JP2012215540A - Sprセンサセルおよびsprセンサ - Google Patents

Sprセンサセルおよびsprセンサ Download PDF

Info

Publication number
JP2012215540A
JP2012215540A JP2011159579A JP2011159579A JP2012215540A JP 2012215540 A JP2012215540 A JP 2012215540A JP 2011159579 A JP2011159579 A JP 2011159579A JP 2011159579 A JP2011159579 A JP 2011159579A JP 2012215540 A JP2012215540 A JP 2012215540A
Authority
JP
Japan
Prior art keywords
core layer
spr sensor
layer
refractive index
sensor cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011159579A
Other languages
English (en)
Other versions
JP5395129B2 (ja
Inventor
Tomohiro Konya
友広 紺谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2011159579A priority Critical patent/JP5395129B2/ja
Priority to CN201280016040.4A priority patent/CN103460021B/zh
Priority to PCT/JP2012/054065 priority patent/WO2012132633A1/ja
Priority to EP12763227.1A priority patent/EP2693196A4/en
Priority to US14/008,297 priority patent/US20140017125A1/en
Publication of JP2012215540A publication Critical patent/JP2012215540A/ja
Application granted granted Critical
Publication of JP5395129B2 publication Critical patent/JP5395129B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

【課題】非常に優れた検出感度を有するSPRセンサセルおよびSPRセンサを提供すること。
【解決手段】本発明のSPRセンサセルは、検知部と、該検知部に隣接するサンプル配置部とを備える。検知部は、アンダークラッド層と、少なくとも一部が該アンダークラッド層に隣接するように設けられたコア層と、コア層を被覆する金属層とを有する。コア層は35重量%以上のハロゲンを含む。
【選択図】図1

Description

本発明は、SPRセンサセルおよびSPRセンサに関する。より詳細には、本発明は、光導波路を備えるSPRセンサセルおよびSPRセンサに関する。
従来、化学分析および生物化学分析などの分野において、光ファイバを備えるSPR(表面プラズモン共鳴:Surface Plasmon Resonance)センサが用いられている。光ファイバを備えるSPRセンサでは、光ファイバの先端部の外周面に金属薄膜が形成されるとともに、分析サンプルが固定され、その光ファイバ内に光が導入される。導入される光のうち特定の波長の光が、金属薄膜において表面プラズモン共鳴を発生させ、その光強度が減衰する。このようなSPRセンサにおいて、表面プラズモン共鳴を発生させる波長は、通常、光ファイバに固定される分析サンプルの屈折率などによって異なる。したがって、表面プラズモン共鳴の発生後に光強度が減衰する波長を計測すれば、表面プラズモン共鳴を発生させた波長を特定でき、さらに、その減衰する波長が変化したことを検出すれば、表面プラズモン共鳴を発生させる波長が変化したことを確認できるので、分析サンプルの屈折率の変化を確認できる。その結果、このようなSPRセンサは、例えば、サンプルの濃度の測定、免疫反応の検出など、種々の化学分析および生物化学分析に用いることができる。
例えば、サンプルが溶液である場合には、サンプル(溶液)の屈折率は、溶液の濃度に依存する。したがって、サンプル(溶液)を金属薄膜に接触させたSPRセンサにおいて、サンプル(溶液)の屈折率を計測することにより、サンプルの濃度を検出することができ、さらには、その屈折率が変化したことを確認することにより、サンプル(溶液)の濃度が変化したことを確認することができる。免疫反応の分析においては、例えば、SPRセンサの光ファイバの金属薄膜上に誘電体膜を介して抗体を固定し、抗体に検体を接触させるとともに、表面プラズモン共鳴を発生させる。このとき、抗体と検体とが免疫反応すれば、そのサンプルの屈折率が変化するので、抗体と検体との接触前後においてサンプルの屈折率が変化したことを確認することにより、抗体と検体とが免疫反応したものと判断できる。
このような光ファイバを備えるSPRセンサにおいては、光ファイバの先端部が微細な円筒形状であるので、金属薄膜の形成および分析サンプルの固定が困難であるという問題がある。このような問題を解決するために、例えば、光が透過するコアと、このコアを覆うクラッドとを備え、このクラッドの所定位置にコアの表面に至る貫通口を形成し、この貫通口に対応した位置におけるコアの表面に金属薄膜を形成したSPRセンサセルが提案されている(例えば、特許文献1)。このようなSPRセンサセルによれば、コア表面に表面プラズモン共鳴を発生させるための金属薄膜の形成、および、その表面への分析サンプルの固定が容易である。
しかし、近年、化学分析および生物化学分析においては、微細な変化および/または微量成分の検出に対する要求が高まっており、SPRセンサセルのさらなる検出感度の向上が求められている。
特開2000−19100号公報
本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、非常に優れた検出感度を有するSPRセンサセルおよびSPRセンサを提供することにある。
本発明のSPRセンサセルは、検知部と、該検知部に隣接するサンプル配置部とを備え、該検知部が、アンダークラッド層と、少なくとも一部が該アンダークラッド層に隣接するように設けられたコア層と、該コア層を被覆する金属層とを有し、該コア層が35重量%以上のハロゲンを含む。
好ましい実施形態においては、上記ハロゲンはフッ素である。
好ましい実施形態においては、上記コア層の屈折率は1.43以下である。好ましい実施形態においては、上記コア層の屈折率は1.33以上である。
好ましい実施形態においては、上記コア層の屈折率は上記アンダークラッド層の屈折率より大きく、かつ、屈折率の差は0.010以上である。
本発明の別の局面によれば、SPRセンサが提供される。このSPRセンサは、上記のSPRセンサセルを備える。
本発明によれば、検知部としての光導波路のコア層にハロゲンを含有させることにより、非常に優れた検出感度を有するSPRセンサセルおよびSPRセンサを提供することができる。
本発明の好ましい実施形態によるSPRセンサセルを説明する概略斜視図である。 図1に示すSPRセンサセルの概略断面図である。 本発明のSPRセルの製造方法の一例を説明する概略断面図である。 本発明の好ましい実施形態によるSPRセンサを説明する概略断面図である。
A.SPRセンサセル
図1は、本発明の好ましい実施形態によるSPRセンサセルを説明する概略斜視図である。図2は、図1に示すSPRセンサセルの概略断面図である。なお、以下のSPRセンサセルの説明において方向に言及するときは、図面の紙面上側を上側とし、図面の紙面下側を下側とする。
SPRセンサセル100は、図1および図2に示すように、平面視略矩形の有底枠形状に形成されており、検知部10と、検知部10に隣接するサンプル配置部20とを備える。検知部10は、サンプル配置部20に配置されるサンプルの状態および/またはその変化を検知するために設けられている。検知部10は、光導波路を有する。図示した形態においては、検知部10は、実質的には光導波路からなる。具体的には、検知部10は、アンダークラッド層11、コア層12、保護層13および金属層14を有する。サンプル配置部20は、オーバークラッド層15により規定されている。保護層13は、目的に応じて省略されてもよい。オーバークラッド層15も、サンプル配置部20を適切に設けることができる限りにおいて省略されてもよい。サンプル配置部20には、分析されるサンプル(例えば、溶液、粉末)が検知部(実質的には金属層)に接触して配置される。
アンダークラッド層11は、所定の厚みを有する平面視略矩形平板状に形成されている。アンダークラッド層の厚み(コア層上面からの厚み)は、例えば5μm〜400μmである。
コア層12は、アンダークラッド層11の幅方向(図2の紙面の左右方向)および厚み方向の両方と直交する方向に延びる略角柱形状(より詳細には、幅方向に扁平する断面矩形状)に形成され、アンダークラッド層11の幅方向略中央部の上端部に埋設されている。コア層12の延びる方向が、光導波路内を光が伝播する方向となる。コア層の厚みは、例えば5μm〜200μmであり、コア層の幅は、例えば5μm〜200μmである。
コア層12は、その上面がアンダークラッド層11から露出するようにして配置されている。好ましくは、コア層12は、その上面がアンダークラッド層11の上面と面一となるように配置されている。コア層の上面がアンダークラッド層の上面と面一となるように配置することにより、金属層14をコア層12の上側のみに効率よく配置することができる。さらに、コア層12は、その延びる方向の両端面がアンダークラッド層の当該方向の両端面と面一となるように配置されている。
本発明においては、コア層12はハロゲンを含む。コア層がハロゲンを含有することにより、コア層の屈折率を低くすることができる。その結果、検出感度を格段に向上させることができる。ハロゲンとしては、フッ素、塩素、臭素およびヨウ素が挙げられる。フッ素が好ましい。コア層の屈折率を調整して所望の屈折率とすることが容易だからである。
コア層にハロゲンを含有させる手段としては、任意の適切な手段を採用することができる。具体的には、ハロゲン含有材料を用いてコア層を形成すればよい。コア層を形成し得るハロゲン含有材料としては、例えば、ハロゲン原子含有樹脂、ハロゲン化合物含有樹脂組成物が挙げられる。ハロゲン原子含有樹脂の具体例としては、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ素化エポキシ樹脂、フッ素化ポリイミド樹脂、フッ素化ポリアミド樹脂、フッ素化アクリル樹脂、フッ素化ポリウレタン樹脂、フッ素化シロキサン樹脂などのフッ素原子含有樹脂;塩化ビニル樹脂、塩化ビニルーエチレン共重合体、塩素化ポリオレフィン樹脂などの塩素原子含有樹脂;およびこれらの変性体が挙げられる。フッ素原子含有樹脂が好ましい。フッ素原子含有樹脂を用いることにより、コア層の屈折率を低くして感度を向上させ、かつ、伴うS/N比の低下を抑制することができる。より詳細には、以下のとおりである。上記のとおり、フッ素を用いることにより、コア層の屈折率を低くして、感度を向上させることができる。一方、コア層の屈折率を低くして感度を向上させると、SPR吸収ピークが長波長側(近赤外領域)にシフトする。近赤外領域にはC−H振動吸収が存在し、その吸収によって励起波長における光強度の低下が起こる。その結果、S/N比が低下し、または導波モードの影響を受ける場合がある。水素原子より重いフッ素原子を炭素に結合させることにより、振動吸収を長波長側にシフトさせることができ、光強度の低下を抑えることができるので、S/N比の低下を抑制することができる。ハロゲン化合物含有樹脂組成物としては、ハロゲン化合物とエポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、シリコーン樹脂、アクリル樹脂および/またはウレタン樹脂とを含む樹脂組成物が挙げられる。ハロゲン化合物の具体例としては、ヘキサブロモベンゼン、ヘキサクロロベンゼン、ペンタブロモベンゼン、ペンタクロロベンゼン、ペンタブロモフェノール、ペンタクロロフェノール、ヘキサブロモビフェニール、デカブロモビフェニール、クロロテトラブロモブタン、テトラブロモブタン、ヘキサブロモシクロドデカン、パークロロペンタシクロデカン、デカブロモジフェニールエーテル、オクタブロモジフェニールエーテル、ヘキサブロモジフェニールエーテル、エチレンビス−テトラブロモフタルイミド、テトラクロロビスフェノールA、テトラブロモビスフェノールA、ブロム化ポリスチレン、ハロゲン化ポリカーボネート、ハロゲン化エポキシ化合物、ブロム化ポリフェニレンオキシド、ポリクロルスチレン、塩素化パラフィン、テトラブロモ無水フタル酸、テトラクロル無水フタル酸が挙げられる。上記ハロゲン含有材料(コア層を形成する材料)は、好ましくは感光剤を配合して、感光性材料として用いられ得る。
コア層12(実質的には、コア層を形成する材料)のハロゲン含有率は、35重量%以上であり、好ましくは40重量%以上であり、さらに好ましくは50重量%以上である。ハロゲン含有率がこのような範囲であれば、所望の屈折率を有するコア層が得られ、結果として、非常に優れた検出感度を有するSPRセンサセルが得られ得る。一方、ハロゲン含有率の上限は、好ましくは78重量%である。上限が78重量%を超えると、コア層が液状化やガス化を起こし、コア層の形状を維持できなくなる場合がある。
コア層12の屈折率は、好ましくは1.43以下であり、より好ましくは1.41以下であり、さらに好ましくは1.39以下である。コア層の屈折率を1.43以下とすることにより、検出感度を格段に向上させることができる。コア層の屈折率の下限は、好ましくは1.33である。コア層の屈折率が1.33以上であれば、水溶液系のサンプル(水の屈折率:1.33)であってもSPRを励起することができ、かつ、汎用の材料を使用することができる。なお、本明細書において、屈折率は、波長830nmにおける屈折率を意味する。
コア層12の屈折率は、アンダークラッド層11の屈折率より高い。コア層の屈折率とアンダークラッド層の屈折率との差は、好ましくは0.010以上であり、さらに好ましくは0.020以上である。コア層の屈折率とアンダークラッド層の屈折率との差がこのような範囲であれば、検出部の光導波路をいわゆるマルチモードとすることができる。したがって、光導波路を透過する光の量を多くすることができ、結果として、S/N比を向上させることができる。
コア層12を形成する材料は上記のとおりである。アンダークラッド層を形成する材料としては、上記の屈折率が得られる限りにおいて任意の適切な材料を用いることができる。例えば、アンダークラッド層11は、コア層を形成する材料と同様の材料であって、屈折率がコア層よりも低くなるように調整された材料から形成され得る。
保護層13は、必要に応じて、アンダークラッド層11およびコア層12の上面をすべて被覆するように、平面視においてアンダークラッド層と同じ形状の薄膜として形成されている。保護層13を設けることにより、例えば、サンプルが液状である場合に、サンプルによってコア層および/またはクラッド層が膨潤することを防止することができる。保護層13を形成する材料としては、例えば、二酸化ケイ素、酸化アルミニウムが挙げられる。これらの材料は、好ましくは、コア層12よりも屈折率が低くなるように調整され得る。保護層13の厚みは、好ましくは1nm〜100nmであり、より好ましくは5nm〜20nmである。
金属層14は、図2に示すように、保護層13を介して、コア層12の上面を均一に被覆するように形成されている。この場合、必要に応じて、保護層13と金属層14との間に易接着層(図示せず)が設けられ得る。易接着層を形成することにより、保護層13と金属層14とを強固に固着させることができる。保護層13を設けず、金属層14でコア層12を直接被覆してもよい。
金属層14を形成する材料としては、金、銀、白金、銅、アルミニウムおよびこれらの合金が挙げられる。金属層14は、単一層であってもよく、2層以上の積層構造を有していてもよい。金属層14の厚み(積層構造を有する場合はすべての層の合計厚み)は、好ましくは40nm〜70nmであり、より好ましくは50nm〜60nmである。
易接着層を形成する材料としては、代表的にはクロムまたはチタンが挙げられる。易接着層の厚みは、好ましくは1nm〜5nmである。
オーバークラッド層15は、図1に示すように、アンダークラッド層11およびコア層12の上面(図示例では、保護層13の上面)において、その外周がアンダークラッド層11の外周と平面視において略同一となるように、平面視矩形の枠形状に形成されている。アンダークラッド層11およびコア層12の上面(図示例では、保護層13の上面)とオーバークラッド層15とで囲まれる部分が、サンプル配置部20として区画されている。当該区画にサンプルを配置することにより、検知部10の金属層とサンプルとが接触し、検出が可能となる。さらに、このような区画を形成することにより、サンプルを容易に金属層表面に配置することができるので、作業性の向上を図ることができる。
オーバークラッド層15を形成する材料としては、例えば、上記コア層およびアンダークラッド層を形成する材料、ならびにシリコーンゴムが挙げられる。オーバークラッド層の厚みは、好ましくは5μm〜2000μmであり、さらに好ましくは25μm〜200μmである。オーバークラッド層の屈折率は、好ましくは、コア層の屈折率よりも低い。1つの実施形態においては、オーバークラッド層の屈折率は、アンダークラッド層の屈折率と同等である。なお、コア層よりも低い屈折率を有する保護層を形成する場合には、オーバークラッド層の屈折率は、必ずしもコア層の屈折率よりも低くなくてもよい。
本発明の好ましい実施形態によるSPRセンサセルを説明してきたが、本発明はこれらに限定されない。例えば、コア層とアンダークラッド層の関係においては、コア層の少なくとも一部がアンダークラッド層に隣接するように設けられていればよい。例えば、上記実施形態ではアンダークラッド層にコア層が埋設された構成を説明したが、コア層はアンダークラッド層を貫通するようにして設けられてもよい。また、アンダークラッド層の上にコア層を形成し、当該コア層の所定の部分をオーバークラッド層で包囲する構成としてもよい。
さらに、SPRセンサにおけるコア層の数は、目的に応じて変更してもよい。具体的には、コア層は、アンダークラッド層の幅方向に所定の間隔を隔てて複数形成されてもよい。このような構成であれば、複数のサンプルを同時に分析することができるので、分析効率を向上させることができる。コア層の形状もまた、目的に応じて任意の適切な形状(例えば、半円柱形状、凸柱形状)を採用することができる。
さらに、SPRセンサセル100(サンプル配置部20)の上部には、蓋を設けてもよい。このような構成とすれば、サンプルが外気に接触することを防止することができる。また、サンプルが溶液である場合には、溶媒の蒸発による濃度変化を防止することができる。蓋を設ける場合には、液状サンプルをサンプル配置部へ注入するための注入口とサンプル配置部から排出するための排出口とを設けてもよい。このような構成とすれば、サンプルを流してサンプル配置部に連続的に供給することができるので、サンプルの特性を連続的に測定することができる。
上記の実施形態は、それぞれを適切に組み合わせてもよい。
B.SPRセンサセルの製造方法
本発明のSPRセンサセルは、任意の適切な方法により製造され得る。一例として、アンダークラッド層にコア層を形成する方法としてスタンパー方式を採用したSPRセンサセルの製造方法を説明する。アンダークラッド層にコア層を形成する方法としては、スタンパー方式以外に、例えば、マスクを用いたフォトリソグラフィー(直接露光方式)が挙げられる。なお、フォトリソグラフィーは周知である。
図3(a)〜図3(h)は、アンダークラッド層にコア層を形成する方法としてスタンパー方式を採用したSPRセンサセルの製造方法を説明する概略断面図である。まず、図3(a)に示すように、アンダークラッド層を形成する材料11´を、アンダークラッド層のコア層形成部分に対応する突起部を有する鋳型31に塗布する。鋳型に塗布されたアンダークラッド層形成材料に紫外線を照射し、当該材料を硬化させる。紫外線の照射条件は、コア層形成材料の種類に応じて適切に設定され得る。アンダークラッド層形成材料を硬化させることにより、アンダークラッド層11が形成される。さらに、図3(b)に示すように、形成されたアンダークラッド層11を鋳型から剥離する。
次いで、図3(c)に示すように、アンダークラッド層11の溝部に、コア層を形成する材料12´を充填する。さらに、特開平9−281351号公報に記載されている高分子光導波路の製造方法に従い、アンダークラッド層の溝部に充填されたコア層形成材料のうち、凹溝からはみ出ている余分なコア層材料をスクレイパーによって掻き取る。このようにして、コア層とアンダークラッド層とを面一とすることができる。さらに、図3(d)に示すように、充填したコア層形成材料12´に紫外線を照射し、当該材料を硬化させる。紫外線の照射条件は、コア層形成材料の種類に応じて適切に設定され得る。必要に応じて、コア層形成材料を加熱してもよい。加熱は、紫外線照射前に行ってもよく、紫外線照射後に行ってもよく、紫外線照射と併せて行ってもよい。加熱条件は、コア層形成材料の種類に応じて適切に設定され得る。コア層形成材料を硬化させることにより、図3(e)に示すように、アンダークラッド層11に埋設されたコア層12が形成される。
必要に応じて、図3(f)に示すように、アンダークラッド層11およびコア層12の上に、保護層13を形成する。保護層は、例えば、保護層を形成する材料をスパッタリングまたは蒸着することにより形成される。保護層を形成する場合には、好ましくは、保護層の上に易接着層(図示せず)を形成する。易接着層は、例えば、クロムまたはチタンをスパッタリングすることにより形成される。
次に、図3(g)に示すように、保護層13の上(保護層を形成しない場合には、コア層およびアンダークラッド層の上面)に、コア層12を被覆するようにして金属層14を形成する。具体的には、金属層14は、例えば、所定のパターンを有するマスクを介して金属層を形成する材料を真空蒸着、イオンプレーティングまたはスパッタリングすることにより形成される。
最後に、図3(h)に示すように、上記所定の枠形状を有するオーバークラッド層15を形成する。オーバークラッド層15は、任意の適切な方法により形成され得る。オーバークラッド層15は、例えば、上記所定の枠形状を有する鋳型を保護層13の上に配置し、当該鋳型にオーバークラッド層形成材料のワニスを充填して乾燥し、必要に応じて硬化させ、最後に鋳型を除去することにより形成され得る。感光性材料を用いる場合には、オーバークラッド層15は、保護層13の全面にワニスを塗布し、乾燥後に、所定のパターンのフォトマスクを介して露光および現像することにより形成され得る。
以上のようにして、SPRセンサセルを作製することができる。
C.SPRセンサ
図4は、本発明の好ましい実施形態によるSPRセンサを説明する概略断面図である。SPRセンサ200は、SPRセンサセル100と光源110と光計測器120とを備える。SPRセンサセル100は、上記A項およびB項で説明した本発明のSPRセンサである。
光源110としては、任意の適切な光源が採用され得る。光源の具体例としては、白色光源、単色光光源が挙げられる。光計測器120は、任意の適切な演算処理装置に接続され、データの蓄積、表示および加工を可能としている。
光源110は、光源側光コネクタ111を介して光源側光ファイバ112に接続されている。光源側光ファイバ112は、光源側ファイバブロック113を介してSPRセンサセル100(コア層12)の伝播方向一方側端部に接続されている。SPRセンサセル100(コア層12)の伝播方向他方側端部には、計測器側ファイバブロック114を介して計測器側光ファイバ115が接続されている。計測器側光ファイバ115は、計測器側光コネクタ116を介して光計測器120に接続されている。
SPRセンサセル100は、任意の適切なセンサセル固定装置(図示せず)によって固定されている。センサセル固定装置は、所定方向(例えば、SPRセンサセルの幅方向)に沿って移動可能とされており、これにより、SPRセンサセルを所望の位置に配置することができる。
光源側光ファイバ112は、光源側光ファイバ固定装置131により固定され、計測器側光ファイバ115は、計測器側光ファイバ固定装置132により固定されている。光源側光ファイバ固定装置131および計測器側光ファイバ固定装置132は、それぞれ、任意の適切な6軸移動ステージ(図示せず)の上に固定されており、光ファイバの伝播方向、幅方向(伝播方向と水平方向において直交する方向)および厚み方向(伝播方向と垂直方向において直交する方向)と、これらのそれぞれの方向を軸とする回転方向とに可動とされている。
このようなSPRセンサによれば、光源110、光源側光ファイバ112、SPRセンサセル100(コア層12)、計測器側光ファイバ115および光計測器120を一軸上に配置することができ、これらを透過するように光源110から光を導入することができる。
以下、このようなSPRセンサの使用形態の一例を説明する。
まず、サンプルをSPRセンサセル100のサンプル配置部20に配置し、サンプルと金属層14とを接触させる。次いで、光源110から所定の光を、光源側光ファイバ112を介してSPRセンサセル100(コア層12)に導入する(図4の矢印L1参照)。SPRセンサセル100(コア層12)に導入された光は、コア層12内において全反射を繰り返しながら、SPRセンサセル100(コア層12)を透過するとともに、一部の光は、コア層12の上面において金属層14に入射し、表面プラズモン共鳴により減衰される。SPRセンサセル100(コア層12)を透過した光は、計測器側光ファイバ115を介して光計測器120に導入される(図4の矢印L2参照)。すなわち、このSPRセンサ200において、光計測器120に導入される光は、コア層12において表面プラズモン共鳴を発生させた波長の光強度が減衰している。表面プラズモン共鳴を発生させる波長は、金属層14に接触したサンプルの屈折率などに依存するので、光計測器120に導入される光の光強度の減衰を検出することにより、サンプルの屈折率の変化を検出することができる。
例えば、光源110として白色光源を用いる場合には、光計測器120によって、SPRセンサセル100の透過後に光強度が減衰する波長(表面プラズモン共鳴を発生させる波長)を計測し、その減衰する波長が変化したことを検出すれば、サンプルの屈折率の変化を確認することができる。また例えば、光源110として単色光光源を用いる場合には、光計測器120によって、SPRセンサセル100の透過後における単色光の光強度の変化(減衰の度合い)を計測し、その減衰の度合いが変化したことを検出すれば、表面プラズモン共鳴を発生させる波長が変化したことを確認でき、サンプルの屈折率の変化を確認することができる。
上記のように、このようなSPRセンサセルは、サンプルの屈折率の変化に基づいて、例えば、サンプルの濃度の測定、免疫反応の検出などの種々の化学分析および生物化学分析に用いることができる。より具体的には、例えば、サンプルが溶液である場合には、サンプル(溶液)の屈折率は溶液の濃度に依存するので、サンプルの屈折率を検出すれば、そのサンプルの濃度を測定することができる。さらに、サンプルの屈折率が変化したことを検出すれば、サンプルの濃度が変化したことを確認することができる。また例えば、免疫反応の検出においては、SPRセンサセル100の金属層14の上に誘電体膜を介して抗体を固定し、抗体に検体を接触させる。抗体と検体とが免疫反応すればサンプルの屈折率が変化するので、抗体と検体との接触前後におけるサンプルの屈折率変化を検出することにより、抗体と検体とが免疫反応したと判断することができる。
以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、実施例および比較例において、特に明記しない限り、屈折率の測定波長は830nmである。
<実施例1>
図3(a)〜図3(e)に示すようなスタンパー方式を用いて光導波路を成形した。具体的には、アンダークラッド層のコア層形成部分に対応する突起部を有する鋳型に、アンダークラッド層形成材料であるフッ素系UV硬化型樹脂(DIC社製、商品名「OP38Z」)を充填し、紫外線硬化させてアンダークラッド層を形成した。得られたアンダークラッド層の屈折率は1.372であり、そのサイズは、長さ80mm、幅80mm、厚み150μmで、幅50μmおよび厚み(深さ)50μmのコア層形成用の溝部が形成されていた。鋳型からアンダークラッド層を剥離した後、上記溝部にコア層形成材料を充填し、コア層を形成した。コア層形成材料は、フッ素系UV硬化型樹脂(DIC社製、商品名「OP38Z」)60重量部とフッ素系UV硬化型樹脂(DIC社製、商品名「OP40Z」)40重量部とを攪拌溶解させて調製した。形成されたコア層の屈折率は1.384、コア層のフッ素含有率は54重量%であった。なお、屈折率は、シリコンウェハの上に10μm厚のコア層形成材料の膜を形成し、プリズムカプラ式屈折率測定装置を用いて波長830nmで測定した。フッ素含有率は、秤量したコア層形成材料を自動試料燃焼装置を用いて燃焼させ、発生したガスを吸収液10mLに捕集し、その吸収液についてイオンクロマトグラフ(IC)による定量分析を行った。以上のようにして、埋め込み型光導波路フィルムを作製した。
次いで、得られた光導波路フィルムの上面(コア層露出面)の全面にSiOをスパッタリングし、保護層(厚み:10nm)を形成した。保護層が形成された光導波路フィルムを長さ20mm×幅20mmにダンシング切断した後、長さ6mm×幅1mmの開口部を有するマスクを介して、クロムおよび金を順にスパッタリングし、保護層を介してコア層を覆うように易接着層(厚み:1nm)および金属層(厚み:50nm)を順に形成した。最後に、アンダークラッド層形成材料と同じ材料を用い、アンダークラッド層を形成したのと類似の方法で、枠形状のオーバークラッド層を形成した。このようにして、図1および図2に示すようなSPRセンサセルを作製した。
上記で得られたSPRセンサセルと、ハロゲン光源(オーシャンオプティクス社製、商品名「HL−2000−HP」)と、分光器(オーシャンオプティクス社製、商品名「USB4000」および「NIRQuest512」)とを一軸上に配置して接続し、図4に示すようなSPRセンサを作製した。SPRセンサセルのサンプル配置部に、濃度が異なる6種のエチレングリコール水溶液(濃度:0vol%(屈折率:1.3330)、10vol%(屈折率:1.3436)、30vol%(屈折率:1.3653)、50vol%(屈折率:1.3879)、70vol%(屈折率:1.4099)、100vol%(屈折率:1.4429))20μLをそれぞれ投入し、測定を行った。さらに、サンプル(エチレングリコール水溶液)を配置しない状態でSPRセンサセル(光導波路)に光を透過させたときの各波長の光強度を100%とした場合の透過率スペクトルを求め、透過率の極小値に対応する波長λminを計測した。エチレングリコール水溶液の屈折率をX軸、λminをY軸として、それらの関係をXY座標にプロットして検量線を作成し、その傾きを求めた。傾きが大きいほど検出感度が高いことを示す。コア層のフッ素含有率、屈折率、および傾き(検出感度)を下記の表1に示す。
<実施例2>
コア層形成材料としてフッ素系UV硬化型樹脂(DIC社製、商品名「OP40Z」)を用い、屈折率が1.399、フッ素含有率が52重量%であるコア層を形成したこと以外は実施例1と同様にして、SPRセンサセルおよびSPRセンサを作製した。得られたSPRセンサを実施例1と同様の評価に供した。結果を表1に示す。
<実施例3>
コア層形成材料としてUV硬化型樹脂(ナガセケムテックス社製、「FNR−061」)70重量部、UV硬化型樹脂(ナガセケムテックス社製、「FNR−062」)30重量部および光酸発生剤(サンアプロ社製、「CPI−200K」)1重量部を攪拌溶解させて調製した組成物を用い、屈折率が1.414、フッ素含有率が44重量%であるコア層を形成したこと以外は実施例1と同様にして、SPRセンサセルおよびSPRセンサを作製した。得られたSPRセンサを実施例1と同様の評価に供した。結果を表1に示す。
<実施例4>
コア層形成材料としてUV硬化型樹脂(ナガセケムテックス社製、「FNR−061」)60重量部、UV硬化型樹脂(ナガセケムテックス社製、「FNR−062」)40重量部および光酸発生剤(サンアプロ社製、「CPI−200K」)1重量部を攪拌溶解させて調製した組成物を用い、屈折率が1.425、フッ素含有率が39重量%であるコア層を形成したこと以外は実施例1と同様にして、SPRセンサセルおよびSPRセンサを作製した。得られたSPRセンサを実施例1と同様の評価に供した。結果を表1に示す。
<比較例1>
コア層形成材料としてUV硬化型樹脂(ナガセケムテックス社製、「FNR−061」)40重量部、UV硬化型樹脂(ナガセケムテックス社製、「FNR−062」)60重量部および光酸発生剤(サンアプロ社製、「CPI−200K」)1重量部を攪拌溶解させて調製した組成物を用い、屈折率が1.439、フッ素含有率が32重量%であるコア層を形成したこと以外は実施例1と同様にして、SPRセンサセルおよびSPRセンサを作製した。得られたSPRセンサを実施例1と同様の評価に供した。結果を表1に示す。
<比較例2>
コア層形成材料としてUV硬化型樹脂(ナガセケムテックス社製、「FNR−062」)100重量部および光酸発生剤(サンアプロ社製、「CPI−200K」)1重量部を攪拌溶解させて調製した組成物を用い、屈折率が1.463、フッ素含有率が17重量%であるコア層を形成したこと以外は実施例1と同様にして、SPRセンサセルおよびSPRセンサを作製した。得られたSPRセンサを実施例1と同様の評価に供した。結果を表1に示す。
<比較例3>
コア層形成材料としてエポキシ変性シリコーンオイル(信越シリコーン社製、商品名「X−22−163」)100重量部および光酸発生剤(サンアプロ社製、CPI−200K)1重量部を撹拌溶解させて調製した組成物を用い、屈折率が1.423、フッ素含有率が0重量%であるコア層を形成したこと以外は実施例1と同様にして、SPRセンサセルおよびSPRセンサを作製した。得られたSPRセンサを実施例1と同様の評価に供した。結果を表1に示す。
<比較例4>
コア層形成材料としてエポキシ変性シリコーンオイル(信越シリコーン社製、商品名「XF−101」)80重量部、エポキシ化合物(ADEKA社製、商品名「アデカレジンEP−4080E)20重量部、および光酸発生剤(サンアプロ社製、CPI−200K)1重量部を撹拌溶解させて調製した組成物を用い、屈折率が1.458、フッ素含有率が0重量%であるコア層を形成したこと以外は実施例1と同様にして、SPRセンサセルおよびSPRセンサを作製した。得られたSPRセンサを実施例1と同様の評価に供した。結果を表1に示す。
<比較例5>
コア層形成材料としてUV硬化型樹脂(ダイセル化学社製、商品名「EHPE3150」)100重量部および光酸発生剤(サンアプロ社製、CPI−200K)1重量部を撹拌溶解させて調製した組成物を用い、屈折率が1.509、フッ素含有率が0重量%であるコア層を形成したこと以外は実施例1と同様にして、SPRセンサセルおよびSPRセンサを作製した。得られたSPRセンサを実施例1と同様の評価に供した。結果を表1に示す。
Figure 2012215540
<評価>
表1から明らかなように、実施例のSPRセンサセルの検出感度は、比較例に比べて優れていることがわかる。特に、実施例1および2のSPRセンサセルの検出感度は、比較例に比べて格段に優れていることがわかる。したがって、実施例のSPRセンサセルおよびSPRセンサは、微細な変化および/または微量成分の検出を実現し得る。さらに、コア層のフッ素含有率が高いほど検出感度が高くなり、かつ、検出感度の増加率が大きくなることがわかる。なお、比較例3から明らかなように、コア層の屈折率を低くしても、フッ素含有量がゼロである場合には、感度が不十分である。これは、近赤外領域のC−H振動吸収の影響により、S/N比が低下したためと推定される。
本発明のSPRセンサセルおよびSPRセンサは、サンプルの濃度の測定、免疫反応の検出など、種々の化学分析および生物化学分析に好適に利用され得る。
10 検知部
11 アンダークラッド層
12 コア層
13 保護層
14 金属層
15 オーバークラッド層
20 サンプル配置部
100 SPRセンサセル
110 光源
120 光計測器
200 SPRセンサ

Claims (6)

  1. 検知部と、該検知部に隣接するサンプル配置部とを備え、
    該検知部が、アンダークラッド層と、少なくとも一部が該アンダークラッド層に隣接するように設けられたコア層と、該コア層を被覆する金属層とを有し、
    該コア層が35重量%以上のハロゲンを含む
    SPRセンサセル。
  2. 前記ハロゲンがフッ素である、請求項1に記載のSPRセンサセル。
  3. 前記コア層の屈折率が1.43以下である、請求項1または2に記載のSPRセンサセル。
  4. 前記コア層の屈折率が1.33以上である、請求項3に記載のSPRセンサセル。
  5. 前記コア層の屈折率が前記アンダークラッド層の屈折率より大きく、かつ、屈折率の差が0.010以上である、請求項1から4のいずれかに記載のSPRセンサセル。
  6. 請求項1から5のいずれかに記載のSPRセンサセルを備える、SPRセンサ。

JP2011159579A 2011-03-28 2011-07-21 Sprセンサセルおよびsprセンサ Expired - Fee Related JP5395129B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011159579A JP5395129B2 (ja) 2011-03-28 2011-07-21 Sprセンサセルおよびsprセンサ
CN201280016040.4A CN103460021B (zh) 2011-03-28 2012-02-21 Spr传感器元件及spr传感器
PCT/JP2012/054065 WO2012132633A1 (ja) 2011-03-28 2012-02-21 Sprセンサセルおよびsprセンサ
EP12763227.1A EP2693196A4 (en) 2011-03-28 2012-02-21 SPR SENSOR CELL AND SPR SENSOR
US14/008,297 US20140017125A1 (en) 2011-03-28 2012-02-21 Spr sensor cell and spr sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011070444 2011-03-28
JP2011070444 2011-03-28
JP2011159579A JP5395129B2 (ja) 2011-03-28 2011-07-21 Sprセンサセルおよびsprセンサ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013188488A Division JP2014016357A (ja) 2011-03-28 2013-09-11 Sprセンサセルおよびsprセンサ

Publications (2)

Publication Number Publication Date
JP2012215540A true JP2012215540A (ja) 2012-11-08
JP5395129B2 JP5395129B2 (ja) 2014-01-22

Family

ID=46930394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011159579A Expired - Fee Related JP5395129B2 (ja) 2011-03-28 2011-07-21 Sprセンサセルおよびsprセンサ

Country Status (5)

Country Link
US (1) US20140017125A1 (ja)
EP (1) EP2693196A4 (ja)
JP (1) JP5395129B2 (ja)
CN (1) CN103460021B (ja)
WO (1) WO2012132633A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5946330B2 (ja) * 2012-06-01 2016-07-06 日東電工株式会社 Sprセンサセルおよびsprセンサ
JP2016038395A (ja) * 2014-08-05 2016-03-22 日東電工株式会社 光導波路への光の入射方法
JP2016148655A (ja) * 2015-02-05 2016-08-18 日東電工株式会社 計測装置
CN107580676A (zh) * 2015-07-29 2018-01-12 惠普发展公司,有限责任合伙企业 分析物检测封装外壳

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108612A (ja) * 1999-10-12 2001-04-20 Junkosha Co Ltd 表面プラズモン共鳴センサ
JP2005134139A (ja) * 2003-10-28 2005-05-26 Rohm Co Ltd 光導波路型センサおよびそれを用いた測定装置
JP2008083036A (ja) * 2006-08-28 2008-04-10 Hitachi Chem Co Ltd センサ基板およびこれを用いた複合センサ
WO2008075578A1 (ja) * 2006-12-19 2008-06-26 Omron Corporation 表面プラズモンセンサ
JP2009047428A (ja) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd 光導波路式測定方法及び光導波路型センサ
JP2010084150A (ja) * 2002-08-13 2010-04-15 Daikin Ind Ltd 光硬化性含フッ素ポリマーを含む光学材料および光硬化性含フッ素樹脂組成物
JP2011026433A (ja) * 2009-07-24 2011-02-10 Hitachi Omron Terminal Solutions Corp 蛍光ラベル化剤
JP2011038773A (ja) * 2009-08-06 2011-02-24 Sanyu Kogyo Kk ロボット追従式画像検査装置、ロボット追従式画像検査方法及びロボット追従式画像検査に用いるコンピュータプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327225A (en) * 1993-01-28 1994-07-05 The Center For Innovative Technology Surface plasmon resonance sensor
JPH09281351A (ja) 1996-04-18 1997-10-31 Sharp Corp 高分子光導波路の製造方法
US6432364B1 (en) * 1998-07-06 2002-08-13 Suzuki Motor Corporation SPR sensor cell and immunoassay apparatus using the same
JP2000019100A (ja) 1998-07-06 2000-01-21 Suzuki Motor Corp Sprセンサセル及びこれを用いた免疫反応測定装置
JP3576093B2 (ja) * 2000-11-22 2004-10-13 日本電信電話株式会社 光導波路型spr現象測定装置
JP4558448B2 (ja) * 2004-11-01 2010-10-06 テルモ株式会社 光導波路およびこの光導波路を用いた蛍光センサ
US20090149345A1 (en) * 2005-03-07 2009-06-11 Kuraray Co., Ltd. Microchannel array and method for producing the same, and blood measuring method employing it
FR2891279B1 (fr) * 2005-09-27 2007-12-14 Centre Nat Rech Scient Nouvelles puces pour la detection par le plasmon de surface (spr)
US20070099180A1 (en) * 2005-10-31 2007-05-03 Robotti Karla M Evanescent wave sensor with attached ligand
CN1971267B (zh) * 2005-11-23 2010-11-10 财团法人工业技术研究院 波导耦合表面等离子体共振生物传感器
JP2008009150A (ja) * 2006-06-29 2008-01-17 Nitto Denko Corp 光導波路の製造方法
CN101936899A (zh) * 2010-07-29 2011-01-05 华东师范大学 一种长程表面等离子体共振传感器及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108612A (ja) * 1999-10-12 2001-04-20 Junkosha Co Ltd 表面プラズモン共鳴センサ
JP2010084150A (ja) * 2002-08-13 2010-04-15 Daikin Ind Ltd 光硬化性含フッ素ポリマーを含む光学材料および光硬化性含フッ素樹脂組成物
JP2005134139A (ja) * 2003-10-28 2005-05-26 Rohm Co Ltd 光導波路型センサおよびそれを用いた測定装置
JP2008083036A (ja) * 2006-08-28 2008-04-10 Hitachi Chem Co Ltd センサ基板およびこれを用いた複合センサ
WO2008075578A1 (ja) * 2006-12-19 2008-06-26 Omron Corporation 表面プラズモンセンサ
JP2009047428A (ja) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd 光導波路式測定方法及び光導波路型センサ
JP2011026433A (ja) * 2009-07-24 2011-02-10 Hitachi Omron Terminal Solutions Corp 蛍光ラベル化剤
JP2011038773A (ja) * 2009-08-06 2011-02-24 Sanyu Kogyo Kk ロボット追従式画像検査装置、ロボット追従式画像検査方法及びロボット追従式画像検査に用いるコンピュータプログラム

Also Published As

Publication number Publication date
EP2693196A1 (en) 2014-02-05
JP5395129B2 (ja) 2014-01-22
CN103460021B (zh) 2015-07-29
EP2693196A4 (en) 2014-10-29
WO2012132633A1 (ja) 2012-10-04
US20140017125A1 (en) 2014-01-16
CN103460021A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
JP6029899B2 (ja) Sprセンサセルおよびsprセンサ
JP5425141B2 (ja) Sprセンサセルおよびsprセンサ
WO2013129378A1 (ja) Sprセンサセルおよびsprセンサ
JP5395129B2 (ja) Sprセンサセルおよびsprセンサ
JP5946330B2 (ja) Sprセンサセルおよびsprセンサ
JP5503505B2 (ja) 比色センサセル、比色センサおよび比色センサセルの製造方法
WO2013001848A1 (ja) Sprセンサセルおよびsprセンサ
JP6076786B2 (ja) Sprセンサセルおよびsprセンサ
JP2014016357A (ja) Sprセンサセルおよびsprセンサ
JP2013061301A (ja) Sprセンサセルおよびsprセンサ
JP2013117545A (ja) Sprセンサセルおよびsprセンサ
WO2013129379A1 (ja) Sprセンサセルおよびsprセンサ
US9535214B2 (en) Method of inputting light into optical waveguide
JP2016085160A (ja) Sprセンサセルおよびsprセンサ
JP2014185894A (ja) Sprセンサセルおよびsprセンサ
WO2012066829A1 (ja) 比色センサセル、比色センサ、比色センサセルの製造方法、sprセンサセル、sprセンサおよびsprセンサセルの製造方法
JP2016085161A (ja) Sprセンサセルおよびsprセンサ
WO2015002009A1 (ja) Sprセンサセルおよびsprセンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120807

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120807

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees