JP3590992B2 - Wear-resistant sliding member - Google Patents

Wear-resistant sliding member Download PDF

Info

Publication number
JP3590992B2
JP3590992B2 JP15947494A JP15947494A JP3590992B2 JP 3590992 B2 JP3590992 B2 JP 3590992B2 JP 15947494 A JP15947494 A JP 15947494A JP 15947494 A JP15947494 A JP 15947494A JP 3590992 B2 JP3590992 B2 JP 3590992B2
Authority
JP
Japan
Prior art keywords
concave
sliding
concave portion
wear
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15947494A
Other languages
Japanese (ja)
Other versions
JPH084770A (en
Inventor
敏夫 勇田
生哉 西村
剛 斉藤
富太 鈴木
守 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP15947494A priority Critical patent/JP3590992B2/en
Publication of JPH084770A publication Critical patent/JPH084770A/en
Application granted granted Critical
Publication of JP3590992B2 publication Critical patent/JP3590992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30934Special articulating surfaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Sliding-Contact Bearings (AREA)
  • Prostheses (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、摺動接触する部材の摺動面に耐摩耗,低摩擦抵抗処理を施した摺動部材に関する。特に、本発明は一般の相対摺動接触する機械部品の他、すべり軸受(真空用を含む),ころがり軸受の内外輪レース面,グルーブ軸受のスラスト受部あるいは人工関節等の摺動接触部に適用して有用な耐摩耗性摺動部材の摺動面構造に関する。
【0002】
【従来の技術】
相対摺動接触する部材の摺動面に耐摩耗処理を施したものとして、例えば特開昭60−135564号公報に示された金属摺動部材がある。これは、互いに摺動接触する金属部材の少なくとも一方の部材の摺動面に、耐摩耗硬質材と固体潤滑剤とを区分けしてスパッタ蒸着し、これによって硬質材料蒸着部および固体潤滑材料蒸着部によるまだら状又はディンプル状パターン(以下まだら状パターンと称する)の蒸着面を形成したものである。この構成により、摺動接触する硬質材料部分で負荷荷重を受け、その周囲の固体潤滑材料が相手部材との摺動接触で掘り起されて硬質材料部分へ潤滑剤として供給され、耐摩耗性と摩擦力の軽減が同時にもたらされる。
【0003】
また他の例としては、摺動部材の母材の表面に凹凸面を形成し、この凹凸面上に直接固体潤滑膜を形成するか、あるいは該凹凸面にその凹凸形状を維持できる範囲で硬質材料層を設けた後、最上層の凹凸部に固体潤滑膜を形成し、これによって摺動時のせん断応力による固体潤滑膜の剥離を防止するとともに、耐摩耗性および充分な潤滑性を発揮できるようにした耐摩耗性摺動部材が提案されている(特開平2−76925号公報)。
【0004】
【発明が解決しようとする課題】
上述した従来の金属摺動部材あるいは耐摩耗性摺動部材はいずれも、摺動に伴なって固体潤滑面からの潤滑剤がそのまわりの耐摩耗硬質材あるいは母材の摺動面凸部へ供給されるので高い潤滑性が得られ、しかも耐摩耗硬質材あるいは凹凸パターンの凸部の部分で荷重を受けるので、負荷容量および寸法精度を向上させ得る効果がある。しかし前述の特開昭60−135564号公報記載のものは、摺動面の硬質材料部と固体潤滑材料部によるまだら状パターンの両材料部の面積比率については各々の部材の使用条件によって適宜実験的に定めるとするのみで、具体的に特定されていない。特開平2−76925号公報においても円筒または円柱状の各々の凹部または凸部の直径は例示されているものの、それらの個数あるいは分布状況即ち摺動面全体に占める凹部または凸部の面積比率については示されていない。
【0005】
前述のように凹凸パターンの形成されている摺動部材においては、凸部で荷重を受け凹部の部分から潤滑剤を供給することになるので、凸部の面積が少ないと耐荷重性能が低下し、逆に凸部全体の面積が大即ち凹部が少ないと潤滑剤の供給能が低下する。凹部の深さについても凹部溝深さが大であると該凹部からの潤滑剤が凸部へ流出しずらくなり、凹部が浅すぎると潤滑剤の保持が有効になされない。このように摺動部材の低摩擦抵抗および耐摩耗性を最大限に発揮するようにするには凹凸パターンの凹部と凸部の面積比率および凹部の溝深さを最適な値に定める必要がある。
【0006】
本発明は、凹凸パターンを形成した摺動面の凹凸部の面積比率および凹部の深さを最適な範囲に定めることにより、摺動面の潤滑性,耐摩耗性,耐焼付性を長期間にわたり確保できる摺動部材を提供することにある。
【0007】
【課題を解決するための手段】
本発明の耐摩耗性摺動部材は、他部材に摺動接触する母材の摺動面に、複数の凹部を設けることで凹凸パターンを形成し、前記凹部の配列ピッチを0.8〜1.6mmにするとともに該凹部に液体潤滑剤を満たし、前記凹部の面積比率を摺動面全体の30〜70%、深さを1μm以上10μm以下とし、前記母材が金属材料,樹脂材料,セラミック材料の少なくとも1種類の材料で構成され、かつTiN,TiC,ダイヤモンド及びセラミック材料の少なくとも1種類の材料による被膜処理が施され、前記凹凸パターンの凹部は円形換算した時の直径が0.2〜0.8mmとなるように形成されている。
【0008】
本発明の1つの形態によれば、前記凹凸パターンが規則的に配列され、前記凹部の円形換算したときの直径が0.2〜0.8mmとされている。
【0009】
また本発明の1つの形態によれば、前記凹凸パターンが規則的に配列され、その凹部間のピッチが0.8〜1.6mmとされている。
【0010】
また本発明によれば、互いに嵌合して摺動接触する人工骨頭及び臼蓋ソケットを有する人工関節における摺動接触面構造において、前記人工骨頭又は前記臼蓋ソケットの一方又は双方の相対摺動面に、複数の凹部を設けることで凹凸パターンが形成され、前記凹部の配列ピッチが0.8〜1.6mmとされ、前記凹部に液体潤滑剤が満たされ、かつこの凹部の面積比率が摺動面全体の30〜70%、深さが1μm以上10μm以下とされ、前記凹凸パターンの凹部は円形換算した時の直径が0.2〜0.8mmとなるように形成されており、前記人工骨頭及び前記臼蓋ソケットの母材の材質がコバルト合金,ジルコニア,高分子ポリエチレンで構成されるとともにTiNでコーティングされ、前記液体潤滑剤が生理食塩水,スエット(牛あるいは羊の腎臓周辺の脂肪などの動植物油),関節液及びその混合物から選定した潤滑剤で構成されることを特徴とする人工関節における摺動接触面構造が提供される。
【0011】
さらに本発明の一形態によれば、前記凹凸パターンとして円柱状凹部を有する凹パターンが人工股関節の相対摺動面(人工骨頭または臼蓋ソケット)の一方または双方に形成され、これらの円柱状凹部の直径が略0.5mm、ピッチが略1.2mmに形成された人工股関節構造が提供される。
【0012】
また本発明の一形態によれば、前記摺動面がころがり軸受の少なくとも内外輪レース面好ましくは内外輪レース面及び保持器の摺動面、グルーブ軸受のスラスト対向受面、あるいは人工関節対向受面の少なくとも1つから選ばれた耐摩耗性摺動部材が得られる。
【0013】
また、本発明の1つの形態によれば、前記母材がステンレス、炭素鋼などの鉄鋼類、銅、アルミニウム、チタン、チタン合金などの非鉄金属類、樹脂材料あるいはセラミックスの少なくとも1つから選ばれ、前記母材にTiN、TiCなどの少なくとも1つから選ばれる被膜処理が施された耐摩耗性摺動部材が得られる。
【0014】
【作用】
摺動部材の母材表面に凹部の面積比率が30〜70%、凹部の深さが1mm以下または加工時間を短縮するため好ましくは10μm以下の凹凸面を形成した摺動部材は、潤滑剤が下地の凹凸面に拘束され、かつ凹部が潤滑剤を供給する役割を果たすとともに凸部で荷重を受けるため、摺動面の潤滑性を長期間にわたり保持できる。
また凹凸面を維持できる範囲で表面に硬質材料層を設けることにより、潤滑剤がなくなっても硬質材料層が摩耗バリアの役目を果たし、より高い耐摩耗性,耐焼付性が得られる。
さらに、摺動部において摩耗が発生したとしても、摩耗粉を凹部に逃がすことができ、アブレシブによる急速な摩耗を防止することができる。
【0015】
凹部の円形換算したときの直径を0.2〜0.8mmとした根拠は、直径0.2mm以下にすると、パターンが無い場合と殆ど等しくなり、凹部に必要な量の潤滑剤が貯えられないばかりか、凸部の摩耗潤滑剤や摩耗粉が凹部に溜めることができないからであり、また0.8mm以上になると実質的に凸部の面積が減少し、荷重を支えきれなくなり、摺動面が摩耗または微細な凹凸が発生し、摺動性が低下するからである。
【0016】
凹部間のピッチを0.8〜1.6mmとしたのは、0.8mm以下になると、凸部の領域が狭くなり、荷重を支える面積が不足し、摺動面の摩耗が進行し易く、1.6mm以上になると、凹部の潤滑剤が凸部に乗り移りにくくなり、かつ凸部の潤滑剤または摩耗粉を凹部に貯えにくくなるからである。
【0017】
【実施例】
次に、本発明を実施例について図面を参照して説明する。図1は本発明の実施例による耐摩耗性摺動部材の摺動面の部分的な斜視図である。母材1は鉄,炭素鋼,ステンレス鋼などの鉄鋼類をはじめ、銅,アルミニウム、白金、チタンおよびチタン合金その他の非鉄金属、PPS(ポリフェニレンサルフアイド)、ポリアミドイミド、ポリイミド、フェノール、PES(ポリエチレンサルフアイド)、PEEK(ポリエーテルエーテルケトンなど)の樹脂材料、あるいはAl2 3 、ダイアモンド、サフアイア、Si3 4 、SiC、ジルコニア、シリカ、チタニアなどのセラミックス材料などのセラミックスから選び、母材の表面に選択的になす被膜材料(コーティング材料)としてTiN、ダイアモンド、上記の如きセラミックスなどから選ばれる。また後述する人工関節にあっての母材の表面に選択的になすコーティング材としては、凸部を形成するため、TiNを蒸着させて用いること、また母材がCoーCr合金の場合は表面を窒化し、表面硬化することもできる。そして同じく人工関節の液体潤滑剤として生理食塩水や子牛血清脂肪、脂肪油、ラード、鯨の脂肪、スエット(牛,羊の腎臓周辺の脂肪などの動植物油)、関節液又はその類似液を用いる。
【0018】
図1の例では直径Dの円柱状の凹部3が複数個等間隔に規則的に母材1の摺動面上に形成され、これらの凹部3以外の部分が摺動面における凸部2となっている。図1の例においては凹部3全体の摺動面に対する面積比率は30〜70%である。
【0019】
凹凸パターンとしては必ずしも上述のような円柱状や円筒状のものに限定されるものでなく、矩形その他多角形状の凹凸部、あるいは凹部と凸部が層状に区分けされて配置されたもの等でもよい。いずれも規則的に摺動面全面に配列され、全体の凹部の面積比率は全摺動面に対し30〜70%である。凹部が円形でない場合、これを円形換算したときの直径は前述した如く0.2〜0.8mmである。
【0020】
凸部2または凹部3の比率を上述のようにした根拠を具体的な摩耗摩擦試験を示して説明する。まず本発明において採用した摩擦摩耗試験装置を図2に示す。空気軸受5により垂直に軸支された回転軸4の下端にその軸芯から偏心して球面状の接触子6が固着され、この接触子6に、試料取付台7に取り付けられた試料8が接触している。なお回転軸4と試料取付台7は軸方向に荷重がかけられ、これによって接触子6と試料8の圧接力が調整可能となっている。試料取付台7はスラスト方向およびラジアル方向に空気軸受9で支えられている。試料取付台7の外側部は固定設置したロードセル10に連結されており、図示しない可変速モータで回転軸4を軸線まわりに回転駆動することで接触子6と試料8との間の摩擦力による試料取付台7の回転方向荷重がロードセル10で検出され、接触子6と試料8間の摩擦力の経時変化が観察される。なお、この方法で得られた時間−トルク特性図は一般に図3のようになり、急激にトルク変化が増大(E点)し始めるまでの時間をもって寿命と判定する。
【0021】
既に説明したように凹凸パターンの形成されている摺動部材においては、凸部で荷重を受けることになり、凹部から潤滑剤を供給することになる。凸部が少なくなれば耐荷重性能が低下し、凹部が少なくなると潤滑剤の供給能力が低下する。したがって、1つの摺動面において凸部と凹部の最適な面積比率が存在する。また凹部の深さが大きすぎると潤滑剤が摺動面へ流出しずらくなり、浅すぎると潤滑不足が生じる。したがって凹部の深さhについても最適な値が存在する。
【0022】
凹凸はまずエッチング、スパッタリング、ビームプロセス(電子、レーザ)等の方法で母材1に1〜10μmとなるように形成し、選択的に被膜をスパッタ、イオンプレーティング、蒸着、湿式メッキ等により形成する。また、この被膜により摺動面の凸部を形成してもよい。そして固体潤滑剤を同様の方法で前記凹凸にならわせて1〜10μmの厚さに形成する。したがって、母材自体に深さ1〜10μmの凹凸を形成した場合、該母材に被膜形成、固体潤滑膜を形成しても、いずれもその表面には1〜10μmの深さの凹部が形成されていることになる。つまり、凸部の固体潤滑剤が摩耗してもこの潤滑剤は凹部に移動し、また凹部の固体潤滑剤は再び凸部に必要量だけ移動することができ、耐摩耗性、低トルク、低摩擦などの効果を奏し得る。特に人工関節では摩耗粉の逃げ場がなく、かかる凹部は余分の固体潤滑剤や摩耗した潤滑剤の一種のストレージとなると同時に摺動面への供給源となって耐摩耗性、低トルク、低摩擦などの効果を発揮する。
【0023】
図1のような円筒状凹部3による凹凸パターンを摺動面に形成し、凹部3の面積比率を変え、その上に固体潤滑膜としてMoS2 スパッタ膜をコーティングしたときの被膜寿命の試験データを表1に示す。なお、凹部の深さはいずれも10μmとした。ここで回転軸4の回転数;1000rpm,接触子の押付荷重;0.23kgf,すべり速度;0.4 m/sとした。この例では凹部の面積比が14%で潤滑不足となり、80%で負荷容量が低下する。凹凸パターンがなく単にMoS2 膜をスパッタしただけの試料(表中「なし」で示した)は負荷容量が小さく、被膜寿命は1時間であった。
【0024】
【表1】
【0025】
被膜寿命は凹凸パターンの凹部の深さにも関係する。図2の装置を用いた摩耗試験において、粗さ計により摺動面の摩耗状況を観測した場合、表面に超高分子量ポリエチレンを被覆した摺動面に対して、凹凸パターンの有無による摩耗差は顕著である。凹凸パターンを付与しない場合の粗さ計の結果にみられる大きな傷跡は、摩耗粉により摺動面が深く削られたものと考えられる。つまり摩耗粉自体が新たな摩耗をひき起す。しかし凹凸パターンを施した摺動面においては、凹部からの潤滑剤の供給に加えて凹部への摩耗粉の逃げがもたらされ、摺動面の凸部へ摩耗粉が入り込まない。
【0026】
表2は図1のような凹凸パターンを施した摺動面で凹部3の面積比率を摺動面全体に対し70%とし、凹部3の溝深さhを変え、その上に固体潤滑膜としてMoS2 スパッタ膜をコーティングしたときの被膜寿命の試験データを示す。
【0027】
【表2】
【0028】
このデータから溝深さhが15μmを超えると潤滑剤が凹部3の底にたまり、凸部2へ潤滑剤が流出しなくなり、被膜寿命は著しく低下する。
【0029】
本発明による摺動面構造は、凹凸パターンの凹部の面積比率を30〜70%、凹部の溝深さを10μm以下1μm以上とするものであるが、この範囲の凹凸パターンをもつ摺動面は上述の実験結果からも低摩擦抵抗,耐摩耗性を最大限に発揮することが分る。
【0030】
本発明の応用例として人工関節の相対摺動部の表面改質が挙げられる。人工関節においては互いに嵌合する人工骨頭および臼蓋ソケットが、金属あるいはセラミックスと超高分子量ポリエチレンの組み合せから成るのが一般的である。図2の摩耗摩擦試験装置で接触子を平面仕上げした超高分子量ポリエチレンとし、試料にステンレス材に生体適合性に優れたTiNをコーティングしたものを用いて試験した。この場合の摩擦力の変化を図4に示す。パターンを付加しない試料を使用した場合、摩擦力の変動が大きく、かつ不安定である。一方、凹凸パターンを付加した試料を使用した場合、その変動は小さく、安定しているのが分る。試験後の観察で試料のTiNの表面においてはパターンの有無による摩耗の差を判断することは難しいが、固体潤滑剤としての超高分子量ポリエチレンに関しては、パターンを付加していない場合の方が、パターンを付加したものと比べて摩耗が著しく起きているのが観測される。またパターンを付加しない場合の粗さを測定したところ、大きな傷跡が見られたが、この傷跡は摩耗片により深く削られたものと考えられる。パターンを付加している場合は凹部に摩耗片が取り込まれ、摺動面に出ないので大きな摩耗が防止される。
【0031】
また同様に、摺動面に凹凸パターンを形成した試料に、生体適合性に優れたTiNをコーティングし、相手材として超高分子量ポリエチレンを用い、液体潤滑剤となる生理食塩水中にて摩擦試験を行ったときの摩擦力の時間的推移を図5に示す。比較のため凹凸パターンの無い試料を同一条件下で試験した場合を同図に併せて示した。この図からも明らかに凹凸パターンをもつ摺動面の優位性が顕著である。
【0032】
図6は本発明の耐摩耗性摺動面構造を用いた人工股関節の分解側面図である。ステム11の先端にボール(人工骨頭)12が装着され、このボール12に相手部材である臼蓋ソケット13の凹球面13aが相対摺動可能に嵌合されるようになっている。ボール12およびソケット13の摺動面の一方または双方に図1に拡大して示すような円柱状凹部3による凹凸パターンが形成される。凹凸パターンの凹部3の面積比率および深さは上述した範囲のものが採用されてよいが、個々の凹部3の直径およびピッチについても人工股関節として使用する場合の最適な値が存在する。なお、人工股関節にあっては、ボール12、ソケット13の材料即ち母材としてコバルト−クロム合金、ジルコニア、超高分子量ポリエチレンなどが用いられる。
【0033】
図7は凹凸パターンの円柱状凹部の直径(mm)に対する人工股関節部の摺動面特性の実験結果を示した図である。摺動面には超高分子量ポリエチレンを用いた。図中にプロットした白丸は凹部直径に対する摩擦力の減少率(%)の値であり、黒丸は超高分子量ポリエチレンの摩耗量(mm)を示している。図8は、同様に超高分子量ポリエチレンの摺動面において、円柱状凹部のピッチ(mm)に対する摩擦力の減少率(白丸)及び摩耗量(黒丸)についての実験結果を示したものである。これらの図から分かるように凹部の直径Dが0.5mm、ピッチp(図1)が1.2mmのときに摩擦力の減少率は最も大きく、超高分子量ポリエチレンの摩耗量は最も小さくなる。以上から凹凸パターンを施した人工股関節の場合、パターンの直径0.5mm、ピッチ1.2mmが潤滑特性を最も向上させる最適値となる。従来のように人工関節の摩擦や摩耗の防止手段として材質の改良のみでは充分な効果が得られなかったが、本発明のような摺動面構造とすることにより、人工関節摺動面の潤滑特性を改善でき人工関節の寿命を大幅に延ばすことが可能となる。
【0034】
なお、上述の説明で凹部の深さを1.0mm以下好ましくは10μm以下としたが、例えば人工股関節などに用いる摺動面には摩耗粉を封じ込める必要がある場合は深くし、固体潤滑剤を凹部に満たす場合は浅くすることが望ましく、使用箇所により深さは適宜前記の範囲で選択する。ただ加工上からは、特に凹凸パターンを微細加工技術で形成する必要がある場合は浅く、好ましくは10μm以下にするのがよい。
【0035】
【発明の効果】
以上説明したように本発明によれば、他部材に摺動接触する母材の表面に凹凸パターンを形成し、凹部の面積比を30〜70%、凹部の深さを1.0mm以下または加工時間を短縮するため好ましくは10μm以下とすることにより、固体潤滑条件下あるいは生理食塩水等の液体中において、凹部からの潤滑剤の供給、凹部への摩耗粉の逃げによるアブレシブ摩耗の防止により、耐摩耗性および耐焼付性が向上する。また母材の凹凸パターンの形成と共に、TiN,TiC,TiB2 等の硬質膜やイオン注入による硬質層を設けることにより、潤滑剤がなくなっても硬質層が摩耗を防ぎ、一層高い耐摩耗性,耐焼付性および負荷容量の向上が達成される。本発明を人工関節に適用することにより、関節摺動面の特性改善、特に摩擦、摩耗を飛躍的に減少させることができ、人工関節の寿命の延長に多大な効果が発揮される。
【図面の簡単な説明】
【図1】本発明の実施例による凹パターンをもつ耐摩耗性摺動部材の部分的な斜視図である。
【図2】本発明に係る摩耗摩擦試験装置の概略的な縦断面図である。
【図3】摩耗摩擦試験で得られる時間−トルク特性を示した図である。
【図4】超高分子量ポリエチレンとTiN被覆材との摩擦力試験における摩擦力の経時変化を示した図である。
【図5】生理食塩水中にて超高分子量ポリエチレンとTiN被覆材との摩擦試験を行った場合の摩擦力の経時変化を示した図である。
【図6】本発明の適用例による人工股関節の分解側面図である。
【図7】本発明による摺動面の凹凸パターンの凹部直径に対する人工股関節の摺動面特性を示した図である。
【図8】本発明による摺動面の凹凸パターンの凹部ピッチに対する人工股関節の摺動面特性を示した図である。
【符号の説明】
1 母材
2 凸部
3 凹部
4 回転軸
5,9 空気軸受
6 接触子
7 試料取付台
8 試料
10 ロードセル
12 ボール
13 ソケット
[0001]
[Industrial applications]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding member in which a sliding surface of a member in sliding contact is subjected to abrasion resistance and low friction resistance treatment. In particular, the present invention is applicable not only to general relative sliding mechanical parts, but also to sliding bearings (including vacuum bearings), inner and outer race surfaces of rolling bearings, thrust receiving portions of groove bearings, and sliding contact portions such as artificial joints. The present invention relates to a sliding surface structure of a wear-resistant sliding member that is useful when applied.
[0002]
[Prior art]
For example, a metal sliding member disclosed in Japanese Patent Application Laid-Open No. Sho 60-135564 is one in which a sliding surface of a member that makes relative sliding contact is subjected to a wear resistance treatment. This is because a wear-resistant hard material and a solid lubricant are separated and sputter-deposited on a sliding surface of at least one of the metal members that are in sliding contact with each other. And a vapor-deposited surface of a mottled or dimple-shaped pattern (hereinafter referred to as a mottled pattern). With this configuration, a load is applied to the hard material portion that comes into sliding contact, the surrounding solid lubricating material is dug out by sliding contact with the mating member, and is supplied to the hard material portion as a lubricant, and wear resistance is improved. At the same time, a reduction in frictional force is provided.
[0003]
Further, as another example, an uneven surface is formed on the surface of the base material of the sliding member, and a solid lubricating film is formed directly on the uneven surface, or the solid lubricating film is formed in such a range that the uneven shape can be maintained on the uneven surface. After the material layer is provided, a solid lubricating film is formed on the uneven portion of the uppermost layer, thereby preventing peeling of the solid lubricating film due to shear stress during sliding and exhibiting wear resistance and sufficient lubricity. A wear-resistant sliding member as described above has been proposed (Japanese Patent Application Laid-Open No. 2-69925).
[0004]
[Problems to be solved by the invention]
In any of the above-mentioned conventional metal sliding members or wear-resistant sliding members, the lubricant from the solid lubricating surface is transferred to the surrounding sliding surface of the wear-resistant hard material or the base material as the sliding occurs. Since it is supplied, high lubricity is obtained, and a load is applied to the wear-resistant hard material or the protruding portion of the concavo-convex pattern, so that the load capacity and dimensional accuracy can be improved. However, in the above-mentioned Japanese Patent Application Laid-Open No. 60-135564, the area ratio of the two material portions of the mottled pattern formed by the hard material portion and the solid lubrication material portion on the sliding surface is appropriately tested depending on the use conditions of each member. It is merely specified, but not specified. JP-A-2-76925 also exemplifies the diameter of each cylindrical or cylindrical concave or convex portion. However, the number or distribution of the concave or convex portions, that is, the area ratio of the concave or convex portion occupying the entire sliding surface is described. Is not shown.
[0005]
As described above, in the sliding member having the uneven pattern, the load is received at the convex portion and the lubricant is supplied from the concave portion. Therefore, when the area of the convex portion is small, the load bearing performance is reduced. Conversely, if the area of the entire convex portion is large, that is, the number of concave portions is small, the ability to supply the lubricant decreases. Regarding the depth of the concave portion, if the depth of the concave groove is large, the lubricant from the concave portion is difficult to flow to the convex portion, and if the concave portion is too shallow, the lubricant cannot be effectively held. In order to maximize the low frictional resistance and wear resistance of the sliding member, it is necessary to set the area ratio between the concave portion and the convex portion of the concave-convex pattern and the groove depth of the concave portion to optimal values. .
[0006]
According to the present invention, the lubrication, abrasion resistance, and seizure resistance of the sliding surface can be maintained for a long period of time by setting the area ratio of the concave and convex portions and the depth of the concave portion of the sliding surface on which the concave and convex pattern is formed within the optimum ranges. An object is to provide a sliding member that can be secured.
[0007]
[Means for Solving the Problems]
The wear-resistant sliding member of the present invention forms an uneven pattern by providing a plurality of recesses on a sliding surface of a base material that is in sliding contact with other members, and the arrangement pitch of the recesses is 0.8 to 1 0.6 mm and the concave portion is filled with a liquid lubricant, the area ratio of the concave portion is 30 to 70% of the entire sliding surface, the depth is 1 μm or more and 10 μm or less, and the base material is a metal material, a resin material, a ceramic material. It is made of at least one kind of material, and is coated with at least one kind of material such as TiN, TiC, diamond, and ceramic material. It is formed to be 0.8 mm.
[0008]
According to one embodiment of the present invention, the concavo-convex pattern is regularly arranged, and the diameter of the concave portion when converted into a circle is 0.2 to 0.8 mm.
[0009]
According to one embodiment of the present invention, the concave / convex patterns are regularly arranged, and the pitch between the concave portions is set to 0.8 to 1.6 mm.
[0010]
Further, according to the present invention, in a sliding contact surface structure of an artificial joint having an artificial head and an acetabular socket fitted and slidingly contacting with each other, relative sliding of one or both of the artificial head or the acetabular socket is performed. By providing a plurality of recesses on the surface, an uneven pattern is formed, the arrangement pitch of the recesses is set to 0.8 to 1.6 mm, the recesses are filled with a liquid lubricant, and the area ratio of the recesses is reduced. The concave portion of the concavo-convex pattern is formed so as to have a diameter of 0.2 to 0.8 mm when converted into a circle, and 30 to 70% of the entire moving surface and a depth of 1 μm or more and 10 μm or less. The base material of the head and the acetabular socket is made of a cobalt alloy, zirconia, or high-molecular polyethylene and coated with TiN, and the liquid lubricant is a saline solution, a sweat (a cow or a cow). The present invention provides a sliding contact surface structure in an artificial joint, comprising a lubricant selected from animal and vegetable oils such as fat around the kidney of a sheep, a synovial fluid and a mixture thereof.
[0011]
Further in accordance with an embodiment of the present invention, the concave pattern having a cylindrical recess as convex pattern is formed on one or both of the relative sliding surfaces of the artificial hip joint (endoprosthesis or acetabular socket), these cylindrical An artificial hip joint structure is provided in which the diameter of the concave portion is approximately 0.5 mm and the pitch is approximately 1.2 mm.
[0012]
According to an embodiment of the present invention, the sliding surface is at least an inner and outer race surface of a rolling bearing, preferably an inner and outer race surface and a sliding surface of a cage, a thrust opposed bearing surface of a groove bearing, or an artificial joint opposed bearing. A wear-resistant sliding member selected from at least one of the surfaces is obtained.
[0013]
Further, according to one embodiment of the present invention, the base material is selected from at least one of steels such as stainless steel and carbon steel, non-ferrous metals such as copper, aluminum, titanium and titanium alloy, resin materials and ceramics. Thus, a wear-resistant sliding member in which the base material has been subjected to a coating treatment selected from at least one of TiN, TiC and the like is obtained.
[0014]
[Action]
A sliding member having an uneven surface area of 30 to 70% and a depth of the recess of 1 mm or less or preferably 10 μm or less in order to shorten the processing time on the surface of the base material of the sliding member is preferably a lubricant. The lubrication of the sliding surface can be maintained for a long period of time because the concave portion serves to supply the lubricant and receives the load at the convex portion while being restrained by the uneven surface of the base.
Further, by providing the hard material layer on the surface as long as the uneven surface can be maintained, the hard material layer functions as a wear barrier even when the lubricant is removed, and higher wear resistance and seizure resistance can be obtained.
Further, even if abrasion occurs in the sliding portion, the abrasion powder can escape to the concave portion, and rapid wear due to abrasive can be prevented.
[0015]
The basis for setting the diameter of the concave portion as a circle when converted to 0.2 to 0.8 mm is that when the diameter is 0.2 mm or less, it becomes almost equal to the case where there is no pattern, and the necessary amount of lubricant cannot be stored in the concave portion Not only that, because the wear lubricant and wear powder on the protrusions cannot be accumulated in the recesses, and when the thickness is 0.8 mm or more, the area of the protrusions is substantially reduced, and the load cannot be supported. This is because abrasion or fine irregularities occur, and the slidability decreases.
[0016]
The reason for setting the pitch between the concave portions to 0.8 to 1.6 mm is that, when the pitch is 0.8 mm or less, the area of the convex portions becomes narrow, the area for supporting the load becomes insufficient, and the sliding surface easily wears, When the thickness is 1.6 mm or more, it becomes difficult for the lubricant in the concave portion to transfer to the convex portion, and it is difficult to store the lubricant or wear powder in the convex portion in the concave portion.
[0017]
【Example】
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partial perspective view of a sliding surface of a wear-resistant sliding member according to an embodiment of the present invention . The base material 1 includes iron, carbon steel, stainless steel and other non-ferrous metals, copper, aluminum, platinum, titanium, titanium alloys, and other non-ferrous metals, PPS (polyphenylene sulfide), polyamide imide, polyimide, phenol, and PES (polyethylene). Sarufuaido), select from PEEK (resin material poly and ether ether ketone) or Al 2 O 3,, diamond, Safuaia, Si 3 N 4, SiC, zirconia, silica, ceramics such as ceramic material, such as titania, preform The coating material (coating material) selectively formed on the surface of the substrate is selected from TiN, diamond, ceramics as described above, and the like . Further, as a coating material selectively formed on the surface of the base material in the artificial joint described later, TiN is deposited and used in order to form a projection, and when the base material is a Co-Cr alloy, the surface is coated. Can be nitrided and surface hardened. Similarly, as a liquid lubricant for artificial joints, physiological saline, calf serum fat, fat oil, lard, whale fat, sweat (animal and vegetable oils such as fat around the kidneys of cattle and sheep), synovial fluid or a similar fluid is used. Used.
[0018]
In the example of FIG. 1, a plurality of cylindrical concave portions 3 having a diameter D are regularly formed at regular intervals on the sliding surface of the base material 1, and portions other than the concave portions 3 are convex portions 2 on the sliding surface. It has become. In the example of FIG. 1, the area ratio of the entire concave portion 3 to the sliding surface is 30 to 70%.
[0019]
The concavo-convex pattern is not necessarily limited to the columnar or cylindrical shape as described above, but may be a rectangular or other polygonal concavo-convex portion, or a pattern in which concave portions and convex portions are arranged in layers and arranged. . Each of them is regularly arranged on the entire sliding surface, and the area ratio of the entire concave portion is 30 to 70% with respect to the entire sliding surface. When the concave portion is not circular, the diameter when converted to a circular shape is 0.2 to 0.8 mm as described above.
[0020]
The basis for setting the ratio of the convex portion 2 or the concave portion 3 as described above will be described with reference to a specific wear friction test. FIG. 2 shows a friction and wear test apparatus employed in the present invention. A spherical contact 6 is fixed to the lower end of the rotating shaft 4 vertically supported by the air bearing 5 eccentrically from the axis thereof, and the sample 8 attached to the sample mounting table 7 contacts the contact 6. are doing. Note that a load is applied to the rotating shaft 4 and the sample mounting table 7 in the axial direction, so that the pressure contact force between the contact 6 and the sample 8 can be adjusted. The sample mount 7 is supported by an air bearing 9 in the thrust direction and the radial direction. The outer side of the sample mounting table 7 is connected to a fixedly installed load cell 10, and the rotating shaft 4 is rotated around the axis by a variable speed motor (not shown) to generate frictional force between the contact 6 and the sample 8. The load in the rotation direction of the sample mounting table 7 is detected by the load cell 10, and a change with time of the frictional force between the contact 6 and the sample 8 is observed. The time-torque characteristic diagram obtained by this method is generally as shown in FIG. 3 , and the life is determined as the time until the torque change suddenly starts increasing (point E).
[0021]
As described above, in a sliding member having an uneven pattern, a load is applied to the convex portion, and the lubricant is supplied from the concave portion. When the number of convex portions decreases, the load-bearing performance decreases, and when the number of concave portions decreases, the ability to supply the lubricant decreases. Therefore, there is an optimum area ratio between the convex portion and the concave portion on one sliding surface. If the depth of the concave portion is too large, the lubricant hardly flows to the sliding surface, and if it is too shallow, insufficient lubrication occurs. Therefore, there is an optimum value for the depth h of the concave portion.
[0022]
The irregularities are first formed on the base material 1 to a thickness of 1 to 10 μm by a method such as etching, sputtering, or a beam process (electron or laser), and a film is selectively formed by sputtering, ion plating, vapor deposition, wet plating, or the like. I do. Further, a convex portion of the sliding surface may be formed by this coating. Then, a solid lubricant is formed in a thickness of 1 to 10 μm in a similar manner so as to form the irregularities. Therefore, in the case where unevenness having a depth of 1 to 10 μm is formed on the base material itself, a concave portion having a depth of 1 to 10 μm is formed on the surface of the base material even if a film or a solid lubricating film is formed on the base material. It will be. In other words, even if the solid lubricant in the convex portion is worn, the lubricant moves to the concave portion, and the solid lubricant in the concave portion can move again to the convex portion by a required amount, and the wear resistance, low torque, and low An effect such as friction can be exerted. Especially in artificial joints, there is no place for wear powder to escape, and such recesses serve as a kind of storage for extra solid lubricant and worn lubricant, and at the same time serve as a supply source to the sliding surface, wear resistance, low torque, low friction It exerts effects such as.
[0023]
An uneven pattern by cylindrical recess 3 as shown in FIG. 1 formed on the sliding surface, changing the area of the recess 3 ratio, the test data of the film life when coated with MoS 2 sputtering film as a solid lubricant film thereon It is shown in Table 1 . The depth of each of the concave portions was 10 μm. Here, the number of rotations of the rotating shaft 4 was set to 1000 rpm, the contact pressing load was set to 0.23 kgf, and the sliding speed was set to 0.4 m / s. In this example, when the area ratio of the concave portion is 14%, the lubrication is insufficient, and when the area ratio is 80%, the load capacity decreases. The sample (shown as “none” in the table) in which the MoS 2 film was simply sputtered without the concavo-convex pattern had a small load capacity, and the film life was 1 hour.
[0024]
[Table 1]
[0025]
The coating life is also related to the depth of the concave portion of the concave / convex pattern. In the wear test using the apparatus shown in FIG. 2 , when the wear state of the sliding surface was observed with a roughness meter, the difference in wear due to the presence or absence of a concavo-convex pattern on the sliding surface coated with ultra-high molecular weight polyethylene was observed. Notable. The large scar seen in the result of the roughness meter when the concavo-convex pattern is not provided is considered to be that the sliding surface was deeply shaved by the abrasion powder. That is, the wear powder itself causes new wear. However, on the sliding surface provided with the concavo-convex pattern, in addition to the supply of the lubricant from the concave portion, the escape of the wear powder to the concave portion is caused, and the wear powder does not enter the convex portion of the slide surface.
[0026]
Table 2 shows that the area ratio of the concave portion 3 is set to 70% of the entire sliding surface on the sliding surface having the uneven pattern as shown in FIG. 1 , the groove depth h of the concave portion 3 is changed, and a solid lubricating film is formed thereon. The test data of the film life when the MoS 2 sputtered film is coated is shown.
[0027]
[Table 2]
[0028]
According to this data, when the groove depth h exceeds 15 μm, the lubricant accumulates at the bottom of the concave portion 3 and the lubricant does not flow to the convex portion 2, and the life of the coating film is significantly reduced.
[0029]
In the sliding surface structure according to the present invention, the area ratio of the concave portion of the concave-convex pattern is 30 to 70%, and the groove depth of the concave portion is 10 μm or less and 1 μm or more. From the above experimental results, it can be seen that low friction resistance and wear resistance are exhibited to the maximum.
[0030]
An application example of the present invention is surface modification of a relative sliding portion of an artificial joint. In artificial joints, the prosthetic head and acetabular socket that fit together generally consist of a combination of metal or ceramics and ultra high molecular weight polyethylene. The test was carried out using ultrahigh molecular weight polyethylene whose contacts were finished with a flat surface using the abrasion friction test apparatus shown in FIG. 2 and a stainless steel material coated with TiN having excellent biocompatibility. FIG. 4 shows the change in the frictional force in this case. When a sample to which no pattern is added is used, the fluctuation of the frictional force is large and unstable. On the other hand, when the sample to which the concavo-convex pattern is added is used, the fluctuation is small and it can be seen that it is stable. It is difficult to judge the difference in wear due to the presence or absence of a pattern on the surface of the sample TiN by observation after the test, but for ultra-high molecular weight polyethylene as a solid lubricant, it is better if no pattern is added. It is observed that abrasion has occurred significantly as compared with the case where the pattern is added. When the roughness was measured without adding a pattern, a large scar was found. It is considered that the scar was deeply shaved by the wear debris. When a pattern is added, abrasion pieces are taken into the concave portions and do not come out on the sliding surface, so that large abrasion is prevented.
[0031]
Similarly, a sample having an uneven pattern formed on the sliding surface is coated with TiN, which has excellent biocompatibility, and ultra-high molecular weight polyethylene is used as a mating material, and a friction test is performed in a saline solution serving as a liquid lubricant. FIG. 5 shows a temporal transition of the frictional force when the operation is performed. For comparison, a case where a sample without an uneven pattern was tested under the same conditions is also shown in FIG. This figure also clearly shows the superiority of the sliding surface having the concavo-convex pattern.
[0032]
FIG. 6 is an exploded side view of an artificial hip joint using the wear-resistant sliding surface structure of the present invention. A ball (artificial bone head) 12 is mounted on the tip of the stem 11, and the concave spherical surface 13 a of the acetabular socket 13, which is a mating member, is fitted to the ball 12 so as to be relatively slidable. On one or both of the sliding surfaces of the ball 12 and the socket 13, an uneven pattern is formed by the cylindrical concave portions 3 as shown in an enlarged manner in FIG. The area ratio and the depth of the concave portions 3 of the concave / convex pattern may be those in the above-mentioned ranges, but the diameters and pitches of the individual concave portions 3 also have optimal values when used as an artificial hip joint. In the case of an artificial hip joint, a cobalt-chromium alloy, zirconia, ultrahigh molecular weight polyethylene, or the like is used as a material of the ball 12 and the socket 13, that is, a base material.
[0033]
FIG. 7 is a diagram showing an experimental result of sliding surface characteristics of the artificial hip joint with respect to the diameter (mm) of the cylindrical concave portion of the concave-convex pattern. Ultrahigh molecular weight polyethylene was used for the sliding surface. The white circles plotted in the figure indicate the value of the reduction rate (%) of the frictional force with respect to the diameter of the concave portion, and the black circles indicate the wear amount (mm) of the ultrahigh molecular weight polyethylene. FIG. 8 also shows the results of experiments on the friction force reduction rate (open circles) and the wear amount (black circles) with respect to the pitch (mm) of the cylindrical concave portions on the sliding surface of ultrahigh molecular weight polyethylene. As can be seen from these figures, when the diameter D of the concave portion is 0.5 mm and the pitch p (FIG. 1) is 1.2 mm, the reduction rate of the frictional force is the largest, and the wear amount of the ultrahigh molecular weight polyethylene is the smallest. From the above, in the case of an artificial hip joint having a concavo-convex pattern, a pattern diameter of 0.5 mm and a pitch of 1.2 mm are optimal values for maximizing lubrication characteristics. Although the improvement of the material alone did not provide a sufficient effect as a means for preventing friction and wear of the artificial joint as in the past, the sliding surface structure as in the present invention provides lubrication of the sliding surface of the artificial joint. The characteristics can be improved and the life of the artificial joint can be greatly extended.
[0034]
In the above description, the depth of the concave portion is set to 1.0 mm or less, preferably 10 μm or less. For example, when it is necessary to contain wear powder on the sliding surface used for an artificial hip joint or the like, the depth is increased and solid lubricant is used. When filling the recess, it is desirable to make it shallow, and the depth is appropriately selected within the above range depending on the place of use. However, from the viewpoint of processing, it is shallow, preferably 10 μm or less, particularly when the concavo-convex pattern needs to be formed by fine processing technology.
[0035]
【The invention's effect】
As described above, according to the present invention, a concavo-convex pattern is formed on the surface of a base material that is in sliding contact with another member, the area ratio of the concave portion is 30 to 70%, the depth of the concave portion is 1.0 mm or less, or In order to shorten the time, preferably by 10 μm or less, under solid lubrication conditions or in a liquid such as physiological saline, supply of lubricant from the recess, prevention of abrasive wear due to escape of wear powder to the recess, The wear resistance and seizure resistance are improved. In addition, by forming a hard film of TiN, TiC, TiB 2 or the like or a hard layer by ion implantation together with the formation of the uneven pattern of the base material, the hard layer prevents wear even when the lubricant is removed, and further increases wear resistance. Improved seizure resistance and load capacity are achieved. By applying the present invention to an artificial joint, the characteristics of the joint sliding surface can be improved, in particular, friction and wear can be drastically reduced, and the life of the artificial joint can be greatly extended.
[Brief description of the drawings]
FIG. 1 is a partial perspective view of a wear-resistant sliding member having a concave pattern according to an embodiment of the present invention.
FIG. 2 is a schematic longitudinal sectional view of a wear friction test apparatus according to the present invention.
FIG. 3 is a diagram showing time-torque characteristics obtained in a wear friction test.
FIG. 4 is a diagram showing a change over time of a frictional force in a frictional force test between an ultrahigh molecular weight polyethylene and a TiN coating material.
FIG. 5 is a diagram showing a change over time in friction force when a friction test was performed between ultra-high molecular weight polyethylene and a TiN coating material in physiological saline.
FIG. 6 is an exploded side view of an artificial hip joint according to an application example of the present invention.
FIG. 7 is a graph showing a sliding surface characteristic of an artificial hip joint with respect to a concave diameter of a concave-convex pattern on a sliding surface according to the present invention.
FIG. 8 is a graph showing a sliding surface characteristic of an artificial hip joint with respect to a concave pitch of a concave-convex pattern on a sliding surface according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base material 2 Convex part 3 Concave part 4 Rotating shaft 5, 9 Air bearing 6 Contact 7 Sample mount 8 Sample 10 Load cell 12 Ball 13 Socket

Claims (3)

他部材に摺動接触する母材の摺動面に、複数の凹部を設けることで凹凸パターンを形成し、前記凹部の配列ピッチを0.8〜1.6mmにするとともに該凹部に液体潤滑剤を満たし、前記凹部の面積比率を摺動面全体の30〜70%、深さを1μm以上10μm以下とし、前記母材が金属材料,樹脂材料,セラミック材料の少なくとも1種類の材料で構成され、かつTiN,TiC,ダイヤモンド及びセラミック材料の少なくとも1種類の材料による被膜処理が施され、前記凹凸パターンの凹部は円形換算した時の直径が0.2〜0.8mmとなるように形成されることを特徴とする耐摩耗性摺動部材。 A concave and convex pattern is formed by providing a plurality of concave portions on a sliding surface of a base material that is in sliding contact with another member, the arrangement pitch of the concave portions is set to 0.8 to 1.6 mm, and a liquid lubricant is provided in the concave portions. Is satisfied, the area ratio of the concave portion is 30 to 70% of the entire sliding surface, the depth is 1 μm or more and 10 μm or less, and the base material is made of at least one material of a metal material, a resin material, and a ceramic material; And a coating treatment with at least one material of TiN, TiC, diamond, and ceramic material is performed, and the concave portion of the concave-convex pattern is formed to have a diameter of 0.2 to 0.8 mm when converted into a circle. A wear-resistant sliding member characterized by the above-mentioned. 前記母材が鉄鋼材料の鉄,炭素鋼,ステンレス鋼,若しくはコバルトクロム合金、又は非鉄金属の銅,アルミニウム,白金,若しくはチタン及びチタン合金、又は樹脂材料のPPS(ポリフェニレンサルファイド),ポリアミド,ポリアミドイミド,ポリイミド,フェノール,PES(ポリエチレンサルファイド),若しくはPEEK(ポリエーテルエーテルケトン)、又はセラミック材料のAl2 3 ,ダイヤモンド,サファイヤ,Si3 4 ,SiC,ジルコニア,シリカ,若しくはチタニアで構成されることを特徴とする請求項第1項に記載の耐摩耗性摺動部材。The base material is iron, carbon steel, stainless steel, or a cobalt chromium alloy of a steel material, or copper, aluminum, platinum, or a titanium and titanium alloy of a non-ferrous metal, or PPS (polyphenylene sulfide), polyamide, or polyamideimide of a resin material , Polyimide, phenol, PES (polyethylene sulfide), or PEEK (polyetheretherketone), or ceramic materials such as Al 2 O 3 , diamond, sapphire, Si 3 N 4 , SiC, zirconia, silica, or titania The wear-resistant sliding member according to claim 1, wherein: 互いに嵌合して摺動接触する人工骨頭及び臼蓋ソケットを有する人工関節における摺動接触面構造において、前記人工骨頭又は前記臼蓋ソケットの一方又は双方の相対摺動面に、複数の凹部を設けることで凹凸パターンが形成され、前記凹部の配列ピッチが0.8〜1.6mmとされ、前記凹部に液体潤滑剤が満たされ、かつこの凹部の面積比率が摺動面全体の30〜70%、深さが1μm以上10μm以下とされ、前記凹凸パターンの凹部は円形換算した時の直径が0.2〜0.8mmとなるように形成されており、前記人工骨頭及び前記臼蓋ソケットの母材の材質がコバルト合金,ジルコニア,高分子ポリエチレンで構成されるとともにTiNでコーティングされ、前記液体潤滑剤が生理食塩水,スエット(牛あるいは羊の腎臓周辺の脂肪などの動植物油),関節液及びその混合物から選定した潤滑剤で構成されることを特徴とする人工関節における摺動接触面構造。In a sliding contact surface structure in an artificial joint having an artificial head and an acetabular socket that are fitted and slidingly contact with each other, a plurality of recesses are formed on one or both relative sliding surfaces of the artificial head or the acetabular socket. With this arrangement, a concave-convex pattern is formed, the arrangement pitch of the concave portions is set to 0.8 to 1.6 mm, the concave portion is filled with a liquid lubricant, and the area ratio of the concave portion is 30 to 70% of the entire sliding surface. %, The depth is 1 μm or more and 10 μm or less, and the concave portion of the concavo-convex pattern is formed so as to have a diameter of 0.2 to 0.8 mm when converted into a circle. The base material is composed of cobalt alloy, zirconia, and high molecular polyethylene and coated with TiN. The liquid lubricant is physiological saline, sweat (fat around the kidney of cattle or sheep) A sliding contact surface structure in an artificial joint, comprising a lubricant selected from animal and vegetable oils and the like and synovial fluid and mixtures thereof.
JP15947494A 1994-06-17 1994-06-17 Wear-resistant sliding member Expired - Fee Related JP3590992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15947494A JP3590992B2 (en) 1994-06-17 1994-06-17 Wear-resistant sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15947494A JP3590992B2 (en) 1994-06-17 1994-06-17 Wear-resistant sliding member

Publications (2)

Publication Number Publication Date
JPH084770A JPH084770A (en) 1996-01-09
JP3590992B2 true JP3590992B2 (en) 2004-11-17

Family

ID=15694566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15947494A Expired - Fee Related JP3590992B2 (en) 1994-06-17 1994-06-17 Wear-resistant sliding member

Country Status (1)

Country Link
JP (1) JP3590992B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1717340A2 (en) 2005-04-22 2006-11-02 Suzuki, Tetsuya Method of producing esthetically pleasing ornaments from bone components
JP2012233541A (en) * 2011-05-06 2012-11-29 Canon Machinery Inc Sliding surface structure
US20210129403A1 (en) * 2017-02-17 2021-05-06 Accura-Tec, Inc. High Lubricity Self-Cleaning Alignment Lock Assembly

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19843344A1 (en) * 1998-09-22 2000-03-23 Bosch Gmbh Robert Fuel injection valve for internal combustion engine has valve member axially movably positioned in bore of valve body, which has valve sealing surface at combustion chamber-side end
JP4623934B2 (en) * 2001-05-09 2011-02-02 エクソジェネシス コーポレーション Method and system to improve the action of artificial joints applying gas cluster ion beam technology
ITMI20012824A1 (en) * 2001-12-28 2003-06-28 Nuovo Pignone Spa SELF-LUBRICATING PLASTIC MATERIAL FOR SEALING ELEMENTS
JP5432971B2 (en) 2011-02-15 2014-03-05 株式会社神戸製鋼所 Sliding member and manufacturing method thereof
JP6201125B2 (en) 2013-04-18 2017-09-27 日本アイ・ティ・エフ株式会社 Ball joint and manufacturing method thereof
JP6885491B2 (en) * 2019-04-26 2021-06-16 日本精工株式会社 Friction design method for sliding members, surface roughness management method, and manufacturing method for sliding mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1717340A2 (en) 2005-04-22 2006-11-02 Suzuki, Tetsuya Method of producing esthetically pleasing ornaments from bone components
JP2012233541A (en) * 2011-05-06 2012-11-29 Canon Machinery Inc Sliding surface structure
US20210129403A1 (en) * 2017-02-17 2021-05-06 Accura-Tec, Inc. High Lubricity Self-Cleaning Alignment Lock Assembly

Also Published As

Publication number Publication date
JPH084770A (en) 1996-01-09

Similar Documents

Publication Publication Date Title
US5462362A (en) Wear resisting slide member
EP1337204B1 (en) An orthopaedic joint prosthesis
JP4044963B2 (en) Joint prosthesis
JP3590992B2 (en) Wear-resistant sliding member
AU2002220859A1 (en) An orthopaedic joint prosthesis
US20100262250A1 (en) Prosthetic ball-and-socket joint
KR20130025374A (en) Prosthetic joint
GB2268982A (en) Bearings
JP4204233B2 (en) Sintered oil-impregnated plain bearings and construction machinery hydraulic excavators or cranes
JP2004522107A (en) Rolling bearing for ultra-low viscosity fluid
JP3738750B2 (en) Wear-resistant sliding member
JP2989521B2 (en) Chain incorporating rolling elements
NL1019860C2 (en) Roller bearing with a ceramic rolling element and steel inner or outer ring.
JPH06313430A (en) Wear and abrasion resistance sliding member
JP2020118292A (en) Rolling bearing and wind power generation spindle support device
JP3761731B2 (en) Rolling bearing
JP2012067900A (en) Rolling bearing
JP3728491B2 (en) Cam follower
JPH0893774A (en) Solid lubricating rolling bearing
JPH03255224A (en) Bearing for vacuum use
JP2543747B2 (en) Artificial head
US12055179B2 (en) Ball socket structure
JP3535896B2 (en) Bearing parts
JPH1047359A (en) Rolling bearing
JP2008151264A (en) Cage for roller bearing

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees