JP2006052847A - Fluid dynamic pressure bearing - Google Patents

Fluid dynamic pressure bearing Download PDF

Info

Publication number
JP2006052847A
JP2006052847A JP2005225821A JP2005225821A JP2006052847A JP 2006052847 A JP2006052847 A JP 2006052847A JP 2005225821 A JP2005225821 A JP 2005225821A JP 2005225821 A JP2005225821 A JP 2005225821A JP 2006052847 A JP2006052847 A JP 2006052847A
Authority
JP
Japan
Prior art keywords
flow path
dynamic pressure
flow
section
flow paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005225821A
Other languages
Japanese (ja)
Other versions
JP2006052847A6 (en
JP4638296B2 (en
Inventor
Ching-Hsing Huang
晉興 黄
Wun-Chang Shih
文章 施
Hsien-Sheng Pei
先声 白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhun Precision Industry Shenzhen Co Ltd
Foxconn Technology Co Ltd
Original Assignee
Fuzhun Precision Industry Shenzhen Co Ltd
Foxconn Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhun Precision Industry Shenzhen Co Ltd, Foxconn Technology Co Ltd filed Critical Fuzhun Precision Industry Shenzhen Co Ltd
Publication of JP2006052847A publication Critical patent/JP2006052847A/en
Application granted granted Critical
Publication of JP4638296B2 publication Critical patent/JP4638296B2/en
Publication of JP2006052847A6 publication Critical patent/JP2006052847A6/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid dynamic pressure bearing which is superior to effect of branch flow of a lubricant in a groove producing dynamic pressure and which is capable of effectively preventing it from leaking. <P>SOLUTION: The fluid dynamic pressure bearing includes two supporting surfaces which relatively rotate, and is provided with the groove producing dynamic pressure which is formed with a plurality of relatively high pressure and low pressure sections on at least one supporting surfaces when these two supporting surface relatively rotate. The groove producing dynamic pressure contains a first flow path and a second flow path. The first flow path includes a plurality of first flow paths which are arranged to include spacing and a plurality of second flow paths which are arranged to intersect with each of the first flow paths. The second flow path includes a plurality of third flow paths which are arranged to include spacing and a plurality of fourth flow paths which are arranged to intersect with each of the third flow paths. The first flow paths are connected with the second flow paths arranged on one side at low pressure of the first flow path. The third flow paths are connected with the fourth flow paths arranged on one side at low pressure of the second flow path. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流体動圧軸受に係り、特に軸受の動圧発生溝に関するものである。   The present invention relates to a fluid dynamic pressure bearing, and more particularly to a dynamic pressure generating groove of the bearing.

現在、流体動圧軸受が小型のモータにますます応用されている。一般に、流体動圧軸受は、相対回転する回転軸とこの軸を挿入したスリーブとから成り、該回転軸の外周面とスリーブの内周面との間に微小隙間が形成されると共に、該軸の外周面若しくはスリーブの内周面に動圧発生用溝が形成され、この微小隙間に配されて回転軸とスリーブとを相対的に回転可能に支持する潤滑剤を介してラジアル軸受が形成されている。このような軸受では、回転軸がスリーブと相対回転するのに伴って、動圧発生溝の働きにより、この潤滑剤にラジアル方向の動圧が発生する。従って、このラジアル方向で回転軸とスリーブとの非接触状態を保つことによって、該回転軸とスリーブとの磨損や騒音を発生することを防止でき、回転軸の回転に伴って発生する振動を小さくして、回転の安定性を向上することができる。   Currently, fluid dynamic pressure bearings are increasingly applied to small motors. Generally, a fluid dynamic pressure bearing is composed of a rotating shaft that rotates relatively and a sleeve into which the shaft is inserted, and a minute gap is formed between the outer peripheral surface of the rotating shaft and the inner peripheral surface of the sleeve, and the shaft A dynamic pressure generating groove is formed on the outer peripheral surface of the sleeve or the inner peripheral surface of the sleeve, and a radial bearing is formed through a lubricant that is disposed in the minute gap and supports the rotating shaft and the sleeve relatively rotatably. ing. In such a bearing, as the rotary shaft rotates relative to the sleeve, a radial dynamic pressure is generated in the lubricant by the action of the dynamic pressure generating groove. Therefore, by maintaining the non-contact state between the rotating shaft and the sleeve in the radial direction, it is possible to prevent the rotating shaft and the sleeve from being worn or to generate noise, and to reduce the vibration generated with the rotation of the rotating shaft. Thus, the rotation stability can be improved.

動圧発生溝は主に指標として流体動圧軸受の性能が体現できる。従来技術において流体動圧軸受の動圧発生溝は、一般に“人”字型の溝が使用される。図1は、該“人”字型の溝100の円周の方向での展開図である。この回転軸が回転するときに、前記潤滑剤は該“人”字型の溝の両端側の分流道102、104から交差中部108へ流動する。この際、この交差中部108に高圧が発生して、高圧の区域が形成される。従って、回転軸とスリーブとが非接触状態となって回転できる。   The dynamic pressure generating groove can embody the performance of a fluid dynamic pressure bearing mainly as an index. In the prior art, a “human” -shaped groove is generally used as a dynamic pressure generating groove of a fluid dynamic pressure bearing. FIG. 1 is a developed view of the “human” -shaped groove 100 in the circumferential direction. When the rotating shaft rotates, the lubricant flows from the diversion paths 102 and 104 on both ends of the “human” -shaped groove to the intersecting middle portion 108. At this time, a high pressure is generated in the intersecting middle portion 108 to form a high pressure area. Therefore, the rotating shaft and the sleeve can rotate in a non-contact state.

しかしながら、このような従来の流体動圧軸受において、動圧発生溝が、前記“人”字型の溝の分流道102、104だけであるので、各分流道における潤滑剤の分流が不充分となる。従って、この分流道にて理想の低圧区域を形成し難く、分流道102、104終端の圧力が比較的に大きくなって、スリーブの開口側端面から潤滑剤が流出する比率が上がる。   However, in such a conventional fluid dynamic pressure bearing, since the dynamic pressure generating groove is only the branch path 102, 104 of the "human" -shaped groove, the branching of the lubricant in each branch path is insufficient. Become. Therefore, it is difficult to form an ideal low-pressure zone in this shunt path, the pressure at the end of the shunt paths 102 and 104 becomes relatively large, and the ratio of the lubricant flowing out from the opening side end face of the sleeve increases.

従って、本発明は、動圧発生溝における潤滑剤の分流効果が良く、且つ漏洩を有効に防止できる流体動圧軸受を提供することを目的とする。   Therefore, an object of the present invention is to provide a fluid dynamic pressure bearing that has a good effect of dividing the lubricant in the dynamic pressure generating groove and can effectively prevent leakage.

前記目的を実現するために、本発明に係る流体動圧軸受は、相対回転する二つの支持面を有し、これら二つの支持面が相対回転するときに、複数の高圧区と低圧区とが少なくとも一つの支持面に形成される動圧発生溝が設けられ、前記動圧発生溝が、第一の流道区と第二の流道区とを含み、前記第一の流道区が、間隔を有して配列された複数の第一の流道と、各々第一の流道と交錯して配列された複数の第二の流道とを有し、前記第二の流道区が、間隔を有して配列された複数の第三の流道と、各々第三の流道と交錯して配列された複数の第四の流道とを有し、前記各第一の流道が、一方の側に配された第二の流道と前記第一の流道区の低圧区で連結され、前記各第三の流道が、一方の側に配された第四の流道と前記第二の流道区の低圧区で連結されている。   In order to achieve the above object, the fluid dynamic bearing according to the present invention has two support surfaces that rotate relative to each other, and when these two support surfaces rotate relative to each other, a plurality of high-pressure sections and low-pressure sections A dynamic pressure generating groove formed on at least one support surface is provided, and the dynamic pressure generating groove includes a first flow path section and a second flow path section, and the first flow path section includes: A plurality of first flow paths arranged at intervals, and a plurality of second flow paths arranged in an intersection with the first flow paths, the second flow path section being A plurality of third flow paths arranged at intervals, and a plurality of fourth flow paths arranged in an intersecting manner with each of the third flow paths, each of the first flow paths Are connected by a second flow path arranged on one side and a low-pressure section of the first flow path section, and each third flow path is a fourth flow path arranged on one side. And in the low pressure area of the second flowway area It is binding.

また、前記各第一の流道が、他方の側に配された第二の流道と前記高圧区で連結され、前記各第三の流道が、他方の側に配された第四の流道と前記高圧区で連結され、且つ前記第一の流道と前記第二の流道とが前記高圧区で連結して形成された連結部が、前記第三の流道と前記第四の流道とが前記高圧区で連結して形成された連結部と更に連結されて、高圧集合区が形成されている。   Each of the first flow paths is connected to the second flow path arranged on the other side in the high-pressure section, and each third flow path is arranged on the other side. A connecting portion formed by connecting a flow path and the high-pressure section and connecting the first flow path and the second flow path in the high-pressure section includes the third flow path and the fourth flow path. Are further connected to a connecting portion formed by connecting the high-pressure sections in the high-pressure section to form a high-pressure assembly section.

本発明の流体動圧軸受は以下の利点を少なくとも含む。本発明の流体動圧軸受の動圧発生溝では、各低圧区がすべて二つの分流道を含むので、低圧区の潤滑剤を速く分流させることができ、圧力が比較的小さい低圧区を得ることができる。従って、潤滑剤の漏洩を有効的な防止できる。また、前記各第一の流道と第三の流道とは、それぞれ他方の側の第二の流道と第四の流道と前記高圧区で連結され、かつ、前記第一の流道と第二の流道とが連結されて形成された高圧区が、前記第三の流道と第四の流道とが連結して形成された高圧区と更に連結されて高圧の集合区を形成し、網状の動圧発生溝が形成されているので、上記二つの支持面の非接触状態が好適に保たれる。   The fluid dynamic pressure bearing of the present invention includes at least the following advantages. In the dynamic pressure generating groove of the fluid dynamic pressure bearing of the present invention, each low pressure section includes two shunt passages, so that the lubricant in the low pressure section can be quickly divided and a low pressure section having a relatively low pressure can be obtained. Can do. Therefore, leakage of the lubricant can be effectively prevented. Each of the first flow path and the third flow path is connected to the second flow path and the fourth flow path on the other side by the high-pressure section, and the first flow path And a high pressure section formed by connecting the second flow path and a high pressure section formed by connecting the third flow path and the fourth flow path to form a high pressure collecting section. Since the mesh-like dynamic pressure generating grooves are formed, the non-contact state of the two support surfaces is suitably maintained.

以下、図面を参照して、本発明に係る流体動圧軸受の具体例について詳細に説明する。   Hereinafter, specific examples of the fluid dynamic pressure bearing according to the present invention will be described in detail with reference to the drawings.

図2及び図3を参照し、本発明による流体動圧軸受の第1の実施状態を示す。図2は、本発明の第1の実施形態による流体動圧軸受を示す局部断面図である。本発明の流体動圧軸受は相対回転する回転軸20とこの回転軸20を挿入したスリーブ30とから成り、該軸20の外周面及びスリーブ30の内周面(以下、二つの支持面という)の間に微小隙間が形成されると共に、該スリーブ30の直立方向での上端側及び下端側内周面(若しくは回転軸20の上端側及び下端側外周面)に、それぞれ網状の動圧発生溝10が形成されている。この上端及び下端の動圧発生溝10の間には、前記上端の動圧発生溝10の底部および前記下端の動圧発生溝10の頂部のそれぞれに内接する潤滑剤を貯蔵するための輪形の貯蔵凹部19が形成され、前記二つの支持面の間の微小隙間に、二つの支持面を相対的に回転可能に支持する潤滑剤が配されている。回転軸20がスリーブ30と相対的に回転するのに伴って、動圧発生溝10の働きにより、この潤滑剤にラジアル方向の動圧が発生する。従って、このラジアル方向で回転軸20とスリーブ30とが非接触状態となって相対的に回転できる。   With reference to FIG. 2 and FIG. 3, the 1st implementation state of the fluid dynamic pressure bearing by this invention is shown. FIG. 2 is a local sectional view showing a fluid dynamic pressure bearing according to the first embodiment of the present invention. The fluid dynamic pressure bearing according to the present invention includes a rotating shaft 20 that rotates relatively and a sleeve 30 into which the rotating shaft 20 is inserted. The outer peripheral surface of the shaft 20 and the inner peripheral surface of the sleeve 30 (hereinafter referred to as two support surfaces). Are formed on the upper end side and the lower end side inner peripheral surface (or the upper end side and lower end side outer peripheral surface of the rotary shaft 20) in the upright direction of the sleeve 30, respectively. 10 is formed. Between the upper end and the lower end dynamic pressure generating groove 10, a ring shape for storing a lubricant inscribed in the bottom of the upper end dynamic pressure generating groove 10 and the top of the lower end dynamic pressure generating groove 10. A storage recess 19 is formed, and a lubricant that rotatably supports the two support surfaces is disposed in a minute gap between the two support surfaces. As the rotary shaft 20 rotates relative to the sleeve 30, a radial dynamic pressure is generated in the lubricant by the action of the dynamic pressure generating groove 10. Therefore, the rotary shaft 20 and the sleeve 30 are in a non-contact state in this radial direction and can rotate relatively.

図3は、本発明の第1の実施例による流体動圧軸受の動圧発生溝の円周方向での展開図である。前記動圧発生溝10は、第一の流道区11と第二の流道区12とを含み、該第一の流道区11と第二の流道区12との間に内接する動圧発生溝10の中心線としての分界線18を有する。該第一の流道区11は、間隔を有して互いに平行に配列された複数の第一の流道13と、各々第一の流道13と交錯して互いに平行に配列された複数の第二の流道14とを有する。第一の流道13と第二の流道14とは、それぞれ前記分界線18と鋭角を成し、該二つの鋭角の大小が同じではなく、且つ各第一の流道13の両端部には、それぞれその両側に近寄る二つの第二の流道14の両端部と連接する連接部が形成されている。ここで、分界線18に近寄る連接部を高圧区とし、分界線18から離れた連接部を低圧区とする。前記の第二の流道区12は、分界線18を基準線として第一の流道区11と線対称に配されている。即ち、該第二の流道区12は、第一の流道13と線対称の位置に間隔を有して平行に配列された複数の第三の流道15と、一部が第二の流道14と線対称の位置にて各々第一の流道13と交錯して、且つ互いに平行に配列された複数の第四の流道16とを有する。第二の流道区12には、第一の流道区11と同様に、高圧区と低圧区とが形成されている。前記第一の流道区11と第二の流道区12とのそれぞれの二つの高圧区としての連接部は、分界線18により近い位置に連接されて、更に高圧集合区17が形成されている。従って、上記二つの支持面の非接触状態が効果に保たれる。   FIG. 3 is a development view in the circumferential direction of the dynamic pressure generating groove of the fluid dynamic pressure bearing according to the first embodiment of the present invention. The dynamic pressure generating groove 10 includes a first flow path section 11 and a second flow path section 12, and the inscribed movement between the first flow path section 11 and the second flow path section 12. A dividing line 18 is provided as a center line of the pressure generating groove 10. The first flow passage section 11 includes a plurality of first flow passages 13 arranged in parallel with each other at intervals, and a plurality of first flow passages 13 arranged in parallel to each other so as to intersect with the first flow passages 13. And a second flow path 14. The first flow path 13 and the second flow path 14 form an acute angle with the demarcation line 18, the magnitudes of the two acute angles are not the same, and are formed at both ends of each first flow path 13. Are formed with connecting portions that are connected to both end portions of the two second flow paths 14 approaching both sides thereof. Here, a connecting portion approaching the dividing line 18 is defined as a high pressure section, and a connecting portion distant from the dividing line 18 is defined as a low pressure section. The second flow path section 12 is arranged symmetrically with the first flow path section 11 with the boundary line 18 as a reference line. That is, the second flow path section 12 includes a plurality of third flow paths 15 that are arranged in parallel with an interval at positions symmetrical to the first flow path 13, and a part of the second flow path section 12 is a second flow path. A plurality of fourth flow paths 16 that intersect with the first flow path 13 and are arranged in parallel to each other at positions that are line-symmetric with the flow path 14 are provided. Similar to the first flow path section 11, a high pressure section and a low pressure section are formed in the second flow path section 12. The two high-pressure sections of the first flow path section 11 and the second flow path section 12 are connected to a position closer to the dividing line 18, and a high-pressure assembly section 17 is further formed. Yes. Therefore, the non-contact state of the two support surfaces is kept effective.

全体から見て、動圧発生溝10は、互いに連結した複数の人字型の溝が組み合わされて成り、各人字型の溝は分流道を二つ含み、また、該分流道が更に二つの比較的に小さな分流道13(15)、14(16)を含んでいる。更に、第一(二)の流道区11(12)において、分流道13(15)と分流道14(16)とには、分界線18により近い場所、及び分界線18からより離れた場所にてそれぞれ連結して低圧区及び高圧区が形成されるとともに、網状の動圧発生溝10が形成されている。   As seen from the whole, the dynamic pressure generating groove 10 is formed by combining a plurality of human character-shaped grooves connected to each other, and each human character-shaped groove includes two diversion paths, and the diversion paths are further divided into two. Two relatively small shunts 13 (15), 14 (16) are included. Further, in the first (2) flow path section 11 (12), the branch path 13 (15) and the branch path 14 (16) are closer to the dividing line 18 and further away from the dividing line 18. Are connected to each other to form a low pressure section and a high pressure section, and a net-like dynamic pressure generating groove 10 is formed.

回転軸20がスリーブ30と相対に回転するときには、動圧発生溝10の働きにより、潤滑剤が低圧区から分流道13、14、15、16に沿って集合区17へ流動する。この際、集合区17で潤滑剤にラジアル方向での動圧が発生する。該動圧は、このラジアル方向で回転軸20とスリーブ30との非接触状態を保つのに利用される。一方で、低圧区における潤滑剤が、分流道13、14若しくは分流道15、16に沿って集合区17へ流動する際、低圧区の圧力が漸次小さくなり、スリーブ30の開口側の端面からの潤滑剤流出が有効的に防止される。   When the rotary shaft 20 rotates relative to the sleeve 30, the lubricant flows from the low-pressure section to the collecting section 17 along the diversion paths 13, 14, 15, 16 due to the action of the dynamic pressure generating groove 10. At this time, dynamic pressure in the radial direction is generated in the lubricant in the gathering zone 17. The dynamic pressure is used to maintain the non-contact state between the rotating shaft 20 and the sleeve 30 in the radial direction. On the other hand, when the lubricant in the low-pressure section flows to the collecting section 17 along the shunt paths 13 and 14 or the shunt paths 15 and 16, the pressure in the low-pressure section gradually decreases, and the pressure from the end face on the opening side of the sleeve 30 decreases. Lubricant spillage is effectively prevented.

上記第1の実施状態において、各々分流道の形状は線状である。本発明の各々分流道の形状は曲線状とされても上記第1の実施状態と同様の効果が得られる。   In the first implementation state, each of the diversion paths is linear. Even if the shape of each branch path of the present invention is curved, the same effect as in the first embodiment can be obtained.

図4を参照し、本発明による流体動圧軸受の第2の実施状態を示す。   With reference to FIG. 4, the 2nd implementation state of the fluid dynamic pressure bearing by this invention is shown.

本発明の動圧発生溝10がスラスト軸受の支持面に形成される。図4は、本発明の第2の実施例によるスラスト軸受の動圧発生溝の正面図である。ここで、分流道13’、14’がスラスト軸受の外縁で連結して、分流道15’、16’がスラスト軸受の内縁で連結している。スラスト軸受が相対して回転するときに、潤滑剤がそれぞれ上記外縁及び内縁から動圧発生溝10’の中部の集合区17’に流動して高圧が発生する。これにより、スラスト軸受のスラスト相対面が非接触状態を保つことができる。同時に、それぞれ上記外縁及び内縁に低圧区が形成されるので、分流道13’、14’、15’、16’に分流された潤滑剤の漏洩を効果に防止できる。   The dynamic pressure generating groove 10 of the present invention is formed on the support surface of the thrust bearing. FIG. 4 is a front view of a dynamic pressure generating groove of a thrust bearing according to a second embodiment of the present invention. Here, the diversion paths 13 'and 14' are connected at the outer edge of the thrust bearing, and the diversion paths 15 'and 16' are connected at the inner edge of the thrust bearing. When the thrust bearings rotate relative to each other, the lubricant flows from the outer edge and the inner edge to the central collection zone 17 ′ of the dynamic pressure generating groove 10 ′ to generate high pressure. Thereby, the thrust relative surface of a thrust bearing can maintain a non-contact state. At the same time, since the low-pressure section is formed at the outer edge and the inner edge, respectively, it is possible to effectively prevent the leakage of the lubricant diverted to the diversion paths 13 ', 14', 15 ', 16'.

従来の動圧軸受の動圧発生溝の円周方向での展開図である。It is a development view in the circumferential direction of a dynamic pressure generating groove of a conventional dynamic pressure bearing. 本発明に係る第1の実施の形態における流体動圧軸受の局部断面図である。It is local sectional drawing of the fluid dynamic pressure bearing in 1st Embodiment which concerns on this invention. 図2に示す流体動圧軸受の動圧発生溝の円周方向での展開図である。FIG. 3 is a development view in the circumferential direction of a dynamic pressure generating groove of the fluid dynamic pressure bearing shown in FIG. 2. 本発明に係る第2の実施の形態でスラストにおける軸受の動圧発生溝の正面図である。It is a front view of the dynamic pressure generating groove of the bearing in the thrust in the second embodiment according to the present invention.

符号の説明Explanation of symbols

10 動圧発生溝
11 第一の流道区
12 第二の流道区
13、13’ 第一の流道
14、14’ 第二の流道
15、15’ 第三の流道
16、16’ 第四の流道
17、17’ 集合区
18 分界線
19 貯蔵凹部
20 回転軸
30 スリーブ
DESCRIPTION OF SYMBOLS 10 Dynamic pressure generating groove 11 1st flow path area 12 2nd flow path area 13, 13 '1st flow path 14, 14' 2nd flow path 15, 15 '3rd flow path 16, 16' Fourth flow path 17, 17 ′ Assembly zone 18 Boundary line 19 Storage recess 20 Rotating shaft 30 Sleeve

Claims (4)

相対回転する二つの支持面を有し、これら二つの支持面が相対回転するときに、複数の高圧区と低圧区とが少なくとも一つの支持面に形成される動圧発生溝が設けられている流体動圧軸受において、前記動圧発生溝が、第一の流道区と第二の流道区とを含み、前記第一の流道区が、間隔を有して配列された複数の第一の流道と、各々第一の流道と交錯して配列された複数の第二の流道とを有し、前記第二の流道区が、間隔を有して配列された複数の第三の流道と、各々第三の流道と交錯して配列された複数の第四の流道とを有し、前記各第一の流道が、一方の側に配された第二の流道と前記第一の流道区の低圧区で連結され、前記各第三の流道が、一方の側に配された第四の流道と前記第二の流道区の低圧区で連結されていることを特徴とする流体動圧軸受。   There are two support surfaces that rotate relative to each other, and when these two support surfaces rotate relative to each other, a dynamic pressure generating groove is formed in which a plurality of high pressure sections and low pressure sections are formed on at least one support surface. In the fluid dynamic pressure bearing, the dynamic pressure generating groove includes a first flow path section and a second flow path section, and the first flow path sections are arranged in a plurality of intervals. One flow path and a plurality of second flow paths that are arranged so as to intersect each of the first flow paths, and the second flow path section includes a plurality of the flow paths that are arranged at intervals. A second flow path having a third flow path and a plurality of fourth flow paths arranged to intersect with the third flow path, each of the first flow paths being arranged on one side And the third flow path is connected to one side of the fourth flow path and the low pressure section of the second flow path section. It is characterized by being connected with Fluid dynamic bearing. 前記各第一、第二、第三、及び第四の流道の内部が、それぞれ互いに平行に配列されていることを特徴とする請求項1に記載の流体動圧軸受。   2. The fluid dynamic bearing according to claim 1, wherein the first, second, third, and fourth flow paths are arranged in parallel with each other. 前記各第一の流道が、他方の側に配された第二の流道と前記高圧区で連結され、前記各第三の流道が、他方の側に配された第四の流道と前記高圧区で連結されていることを特徴とする請求項1に記載の流体動圧軸受。   Each first flow path is connected to a second flow path disposed on the other side in the high-pressure section, and each third flow path is disposed on the other side. The fluid dynamic pressure bearing according to claim 1, wherein the fluid dynamic pressure bearing is connected to the high pressure section. 前記第一の流道と前記第二の流道とが前記高圧区で連結された連結部が、更に前記第三の流道と前記第四の流道とが前記高圧区で連結された連結部と連結されて、高圧集合区が形成されていることを特徴とする請求項2に記載の流体動圧軸受。
A connecting portion in which the first flow passage and the second flow passage are connected in the high pressure section, and a connection portion in which the third flow passage and the fourth flow passage are connected in the high pressure section. The fluid dynamic pressure bearing according to claim 2, wherein a high-pressure assembly is formed by being connected to the portion.
JP2005225821A 2004-08-14 2005-08-03 Fluid dynamic bearing Expired - Fee Related JP4638296B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410051160.5 2004-08-14
CNB2004100511605A CN100357620C (en) 2004-08-14 2004-08-14 Hydrodynamic bearing

Publications (3)

Publication Number Publication Date
JP2006052847A true JP2006052847A (en) 2006-02-23
JP4638296B2 JP4638296B2 (en) 2011-02-23
JP2006052847A6 JP2006052847A6 (en) 2011-04-07

Family

ID=35800040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225821A Expired - Fee Related JP4638296B2 (en) 2004-08-14 2005-08-03 Fluid dynamic bearing

Country Status (3)

Country Link
US (1) US7625122B2 (en)
JP (1) JP4638296B2 (en)
CN (1) CN100357620C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095808A (en) * 2006-10-11 2008-04-24 Tottori Univ Sliding linear guide
JP2012233541A (en) * 2011-05-06 2012-11-29 Canon Machinery Inc Sliding surface structure
US20130209011A1 (en) * 2010-10-06 2013-08-15 Eagle Industry Co., Ltd. Sliding component
CN111997999A (en) * 2020-08-20 2020-11-27 浙江申发轴瓦股份有限公司 Tilting pad sliding bearing bush structure and tilting pad sliding bearing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2442969A (en) * 2006-10-19 2008-04-23 Ford Global Tech Llc Friction bearing
US8764296B2 (en) * 2010-10-26 2014-07-01 Ihi Corporation Spiral-grooved thrust bearing
US20120243812A1 (en) * 2011-03-25 2012-09-27 John Wun-Chang Shih Fluid dynamic bearing
EP3112078B1 (en) * 2014-02-24 2020-04-15 Eagle Industry Co., Ltd. Sliding member and sliding member processing method
JP6859832B2 (en) * 2017-04-27 2021-04-14 日本電産株式会社 Fluid bearing equipment, motors and disk drives
WO2020196599A1 (en) * 2019-03-26 2020-10-01 Ntn株式会社 Fluid dynamic bearing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163211A (en) * 1989-11-17 1991-07-15 Nippon Seiko Kk Dynamic pressure fluid bearing
JPH06280858A (en) * 1993-03-29 1994-10-07 Koyo Seiko Co Ltd Dynamic pressure bearing

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7213192A (en) * 1972-09-29 1974-04-02
US4961122A (en) * 1987-05-11 1990-10-02 Hitachi, Ltd. Hydrodynamic grooved bearing device
JPH06333331A (en) * 1993-05-20 1994-12-02 Matsushita Electric Ind Co Ltd Disk rotating device
US5427456A (en) 1994-04-12 1995-06-27 Synektron Corporation Fluid bearing with asymmetrical groove pattern
US5407281A (en) 1994-07-22 1995-04-18 Quantum Corp. Self-replenishing hydrodynamic bearing
US5908247A (en) 1994-11-14 1999-06-01 Seagate Technology, Inc. Sinusoidal grooving pattern for grooved journal bearing
CN1083070C (en) * 1996-01-08 2002-04-17 海门科技公司 Grooved hydrodynamic thrust bearing
JP3395524B2 (en) * 1996-06-10 2003-04-14 松下電器産業株式会社 Vertical type hydrodynamic bearing device
US5795074A (en) 1996-10-08 1998-08-18 Seagate Technology, Inc. Grooved hydrodynamic thrust bearing
JP3514958B2 (en) 1996-12-13 2004-04-05 三星電子株式会社 Fluid bearing device
JP3362618B2 (en) 1996-12-24 2003-01-07 松下電器産業株式会社 Hydrodynamic bearing
US6296391B1 (en) 1997-06-09 2001-10-02 Sankyo Seiki Mfg. Co., Ltd. Hydrodynamic bearing apparatus
JP4006810B2 (en) * 1998-02-27 2007-11-14 松下電器産業株式会社 Electric motor and heat sink device using the same
JP2000199520A (en) 1999-01-06 2000-07-18 Konica Corp Rotary device
JP3687570B2 (en) * 2001-06-13 2005-08-24 松下電器産業株式会社 DYNAMIC PRESSURE BEARING DEVICE, MOTOR AND DISK RECORDING DEVICE USING THE SAME
US6626577B1 (en) * 2002-04-05 2003-09-30 Sunonwealth Electric Machine Industry Co., Ltd. Radially inner surface structure of a bearing
US7296932B2 (en) * 2003-01-20 2007-11-20 Minebea Co. Ltd Fluid dynamic bearing having an acute-angled shaft recess
CN100370158C (en) * 2004-08-17 2008-02-20 鸿富锦精密工业(深圳)有限公司 Fluid dynamic pressure bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03163211A (en) * 1989-11-17 1991-07-15 Nippon Seiko Kk Dynamic pressure fluid bearing
JPH06280858A (en) * 1993-03-29 1994-10-07 Koyo Seiko Co Ltd Dynamic pressure bearing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095808A (en) * 2006-10-11 2008-04-24 Tottori Univ Sliding linear guide
JP4512831B2 (en) * 2006-10-11 2010-07-28 国立大学法人鳥取大学 Sliding linear motion guide device
US20130209011A1 (en) * 2010-10-06 2013-08-15 Eagle Industry Co., Ltd. Sliding component
US8814433B2 (en) * 2010-10-06 2014-08-26 Eagle Industry Co., Ltd. Sliding component
US9279455B2 (en) 2010-10-06 2016-03-08 Eagle Industry Co., Ltd. Sliding component
US9291200B2 (en) 2010-10-06 2016-03-22 Eagle Industry Co., Ltd. Sliding component
US9470267B2 (en) 2010-10-06 2016-10-18 Eagle Industry Co., Ltd. Sliding component
US9850953B2 (en) 2010-10-06 2017-12-26 Eagle Industry Co., Ltd. Sliding component
JP2012233541A (en) * 2011-05-06 2012-11-29 Canon Machinery Inc Sliding surface structure
CN111997999A (en) * 2020-08-20 2020-11-27 浙江申发轴瓦股份有限公司 Tilting pad sliding bearing bush structure and tilting pad sliding bearing

Also Published As

Publication number Publication date
CN1734110A (en) 2006-02-15
JP4638296B2 (en) 2011-02-23
US7625122B2 (en) 2009-12-01
US20060034554A1 (en) 2006-02-16
CN100357620C (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP4638296B2 (en) Fluid dynamic bearing
JP2006052847A6 (en) Fluid dynamic bearing
JP5516748B2 (en) Spiral groove thrust bearing
WO2016084937A1 (en) Journal bearing and rotary machine
CN104937291B (en) Thrust bearing
CN106122482B (en) A kind of low leakage non-contacting mechanical seal end face structure
JP2009257445A (en) Tilting pad thrust bearing
CN103842667A (en) Thrust bearing device for supercharger
JPH07260009A (en) Non-contact-type shaft sealing device
JP5509148B2 (en) Self-compensating hydrostatic journal bearing
JP2006057840A (en) Fluid dynamic pressure bearing
JP2008095703A (en) Thrust bearing device
JP2014533342A (en) Fluid dynamic pressure thrust bearing
JP2016109268A (en) Tilting pad type journal bearing
CN109073084A (en) sealing ring and sealing device
US20200191256A1 (en) Planet wheel shaft for a planetary gear
JP2002139026A (en) Fluid bearing device
CN108138963A (en) Sealing ring
KR102233913B1 (en) A fluid hydrodynamic bearing
WO2019187023A1 (en) Rotating machine and turbocharger
JP2004052785A (en) Resin cage for angular contact ball bearing
JP2017026089A (en) Tilting pad journal bearing
CN100370159C (en) Fluid bearing
JP5812973B2 (en) Journal bearing and steam turbine
JP2009047181A (en) Cross shaft joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees