JP2012233541A - Sliding surface structure - Google Patents

Sliding surface structure Download PDF

Info

Publication number
JP2012233541A
JP2012233541A JP2011103513A JP2011103513A JP2012233541A JP 2012233541 A JP2012233541 A JP 2012233541A JP 2011103513 A JP2011103513 A JP 2011103513A JP 2011103513 A JP2011103513 A JP 2011103513A JP 2012233541 A JP2012233541 A JP 2012233541A
Authority
JP
Japan
Prior art keywords
sliding surface
sliding
periodic structure
periodic
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011103513A
Other languages
Japanese (ja)
Other versions
JP5638455B2 (en
Inventor
Hiroshi Sawada
博司 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2011103513A priority Critical patent/JP5638455B2/en
Publication of JP2012233541A publication Critical patent/JP2012233541A/en
Application granted granted Critical
Publication of JP5638455B2 publication Critical patent/JP5638455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sliding surface structure capable of coping with sliding in many directions, and contributing to improving a fluid lubrication characteristic and a mixing lubrication characteristic.SOLUTION: This sliding surface structure is provided for relatively sliding a sliding surface 1a of a first member 1 and a sliding surface 2a of a second member 2 under a lubricant. A periodic structure part 3 of a grating-shaped recess-projection is arranged on at least any one sliding surface of the first member 1 and the second member 2. This periodic structure part is formed in a line symmetry shape to the expected sliding direction, and pulls the lubricant in a sliding surface central part by relative sliding of the sliding surfaces 1a and 2a.

Description

本発明は、摺動面構造に関するものである。   The present invention relates to a sliding surface structure.

サブミクロンの周期ピッチと溝深さをもつグレーティング状の周期構造は高い負荷能力と剛性をもつことが知られている。このため、このようなグレーティング状の周期構造を往復摺動構造や回転摺動構造に利用されてきている。しかしながら、グレーティング状の周期構造を利用したものは、1軸方向の往復動や1軸廻りの回転運動に限られていた。   It is known that a grating-like periodic structure with a submicron periodic pitch and groove depth has high load capacity and rigidity. For this reason, such a grating-like periodic structure has been used for a reciprocating sliding structure and a rotating sliding structure. However, what uses a grating-like periodic structure has been limited to reciprocation in one axis direction and rotational movement around one axis.

ところで、人工股関節等における摺動方向は多方向であり、静止荷重状態が不定期に発生する。そのため、リンギング(密着)が発生し、静止荷重状態が解除されても、この密着状態が継続され流体潤滑膜が回復しないことがある。しかも、リンギングは、きしみ音の発生や摩耗の原因となる。このため、微小クリアランスでの流体潤滑膜形成機能を有する機能表面の創成が望まれている。   By the way, there are many sliding directions in an artificial hip joint or the like, and a static load state occurs irregularly. Therefore, even if ringing (contact) occurs and the static load state is released, the contact state may continue and the fluid lubricating film may not recover. Moreover, the ringing causes squeak noise and wear. For this reason, creation of a functional surface having a fluid lubricating film forming function with a minute clearance is desired.

そして、従来には、人工股関節における摺動接触面構造に用いる摺動面構造が提案されている(特許文献1)。この摺動面構造は、他の部材に摺動接触する母材の摺動面に、複数の凹部を設けることで凹凸パターンを形成したものがある。この場合、凹部の配列ピッチ、凹部の深さ、摺動面全体に対する凹部の面積比率、円換算直径、材質等を限定したものである。   Conventionally, a sliding surface structure used for a sliding contact surface structure in an artificial hip joint has been proposed (Patent Document 1). In this sliding surface structure, there is one in which a concave and convex pattern is formed by providing a plurality of concave portions on a sliding surface of a base material that is in sliding contact with other members. In this case, the arrangement pitch of the recesses, the depth of the recesses, the area ratio of the recesses to the entire sliding surface, the diameter in terms of a circle, the material, and the like are limited.

このような各種のパラメータを限定することによって、「凹部からの潤滑剤の供給、凹部への摩耗粉の逃げによるアブレシブ摩耗の防止により、耐摩耗性および耐焼付性が向上する」等の作用効果を奏するものとしている。   By limiting these various parameters, the effects such as "the supply of lubricant from the recesses and the prevention of abrasive wear due to the escape of wear powder into the recesses will improve the wear resistance and seizure resistance", etc. It is supposed to play.

特許第3590992号公報Japanese Patent No. 3590992

前記特許文献1に記載のように構成した場合、凹部(ディンプル)は狭い領域内で正負等しい圧力を発生する。この際、キャビテーションが発生することにより正圧部のみが負荷容量に寄与する。しかしながら、正圧発生領域が狭いため圧力上昇が僅かしか得られない。このため、動圧発生効果が小さく、また、油溜り効果は混合潤滑特性に寄与するが、流体潤滑特性にほとんど寄与しない。   When configured as described in Patent Document 1, the concave portion (dimple) generates equal pressure in a narrow region. At this time, only the positive pressure part contributes to the load capacity due to the occurrence of cavitation. However, since the positive pressure generation region is narrow, only a slight pressure increase can be obtained. For this reason, the dynamic pressure generation effect is small, and the oil sump effect contributes to the mixed lubrication characteristics, but hardly contributes to the fluid lubrication characteristics.

本発明は、上記課題に鑑みて、多方向すべりに対応できて、流体潤滑特性及び混合潤滑特性の向上に寄与する摺動面構造を提供する。   In view of the above problems, the present invention provides a sliding surface structure that can cope with multi-directional sliding and contributes to improvement of fluid lubrication characteristics and mixed lubrication characteristics.

本発明の摺動面構造は、第1部材の摺動面と第2部材の摺動面とが潤滑剤下で相対的に摺動する摺動面構造であって、第1部材と第2部材との少なくともいずれか一方の摺動面に、予定される摺動方向に対して線対称の形状となるとともに、摺動面の相対的な摺動によって潤滑剤を摺動面中央部に引き込むグレーティング状凹凸の周期構造部を設けたものである。   The sliding surface structure of the present invention is a sliding surface structure in which the sliding surface of the first member and the sliding surface of the second member slide relative to each other under a lubricant. At least one of the sliding surfaces of the member has a shape symmetrical with respect to a predetermined sliding direction, and the lubricant is drawn into the center of the sliding surface by relative sliding of the sliding surface. A periodic structure having grating-like irregularities is provided.

本発明の摺動面構造によれば、周期構造部は、予定される摺動方向に対して線対称の形状であるので、予定される全ての摺動方向に対する摺動運動を行うことができ、このような周期構造部は高い負荷能力と剛性をもつ。しかも、潤滑剤を摺動面中央部に引き込む流体導入効果を得ることによって、負荷容量の増加を図ることができる。すなわち、流体導入効果による負荷容量の増加がレイリーステップ効果の減少分よりも大きいものとなる。
このため、流体潤滑特性及び混合潤滑特性の向上を図ることができ、予定される全ての摺動方向に対してローリングを生じることなく大きな動圧を得ることができる。ここで、予定される摺動方向としては、平面的に見て1軸方向であっても、2以上の多軸方向であってもよい。
According to the sliding surface structure of the present invention, since the periodic structure portion has a line-symmetric shape with respect to the planned sliding direction, it can perform a sliding motion in all the planned sliding directions. Such a periodic structure has high load capacity and rigidity. In addition, the load capacity can be increased by obtaining the fluid introduction effect of drawing the lubricant into the center of the sliding surface. That is, the increase in load capacity due to the fluid introduction effect is larger than the decrease in the Rayleigh step effect.
For this reason, it is possible to improve the fluid lubrication characteristics and the mixed lubrication characteristics, and it is possible to obtain a large dynamic pressure without causing rolling in all planned sliding directions. Here, the planned sliding direction may be a uniaxial direction in a plan view or two or more multiaxial directions.

前記周期構造部は、摺動面中央部を中心として放射状に延びる複数の微細溝にて構成される微細溝構造であるように設定できる。このように設定することによって、摺動面中央部への流体導入機能を安定して発揮できる。   The periodic structure portion can be set to have a fine groove structure composed of a plurality of fine grooves extending radially from the center of the sliding surface. By setting in this way, the fluid introduction function to the center part of the sliding surface can be exhibited stably.

摺動面中央部は周期構造部を構成しない溝未形成部とすることができ、また、摺動面中央部は、予定される摺動方向線に対して線対称の形状とすることができる。   The central portion of the sliding surface can be a non-grooved portion that does not constitute the periodic structure portion, and the central portion of the sliding surface can be a line-symmetric shape with respect to a predetermined sliding direction line. .

周期構造部の周期ピッチを10μm以下とするのが好ましく、周期構造部の凹部の深さが1μm以下とするのが好ましい。   The periodic pitch of the periodic structure portion is preferably 10 μm or less, and the depth of the concave portion of the periodic structure portion is preferably 1 μm or less.

前記周期構造部は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成されているのが好ましい。   The periodic structure portion is preferably formed in a self-organized manner by irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold, and scanning while overlapping the irradiated portion.

本発明の摺動面構造では、予定される全ての摺動方向に対してローリングを生じることなく大きな動圧を得ることができ、多方向すべりに対して流体導入効果を発揮し、低摩擦を得ることができる。このため、このような摺動面構造を、例えば、人工股関節等に用いることができる。すなわち、人工股関節のカップを本発明の第1部材とし、人工股関節の骨頭を第2部材とすることができる。このような場合、カップの内径面と、骨頭の外径面とが圧接状となって、カップ部の内径面が摺動面となるとともに、骨頭の外径面が摺動面となる。従って、本発明の摺動面構造を人工股関節に用いれば、微小クリアランスでの流体潤滑膜形成機能を有することになって、リンギングの発生を抑えることができて、リンギングに基づくきしみ音の発生や摩耗を有効に防止できる。このため、人工股関節として、長期にわたって、安定した股関節を構成することができる。   With the sliding surface structure of the present invention, it is possible to obtain a large dynamic pressure without causing rolling in all planned sliding directions, exhibiting a fluid introduction effect against multi-directional sliding, and low friction. Can be obtained. For this reason, such a sliding surface structure can be used for an artificial hip joint, for example. That is, the cup of the artificial hip joint can be used as the first member of the present invention, and the bone head of the artificial hip joint can be used as the second member. In such a case, the inner diameter surface of the cup and the outer diameter surface of the bone head are pressed, and the inner diameter surface of the cup portion becomes the sliding surface, and the outer diameter surface of the bone head becomes the sliding surface. Therefore, if the sliding surface structure of the present invention is used for an artificial hip joint, it has a fluid lubrication film forming function with a minute clearance, so that the occurrence of ringing can be suppressed and the occurrence of squeak noise based on ringing or Wear can be effectively prevented. For this reason, a stable hip joint can be formed as an artificial hip joint over a long period of time.

摺動面中央部を中心として放射状に延びる複数の微細溝にて構成される微細溝構造であれば、効率的に大きな動圧を得ることができ、潤滑性に優れる。また、摺動面中央部を溝未形成部とすれば、負荷容量を一層高めることができ、安定して優れた潤滑性を発揮できる。   If the fine groove structure is composed of a plurality of fine grooves extending radially from the center of the sliding surface, a large dynamic pressure can be obtained efficiently and the lubricity is excellent. Moreover, if the center part of the sliding surface is a groove-unformed part, the load capacity can be further increased, and excellent lubricity can be exhibited stably.

摺動面中央部が予定される摺動方向線に対して線対称の形状であれば、予定される全ての摺動方向に対してローリングを生じることなく大きな動圧を安定して得ることができる。   If the central part of the sliding surface is symmetrical with respect to the planned sliding direction line, a large dynamic pressure can be stably obtained without causing rolling in all the planned sliding directions. it can.

周期構造部の凹凸ピッチを10μm以下とした場合、潤滑剤の漏れ(側方漏れ)を冗長的に抑えることができ、効率的に動圧を得ることができる。周期構造部の凹部の深さを1μm以下とした場合、動圧発生時の浮上量の変動を減少でき、剛性向上に寄与する。   When the concavo-convex pitch of the periodic structure portion is 10 μm or less, the leakage of the lubricant (side leakage) can be suppressed redundantly, and the dynamic pressure can be obtained efficiently. When the depth of the concave portion of the periodic structure portion is 1 μm or less, variation in the flying height when dynamic pressure is generated can be reduced, which contributes to improvement in rigidity.

周期構造部は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成したものでは、機械加工では困難なサブミクロンの周期ピッチと凹凸深さを持つものを容易に形成できる。このようなサブミクロンの周期構造にすることで混合潤滑における狭い一部のすきまで流体潤滑効果が有効に発揮される。   The periodic structure is irradiated with a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold, scanned while overlapping the irradiated part, and formed by self-organization. Those having a pitch and a depth of unevenness can be easily formed. By adopting such a submicron periodic structure, the fluid lubrication effect is effectively exhibited up to a narrow part of the gap in the mixed lubrication.

本発明の実施形態を示す摺動面構造の簡略図である。It is a simplified diagram of a sliding surface structure showing an embodiment of the present invention. 前記図1に示す摺動面構造の第2部材の摺動面を示し、(a)は第1の周期構造部を有する摺動面の簡略図であり、(b)は第2の周期構造部を有する摺動面の簡略図である。The sliding surface of the 2nd member of the sliding surface structure shown in the said FIG. 1 is shown, (a) is a simplified view of the sliding surface which has a 1st periodic structure part, (b) is a 2nd periodic structure. It is a simplification figure of the sliding surface which has a part. 前記摺動面に形成される周期構造部の拡大図である。It is an enlarged view of the periodic structure part formed in the said sliding surface. 摺動面構造の他の第2部材の摺動面の簡略図である。It is a simplification of the sliding surface of the other 2nd member of a sliding surface structure. 摺動面構造の別の第2部材の摺動面の簡略図である。It is a simplified view of the sliding surface of another second member having a sliding surface structure. 前記周期構造部を形成するためのレーザ表面加工装置の簡略図である。It is a simplification figure of the laser surface processing apparatus for forming the said periodic structure part. 実施例1において使用した摺動面構造の第2部材の摺動面を示し、(a)は周期構造部を有する場合の簡略図であり、(b)は周期構造部を有さない場合の簡略図である。The sliding surface of the 2nd member of the sliding surface structure used in Example 1 is shown, (a) is a simplified diagram in the case of having a periodic structure portion, and (b) is the case of having no periodic structure portion. It is a simplified diagram. 実施例1にて得られた荷重と摩擦係数との関係を示すグラフ図である。It is a graph which shows the relationship between the load obtained in Example 1, and a friction coefficient. 実施例2において使用した摺動面構造の第2部材の摺動面の簡略図である。6 is a simplified diagram of a sliding surface of a second member having a sliding surface structure used in Example 2. FIG. 実施例2において使用した比較片を示し、(a)は底面図であり、(b)は正面図である。The comparative piece used in Example 2 is shown, (a) is a bottom view, (b) is a front view. 実施例2にて得られた平滑部長さと負荷容量との関係を示すグラフ図である。It is a graph which shows the relationship between the smooth part length obtained in Example 2, and load capacity.

以下本発明の実施の形態を図1〜図6に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.

摺動面構造は、図1に示すように、第1部材1の摺動面1aと第2部材2の摺動面2aとる潤滑剤下で相対的に摺動するものである。第1部材1は平盤体とし、第2部材2を平板矩形体としている。この場合、第1部材1及び第2部材2は、炭素鋼、銅、アルミニウム、白金、超硬合金等であっても、炭化ケイ素や窒化ケイ素等のシリコン系セラミックスであっても、エンジニアプラスチック等であってもよい。また、潤滑剤としても、水やアルコールであっても、さらにはエンジンオイル等の潤滑油等であってもよい。すなわち、第1・第2部材1,2の材質、使用する環境等に応じて種々の潤滑剤を用いることができる。   As shown in FIG. 1, the sliding surface structure slides relatively under a lubricant taken by the sliding surface 1 a of the first member 1 and the sliding surface 2 a of the second member 2. The first member 1 is a flat plate, and the second member 2 is a flat plate. In this case, the first member 1 and the second member 2 may be carbon steel, copper, aluminum, platinum, cemented carbide, silicon ceramics such as silicon carbide or silicon nitride, engineer plastic, etc. It may be. Also, the lubricant may be water or alcohol, or may be a lubricating oil such as engine oil. That is, various lubricants can be used depending on the material of the first and second members 1 and 2 and the environment in which they are used.

第1部材1の上面が摺動面1aとなり、第2部材2の下面が摺動面2aとなる。第2部材2の摺動面2aに図2に示すようなグレーティング状凹凸の周期構造部3が設けられる。この周期構造部3は、摺動面2aの正方形状のランド部(溝未形成部)4を残して、外周側に矩形リング範囲に設けられる。   The upper surface of the first member 1 becomes the sliding surface 1a, and the lower surface of the second member 2 becomes the sliding surface 2a. A grating-like irregular periodic structure 3 as shown in FIG. 2 is provided on the sliding surface 2 a of the second member 2. This periodic structure portion 3 is provided in a rectangular ring range on the outer peripheral side, leaving a square land portion (groove-unformed portion) 4 of the sliding surface 2a.

周期構造部3は図3に示すように、微小の凹部5と微小の凸部6とが交互に所定ピッチで配設されてなるものである。周期構造部3の凹凸ピッチを10μm以下とし、凹部5の深さを1μm以下とするのが好ましい。この場合、周期構造部3の凹部5は、第2部材2の摺動面2aの外周縁に開口している。   As shown in FIG. 3, the periodic structure portion 3 is formed by alternately arranging minute concave portions 5 and minute convex portions 6 at a predetermined pitch. It is preferable that the irregular pitch of the periodic structure portion 3 is 10 μm or less and the depth of the concave portion 5 is 1 μm or less. In this case, the concave portion 5 of the periodic structure portion 3 is opened at the outer peripheral edge of the sliding surface 2 a of the second member 2.

周期構造部3は、予定される摺動方向に対して線対称の形状となるように形成される。すなわち、図2(a)に示す周期構造部3は、摺動面中央部を中心として、ランド部4を省いて、放射状に延びる複数の微細溝(凹部5)にて構成される微細溝構造からなる。この図2(a)では、溝未形成部4が正方形であるので、相互に直交するX・Y軸方向の2方向の摺動に最適となる。このようなX軸方向及びY軸方向の2方向の摺動では、周期構造を、図2(b)に示すものであってもよい。すなわち、図2(b)では、溝未形成部4の各辺から外形側に直交するように配設され、溝未形成部4のコーナ部から放射状に配設されている。   The periodic structure part 3 is formed so as to have a line-symmetric shape with respect to a predetermined sliding direction. That is, the periodic structure portion 3 shown in FIG. 2 (a) has a fine groove structure constituted by a plurality of fine grooves (recess portions 5) extending radially from the center portion of the sliding surface, excluding the land portion 4. Consists of. In FIG. 2A, since the groove-unformed portion 4 is square, it is optimal for sliding in two directions in the X and Y axis directions orthogonal to each other. In such two-direction sliding in the X-axis direction and the Y-axis direction, the periodic structure may be as shown in FIG. That is, in FIG. 2B, the grooves are arranged so as to be orthogonal to the outer side from the respective sides of the groove-unformed portion 4, and are arranged radially from the corner portion of the groove-unformed portion 4.

周期構造部3は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成している。具体的には、図6に示すフェムト秒レーザ表面加工装置を使用する。レーザ発生器11(チタンサファイアフェムト秒レーザ発生器)で発生したレーザ(例えば、パルス幅:120fs、中心波長800nm、繰り返し周波数:1kHz、パルスエネルギー:0.25〜400μJ/pulse)は、ミラー12により加工材料Wに向けて折り返され、メカニカルシャッタ13に導かれる。レーザ照射時はメカニカルシャッタ13を開放し、レーザ照射強度は1/2波長板14と偏光ビームスプリッタ16によって調整可能とし、1/2波長板15によって偏光方向を調整し、集光レンズ(焦点距離:150mm)17によって、XYθステージ19上の加工材料W表面に集光照射する。なお、フェムト秒レーザは1000兆分の1秒という極端に短い時間単位の中にエネルギーを圧縮した光源である。   The periodic structure portion 3 is formed in a self-organized manner by irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold and scanning the overlapping portions in an overlapping manner. Specifically, the femtosecond laser surface processing apparatus shown in FIG. 6 is used. A laser (eg, pulse width: 120 fs, center wavelength: 800 nm, repetition frequency: 1 kHz, pulse energy: 0.25 to 400 μJ / pulse) generated by a laser generator 11 (titanium sapphire femtosecond laser generator) is reflected by a mirror 12. It is folded back toward the work material W and guided to the mechanical shutter 13. At the time of laser irradiation, the mechanical shutter 13 is opened, the laser irradiation intensity can be adjusted by the half-wave plate 14 and the polarization beam splitter 16, the polarization direction is adjusted by the half-wave plate 15, and the condenser lens (focal length) : 150 mm) 17, the surface of the work material W on the XYθ stage 19 is condensed and irradiated. A femtosecond laser is a light source that compresses energy in an extremely short time unit of 1/1000 trillion seconds.

すなわち、アブレーション閾値近傍のフルエンスで直線偏光のレーザをワーク(加工材料)Wに照射した場合、入射光と加工材料Wの表面に沿った散乱光またはプラズマ波の干渉により、波長オーダのピッチと溝深さを持つグレーティング状の周期構造を偏光方向に直交して自己組織的に形成する。このとき、フェムト秒レーザをオーバラップさせながら走査させることで、周期構造を広範囲に拡張することができる。   That is, when a workpiece (working material) W is irradiated with a linearly polarized laser beam at a fluence near the ablation threshold, the pitch and grooves on the order of wavelengths are caused by interference between incident light and scattered light or plasma waves along the surface of the processing material W. A grating-like periodic structure having a depth is formed in a self-organizing manner perpendicular to the polarization direction. At this time, the periodic structure can be expanded over a wide range by scanning the femtosecond lasers while overlapping them.

レーザのスキャンは、レーザを固定して加工材料Wを支持するXYθステージ19を移動させても、XYθステージ19を固定してレーザを移動させてもよい。あるいは、レーザとXYθステージ19を同時移動させてもよい。なお、前記図3は、前記フェムト秒レーザ表面加工装置にて形成した周期構造部3を電子顕微鏡で撮像した図である。   Laser scanning may be performed by moving the XYθ stage 19 that supports the processing material W while fixing the laser, or may move the laser while fixing the XYθ stage 19. Alternatively, the laser and the XYθ stage 19 may be moved simultaneously. In addition, the said FIG. 3 is the figure which imaged the periodic structure part 3 formed with the said femtosecond laser surface processing apparatus with the electron microscope.

本発明の摺動面構造では、周期構造部3は、予定される摺動方向に対して線対称の形状であるので、予定される全ての摺動方向に対する摺動運動を行うことができ、このような周期構造部3は高い負荷能力と剛性をもつ。しかも、潤滑剤を摺動面中央部4に引き込む流体導入効果を得ることによって、負荷容量の増加を図ることができる。このため、流体潤滑特性及び混合潤滑特性の向上を図ることができ、予定される全ての摺動方向に対してローリングを生じることなく大きな動圧を得ることができる。なお、前記図1に示す図例のものでは、第1部材1を固定して、第2部材2を矢印Xのように、第1部材1に対して往復動させるようにしている。   In the sliding surface structure of the present invention, the periodic structure part 3 has a line-symmetric shape with respect to the planned sliding direction, so that it can perform a sliding motion in all the planned sliding directions, Such a periodic structure part 3 has high load capability and rigidity. Moreover, the load capacity can be increased by obtaining the fluid introduction effect of drawing the lubricant into the sliding surface central portion 4. For this reason, it is possible to improve the fluid lubrication characteristics and the mixed lubrication characteristics, and it is possible to obtain a large dynamic pressure without causing rolling in all planned sliding directions. In the example shown in FIG. 1, the first member 1 is fixed and the second member 2 is reciprocated with respect to the first member 1 as indicated by an arrow X.

このため、このような摺動面構造を、例えば、人工股関節に用いることができる。すなわち、人工股関節のカップを本発明の第1部材1とし、人工股関節の骨頭を第2部材2とすることができる。このような場合、カップの内径面と、骨頭の外径面とが圧接状となって、カップ部の内径面が摺動面1aとなるとともに、骨頭の外径面が,周期構造部3を有する摺動面2aとなる。従って、本発明の摺動面構造を人工股関節に用いれば、微小クリアランスでの流体潤滑膜形成機能を有することになって、リンギングの発生を抑えることができて、リンギングに基づくきしみ音の発生や摩耗を有効に防止できる。このため、人工股関節として、長期にわたって、安定した股関節を構成することができる。   For this reason, such a sliding surface structure can be used for an artificial hip joint, for example. That is, the cup of the artificial hip joint can be used as the first member 1 of the present invention, and the bone head of the artificial hip joint can be used as the second member 2. In such a case, the inner diameter surface of the cup and the outer diameter surface of the bone head are in pressure contact, the inner diameter surface of the cup portion becomes the sliding surface 1a, and the outer diameter surface of the bone head defines the periodic structure portion 3. It becomes the sliding surface 2a which has. Therefore, if the sliding surface structure of the present invention is used for an artificial hip joint, it has a fluid lubrication film forming function with a minute clearance, so that the occurrence of ringing can be suppressed and the occurrence of squeak noise based on ringing or Wear can be effectively prevented. For this reason, a stable hip joint can be formed as an artificial hip joint over a long period of time.

摺動面中央部を中心として放射状に延びる複数の微細溝(凹部5)にて構成される微細溝構造であれば、効率的に大きな動圧を得ることができ、潤滑性に優れる。また、摺動面中央部を溝未形成部4とすれば、負荷容量を一層高めることができ、安定して優れた潤滑性を発揮できる。   If the fine groove structure is composed of a plurality of fine grooves (recesses 5) extending radially from the center of the sliding surface, a large dynamic pressure can be obtained efficiently and the lubricity is excellent. Further, if the central portion of the sliding surface is the groove-unformed portion 4, the load capacity can be further increased, and excellent lubricity can be exhibited stably.

摺動面中央部が予定される摺動方向線に対して線対称の形状であれば、予定される全ての摺動方向に対してローリングを生じることなく大きな動圧を安定して得ることができる。   If the central part of the sliding surface is symmetrical with respect to the planned sliding direction line, a large dynamic pressure can be stably obtained without causing rolling in all the planned sliding directions. it can.

周期構造部3の凹凸ピッチを10μm以下とした場合、潤滑剤の漏れ(側方漏れ)を冗長的に抑えることができ、効率的に動圧を得ることができる。周期構造部3の凹部5の深さを1μm以下とした場合、動圧発生時の浮上量の変動を減少でき、剛性向上に寄与する。特に、混合潤滑状態であっても、一部の狭い(1μm以下)隙間領域で流体潤滑効果を発揮することができる。   When the concavo-convex pitch of the periodic structure portion 3 is set to 10 μm or less, the leakage of the lubricant (side leakage) can be suppressed redundantly, and the dynamic pressure can be obtained efficiently. When the depth of the concave portion 5 of the periodic structure portion 3 is 1 μm or less, variation in the flying height when dynamic pressure is generated can be reduced, which contributes to improvement in rigidity. In particular, even in the mixed lubrication state, the fluid lubrication effect can be exhibited in a partly narrow (1 μm or less) gap region.

周期構造部3は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成したものでは、機械加工では困難なサブミクロンの周期ピッチと凹凸深さを持つものを容易に形成できる。このようなサブミクロンの周期構造にすることで混合潤滑における狭い一部のすきまで流体潤滑効果が有効に発揮される。   The periodic structure unit 3 is irradiated with a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold, scanned while overlapping the irradiation part, and formed by self-organization. Those having a periodic pitch and uneven depth can be easily formed. By adopting such a submicron periodic structure, the fluid lubrication effect is effectively exhibited up to a narrow part of the gap in the mixed lubrication.

図4に示す摺動面2aでは、ランド部(摺動面中央部であって、周期構造部を構成しない溝未形成部)4は円形状とされている。また、図5では、第2部材2の短円柱体とし、ランド部4を円形状としている。   In the sliding surface 2 a shown in FIG. 4, the land portion (the central portion of the sliding surface and not forming the periodic structure portion) 4 has a circular shape. Moreover, in FIG. 5, it is set as the short cylindrical body of the 2nd member 2, and the land part 4 is made into circular shape.

このため、図4や図5に示す第2部材2の摺動面2aであっても、前記図2に示す第2部材2の摺動面2aと同様の作用効果を奏する。特に、図4や図5等に示すように、溝未形成部4が円形状とされ、周期構造部4の周期方向が放射状に配設されるものであれば、2軸方向に限らず、多数方向の摺動に対応することができる。   For this reason, even if it is the sliding surface 2a of the 2nd member 2 shown in FIG.4 and FIG.5, there exists an effect similar to the sliding surface 2a of the 2nd member 2 shown in the said FIG. In particular, as shown in FIG. 4 and FIG. 5 and the like, if the groove-unformed portion 4 is circular and the periodic direction of the periodic structure portion 4 is arranged radially, it is not limited to the biaxial direction, It can cope with sliding in multiple directions.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、前記実施形態では、周期構造部3を第1部材1側に形成してもよく、第1部材1及び第2部材2の両側に設けてもよい。また、摺動面中央部の溝未形成部4の形状として、図2に示すような正方形や図4に示す円形に限るものではなく、予定される摺動方向線に対して線対称の形状であればよく、例えば、正六角形や正八角形等であってもよい。第1部材1と第2部材2の形状としても、図例のものに限らず、他の種々の形状のものにて構成できる。   As mentioned above, although it demonstrated per embodiment of this invention, this invention is not limited to the said embodiment, A various deformation | transformation is possible, for example, in the said embodiment, the periodic structure part 3 is the 1st member 1 side. It may be formed on both sides of the first member 1 and the second member 2. Further, the shape of the groove-unformed portion 4 at the center of the sliding surface is not limited to the square as shown in FIG. 2 or the circle as shown in FIG. For example, it may be a regular hexagon or a regular octagon. The shapes of the first member 1 and the second member 2 are not limited to those shown in the drawings, and may be configured in other various shapes.

周期構造部3の大きさ、配設ピッチ等は、使用する第1・第2部材の大きさ、材質、潤滑剤の種類、摺動速度等に応じて種々変更することができる。   The size, arrangement pitch, and the like of the periodic structure portion 3 can be variously changed according to the size, material, lubricant type, sliding speed, and the like of the first and second members to be used.

第1部材1と第2部材2の相対的な摺動運動は、前記実施形態では、第1部材1を固定して第2部材2を往復動させるもの、つまり周期構造部3が形成される側を摺動させるものであったが、逆に第2部材2側を固定して、第1部材側を摺動させてもよい。すなわち、周期構造部3が形成されない方を摺動させてもよい。また、第1部材1と第2部材2の双方を摺動させるものであってもよい。   In the above embodiment, the relative sliding movement of the first member 1 and the second member 2 is such that the first member 1 is fixed and the second member 2 is reciprocated, that is, the periodic structure portion 3 is formed. However, the second member 2 side may be fixed and the first member side may be slid. That is, you may slide the direction in which the periodic structure part 3 is not formed. Further, both the first member 1 and the second member 2 may be slid.

本発明の摺動面構造によれば、多方向のすべりに対して流体導入効果を発揮して低摩擦を得ることができる。このため、本発明の摺動面構造は、人工股関節に限るものではなく、球面軸受、各種のマイクロマシン、光学部品、微小物体捕獲器等の種々の機器に使用可能である。   According to the sliding surface structure of the present invention, a low friction can be obtained by exhibiting a fluid introduction effect against multi-directional sliding. For this reason, the sliding surface structure of the present invention is not limited to an artificial hip joint, but can be used for various devices such as a spherical bearing, various micromachines, optical components, and a micro object trap.

図7(a)に示すような摺動面2aを有する第2部材2(試験片A)を用いて、荷重と摩擦係数との関係を調べた。試験片Aとして、その材質をSUS440Cとし、摺動面直径Dを5mmとし、この摺動面2aの外周側に、周期間隔約700nm、凹凸深さ(凹部深さ)を約200nmのグレーティング状の周期構造部3を形成した。この周期構造部3の幅(径方向幅)Eを0.5mm程度とした。(周期構造形成部はφ4mm〜φ5mmであるので、Eが0.5mmとなる。)また、使用する第1部材1としては、図1に示すような平盤体を使用する。この第1部材1としての平盤体は、その材質として試験片と同様SUS440Cとする。第1部材1の摺動面1a及び試験片Aの摺動面2aの表面粗さをRa0.02μmとした。潤滑剤としては、極性をもたず熱的・化学的に安定したPAO6を用いた。   Using the second member 2 (test piece A) having the sliding surface 2a as shown in FIG. 7A, the relationship between the load and the friction coefficient was examined. As the test piece A, the material is SUS440C, the sliding surface diameter D is 5 mm, and the outer peripheral side of the sliding surface 2a is a grating-like shape having a periodic interval of about 700 nm and an unevenness depth (recessed portion depth) of about 200 nm. The periodic structure part 3 was formed. The width (radial width) E of the periodic structure portion 3 was set to about 0.5 mm. (Since the periodic structure forming portion is φ4 mm to φ5 mm, E is 0.5 mm.) Further, as the first member 1 to be used, a flat plate body as shown in FIG. 1 is used. The flat plate body as the first member 1 is made of SUS440C as is the material of the test piece. The surface roughness of the sliding surface 1a of the first member 1 and the sliding surface 2a of the test piece A was Ra 0.02 μm. As the lubricant, PAO6 having no polarity and being thermally and chemically stable was used.

また、摺動面2aに周期構造部3を有さない比較片A1(図7(b)参照)を製作した。この比較片A1もSUS440Cとし、その外径寸法D1を5mmとし、摺動面2a1の表面粗さをRa0.02μmとした。なお、試験片Aの周期構造部3は、前記図6に示したフェムト秒レーザ表面加工装置を用いて形成した。すなわち、直線偏光のフェムト秒レーザを加工しきい値近傍のエネルギー密度で材料表面に照射し自己組織的に形成したものである。そして、周期構造の方向は、多方向すべりに対応できるように放射状としている。   Further, a comparative piece A1 (see FIG. 7B) having no periodic structure portion 3 on the sliding surface 2a was manufactured. This comparison piece A1 was also SUS440C, its outer diameter D1 was 5 mm, and the surface roughness of the sliding surface 2a1 was Ra 0.02 μm. The periodic structure portion 3 of the test piece A was formed using the femtosecond laser surface processing apparatus shown in FIG. That is, it is formed in a self-organized manner by irradiating the material surface with a linearly polarized femtosecond laser at an energy density near the processing threshold. And the direction of a periodic structure is made radial so that it can respond to multi-directional slip.

そして、試験としては、図1に示すように、試験片A(第2部材2)および比較片A1をそれぞれ1直線方向に6mmの範囲で矢印X方向に往復動させた。この際、摺動速度を4mm/sとし、荷重を1Nから50Nまで段階的に増加させた。   And as a test, as shown in FIG. 1, the test piece A (2nd member 2) and the comparison piece A1 were reciprocated in the arrow X direction in the range of 6 mm in 1 linear direction, respectively. At this time, the sliding speed was 4 mm / s, and the load was increased stepwise from 1N to 50N.

試験結果を図8のグラフ図に示す。図8では、横軸を荷重(N)とし、縦軸を摩擦係数としている。図8の黒丸は周期構造部を有する試験片Aを示し、図8の白丸は周期構造を有さない比較片A1を示している。なお、図8では試験片Aではこの試験片を周期構造と呼び、この比較片A1を鏡面と呼んでいる。   The test results are shown in the graph of FIG. In FIG. 8, the horizontal axis is the load (N), and the vertical axis is the friction coefficient. A black circle in FIG. 8 indicates the test piece A having a periodic structure portion, and a white circle in FIG. 8 indicates the comparison piece A1 having no periodic structure. In FIG. 8, in the test piece A, this test piece is called a periodic structure, and this comparison piece A1 is called a mirror surface.

図8から分かるように、各荷重条件で摩擦係数が比較片A1よりも試験片Aが低いことが分かる。すなわち、比較片A1よりも試験片Aが滑らかに摺動する。   As can be seen from FIG. 8, it can be seen that the test piece A has a lower coefficient of friction than the comparative piece A1 under each load condition. That is, the test piece A slides more smoothly than the comparison piece A1.

負荷容量とランド部(溝未形成部)4の大きさとの関係を調べた。この場合の試験片Bとしては、図9にように、摺動面2aが1辺の長さSが5mmの正方形で、その外周部に各辺に沿った周期構造部3を設けたものである。また、溝未形成部4が正方形とされ、図11にグラフ図に示すように、溝未形成部(平滑部)4の1辺の長さLを0mmから5mmまで変化させた。   The relationship between the load capacity and the size of the land portion (groove-unformed portion) 4 was examined. As the test piece B in this case, as shown in FIG. 9, the sliding surface 2a is a square having a side S of 5 mm in length, and the periodic structure portion 3 along each side is provided on the outer periphery thereof. is there. Further, the non-grooved portion 4 is square, and the length L of one side of the non-grooved portion (smooth portion) 4 is changed from 0 mm to 5 mm as shown in the graph of FIG.

また、比較片B1として、図10に示すように、1辺の長さS1が5mmの摺動面2aに、溝未形成部(平滑部)4に対応する位置に摺動面2a1からの高さTが200nmの膨出部50を形成したものである。膨出部50の1辺の長さL1を0から5mmまで変化させた。   Further, as the comparison piece B1, as shown in FIG. 10, the height from the sliding surface 2a1 to the position corresponding to the non-grooved portion (smooth portion) 4 is set on the sliding surface 2a having a side length S1 of 5 mm. A bulging portion 50 having a thickness T of 200 nm is formed. The length L1 of one side of the bulging portion 50 was changed from 0 to 5 mm.

試験片Bの負荷容量は、無限溝数理論により油膜厚さ200nm、丘溝比0.5、周期構造深さ200nm、粘度31.28cp、摺動速度50mm/sとして計算した。また、比較片B1の負荷容量は、試験片Bの負荷容量の計算と同一条件として計算した。   The load capacity of the test piece B was calculated according to the infinite groove number theory as an oil film thickness of 200 nm, a hill groove ratio of 0.5, a periodic structure depth of 200 nm, a viscosity of 31.28 cp, and a sliding speed of 50 mm / s. Further, the load capacity of the comparison piece B1 was calculated under the same conditions as the calculation of the load capacity of the test piece B.

計算結果を図11のグラフ図に示す。図11において、実線は試験片Bを示し、破線は比較片B1を示す。なお、図11では試験片Bを周期構造と呼び、この比較片B1を均一段差と呼んでいる。   The calculation results are shown in the graph of FIG. In FIG. 11, a solid line shows the test piece B, and a broken line shows the comparison piece B1. In FIG. 11, the test piece B is called a periodic structure, and the comparison piece B1 is called a uniform step.

この図11からわかるように、試験片Bでは、比較片B1の1.4倍の負荷容量が得られた。試験片Bでは周期構造部3を設けたことにより、レイリーステップ効果は減少するが、流体を中央部に引き込む流体導入効果が新たに発生する。すなわち、試験片Bの負荷容量が増加したのは、流体導入効果による負荷容量の増加がレイリーステップ効果の減少分よりも大きいためである。   As can be seen from FIG. 11, with the test piece B, a load capacity 1.4 times that of the comparison piece B1 was obtained. Although the Rayleigh step effect is reduced by providing the periodic structure portion 3 in the test piece B, a fluid introduction effect for drawing the fluid into the central portion is newly generated. That is, the load capacity of the test piece B is increased because the increase in the load capacity due to the fluid introduction effect is larger than the decrease in the Rayleigh step effect.

この試験により、試験片Bのように、摺動面中央部に溝未形成部4を形成し、かつ外周部に周期構造部3を形成したものが、大きな負荷容量を得ることができる。特に、1辺が5mmの正方形の摺動面2aを有する場合、溝未形成部(平滑部)4が1辺が2mm程度の正方形とすることによって、最大の負荷容量を得ることができる。   By this test, as in the test piece B, the one in which the groove non-formed part 4 is formed in the center part of the sliding surface and the periodic structure part 3 is formed in the outer peripheral part can obtain a large load capacity. In particular, when one side has a square sliding surface 2a of 5 mm, the maximum load capacity can be obtained by making the groove-unformed portion (smooth part) 4 a square having a side of about 2 mm.

1a 摺動面
1 第1部材
2a 摺動面
2 第2部材
3 周期構造部
4 溝未形成部(ランド部)
5 凹部
1a Sliding surface 1 First member 2a Sliding surface 2 Second member 3 Periodic structure portion 4 Groove not formed portion (land portion)
5 recess

Claims (7)

第1部材の摺動面と第2部材の摺動面とが潤滑剤下で相対的に摺動する摺動面構造であって、第1部材と第2部材との少なくともいずれか一方の摺動面に、予定される摺動方向に対して線対称の形状となるとともに、摺動面の相対的な摺動によって潤滑剤を摺動面中央部に引き込むグレーティング状凹凸の周期構造部を設けたことを特徴とする摺動面構造。   A sliding surface structure in which the sliding surface of the first member and the sliding surface of the second member slide relative to each other under a lubricant, the sliding surface of at least one of the first member and the second member. The moving surface has a symmetrical structure with respect to the expected sliding direction and a periodic structure with grating-like irregularities that draws the lubricant into the center of the sliding surface by relative sliding of the sliding surface. A sliding surface structure characterized by that. 前記周期構造部は、摺動面中央部を中心として放射状に延びる複数の微細溝にて構成される微細溝構造であることを特徴とする請求項1に記載の摺動面構造。   2. The sliding surface structure according to claim 1, wherein the periodic structure portion has a fine groove structure including a plurality of fine grooves extending radially around a central portion of the sliding surface. 摺動面中央部は周期構造部を構成しない溝未形成部としたことを特徴とする請求項1又は請求項2に記載の摺動面構造。   The sliding surface structure according to claim 1 or 2, wherein a central portion of the sliding surface is a non-grooved portion that does not constitute a periodic structure portion. 摺動面中央部は、予定される摺動方向線に対して線対称の形状であることを特徴とする請求項1〜請求項3のいずれか1項に記載の摺摺動面構造。   The sliding surface structure according to any one of claims 1 to 3, wherein the central portion of the sliding surface has a line-symmetric shape with respect to a predetermined sliding direction line. 周期構造部の周期ピッチが10μm以下であることを特徴とする請求項1〜請求項4のいずれか1項に記載の摺動面構造。   The sliding surface structure according to any one of claims 1 to 4, wherein a periodic pitch of the periodic structure portion is 10 µm or less. 前記周期構造部の凹部の深さが1μm以下であることを特徴とする請求項1〜請求項5のいずれかの摺動面構造。   The sliding surface structure according to any one of claims 1 to 5, wherein a depth of the concave portion of the periodic structure portion is 1 µm or less. 前記周期構造部は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成されていることを特徴とする請求項1〜請求項6のいずれかの摺動面構造。   The periodic structure part is formed in a self-organized manner by irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of a processing threshold and scanning the overlapping part in an overlapping manner. The sliding surface structure according to claim 6.
JP2011103513A 2011-05-06 2011-05-06 Sliding surface structure Active JP5638455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011103513A JP5638455B2 (en) 2011-05-06 2011-05-06 Sliding surface structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011103513A JP5638455B2 (en) 2011-05-06 2011-05-06 Sliding surface structure

Publications (2)

Publication Number Publication Date
JP2012233541A true JP2012233541A (en) 2012-11-29
JP5638455B2 JP5638455B2 (en) 2014-12-10

Family

ID=47434046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011103513A Active JP5638455B2 (en) 2011-05-06 2011-05-06 Sliding surface structure

Country Status (1)

Country Link
JP (1) JP5638455B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635151B2 (en) * 2013-04-05 2014-12-03 キヤノンマシナリー株式会社 Periodic structure forming method
WO2015087482A1 (en) * 2013-12-09 2015-06-18 株式会社デンソー Metal member, metal member surface processing method, semiconductor device, semiconductor device manufacturing method, and composite molded body
JP2016016052A (en) * 2014-07-07 2016-02-01 キヤノンマシナリー株式会社 Artificial hip joint

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817220A (en) * 1981-07-20 1983-02-01 Oiles Ind Co Ltd Slide member
JP2002061635A (en) * 2000-08-21 2002-02-28 Nippon Densan Corp Dynamic pressure bearing and motor using the same
JP3590992B2 (en) * 1994-06-17 2004-11-17 日本精工株式会社 Wear-resistant sliding member
JP2006052847A (en) * 2004-08-14 2006-02-23 Fuzhun Precision Industry (Shenzhen) Co Ltd Fluid dynamic pressure bearing
JP2008089091A (en) * 2006-10-02 2008-04-17 Canon Machinery Inc Sliding surface structure
JP2009014183A (en) * 2007-07-09 2009-01-22 Canon Machinery Inc Sliding face structure
JP2009293684A (en) * 2008-06-04 2009-12-17 Canon Machinery Inc Tribochemical reaction promoting surface structure
JP2011047428A (en) * 2009-08-25 2011-03-10 Canon Machinery Inc Sliding surface

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817220A (en) * 1981-07-20 1983-02-01 Oiles Ind Co Ltd Slide member
JP3590992B2 (en) * 1994-06-17 2004-11-17 日本精工株式会社 Wear-resistant sliding member
JP2002061635A (en) * 2000-08-21 2002-02-28 Nippon Densan Corp Dynamic pressure bearing and motor using the same
JP2006052847A (en) * 2004-08-14 2006-02-23 Fuzhun Precision Industry (Shenzhen) Co Ltd Fluid dynamic pressure bearing
JP2008089091A (en) * 2006-10-02 2008-04-17 Canon Machinery Inc Sliding surface structure
JP2009014183A (en) * 2007-07-09 2009-01-22 Canon Machinery Inc Sliding face structure
JP2009293684A (en) * 2008-06-04 2009-12-17 Canon Machinery Inc Tribochemical reaction promoting surface structure
JP2011047428A (en) * 2009-08-25 2011-03-10 Canon Machinery Inc Sliding surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635151B2 (en) * 2013-04-05 2014-12-03 キヤノンマシナリー株式会社 Periodic structure forming method
WO2015087482A1 (en) * 2013-12-09 2015-06-18 株式会社デンソー Metal member, metal member surface processing method, semiconductor device, semiconductor device manufacturing method, and composite molded body
US9517532B2 (en) 2013-12-09 2016-12-13 Denso Corporation Metal member, metal member surface processing method, semiconductor device, semiconductor device manufacturing method, and composite molded body
JP2016016052A (en) * 2014-07-07 2016-02-01 キヤノンマシナリー株式会社 Artificial hip joint

Also Published As

Publication number Publication date
JP5638455B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP6763850B2 (en) Manufacturing method of sliding parts and sliding parts
JP6964392B2 (en) Sliding surface structure and manufacturing method of sliding surface structure
JP5111961B2 (en) Sliding surface structure
JP5638455B2 (en) Sliding surface structure
JP4263185B2 (en) Low friction sliding surface
JP6612053B2 (en) Sliding surface structure
JP2007270919A (en) Rolling slide member
JP5538476B2 (en) Sliding surface structure
JP2021025653A (en) Rotary slide bearing and manufacturing method therefor
US9581105B2 (en) Piston for internal combustion engine and manufacturing method thereof
JP5726673B2 (en) Sliding surface structure
WO2006027948A1 (en) Sliding surface of sliding member
JP5619937B2 (en) Sliding surface structure
JP5917646B2 (en) Manufacturing method of sliding member
JP5196301B2 (en) Tribochemical reaction promoting surface structure
JP2013160338A (en) Sliding surface structure, and method for manufacturing the same
JP7373898B2 (en) Contact surface structure
JP6608503B1 (en) Contact surface structure and method of forming contact surface structure
JP7249743B2 (en) thrust plain bearing
JP2016016052A (en) Artificial hip joint
Ezhilmaran et al. Femtosecond laser assisted generation of micro-dimples on moly-chrome film for improving its tribology
JP6392130B2 (en) Manufacturing method of sliding surface structure
JP2015075145A (en) Roller bearing, method of manufacturing roller bearing, apparatus for manufacturing roller bearing
JP6130004B1 (en) Water repellent surface structure
JP6130004B6 (en) Water repellent surface structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141022

R150 Certificate of patent or registration of utility model

Ref document number: 5638455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250