流体出口(112)により気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の管路を通過する流体管路(101)の熱伝導流体(110)を逆方向に流動させ、熱エネルギーを固相、ゴム相、液相、または、気相の熱伝導材料により構成される吸熱または放熱する熱エネルギー伝送体(100)へ伝送し
流体管路(101)は、平行または略平行な平面状または立体状であることができ、吸熱または放熱する熱エネルギー伝送体(100)を形成し、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、吸熱または放熱することを特徴とする請求項1記載の吸放熱装置。
Consists of a solid phase, rubber phase, liquid phase, or gas phase thermally conductive material, combined with an array of double scroll lines, and inside the fluid lines (101) of fluids with different flow directions having temperature differences Passively transports and passively heat energy of a heat transfer fluid (110) composed of a circulating gas phase fluid, a liquid phase fluid, a fluid that changes from a gas phase to a liquid phase, or a fluid that changes from a liquid phase to a gas phase A thermal energy transmission body (100) that operates a heat absorption function or a heat radiation function of cold energy on a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that radiates or absorbs heat; and
Consisting of parallel or substantially parallel double scroll pipes and double scroll pipe arrangements composed of heat conducting materials, adjacent fluid transport pipes with different flow directions with temperature differences are used to absorb heat from heat conduction fluid or heat sinks. A temperature distribution state is formed relatively uniformly, and an object or space that passively dissipates or absorbs heat is caused to absorb heat or dissipate, and the outer ring of the double scroll distribution line is located at the entrance and exit ends of the line. A fluid inlet (111) and a fluid outlet (112) are provided, and the fluid conduit in the center of the scroll shape is bent in the opposite direction to form a turning structure (103) for the transmission fluid conduit, Consists of gas phase fluid, liquid phase fluid, fluid changing from gas phase to liquid phase, or fluid changing from liquid phase to gas phase by fluid inlet (111) and fluid outlet (112) at the end of the pipeline The heat conduction fluid (110) is transported, the fluid passing through the fluid pipes in the adjacent arrangement is flowed in the reverse direction, and the heat energy is absorbed or dissipated through the heat energy transmission body (100), the heat energy is solid phase, rubber A fluid conduit that transfers to a solid, rubber, liquid, or gas phase object or space (200) that is passively dissipating or absorbing heat composed of a phase, liquid phase, or gas phase heat transfer material (101)
The fluid conduit (101) is configured by one-way or more series connection or parallel connection, and one or more double scrolls are arranged in each conduit, and the fluid inlet (111) and the fluid at both ends of the fluid conduit (101) are arranged. The exit (112) transports a gas-phase fluid, a liquid-phase fluid, a fluid that changes from a gas phase to a liquid phase, or a heat transfer fluid (110) that is composed of a fluid that changes from a liquid phase to a gas phase. The heat conduction fluid (110) of the fluid pipe (101) passing through the pipes of the array is caused to flow in the opposite direction, and the heat energy is constituted by a solid phase, rubber phase, liquid phase, or gas phase heat conduction material. The heat pipe (101) that transmits to the heat energy transmission body (100) that absorbs or dissipates heat can be parallel or substantially parallel to a flat or three-dimensional shape, and the heat energy transmission body (100) that absorbs or dissipates heat. The The heat absorbing / dissipating heat according to claim 1, characterized in that it absorbs or dissipates heat to or from a solid phase, rubber phase, liquid phase, or gas phase object or space that is formed and passively dissipates or absorbs heat. apparatus.
固相、ゴム相、液相、または気相の熱伝導性材料により構成され、ダブルスクロール管路の配列と結合し、温度差を持つ流向の異なる流体の流体管路(101)の内部を流通する気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)の熱エネルギーを輸送、受動的に放熱または吸熱する固相、ゴム相、液相、気相の物体または空間(200)に対して、吸熱機能または放熱機能を作動させる熱エネルギー伝送体(100)と
熱導材料により構成され、平行または略平行なダブルスクロール管路およびダブルスクロール管路配列は温度差を持つ流向が異なる流体輸送管路を隣合う管路とし、熱伝導流体の吸熱または放熱体の温度分布状態を比較的均一に形成させ、受動的に放熱または吸熱する物体または空間に対して、吸熱または放熱機能を生じさせ、ダブルスクロール分布の管路の外リングは管路の転向構造(103)であり、ダブルスクロール分布の管路の片側に近い中間部分を出入端側とし、流体入口(111)及び流体出口(112)が設けられ、かつスクロール状の中心部の流体管路は、逆方向に曲がることにより、伝送流体の管路の転向構造(103)とし、流体管路兩端の流体入口(111)及び流体出口(112)により、気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の流体管路を通過する流体を逆方向に流動させ、吸熱または放熱する熱エネルギー伝送体(100)を経て、熱エネルギーを固相、ゴム相、液相、または、気相の熱伝導材料により構成される受動的な放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)へ伝送する流体管路(101)とをさらに備え、
流体管路(101)は、ワンウェイー以上の直列接続または並列接続により構成され、各管路に一個以上のダブルスクロールを配列させ、流体管路(101)の両端にある流体入口(111)及び流体出口(112)により気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)を輸送し、隣合う配列の管路を通過する流体管路(101)の熱伝導流体(110)を逆方向に流動させ、熱エネルギーを固相、ゴム相、液相、または、気相の熱伝導材料により構成される吸熱または放熱する熱エネルギー伝送体(100)へ伝送し、
流体管路(101)は、平行または略平行な平面状または立体状であることができ、吸熱または放熱する熱エネルギー伝送体(100)を形成し、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、吸熱または放熱することを特徴とする請求項1記載の吸放熱装置。
Consists of a solid phase, rubber phase, liquid phase, or gas phase thermally conductive material, combined with an array of double scroll pipelines, and circulates inside the fluid pipeline (101) of fluids with different flow directions with temperature differences Transports heat energy of a heat transfer fluid (110) composed of a gas phase fluid, a liquid phase fluid, a fluid that changes from a gas phase to a liquid phase, or a fluid that changes from a liquid phase to a gas phase. Or a heat energy transmitting body (100) that operates a heat absorbing function or a heat radiating function on a solid phase, rubber phase, liquid phase, gas phase object or space (200) that absorbs heat, and a heat conductive material, The substantially parallel double scroll pipe and double scroll pipe arrangement have fluid transport pipes with different flow directions and adjacent pipes to form heat absorption of heat conduction fluid or temperature distribution of the radiator relatively uniformly. Let A heat-absorbing or heat-dissipating function is generated for an object or space that dynamically dissipates or absorbs heat. The outer ring of the double scroll distribution pipe is a pipe turning structure (103). The intermediate portion close to one side is the inlet / outlet side, the fluid inlet (111) and the fluid outlet (112) are provided, and the fluid passage in the central part of the scroll shape bends in the opposite direction, so that the transmission fluid conduit From the gas phase fluid, the liquid phase fluid, the fluid changing from the gas phase to the liquid phase, or from the liquid phase by the fluid inlet (111) and the fluid outlet (112) at the end of the fluid conduit. A thermal energy transmission body (100) that transports a heat conduction fluid (110) composed of a fluid that changes into a gas phase, causes fluids that pass through adjacent fluid conduits to flow in opposite directions, and absorbs or dissipates heat. Through heat Solid-state, rubber-phase, liquid-phase, or gas-phase object or space (200) that passively dissipates or absorbs heat from a solid-state, rubber-phase, liquid-phase, or gas-phase heat conductive material A fluid conduit (101) for transmitting to
The fluid conduit (101) is configured by one-way or more series connection or parallel connection, and one or more double scrolls are arranged in each conduit, and the fluid inlet (111) and the fluid at both ends of the fluid conduit (101) are arranged. The exit (112) transports a gas-phase fluid, a liquid-phase fluid, a fluid that changes from a gas phase to a liquid phase, or a heat transfer fluid (110) that is composed of a fluid that changes from a liquid phase to a gas phase. The heat conduction fluid (110) of the fluid pipe (101) passing through the pipes of the array is caused to flow in the opposite direction, and the heat energy is constituted by a solid phase, rubber phase, liquid phase, or gas phase heat conduction material. Transmit to the heat energy transfer body (100) that absorbs or dissipates heat,
The fluid pipe (101) can be parallel or substantially parallel plane or three-dimensional, and forms a thermal energy transmission body (100) that absorbs or dissipates heat, and passively dissipates or absorbs a solid phase, rubber The heat absorbing / dissipating device according to claim 1, wherein the heat absorbing / dissipating device dissipates heat or dissipates a phase, liquid phase or gas phase object or space (200).
吸熱または放熱する熱エネルギー伝送体(100)を通して熱エネルギーを伝送する以外に、流体管路(101)を平行または略平行な平面状または立体状に配列し、かつ直接構造体を構成することにより、温度差を持つ気相流体、液相流体、気相から液相に変化する流体、または、液相から気相に変化する流体により構成される熱伝導流体(110)を通過させ、直接受動的に放熱または吸熱する固相、ゴム相、液相、気相の物体または空間(200)に対して、熱エネルギーを吸収または放出することを特徴とする請求項1記載の吸放熱装置。   In addition to transmitting heat energy through the heat energy transmitting body (100) that absorbs or dissipates heat, the fluid pipes (101) are arranged in a parallel or substantially parallel plane shape or three-dimensional shape, and directly constitute a structure. Passing through a heat transfer fluid (110) composed of a gas phase fluid having a temperature difference, a liquid phase fluid, a fluid changing from a gas phase to a liquid phase, or a fluid changing from a liquid phase to a gas phase, and directly passive The heat absorbing / dissipating device according to claim 1, wherein thermal energy is absorbed or released from a solid phase, rubber phase, liquid phase, gas phase object or space (200) that thermally radiates or absorbs heat. 受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)と流体管路(101)との関係は、流体管路(101)と受動的な放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)により、共同構造体を構成し、かつ受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、熱エネルギーを伝送し、
関連する流体管路を平行または略平行な平面状、または、立体状に形成させ、受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)を構成することにより、受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に取って代わることを特徴とする請求項1記載の吸放熱装置。
The relationship between the solid pipe, the rubber phase, the liquid phase, or the gas phase object or space (200) that passively radiates or absorbs heat and the fluid pipe (101) is related to the fluid pipe (101) and the passive heat radiation. Or a solid phase, a rubber phase, a liquid phase, or a solid phase, a rubber phase, a liquid phase, or a gas phase object or space (200) constituting a joint structure and passively radiating or absorbing heat, or , Transfer thermal energy to a gas phase object or space (200),
By forming a pipe structure (100 ′) for transmitting a heat conduction fluid that passively dissipates or absorbs heat by forming related fluid pipes in a parallel or substantially parallel plane shape or a three-dimensional shape, The heat-absorbing and heat-dissipating device according to claim 1, characterized in that it replaces a solid phase, rubber phase, liquid phase, or gas phase object or space (200) that radiates or absorbs heat.
流体管路(101)及び受動的に放熱または吸熱する熱伝導流体を伝送するパイプ構造体(100’)の少なくとも一方に、独立の熱伝導性板(300)、共熱伝導性板(400)、及び、耐熱槽を持つ熱伝導性板(350)のうち少なくとも一つを設置することを特徴とする請求項1記載の吸放熱装置。   At least one of the fluid conduit (101) and the pipe structure (100 ′) that transmits heat conduction fluid that passively dissipates or absorbs heat is provided with an independent heat conductive plate (300) and a co-heat conductive plate (400). And at least 1 is installed among the heat conductive plates (350) with a heat-resistant tank, The heat absorption-and-dissipation apparatus of Claim 1 characterized by the above-mentioned. 流体管路(101)、及び、受動的に放熱または吸熱する熱伝導流体を伝送するパイプ構造体(100’)のうち少なくとも一方の流体は、制御装置(500)の制御によって、二方向流体ポンピング装置(600)に駆動され、周期的に正逆方向へ圧送され、二方向に熱伝導流体(110)を圧送し、
二方向流体ポンピング装置(600)は、機電装置、電子装置、または、マイクロコンピュータ及び関連ソフトにより構成される制御装置(500)により制御され、周期的に正逆方向へ圧送することを特徴とする請求項1記載の吸放熱装置。
At least one of the fluid pipe (101) and the pipe structure (100 ′) that transmits the heat conduction fluid that passively radiates or absorbs heat is bidirectionally pumped under the control of the controller (500). Driven by the device (600), periodically pumped in forward and reverse directions, pumping the heat transfer fluid (110) in two directions,
The bi-directional fluid pumping device (600) is controlled by a control device (500) configured by an electromechanical device, an electronic device, or a microcomputer and related software, and is periodically pumped in forward and reverse directions. The heat absorbing / dissipating device according to claim 1.
流体管路(101)、及び、受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)のうち少なくとも一方と、吸熱または放熱する熱エネルギー伝送体(100)とを一体にすることを特徴とする請求項1記載の吸放熱装置。   At least one of the fluid pipe (101) and the pipe structure (100 ′) that transmits the heat conduction fluid that passively radiates or absorbs heat and the thermal energy transmitter (100) that absorbs and radiates heat are integrated. The heat absorbing / dissipating device according to claim 1. 流体管路(101)、及び、受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)のうち少なくとも一方と、吸熱または放熱する熱エネルギー伝送体(100)とを組合せることを特徴とする請求項1記載の吸放熱装置。   A combination of at least one of the fluid pipe (101) and the pipe structure (100 ′) that transmits the heat conduction fluid that passively radiates or absorbs heat and the thermal energy transmitter (100) that absorbs or radiates heat The heat-absorbing / dissipating device according to claim 1. 流体管路(101)、及び、受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)での結合のうち少なくとも一方と、吸熱または放熱する熱エネルギー伝送体(100)とは、板状、塊状、または、多翼状の構造ユニットを構成し、または、翼片との組合せにより構造ユニットを構成し、または、少なくとも一個の構造ユニットにより構成されることを特徴とする請求項1記載の吸放熱装置。   At least one of the coupling in the fluid pipe (101) and the pipe structure (100 ′) that transmits the heat conduction fluid that passively radiates or absorbs heat, and the thermal energy transmitter (100) that absorbs or radiates heat Is a plate-like, lump-like, or multi-winged structural unit, or a combination of blades with a structural unit, or at least one structural unit. Item 1. The heat absorbing and radiating device according to Item 1. 一個以上により組立てられ、個別パーツは流体管路(101)が通過する流体管路の間で、直列、並列、または、直並列に接続され、または、並列または重なり合うようにして各種幾何形状にすることを特徴とする請求項1記載の吸放熱装置。   The individual parts are assembled by one or more, and the individual parts are connected in series, parallel, or series-parallel between the fluid pipes through which the fluid pipe (101) passes, or are arranged in various geometries such as parallel or overlapping. The heat-absorbing / dissipating device according to claim 1. 流体管路(101)、及び、受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)のうち少なくとも一方の熱伝導流体(110)は、圧送、蒸発、及び、冷熱のうち少なくとも一つの自然対流方式で熱伝導流体(110)を輸送することを特徴とする請求項1記載の吸放熱装置。   At least one heat conduction fluid (110) of the fluid pipe (101) and the pipe structure (100 ′) that transmits the heat conduction fluid that passively radiates or absorbs heat is pumped, evaporated, and cooled. The heat-absorbing / dissipating device according to claim 1, wherein the heat-conducting fluid (110) is transported by at least one natural convection method. 流体の冷熱温度差、自然対流、強制的に流体をポンピングすることにより生じさせる対流、輻射、及び、伝導のうち少なくとも一つの熱伝送機能または伝導方式によって、流体状態の受動的に放熱または吸熱する固相、ゴム相、液相、または、気相の物体または空間(200)に対して、熱エネルギーを吸収または放出することを特徴とする請求項1記載の吸放熱装置。   Passively dissipates or absorbs heat in the fluid state by at least one of the heat transfer function or conduction method among the cold temperature difference of the fluid, natural convection, convection caused by forced pumping of the fluid, radiation, and conduction. The heat absorbing / dissipating device according to claim 1, wherein thermal energy is absorbed or released from a solid phase, rubber phase, liquid phase, or gas phase object or space (200). 流体管路(101)、及び受動的な放熱または吸熱する熱伝導流体を伝送する管路構造体(100’)のうち少なくとも一方の熱伝導流体(110)は、密閉式循環または開放式環境を流れることを特徴とする請求項1記載の吸放熱装置。   At least one of the fluid conduit (101) and the conduit structure (100 ′) that transmits the passively heat-dissipating or absorbing heat-conducting fluid (110) has a closed circulation or open environment. The heat absorbing / dissipating device according to claim 1, wherein the heat absorbing / dissipating device flows. 流体管路の流体入口と流体出口とは、3次元空間中で、同じ方向または異なる方向に開口することを特徴とする請求項1記載の吸放熱装置。   2. The heat absorbing / dissipating device according to claim 1, wherein the fluid inlet and the fluid outlet of the fluid pipe are opened in the same direction or in different directions in the three-dimensional space. 流体管路は、管状構造、板片状構造、または、トンネル状流体管路の塊状構造により構成されることを特徴とする請求項1記載の吸放熱装置。   2. The heat absorbing / dissipating device according to claim 1, wherein the fluid pipe is constituted by a tubular structure, a plate-like structure, or a massive structure of a tunnel-like fluid pipe. 熱伝導応用装置、熱エネルギー吸収装置、熱エネルギー放出装置、加熱装置、熱エネルギー伝送装置、建物の加熱または冷卻、太陽光パネルの冷卻、電機または動力機械の加熱または冷卻、マシンシェルの吸熱または散熱するヒートパイプ構造のボディシェルの吸熱または散熱、ボディシェルの吸熱または散熱、チップまたは半導体素子の吸熱または散熱、通風装置、情報装置、ステレオまたは画像装置の吸熱または散熱または熱エネルギー伝送、各種灯具または発光ダイオード(LED)の吸熱または散熱または熱エネルギー伝送、空調装置の蒸発器の吸熱または冷凝器の散熱または熱エネルギー伝送、機械装置の熱エネルギー伝送、摩擦熱による損失の散熱、電暖装置またはその他電熱家電の装置または電熱式炊飯器の散熱または熱エネルギー伝送、火炎加熱のストーブまたは炊具の吸熱または熱エネルギー伝送、地層または水中での熱エネルギーの吸収または散熱または熱エネルギー伝送、工場建物または家屋建物または建築材料または建築空間の吸熱または散熱または熱エネルギー伝送、水塔の吸熱または散熱、バッテリーまたは燃料電池の吸熱または散熱または熱エネルギー伝送へ応用可能であり、
家電商品、工業商品、電子商品、機械装置、発電設備、建築体、空調装置、生産設備、または、産業の製造過程中の熱エネルギー伝送への応用可能であることを特徴とする請求項1記載の吸放熱装置。
Heat conduction application device, thermal energy absorption device, thermal energy release device, heating device, thermal energy transmission device, building heating or cooling, solar panel cooling, electric or power machine heating or cooling, machine shell heat absorption or heat dissipation Heat pipe structure body shell heat absorption or heat dissipation, body shell heat absorption or heat dissipation, chip or semiconductor element heat absorption or heat dissipation, heat absorption, heat dissipation or heat energy transfer of ventilation device, information device, stereo or image device, various lamps or Endothermic or dissipative heat or heat energy transfer of light emitting diodes (LEDs), endothermic or heat transfer of air conditioner evaporators, dissipated or thermal energy transfer of coolers, thermal energy transmission of mechanical devices, loss of heat due to frictional heat, electric heating devices or other Dissipation or heat energy from electric appliances or electric rice cookers Heat transfer, heat absorption of heat stoves or cookware for heat transfer, heat absorption of heat energy in the formation or water, heat dissipation or heat transfer of heat energy, heat absorption or heat dissipation or heat energy of factory building or house building or building material or building space Applicable to transmission, heat absorption or heat dissipation of water tower, heat absorption or heat dissipation of battery or fuel cell or heat energy transmission,
2. The home appliance, the industrial product, the electronic product, the mechanical device, the power generation facility, the building, the air conditioner, the production facility, or the heat energy transmission during the manufacturing process of the industry. Absorption and heat dissipation device.
JP2010236586A 2009-10-22 2010-10-21 Heat absorbing/releasing device Pending JP2011089762A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/588,635 US20110094718A1 (en) 2009-10-22 2009-10-22 Heat absorbing or dissipating device with double-scroll piping transmitting temperature difference fluid

Publications (1)

Publication Number Publication Date
JP2011089762A true JP2011089762A (en) 2011-05-06

Family

ID=51208163

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010236586A Pending JP2011089762A (en) 2009-10-22 2010-10-21 Heat absorbing/releasing device
JP2010007040U Expired - Fee Related JP3165398U (en) 2009-10-22 2010-10-22 Absorption and heat dissipation device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010007040U Expired - Fee Related JP3165398U (en) 2009-10-22 2010-10-22 Absorption and heat dissipation device

Country Status (11)

Country Link
US (1) US20110094718A1 (en)
EP (1) EP2314969A3 (en)
JP (2) JP2011089762A (en)
KR (1) KR20110044150A (en)
CN (2) CN102042773A (en)
AU (1) AU2010235927A1 (en)
BR (1) BRPI1004119A2 (en)
CA (1) CA2717853A1 (en)
RU (1) RU2010143270A (en)
SG (1) SG170692A1 (en)
TW (2) TWM393661U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242054A (en) * 2011-05-23 2012-12-10 Noritz Corp Heat exchanger and heat pump water heater
JP6884296B1 (en) * 2020-07-17 2021-06-09 三菱電機株式会社 Magnetic refrigerator
JP7281642B1 (en) 2022-03-29 2023-05-26 憲司 久保田 Portable hot water heater with no heat source

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9055380B2 (en) 2011-11-28 2015-06-09 Sonion Nederland B.V. Method for producing a tube for a hearing aid
US8573006B2 (en) * 2012-01-09 2013-11-05 Owens-Brockway Glass Container Inc. Batch charger cooling
US9322723B2 (en) 2012-07-10 2016-04-26 General Electric Company Energy harvesting survey apparatus and method of detecting thermal energy
CN102846214B (en) * 2012-09-10 2017-06-23 皇明太阳能股份有限公司 Solar cooker
CN103346337A (en) * 2013-05-27 2013-10-09 天津大学 Fuel cell channel
CN104329833A (en) * 2014-03-28 2015-02-04 海尔集团公司 Plate tube type evaporator for refrigerator and refrigerator
CN104805553A (en) * 2015-05-19 2015-07-29 苏州爱立方服饰有限公司 Heat dissipation structure of spinning machine
GB2544979A (en) * 2015-12-01 2017-06-07 Rolls Royce Plc A heat sink of source apparatus and method
CN105429593B (en) * 2015-12-04 2017-11-07 太仓陶氏电气有限公司 A kind of passive photovoltaic radiator
IT201700096656A1 (en) * 2017-08-28 2019-02-28 Cosmogas Srl HEAT EXCHANGER FOR A BOILER, AND HEAT EXCHANGER TUBE
CN108118296A (en) * 2017-12-08 2018-06-05 北京创昱科技有限公司 A kind of coldplate
EP3833923A4 (en) * 2018-08-10 2022-06-01 Modine Manufacturing Company Battery cooling plate
CN109387109A (en) * 2018-11-21 2019-02-26 中国科学院上海技术物理研究所 A kind of class spiral flow channel structure of loop heat pipe condenser
CN109489319A (en) * 2018-12-15 2019-03-19 湖南玉丰真空科学技术有限公司 A kind of vacuum chamber cooling device
CN112179184B (en) * 2020-09-29 2021-08-03 清华大学 Double-channel heat exchange device for enhancing heat transfer of pumping intermediate medium
JP7305144B1 (en) * 2022-09-15 2023-07-10 株式会社 エコファクトリー Heat transfer member and radiation panel

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1571929A (en) * 1922-05-18 1926-02-09 Wilhelm B Bronander Die holder
US2074700A (en) * 1932-11-21 1937-03-23 Mechana Kold Corp Cooling unit for refrigeration purposes
US2279804A (en) * 1939-04-15 1942-04-14 Westinghouse Electric & Mfg Co Refrigeration apparatus
US2300634A (en) * 1941-04-26 1942-11-03 Comb Eng Co Inc Tube coils
US2722266A (en) * 1953-04-03 1955-11-01 Herbert H Kersten Refrigerated seat and/or back rest
US4310605A (en) * 1980-09-22 1982-01-12 Engelhard Minerals & Chemicals Corp. Fuel cell system
DE8107402U1 (en) * 1981-03-14 1982-11-18 John & Co, 7590 Achern PLATE BASE FOR LARGE HEAT EXCHANGERS
US4697427A (en) * 1985-05-10 1987-10-06 Sundstrand Corporation Forced flow evaporator for unusual gravity conditions
FI75664C (en) * 1985-10-14 1990-01-30 Outokumpu Oy DUBBELSPIRALVAERMEOEVERFOERARE.
DE3819548A1 (en) * 1988-06-08 1989-12-14 Pvg Patentverwertung ARRANGEMENT FOR HEATING A FLOOR, IN PARTICULAR AN OPEN AREA
US4883117A (en) * 1988-07-20 1989-11-28 Sundstrand Corporation Swirl flow heat exchanger with reverse spiral configuration
JP2686123B2 (en) * 1988-12-27 1997-12-08 三洋電機株式会社 Heat exchange equipment
US4993487A (en) * 1989-03-29 1991-02-19 Sundstrand Corporation Spiral heat exchanger
NL1001064C1 (en) * 1995-06-28 1995-11-15 Fasting Corian Verwerking Cooling device.
JPH0972679A (en) * 1995-09-07 1997-03-18 Miura Co Ltd Spiral plate type heat exchanger
US6910526B1 (en) * 1995-10-06 2005-06-28 Barcol-Air Ag Contact element and ceiling element for a heating and cooling ceiling
US6311764B1 (en) * 1996-10-11 2001-11-06 Carrier Corporation Ceiling cooling or heating apparatus
US6684941B1 (en) * 2002-06-04 2004-02-03 Yiding Cao Reciprocating-mechanism driven heat loop
US7559356B2 (en) * 2004-04-19 2009-07-14 Eksident Technologies, Inc. Electrokinetic pump driven heat transfer system
US8726979B2 (en) * 2008-12-23 2014-05-20 Tai-Her Yang Heat exchange apparatus with automatic heat exchange fluid flow rate exchange modulation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242054A (en) * 2011-05-23 2012-12-10 Noritz Corp Heat exchanger and heat pump water heater
JP6884296B1 (en) * 2020-07-17 2021-06-09 三菱電機株式会社 Magnetic refrigerator
WO2022014044A1 (en) * 2020-07-17 2022-01-20 三菱電機株式会社 Magnetic refrigeration device
JP7281642B1 (en) 2022-03-29 2023-05-26 憲司 久保田 Portable hot water heater with no heat source

Also Published As

Publication number Publication date
BRPI1004119A2 (en) 2013-02-26
KR20110044150A (en) 2011-04-28
CA2717853A1 (en) 2011-04-22
CN201637315U (en) 2010-11-17
SG170692A1 (en) 2011-05-30
EP2314969A3 (en) 2011-07-06
EP2314969A2 (en) 2011-04-27
AU2010235927A1 (en) 2011-05-12
US20110094718A1 (en) 2011-04-28
CN102042773A (en) 2011-05-04
JP3165398U (en) 2011-01-20
TW201115094A (en) 2011-05-01
RU2010143270A (en) 2012-04-27
TWM393661U (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP3165398U (en) Absorption and heat dissipation device
JP5492521B2 (en) Heat absorption or heat dissipation device
JP2011085384A (en) Heat absorbing or radiating device
US8622116B2 (en) Heat absorbing or dissipating device with multi-pipe reversely transported temperature difference fluids
US8607854B2 (en) Fluid heat transfer device having plural counter flow circuits with periodic flow direction change therethrough
JP2015087106A (en) Single-side adhering type heat transmission temperature uniformization device
JP3165009U (en) Heat absorption or heat dissipation device
CN105261597B (en) A kind of heat dissipation of pipeline module
KR102284056B1 (en) Heat absorbing and dissipating device with multi-pipe reversely transported temperature difference fluids
KR20180003517A (en) Heat absorbing and dissipating device with multi-pipe reversely transported temperature difference fluids
KR20190011295A (en) Heat absorbing and dissipating device with multi-pipe reversely transported temperature difference fluids
KR20110052818A (en) Heat absorbing or dissipating device with multi-pipe reversely transported temperature difference fluids
TWM562950U (en) Water heater heated with cooling chip
TW201115095A (en) Heat absorbing or disspating device with piping staggered and uniformly distributed by temperature difference