JP3728491B2 - Cam follower - Google Patents

Cam follower Download PDF

Info

Publication number
JP3728491B2
JP3728491B2 JP2000085789A JP2000085789A JP3728491B2 JP 3728491 B2 JP3728491 B2 JP 3728491B2 JP 2000085789 A JP2000085789 A JP 2000085789A JP 2000085789 A JP2000085789 A JP 2000085789A JP 3728491 B2 JP3728491 B2 JP 3728491B2
Authority
JP
Japan
Prior art keywords
cam follower
contact surface
hardness
support shaft
sliding bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000085789A
Other languages
Japanese (ja)
Other versions
JP2001271910A (en
Inventor
義孝 早稲田
佐藤  寛
斉亮 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2000085789A priority Critical patent/JP3728491B2/en
Publication of JP2001271910A publication Critical patent/JP2001271910A/en
Application granted granted Critical
Publication of JP3728491B2 publication Critical patent/JP3728491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • F16C33/1055Details of supply of the liquid to the bearing from radial inside, e.g. via a passage through the shaft and/or inner sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/18Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/22Internal combustion engines

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの動弁機構に利用されるカムフォロワに係り、より詳しくは、例えば固定の支軸に対して滑り軸受を介して回転自在にローラを装着してなるカムフォロワに関する。
【0002】
【従来の技術】
OHV型式エンジンにおけるプッシュロッド下端のラッシュアジャスタや、OHC型式エンジンにおけるロッカーアームなどのローラ支持部材に付設されるカムフォロワには、前記ローラ支持部材に固定された支軸と、この支軸に介装されて浮動輪とも称される滑り軸受と、この滑り軸受を介して支軸に回転自在に装着されるローラとを備えて構成されているものがある。
【0003】
【発明が解決しようとする課題】
このようなカムフォロワでは、支軸、滑り軸受およびローラの3者それぞれの接触面は潤滑油で潤滑される。このような潤滑には強制的に前記接触面間に潤滑油を供給する強制潤滑方式や、滑り軸受の回転でそれら接触面間に潤滑油を自然に供給する自然潤滑方式がある。
【0004】
ところで、これら潤滑方式はその接触面間が潤滑されているにもかかわらずいずれも長期の使用によりそれらの接触表面で焼き付けが発生し潤滑性が低下する傾向となっている。こうした焼き付けの原因について本出願人が研究を行ったわけであるが、まず前記潤滑を十分にしてそれらの接触表面に厚い潤滑油膜を形成し潤滑不足を解消すると前記焼き付けが発生するはずがないと考えられた。
【0005】
そこで、潤滑油供給量を増大させて焼き付け防止を図ったがその供給にも限界があり好ましい結果には直結しなかった。そこで本出願人は、さらに種々の研究を重ねた中で前記3者の接触面における硬度に所要以上の差を持たせたところ通常の潤滑でもって焼き付けが効果的に防止されることを見いだしたのである。
【0006】
これは、従来のカムフォロワにおいての前記3者間の相対的な硬度関係がほぼ同一であったためにそれらの接触面の油膜による耐荷重能が十分得られず、潤滑油膜が相手側の硬い接触面との接触で飛び散らされやすく、したがって、潤滑油を多量に供給してもそれら潤滑油膜が飛び散らされた接触面間では焼き付けが発生しやすい傾向となっていたからである。
【0007】
したがって、本発明は、カムフォロワにおいて、前記3者間の硬度関係を所定の関係に規定して潤滑油膜の飛び散りを抑制可能とし、これによって、通常の潤滑油膜での耐荷重能をアップして焼き付けを効果的に防止可能とすることを共通の解決課題としている。
【0008】
また、本発明においては、さらに、滑り軸受に対して潤滑被膜処理を施してその表面を改質してさらに焼き付け防止をより効果的にすることを他の解決課題としている。
【0009】
【課題を解決するための手段】
本発明のカムフォロワは、支軸に対して、滑り軸受を介して、回転自在にローラを装着してなるカムフォロワにおいて、前記支軸、滑り軸受およびローラの3者は鋼材製であるとともに、前記支軸、滑り軸受およびローラの3者の接触面の硬度関係において、前記3者の接触面にそれぞれ硬化処理を施し、前記滑り軸受の接触面が、残り2者の少なくとも一方の接触面に対して所要の硬度差を有している。
【0010】
本発明によると、前記3者の接触面において滑り軸受の接触面が、残り2者の少なくとも一方の接触面に対して所要の硬度差を有しているので、滑り軸受の接触面が相手側の接触面に対してより軟らかいまたは相手側の接触面の方が滑り軸受のそれよりも軟らかいので、接触に際してそれらの接触面間の潤滑油膜が飛び散りにくくなり、その結果、潤滑油膜による耐荷重能が十分に得られ、上述した焼き付けの発生が効果的に防止されカムフォロワの寿命に好ましい結果となる。
【0011】
本発明の好ましい実施態様として、前記硬度差が、少なくともビッカース硬さでHV50以上である場合、さらに、潤滑油膜による耐荷重能が十分に得られ、上述した焼き付けの発生が効果的に防止されカムフォロワの寿命により好ましい結果となる。
【0012】
本発明のさらに好ましい実施態様として、前記3者の接触面にそれぞれ硬化処理を施し、前記滑り軸受の接触面硬度を、残り2者のいずれの表面硬度より小さくするとともに、前記滑り軸受の接触面に潤滑被膜処理が施されている場合、接触面間に潤滑油膜量が少なくなっても、その接触面それ自体が潤滑性を有するので、さらに焼き付け防止に好ましい。
【0013】
【発明の実施の形態】
本発明の詳細を図面に示す実施形態に基づいて説明する。
【0014】
(実施形態1)
図1および図2は、本発明の実施形態1にかかる強制潤滑方式のカムフォロワにかかり、図1はその縦断面図、図2は図1のカムフォロワに使用する支軸の斜視図である。このカムフォロワは、図4および図5に示されるエンジンの動弁機構に適用される。図4は、OHV型式エンジンの動弁機構の概略構成図、図5は、OHC型式エンジンの動弁機構の概略構成図である。
【0015】
図4の例では、カム軸1のカム1aによりプッシュロッド2を上下動させることによりその上端と連動するロッカアーム3を揺動させて、このロッカアーム3の揺動で吸気用あるいは排気用のバルブ4を開閉作動させるようになっており、ロッカアーム3の下端に備えられたラッシュアジャスタ5の下部に、実施形態1のカムフォロワ6が設けられる。
【0016】
図5の例では、カム軸1のカム1aにより直接的にロッカアーム3を揺動させて、このロッカアーム3の揺動でバルブ軸4aを上下に開閉作動させるようになっており、このロッカアーム3に実施形態1のカムフォロワ6が設けられる。
【0017】
カムフォロワ6は、図1で示すように、一対のアーム7,7、支軸8、滑り軸受10およびローラ9を備える。
【0018】
アーム7,7は、カムフォロワ本体から互いに所定距離隔てて平行に延びる支持体となる。支軸8は、アーム7,7の間に架橋状に取り付けられている。ローラ9は、支軸8に対してローラ9が所要の空間を介するように外嵌されている。滑り軸受10は、この環状空間において支軸8とローラ9のいずれにも相対回転可能となる状態で介装されている。
【0019】
図で右側のアーム7と支軸8には、外部から潤滑油の供給をうける油路11,12が穿設されいる。滑り軸受10の軸方向中央部位で円周等配の数箇所には径方向に沿う貫通孔13が設けられている。
【0020】
滑り軸受10の内周面には、貫通孔13の内径開口端に連通された環状溝14が全周にわたって形成されており、支軸8に設けた油路12の軸方向中央部位の開口端が環状溝14に連通されている。これによって、支軸8の油路12は、要するに、滑り軸受10の存在部位に対して潤滑油を供給できる。この環状溝14は、必要に応じて設けなくてもよい。
【0021】
支軸8の軸方向中央部位の外周には、環状溝14に臨む錐もみ穴12aが形成されるとともに、支軸8の一端側の外周には偏平な切込み溝12bを介してキリ穴12cが径方向に沿って穿設され、錐もみ穴12aからキリ穴12cに向けて前記油路12が穿設されている。
【0022】
すなわち、この支軸8の油路12は、支軸8の軸心に対して傾き、かつ、その油路12の両端開口が支軸8の外周面に開放されている斜め孔となっている。
【0023】
このような構成を採用すれば、アーム7内の油路11から支軸8内の油路12に導かれた潤滑油は、環状溝14の全周に亘って供給された後、複数の貫通孔13を介してローラ9と滑り軸受10との摺動部位に供給される。
【0024】
この場合、アーム7内の油路11と支軸8内の油路12とのなす潤滑油流路の屈曲角度、および、油路12と貫通孔13とのなす潤滑油流路の屈曲角度はそれぞれ鈍角となっているので、これら屈曲流路での圧力損失は比較的小さいものとなる。
【0025】
また、油路12の一方開口領域である錐もみ穴12aにおいては、斜め孔である油路12に対して直交する面が形成されているので、キリ穴12cに向けて穿設工具例えばドリルで穿設加工する場合、その工具の位置決めができその孔あけ作業を高精度でかつ容易に行える。
【0026】
さらに、錐もみ穴12aは、曲げ応力のかかる支軸8の軸方向中央部位に位置するので、穿設加工による支軸8の強度低下を少なく抑えることができる。
【0027】
(実施形態2)
図3は、本発明の実施形態2に係る自然潤滑方式のカムフォロワの縦断面図であり、図1と対応する部分には同一の符号を付し、同一の符号の部分についての詳しい説明は省略する。実施形態2のカムフォロワも、実施形態1のそれと同様にエンジンの動弁機構に適用される。
【0028】
実施形態2のカムフォロワ6aは、その本体から互いに所定距離隔てて平行に延びる支持体としてのアーム7,7を備え、これらアーム7,7の間に架橋状に取り付けられる支軸8に対してローラ9が所要の空間を介するように外嵌され、この空間に支軸8とローラ9のいずれにも相対回転可能となる状態で滑り軸受10が介装されている。
【0029】
そして、このカムフォロワ6aは、支軸8に潤滑油膜溜まり15が形成され、片方のアーム7の油路11からその潤滑油膜溜まり15に潤滑油膜が供給されるようになっている。
【0030】
なお、滑り軸受10の内周面には、好ましくは貫通孔13の内径開口端に連通された環状溝が全周にわたって形成されており、これによって、アーム7の油路11から支軸8の潤滑油溜まり15に対して潤滑油を供給できるようになっている。
【0031】
(両実施形態1,2の共通の特徴構成)
以下、実施の形態1および2の共通の特徴構成について説明する。
【0032】
すなわち、いずれの実施の形態1,2においても、支軸8、滑り軸受10およびローラ9の三者の接触面の硬度関係において、滑り軸受10の接触面と残り2者である支軸8およびローラ9の一方または双方の接触面との間での硬度差を少なくともビッカース硬さでHV50以上に設定したことに特徴を有している。
【0033】
なお、滑り軸受10は、支軸8とローラ9との間に介装されるので、滑り軸受10の接触面硬度が基準となり、滑り軸受10の接触面硬度に対して残り二者の接触面硬度がビッカース硬さでHV50以上の硬度差があるとよく、したがって、残り二者の接触面硬度は滑り軸受10のそれより高くても低くてもよい。
【0034】
以下、具体的に説明する。
【0035】
なお、滑り軸受10の接触面硬度を一例としてHV650に設定しているが、本発明はこのような接触面硬度に限定されない。
【0036】
また、比較のため、前記三者はすべて同一材料で接触面硬度が同一としたときの耐荷重能を比率で1倍(基準比率1倍)とする。
【0037】
また、以下の説明では滑り軸受10は、クロム鋼鋼材(SCr440)を、また残り二者は高炭素クロム軸受鋼鋼材(SUJ2)を材料としているが、本発明は、これら材料に限定されない。
【0038】
なお、これら三者の接触面は以下の硬度差関係を有するようにショットピーニング加工やバレル加工などの加工操作による硬化処理、焼き入れ焼き戻しなどの熱操作による硬化処理あるいは浸炭窒化処理などの表面改質による硬化処理、チタンカーバイトや窒化チタンなどの硬質被膜の形成による硬化処理、その他の周知の硬化処理が施されているが、本発明はいずれの硬化処理にも限定されない。
【0039】
本実施の形態1,2のカムフォロワ6,6aにおいては、このような硬化処理による前記三者間の硬度差関係によってそのカムフォロワ6,6aの潤滑油膜による耐荷重能が基準比率の1.2〜1.5倍にアップし、また、硬化処理に加えてさらに滑り軸受10の接触面に潤滑性向上のための潤滑被膜(固体潤滑剤による固体潤滑被膜、化学生成による化成潤滑被膜)を形成するとさらに耐荷重能が基準比率の1.3〜2.0倍にアップした。すなわち、
(1)滑り軸受10の接触面に潤滑被膜を形成していない場合:
滑り軸受10の接触面硬度を少なくともビッカース硬さでHV650とし、図1の強制潤滑方式でのカムフォロワ6の場合は、支軸8とローラ9の接触面硬度を共にビッカース硬さでHV400〜HV600の範囲として、滑り軸受10の接触面硬度を残り二者の接触面硬度より少なくともビッカース硬さでHV50以上大きくすると、耐荷重能は基準比率の少なくとも1.2倍にアップした。
【0040】
図3の自然潤滑方式でも同様の結果が得られた。
【0041】
(2)滑り軸受10の接触面に所要の潤滑被膜を形成している場合:
▲1▼、滑り軸受10の接触面硬度をビッカース硬さで少なくともHV650とし、図1の強制潤滑方式のカムフォロワ6の場合は、支軸8とローラ9の接触面硬度を共にビッカース硬さでHV700〜HV900の範囲とし、滑り軸受10の接触面硬度を、残り二者の接触面硬度より小さくする。
【0042】
そして、この硬度差関係に加えて、固体潤滑剤による潤滑被膜を形成したときの耐荷重能は基準比率の1.7倍となる。これは前記(1)の1.2倍と比較して耐荷重能がさらにアップしている。
【0043】
これは自然潤滑方式でも同様の結果が得られた。
【0044】
固体潤滑剤としては、層状構造体(黒鉛、二硫化モリブデン、二硫化タングステン、窒化ボロン)、プラスチック(四フッ化エチレン、ナイロン、ポリイミド、ポリエチレン)、軟質金属(金、銀、鉛、錫、インジウム、亜鉛)、その他(酸化鉛、フッ化カルシウム等)、DLC(ダイヤモンドライクカーボン)、等が挙げられる。このような固体潤滑剤による固体潤滑被膜を形成した場合、耐荷重能は、基準比率の1.7倍となる。これは前記(1)の1.2倍と比較して耐荷重能がさらにアップしている。
【0045】
また、軟窒化処理による化成潤滑被膜やリン酸マンガン塩等の化学生成(化成)による潤滑被膜を形成した場合の耐荷重能は、基準比率の1.4倍となる。これは固体潤滑剤による潤滑被膜の場合の1.7倍よりは小さいが、潤滑被膜を形成しない前記(1)の1.2倍より大きい。
【0046】
なお、前記軟窒化処理による化成潤滑被膜は窒化膜であるが、軟窒化処理に用いる窒化ガスとしては、NH3単体からなるガスまたはNH3と炭素源とからなる混合ガス例えばRXガスがある。このガス雰囲気中に所要の温度で熱処理すると滑り軸受10表面に窒化膜が形成される。
【0047】
また、前記リン酸マンガン塩による化成潤滑被膜の場合、滑り軸受10の表面に洗浄等の前処理を施しリン酸マンガン塩化合物の水溶液を用いてリン酸マンガン塩の潤滑被膜を形成する。このリン酸マンガン塩の水溶液に滑り軸受10を浸けると、滑り軸受10の表面がリン酸マンガン塩化合物で腐食されかつそのリン酸マンガン塩の結晶が析出し、その表面では前記腐食で微小で浅い凹凸が生じるとともにその表面全体にリン酸マンガン塩の潤滑被膜が形成される。
【0048】
▲2▼、前記▲1▼では滑り軸受10の接触面硬度を残り二者の接触面硬度より小さくしたが、さらに、滑り軸受10の接触面硬度をビッカース硬さで少なくともHV600とし、残り二者においてもさらに、ローラ9の接触面硬度をビッカース硬さで少なくともHV650、支軸8の接触面硬度をビッカース硬さで少なくともHV700とし、三者間の接触面硬度の硬度差を互いにビッカース硬さでHV50以上とした。
【0049】
この場合も接触面表面の被膜は前記と同様の潤滑被膜とする。この場合の耐荷重能は基準比率の1.9倍となり、最大の耐荷重能アップとなった。
【0050】
なお、上述した実施形態1,2における滑り軸受10や支軸8やローラ9の材料は、上記鋼材に限定されるものではなく、他の鋼材であってもよい。また、これら三者は共に同一の鋼材で構成しても構わず、要するに、それら三者間の接触面における硬度関係に上述した関係があればよい。
【0051】
また、滑り軸受10の接触面硬度は、上述に限定されるものではなくHV600〜800の範囲で適宜選択される。
【0052】
【発明の効果】
本発明によれば、支軸に対して、滑り軸受を介して、回転自在にローラを装着してなるカムフォロワにおいて、前記支軸、滑り軸受およびローラの3者の接触面の硬度関係において、前記滑り軸受の接触面が、残り2者の少なくとも一方の接触面に対して所要の硬度差を有しているので、滑り軸受の接触面が相手側の接触面に対してより軟らかいまたは相手側の接触面の方が滑り軸受のそれよりも軟らかいので、接触に際してそれらの接触面間の潤滑油膜が飛び散りにくくなり、その結果、潤滑油膜による耐荷重能が十分に得られ、上述した焼き付けの発生が効果的に防止されカムフォロワの寿命に好ましい結果となる。
【図面の簡単な説明】
【図1】本発明の実施形態1に係るカムフォロワの縦断面図
【図2】図1のカムフォロワに使用する支軸の斜視図
【図3】本発明の実施形態2に係るカムフォロワの縦断面図
【図4】図1のカムフォロワの利用例を示す説明図
【図5】図1のカムフォロワの他の利用例を示す説明図
【符号の説明】
6,6a カムフォロワ
7 支持体
8 支軸
9 ローラ
10 滑り軸受(浮動輪)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cam follower used for an engine valve mechanism, and more particularly to a cam follower in which a roller is rotatably mounted on a fixed support shaft via a slide bearing.
[0002]
[Prior art]
A cam follower attached to a roller support member such as a lash adjuster at the lower end of a push rod in an OHV type engine or a rocker arm in an OHC type engine is provided with a support shaft fixed to the roller support member and the support shaft. Some of them are configured to include a sliding bearing, also called a floating ring, and a roller that is rotatably mounted on a support shaft via the sliding bearing.
[0003]
[Problems to be solved by the invention]
In such a cam follower, the respective contact surfaces of the support shaft, the plain bearing and the roller are lubricated with lubricating oil. Such lubrication includes a forced lubrication system that forcibly supplies lubricant oil between the contact surfaces, and a natural lubrication system that naturally supplies lubricant oil between the contact surfaces by rotation of a sliding bearing.
[0004]
By the way, although these lubrication systems are lubricated between their contact surfaces, seizure tends to occur on these contact surfaces due to long-term use and the lubricity tends to decrease. The applicant has studied the cause of such seizure, but it is thought that the seizure should not occur if the lubrication is sufficiently performed to form a thick lubricating oil film on the contact surface to eliminate the lack of lubrication. It was.
[0005]
Therefore, the amount of lubricating oil supplied was increased to prevent seizure, but there was a limit to the supply and the result was not directly linked to the desired result. Therefore, the present applicant has further conducted various studies and found that the hardness at the contact surfaces of the three parties has a difference more than necessary, and that the seizure is effectively prevented by ordinary lubrication. It is.
[0006]
This is because the relative hardness relationship between the three members in the conventional cam follower is almost the same, so that the load bearing capacity due to the oil film on those contact surfaces cannot be obtained sufficiently, and the lubricating oil film is the hard contact surface on the other side Therefore, even if a large amount of lubricating oil is supplied, seizing tends to occur between the contact surfaces where the lubricating oil film is scattered.
[0007]
Accordingly, in the present invention, in the cam follower, the hardness relationship between the three members is defined as a predetermined relationship so that the scattering of the lubricating oil film can be suppressed, thereby increasing the load bearing capability of the normal lubricating oil film and baking. It is a common solution to make it possible to prevent this problem effectively.
[0008]
Further, in the present invention, another problem to be solved is to apply a lubricating coating to the sliding bearing to modify its surface to further prevent seizure.
[0009]
[Means for Solving the Problems]
The cam follower of the present invention is a cam follower in which a roller is rotatably mounted on a support shaft via a slide bearing. The support shaft, the slide bearing and the roller are made of steel, and the support Regarding the hardness relationship of the three contact surfaces of the shaft, the plain bearing, and the roller, the contact surfaces of the three members are respectively cured, and the contact surface of the slide bearing is in contact with at least one of the remaining two contact surfaces. Has the required hardness difference.
[0010]
According to the present invention, the contact surface of the sliding bearing has a required hardness difference with respect to at least one of the remaining two contact surfaces in the contact surface of the three parties. Since the contact surface is softer than the contact surface or the contact surface on the other side is softer than that of the sliding bearing, the lubricant film between these contact surfaces is less likely to scatter during contact, and as a result, the load bearing capacity of the lubricant film is reduced. Is sufficiently obtained, and the occurrence of the above-described baking is effectively prevented, which is a favorable result for the life of the cam follower.
[0011]
As a preferred embodiment of the present invention, when the hardness difference is at least HV50 in terms of Vickers hardness, a sufficient load bearing capability due to the lubricating oil film can be obtained, and the occurrence of seizure can be effectively prevented and the cam follower can be prevented. A more favorable result is obtained by the lifetime.
[0012]
As a further preferred embodiment of the present invention, the contact surfaces of the three members are each subjected to a curing treatment so that the contact surface hardness of the sliding bearing is smaller than the surface hardness of any of the remaining two members, and the contact surfaces of the sliding bearings In the case where the lubricant coating is applied, even if the amount of the lubricating oil film decreases between the contact surfaces, the contact surfaces themselves have lubricity, which is preferable for preventing seizure.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The details of the present invention will be described based on embodiments shown in the drawings.
[0014]
(Embodiment 1)
1 and 2 relate to a forced lubrication type cam follower according to Embodiment 1 of the present invention. FIG. 1 is a longitudinal sectional view thereof, and FIG. 2 is a perspective view of a support shaft used in the cam follower of FIG. This cam follower is applied to the valve mechanism of the engine shown in FIGS. FIG. 4 is a schematic configuration diagram of the valve operating mechanism of the OHV type engine, and FIG. 5 is a schematic configuration diagram of the valve operating mechanism of the OHC type engine.
[0015]
In the example of FIG. 4, the push rod 2 is moved up and down by the cam 1 a of the cam shaft 1 to swing the rocker arm 3 interlocked with the upper end of the push rod 2. The cam follower 6 according to the first embodiment is provided below the lash adjuster 5 provided at the lower end of the rocker arm 3.
[0016]
In the example of FIG. 5, the rocker arm 3 is directly swung by the cam 1 a of the cam shaft 1, and the rocker arm 3 swings the valve shaft 4 a up and down to open and close the rocker arm 3. The cam follower 6 of Embodiment 1 is provided.
[0017]
As shown in FIG. 1, the cam follower 6 includes a pair of arms 7 and 7, a support shaft 8, a plain bearing 10, and a roller 9.
[0018]
The arms 7 and 7 serve as support bodies that extend in parallel with a predetermined distance from the cam follower body. The support shaft 8 is attached between the arms 7 and 7 in a bridging manner. The roller 9 is externally fitted to the support shaft 8 so that the roller 9 passes through a required space. The sliding bearing 10 is interposed between the support shaft 8 and the roller 9 so as to be relatively rotatable in the annular space.
[0019]
In the figure, the right arm 7 and the support shaft 8 are provided with oil passages 11 and 12 which are supplied with lubricating oil from the outside. Through holes 13 extending along the radial direction are provided at several circumferentially equidistant locations in the axially central portion of the slide bearing 10.
[0020]
An annular groove 14 communicating with the inner diameter opening end of the through hole 13 is formed on the inner peripheral surface of the sliding bearing 10 over the entire circumference, and the opening end of the axial center portion of the oil passage 12 provided in the support shaft 8. Is communicated with the annular groove 14. Accordingly, the oil passage 12 of the support shaft 8 can supply lubricating oil to the portion where the sliding bearing 10 is present. The annular groove 14 may not be provided as necessary.
[0021]
A conical hole 12a facing the annular groove 14 is formed on the outer periphery of the central portion in the axial direction of the support shaft 8, and a drill hole 12c is formed on the outer periphery on one end side of the support shaft 8 through a flat cut groove 12b. The oil passage 12 is drilled along the radial direction, from the conical hole 12a toward the drill hole 12c.
[0022]
That is, the oil passage 12 of the support shaft 8 is inclined with respect to the shaft center of the support shaft 8 and both ends of the oil passage 12 are open to the outer peripheral surface of the support shaft 8. .
[0023]
If such a configuration is adopted, the lubricating oil guided from the oil passage 11 in the arm 7 to the oil passage 12 in the support shaft 8 is supplied over the entire circumference of the annular groove 14, and then a plurality of penetrations are made. It is supplied to the sliding portion between the roller 9 and the sliding bearing 10 through the hole 13.
[0024]
In this case, the bending angle of the lubricating oil passage formed by the oil passage 11 in the arm 7 and the oil passage 12 in the support shaft 8 and the bending angle of the lubricating oil passage formed by the oil passage 12 and the through hole 13 are as follows. Since each of them has an obtuse angle, the pressure loss in these bent flow paths is relatively small.
[0025]
In addition, in the conical hole 12a that is one open region of the oil passage 12, a surface that is orthogonal to the oil passage 12 that is an oblique hole is formed, so that a drilling tool, such as a drill, is directed toward the drill hole 12c. When drilling, the tool can be positioned and the drilling operation can be performed with high accuracy and ease.
[0026]
Furthermore, since the conical hole 12a is located in the axial center part of the support shaft 8 to which bending stress is applied, it is possible to suppress a decrease in strength of the support shaft 8 due to drilling.
[0027]
(Embodiment 2)
FIG. 3 is a longitudinal sectional view of a naturally-lubricated cam follower according to Embodiment 2 of the present invention. Parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and detailed description of the same reference numerals is omitted. To do. The cam follower of the second embodiment is also applied to the valve mechanism of the engine as in the first embodiment.
[0028]
The cam follower 6a according to the second embodiment includes arms 7 and 7 serving as supports extending in parallel with each other at a predetermined distance from the main body, and a roller with respect to a support shaft 8 attached in a bridging manner between the arms 7 and 7. 9 is externally fitted through a required space, and a sliding bearing 10 is interposed in this space in a state in which both of the support shaft 8 and the roller 9 can rotate relative to each other.
[0029]
In the cam follower 6 a, a lubricating oil film reservoir 15 is formed on the support shaft 8, and the lubricating oil film is supplied from the oil passage 11 of one arm 7 to the lubricating oil film reservoir 15.
[0030]
An annular groove communicating with the inner diameter opening end of the through-hole 13 is preferably formed on the inner peripheral surface of the slide bearing 10 over the entire circumference. Lubricating oil can be supplied to the lubricating oil reservoir 15.
[0031]
(Common feature configuration of both Embodiments 1 and 2)
Hereinafter, a common characteristic configuration of the first and second embodiments will be described.
[0032]
That is, in any of the first and second embodiments, the contact surface of the sliding bearing 10 and the remaining two supporting shafts 8 and 8 in terms of the hardness relationship between the contact surfaces of the supporting shaft 8, the sliding bearing 10 and the roller 9. It is characterized in that the hardness difference between one or both contact surfaces of the roller 9 is set to at least HV50 in terms of Vickers hardness.
[0033]
Since the sliding bearing 10 is interposed between the support shaft 8 and the roller 9, the contact surface hardness of the sliding bearing 10 is used as a reference, and the remaining two contact surfaces with respect to the contact surface hardness of the sliding bearing 10. The hardness should be Vickers hardness and have a hardness difference of HV50 or more. Therefore, the contact surface hardness of the remaining two members may be higher or lower than that of the sliding bearing 10.
[0034]
This will be specifically described below.
[0035]
In addition, although the contact surface hardness of the slide bearing 10 is set to HV650 as an example, the present invention is not limited to such contact surface hardness.
[0036]
Further, for comparison, the three parties all assume that the load bearing capacity when the contact surface hardness is the same with the same material is 1 time (the standard ratio is 1 time).
[0037]
In the following description, the sliding bearing 10 is made of chrome steel (SCr440) and the remaining two are made of high carbon chrome bearing steel (SUJ2), but the present invention is not limited to these materials.
[0038]
These three contact surfaces have the following hardness difference relationship, such as a hardening process by a processing operation such as shot peening or barrel processing, a hardening process by a thermal operation such as quenching and tempering, or a carbonitriding process. A curing process by modification, a curing process by forming a hard coating such as titanium carbide or titanium nitride, and other known curing processes are performed, but the present invention is not limited to any curing process.
[0039]
In the cam followers 6 and 6a according to the first and second embodiments, the load bearing capacity of the cam followers 6 and 6a due to the lubricating oil film is 1.2 to 1.2 as a reference ratio due to the hardness difference between the three due to the hardening process. In addition to the hardening process, when a lubricating film for improving lubricity (solid lubricating film by solid lubricant, chemical lubricating film by chemical generation) is further formed on the contact surface of the sliding bearing 10 in addition to the curing treatment Furthermore, the load bearing capacity has increased to 1.3 to 2.0 times the standard ratio. That is,
(1) When a lubricating film is not formed on the contact surface of the sliding bearing 10:
In the case of the cam follower 6 in the forced lubrication system of FIG. 1, the contact surface hardness of the sliding bearing 10 is at least HV650. As a range, when the contact surface hardness of the sliding bearing 10 was increased by HV50 or more in terms of Vickers hardness from the remaining two contact surface hardnesses, the load bearing capacity was increased to at least 1.2 times the reference ratio.
[0040]
Similar results were obtained with the natural lubrication method of FIG.
[0041]
(2) When a required lubricating film is formed on the contact surface of the sliding bearing 10:
(1) The contact surface hardness of the sliding bearing 10 is at least HV650 in terms of Vickers hardness. In the case of the cam follower 6 of the forced lubrication system of FIG. 1, the contact surface hardness of the support shaft 8 and the roller 9 is both HV700 in terms of Vickers hardness. The contact surface hardness of the sliding bearing 10 is set to be smaller than the contact surface hardness of the remaining two.
[0042]
And in addition to this hardness difference relationship, the load bearing capacity when forming a lubricating coating with a solid lubricant is 1.7 times the standard ratio. This is a further increase in load bearing capacity compared to 1.2 times the above (1).
[0043]
Similar results were obtained with the natural lubrication method.
[0044]
Solid lubricants include layered structures (graphite, molybdenum disulfide, tungsten disulfide, boron nitride), plastics (tetrafluoroethylene, nylon, polyimide, polyethylene), soft metals (gold, silver, lead, tin, indium) , Zinc), others (lead oxide, calcium fluoride, etc.), DLC (diamond-like carbon), and the like. When such a solid lubricant film is formed with a solid lubricant, the load carrying capacity is 1.7 times the reference ratio. This is a further increase in load bearing capacity compared to 1.2 times the above (1).
[0045]
In addition, the load bearing capacity when a chemical lubrication film by soft nitriding or a chemical film (chemical conversion) such as manganese phosphate is formed is 1.4 times the standard ratio. This is smaller than 1.7 times that in the case of a lubricating film made of a solid lubricant, but is larger than 1.2 times that in the above (1) in which no lubricating film is formed.
[0046]
The chemical lubrication film formed by the soft nitriding treatment is a nitride film, but the nitriding gas used for the soft nitriding treatment includes a gas composed of NH 3 alone or a mixed gas composed of NH 3 and a carbon source, for example, RX gas. When heat treatment is performed in this gas atmosphere at a required temperature, a nitride film is formed on the surface of the sliding bearing 10.
[0047]
Moreover, in the case of the chemical lubrication film by the said manganese phosphate salt, pretreatments, such as washing | cleaning, are given to the surface of the sliding bearing 10, and the lubricous film of a manganese phosphate salt is formed using the aqueous solution of a manganese phosphate compound. When the slide bearing 10 is immersed in the aqueous solution of manganese phosphate, the surface of the slide bearing 10 is corroded with the manganese phosphate compound and crystals of the manganese phosphate precipitate, and the surface is minute and shallow due to the corrosion. Concavities and convexities are formed, and a lubricating film of manganese phosphate is formed on the entire surface.
[0048]
In (2) and (1) above, the contact surface hardness of the sliding bearing 10 is made smaller than the contact surface hardness of the remaining two. Further, the contact surface hardness of the sliding bearing 10 is at least HV600 in terms of Vickers hardness, and the remaining two Furthermore, the contact surface hardness of the roller 9 is at least HV650 in terms of Vickers hardness, the contact surface hardness of the support shaft 8 is at least HV700 in terms of Vickers hardness, and the difference in contact surface hardness between the three is in terms of Vickers hardness. HV50 or more.
[0049]
Also in this case, the coating on the contact surface is the same lubricating coating as described above. In this case, the load bearing capacity was 1.9 times the standard ratio, which was the largest increase in load bearing capacity.
[0050]
In addition, the material of the sliding bearing 10, the support shaft 8, and the roller 9 in Embodiments 1 and 2 described above is not limited to the steel material, and may be other steel materials. In addition, these three members may be made of the same steel material. In short, it is only necessary that the above-described relationship exists in the hardness relationship at the contact surface between the three members.
[0051]
Moreover, the contact surface hardness of the sliding bearing 10 is not limited to the above, but is appropriately selected in the range of HV600 to 800.
[0052]
【The invention's effect】
According to the present invention, in a cam follower in which a roller is rotatably mounted to a support shaft via a slide bearing, the hardness relationship between the contact surfaces of the support shaft, the slide bearing, and the roller is Since the contact surface of the slide bearing has a required hardness difference with respect to at least one of the other two contact surfaces, the contact surface of the slide bearing is softer than the other contact surface or the other contact surface. Since the contact surface is softer than that of the sliding bearing, the lubricating oil film between the contact surfaces is less likely to scatter during contact.As a result, sufficient load-bearing capacity is obtained by the lubricating oil film, and the occurrence of seizure as described above occurs. It is effectively prevented and results in a favorable cam follower life.
[Brief description of the drawings]
1 is a longitudinal sectional view of a cam follower according to a first embodiment of the present invention. FIG. 2 is a perspective view of a support shaft used in the cam follower of FIG. 1. FIG. 3 is a longitudinal sectional view of a cam follower according to a second embodiment of the present invention. FIG. 4 is an explanatory diagram showing an example of use of the cam follower shown in FIG. 1. FIG. 5 is an explanatory diagram showing another example of use of the cam follower shown in FIG.
6, 6a Cam follower 7 Support body 8 Support shaft 9 Roller 10 Sliding bearing (floating ring)

Claims (3)

支軸に対して、滑り軸受を介して、回転自在にローラを装着してなるカムフォロワにおいて、
前記支軸、滑り軸受およびローラの3者は鋼材製であるとともに、
前記支軸、滑り軸受およびローラの3者の接触面の硬度関係において、前記3者の接触面にそれぞれ硬化処理を施し、前記滑り軸受の接触面が、残り2者の少なくとも一方の接触面に対して所要の硬度差を有している、ことを特徴とするカムフォロワ。
In a cam follower in which a roller is rotatably mounted to a support shaft via a sliding bearing,
The support shaft, plain bearing and roller are made of steel,
Regarding the hardness relationship of the three contact surfaces of the support shaft, the sliding bearing and the roller, the contact surfaces of the three members are respectively subjected to hardening treatment, and the contact surface of the sliding bearing is at least one of the contact surfaces of the remaining two members. A cam follower characterized by having a required hardness difference.
請求項1に記載のカムフォロワにおいて、
前記硬度差が、少なくともビッカース硬さでHV50以上である、ことを特徴とするカムフォロワ。
The cam follower according to claim 1,
The cam follower characterized in that the hardness difference is at least HV50 in terms of Vickers hardness.
請求項1または2に記載のカムフォロワにおいて、
前記3者の接触面にそれぞれ硬化処理を施し、前記滑り軸受の接触面硬度を、残り2者のいずれの表面硬度より小さくするとともに、前記滑り軸受の接触面に潤滑被膜処理が施されている、ことを特徴とするカムフォロワ。
The cam follower according to claim 1 or 2,
Each of the contact surfaces of the three members is subjected to a hardening treatment, and the contact surface hardness of the sliding bearing is made smaller than any of the remaining two members, and the contact surface of the sliding bearing is subjected to a lubricating coating treatment. A cam follower characterized by that.
JP2000085789A 2000-03-27 2000-03-27 Cam follower Expired - Fee Related JP3728491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000085789A JP3728491B2 (en) 2000-03-27 2000-03-27 Cam follower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000085789A JP3728491B2 (en) 2000-03-27 2000-03-27 Cam follower

Publications (2)

Publication Number Publication Date
JP2001271910A JP2001271910A (en) 2001-10-05
JP3728491B2 true JP3728491B2 (en) 2005-12-21

Family

ID=18602053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000085789A Expired - Fee Related JP3728491B2 (en) 2000-03-27 2000-03-27 Cam follower

Country Status (1)

Country Link
JP (1) JP3728491B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346760A (en) * 2003-05-20 2004-12-09 Nsk Ltd Cam follower device
EP1482190B1 (en) 2003-05-27 2012-12-05 Nissan Motor Company Limited Rolling element
CN101002005A (en) * 2004-08-04 2007-07-18 Ntn株式会社 Bearing for locker arm
JP2006097759A (en) * 2004-09-29 2006-04-13 Taiho Kogyo Co Ltd Bearing device
JP4462077B2 (en) * 2005-03-15 2010-05-12 トヨタ自動車株式会社 Combination sliding member
JP2012215289A (en) 2011-03-25 2012-11-08 Jtekt Corp Roller bearing
DE102014223597B4 (en) * 2014-10-08 2019-02-07 Continental Automotive Gmbh Roller for a roller tappet of a high-pressure fuel pump, roller tappet, high-pressure fuel pump and internal combustion engine

Also Published As

Publication number Publication date
JP2001271910A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
RU2231695C2 (en) Anti-friction bearing provided with coat (versions)
CN1985100B (en) Rolling device
JP2006144848A (en) Bearing for rocker arm
US20070224349A1 (en) Wear-Resistant Coating and Method for Producing Same
JP3869192B2 (en) Rolling and sliding parts
CN105814340A (en) Planetary gear bearing arrangement
JPH03172608A (en) Machine part
CN102292523A (en) Tappet roller bearing
JP3728491B2 (en) Cam follower
US20080280716A1 (en) Chain for use in automobile engine
JP3949866B2 (en) Constant velocity universal joint
JPH02271106A (en) Sliding bearing device
JP2004332915A (en) Roller bearing
JP4487340B2 (en) Method for manufacturing rolling bearing cage
JP3640140B2 (en) Engine tappet roller support bearing
US7387098B2 (en) Cam follower
JP2005147306A (en) Retainer for roller bearing
JP3815027B2 (en) Roller support bearing device
CN101617137A (en) Bearing shell
JP4992521B2 (en) Rocker arm
JP2005326023A (en) Roller supporting bearing device
JP2004278322A (en) Cam-follower device
JP2007009817A (en) Tappet roller bearing
JP2003294038A (en) Conical roller bearing
JP3949864B2 (en) Constant velocity universal joint

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Ref document number: 3728491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees