JP2012201739A - Polyacrylonitrile polymer particle and method for producing the same - Google Patents

Polyacrylonitrile polymer particle and method for producing the same Download PDF

Info

Publication number
JP2012201739A
JP2012201739A JP2011065861A JP2011065861A JP2012201739A JP 2012201739 A JP2012201739 A JP 2012201739A JP 2011065861 A JP2011065861 A JP 2011065861A JP 2011065861 A JP2011065861 A JP 2011065861A JP 2012201739 A JP2012201739 A JP 2012201739A
Authority
JP
Japan
Prior art keywords
polymer particles
monomer
reactor
polyacrylonitrile
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011065861A
Other languages
Japanese (ja)
Inventor
Naoki Aoyama
直樹 青山
Yusuke Niimen
祐介 新免
Norifumi Hirota
憲史 廣田
Shusuke Takeuchi
秀典 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011065861A priority Critical patent/JP2012201739A/en
Publication of JP2012201739A publication Critical patent/JP2012201739A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an acrylonitrile polymer particle which is excellent in dispersibility and solubility to a solvent, and can improve the stability of spinning process, and a method for producing the same.SOLUTION: The method for producing a polyacrylonitrile polymer particle by redox aqueous precipitation polymerization includes: continuously supplying a monomer including 100 pts.mass of acrylonitrile and 1-5 pts.mass of hydroxyalkyl methacrylate and/or hydroxyalkyl acrylate, an initiator including ammonium bisulfite and ammonium persulfate in a mole ratio of 0.5-3.8, and water to a reactor so that the mass ratio of water/monomer is 1.5-2.6, and setting stirring power in the reactor to a range of 2.4-5.3 kW/m. The polyacrylonitrile polymer particle obtained by the method has polymer particle bulk specific gravity of 0.33-0.50 g/cmand a volume-average particle size of 15-30 μm.

Description

本発明は、ポリアクリロニトリル系繊維、特に炭素繊維の前駆体繊維(プレカーサ)の製造に適したポリアクリロニトリル系重合体粒子及びその製造方法に関する。   The present invention relates to polyacrylonitrile-based polymer particles suitable for the production of polyacrylonitrile-based fibers, in particular, carbon fiber precursor fibers (precursors), and a method for producing the same.

ポリアクリロニトリル系繊維は、炭素繊維のプレカーサとして広く利用されている。このポリアクリロニトリル系繊維は、例えば、ポリアクリロニトリル系重合体粒子を溶剤に溶解して紡糸原液を調製し、この原液を紡糸することによって得られる。   Polyacrylonitrile fibers are widely used as carbon fiber precursors. This polyacrylonitrile fiber is obtained, for example, by dissolving a polyacrylonitrile polymer particle in a solvent to prepare a spinning stock solution and spinning the stock solution.

ポリアクリロニトリル系繊維の製造工程の安定性や繊維の品質は、ポリアクリロニトリル系重合体粒子の溶剤への溶解性に影響される。例えば、紡糸原液中に未溶解の重合体粒子が存在すると、それが核となってゲルが発生するので、原液の安定性が損なわれたり、糸切れや毛羽の原因となるのである。ポリアクリロニトリル系重合体粒子のアクリロニトリル単量体単位が95質量%未満であれば、溶剤への溶解性は概ね良好である。一方、アクリロニトリル単量体単位が95質量%以上であると、重合体粒子の形状が溶解性に大きな影響を与える。   The stability of the production process of polyacrylonitrile fiber and the quality of the fiber are affected by the solubility of the polyacrylonitrile polymer particles in the solvent. For example, if undissolved polymer particles are present in the spinning dope, a gel is generated by using the particles as a nucleus, so that the stability of the dope is impaired, and thread breakage and fluff are caused. When the acrylonitrile monomer unit of the polyacrylonitrile polymer particles is less than 95% by mass, the solubility in a solvent is generally good. On the other hand, when the acrylonitrile monomer unit is 95% by mass or more, the shape of the polymer particles greatly affects the solubility.

また、重合体粒子の溶解性は、個々の粒子の溶解性だけでなく、重合体粒子の分散性にも影響される。例えば、重合体粒子の分散性が低いと、重合体粒子同士が融着した継粉が発生してしまうからである。この分散性を良好にするには、重合体粒子の分散系の粘度を低くする必要がある。   Further, the solubility of the polymer particles is influenced not only by the solubility of the individual particles but also by the dispersibility of the polymer particles. For example, if the dispersibility of the polymer particles is low, a spatter that is a fusion of the polymer particles is generated. In order to improve the dispersibility, it is necessary to lower the viscosity of the polymer particle dispersion.

この様な問題に対して、例えば特許文献1では、重合体粒子の粒子径を大きくして、粒子の表面積を小さくし、重合体への溶剤の浸透速度を遅くすることで分散性を改善している。   In order to solve such a problem, for example, in Patent Document 1, the dispersibility is improved by increasing the particle diameter of the polymer particles, decreasing the surface area of the particles, and slowing the penetration rate of the solvent into the polymer. ing.

一方、個々の粒子の溶解性を考慮すると、重合体粒子の表面積が大きい方がその溶解性は良好となる。この点に鑑みて、例えば特許文献2は、重合体粒子の表面の細孔径が小さく、疎な構造の重合体粒子を開示している。   On the other hand, when the solubility of individual particles is taken into consideration, the higher the surface area of the polymer particles, the better the solubility. In view of this point, for example, Patent Document 2 discloses polymer particles having a sparse structure with a small pore diameter on the surface of the polymer particles.

また、特許文献3は、アクリル酸、メタクリル酸等の含水素基エステルとアクリロニトリルを共重合せしめた重合体よりなる繊維から得られる炭素繊維の製造方法を開示している。   Patent Document 3 discloses a method for producing a carbon fiber obtained from a fiber made of a polymer obtained by copolymerizing a hydrogen-containing group ester such as acrylic acid or methacrylic acid and acrylonitrile.

特開2009−185273号公報JP 2009-185273 A 特開平11−140131号公報JP-A-11-140131 特公昭47−22658号公報Japanese Patent Publication No.47-22658

特許文献1記載の発明では、継粉の生成は抑制できるが、重合体粒子の平均粒径が大きいので、個々の重合体粒子の溶解に時間がかかる。また、特許文献2記載の発明では、重合体粒子の表面の細孔径が小さく、粒子の表面積が大きいので、個々の重合体粒子の溶解性は高いが、継粉が生成し易く、未溶解物が残る可能性がある。また、特許文献3記載の発明では、その重合体の溶解性については検討されてない。   In the invention described in Patent Document 1, generation of the spatter can be suppressed, but since the average particle size of the polymer particles is large, it takes time to dissolve the individual polymer particles. Further, in the invention described in Patent Document 2, since the pore diameter of the surface of the polymer particles is small and the surface area of the particles is large, the solubility of the individual polymer particles is high, but the pollens are easily generated and the undissolved matter May remain. Further, in the invention described in Patent Document 3, the solubility of the polymer is not studied.

本発明の目的は、溶剤中の分散性に優れ、個々の粒子の溶剤に対する溶解性にも優れ、紡糸工程の安定性を向上できるアクリロニトリル系重合体粒子及びその製造方法を提供することにある。   An object of the present invention is to provide acrylonitrile-based polymer particles having excellent dispersibility in a solvent, excellent solubility of individual particles in a solvent, and improving the spinning process stability, and a method for producing the same.

本発明は、反応器内に、単量体、開始剤及び水を連続的に供給し、該反応器内で該単量体を重合させながら、該反応器内から反応液を連続的に取り出す工程を有するレドックス水系析出重合によるポリアクリロニトリル系重合体粒子の製造方法であって、前記単量体は、アクリロニトリル100質量部と、ヒドロキシアルキルメタクリレート及び/又はヒドロキシアルキルアクリレート1質量部以上5質量部以下を含み、前記開始剤は、亜硫酸水素アンモニウムと過硫酸アンモニウムを、そのモル比(亜硫酸水素アンモニウム/過硫酸アンモニウム)が0.5以上3.8以下となる割合で含み、前記単量体、前記開始剤及び前記水を、水/単量体の質量比が1.5以上2.6以下となるように連続的に前記反応器内に供給し、前記単量体の重合に際して前記反応器内を攪拌する攪拌動力を、2.4kW/m3以上5.3kW/m3以下の範囲内とすることを特徴とするポリアクリロニトリル系重合体粒子の製造方法である。 In the present invention, a monomer, an initiator, and water are continuously supplied into a reactor, and the reaction liquid is continuously taken out from the reactor while polymerizing the monomer in the reactor. A method for producing polyacrylonitrile-based polymer particles by redox aqueous precipitation polymerization having a step, wherein the monomer is 100 parts by mass of acrylonitrile and 1 to 5 parts by mass of hydroxyalkyl methacrylate and / or hydroxyalkyl acrylate. The initiator contains ammonium bisulfite and ammonium persulfate at a molar ratio (ammonium bisulfite / ammonium persulfate) of 0.5 to 3.8, the monomer, the initiator And the water is continuously fed into the reactor so that the water / monomer mass ratio is 1.5 or more and 2.6 or less. Then, the stirring power for stirring the inside of the reactor is within the range of 2.4 kW / m 3 or more and 5.3 kW / m 3 or less, which is a method for producing polyacrylonitrile-based polymer particles.

さらに本発明は、上記の方法によって得られる、重合体粒子嵩比重が0.33g/cm3以上0.50g/cm3以下、体積平均粒径が15μm以上30μm以下のポリアクリロニトリル系重合体粒子である。 Furthermore, the present invention relates to polyacrylonitrile-based polymer particles obtained by the above method and having a polymer particle bulk density of 0.33 g / cm 3 to 0.50 g / cm 3 and a volume average particle size of 15 μm to 30 μm. is there.

本発明により得られるポリアクリロニトリル系重合体粒子は、溶剤中の分散性に優れ、溶剤に分散する際の継粉の生成を抑制できる。また、溶剤が内部まで容易に浸透し、個々の粒子の溶剤に対する溶解性にも優れている。したがって、この重合体粒子を使用すれば紡糸原液の未溶解物が減少し、紡糸工程の安定性を向上できる。   The polyacrylonitrile-based polymer particles obtained by the present invention are excellent in dispersibility in a solvent and can suppress generation of a spatter when dispersed in a solvent. In addition, the solvent easily penetrates into the inside, and the solubility of the individual particles in the solvent is also excellent. Therefore, if this polymer particle is used, the undissolved material of the spinning dope is reduced, and the stability of the spinning process can be improved.

本発明においては、反応器内に、アクリロニトリルを主成分とする単量体、開始剤及び水を連続的に供給して単量体を重合させる。本発明では、この単量体の重合を、レドックス開始剤を用いたレドックス水系析出重合により行うので、懸濁重合、溶液重合、乳化重合等の他の重合法と比較して生産性に優れ、かつ残留モノマー等の不要成分の量を減少できる。   In the present invention, a monomer containing acrylonitrile as a main component, an initiator and water are continuously fed into the reactor to polymerize the monomer. In the present invention, since the polymerization of this monomer is performed by redox aqueous precipitation polymerization using a redox initiator, it is excellent in productivity as compared with other polymerization methods such as suspension polymerization, solution polymerization, emulsion polymerization, In addition, the amount of unnecessary components such as residual monomers can be reduced.

開始剤は、重合体の末端基として、水相に析出した重合体粒子の分散安定性及び凝集性に影響し、重合体粒子の形状にも大きく影響する。本発明においては、レドックス水系析出重合を実施する為に、酸化剤及び還元剤からなるレドックス開始剤を用いる。また、その酸化剤として少なくとも過硫酸アンモニウムを使用し、還元剤として少なくとも亜硫酸水素アンモニウムを使用する。そのモル比(亜硫酸水素アンモニウム/過硫酸アンモニウム)は0.5以上(好ましくは1.0以上)、3.8以下(好ましくは3.7以下)とする。これら各モル比の下限値は、重合を円滑に進行させる点で意義が有る。また上限値は、嵩比重の高い重合体粒子を得る点で意義が有る。   The initiator, as a terminal group of the polymer, affects the dispersion stability and cohesiveness of the polymer particles precipitated in the aqueous phase, and greatly affects the shape of the polymer particles. In the present invention, a redox initiator composed of an oxidizing agent and a reducing agent is used to carry out redox aqueous precipitation polymerization. Further, at least ammonium persulfate is used as the oxidizing agent, and at least ammonium bisulfite is used as the reducing agent. The molar ratio (ammonium hydrogen sulfite / ammonium persulfate) is 0.5 or more (preferably 1.0 or more) and 3.8 or less (preferably 3.7 or less). These lower limit values of each molar ratio are significant in that the polymerization proceeds smoothly. Further, the upper limit is significant in terms of obtaining polymer particles having a high bulk specific gravity.

また、過硫酸アンモニウム及び亜硫酸水素アンモニウムと共に、他の酸化剤や還元剤を併用することも可能である。他の酸化剤としては、例えば、過硫酸カリウム、過硫酸ナトリウムが挙げられる。他の還元剤としては、例えば、亜硫酸ナトリウム、亜硫酸アンモニウム、亜硫酸水素アンモニウム、チオ硫酸ナトリウム、チオ硫酸アンモニウム、亜二チオン酸ナトリウム、ナトリウムホルムアルデヒドスルフォキシレ−ト、L−アルコルビン酸、デキストロ−ズが挙げられる。   Moreover, it is also possible to use other oxidizing agents and reducing agents in combination with ammonium persulfate and ammonium bisulfite. Examples of other oxidizing agents include potassium persulfate and sodium persulfate. Examples of other reducing agents include sodium sulfite, ammonium sulfite, ammonium bisulfite, sodium thiosulfate, ammonium thiosulfate, sodium dithionite, sodium formaldehyde sulfoxylate, L-alcorbic acid, and dextroses. Can be mentioned.

また、レドックス開始剤と共に、酸化還元系の助剤を用いることが好ましい。その助剤としては、例えば、硫酸第一鉄、硫酸銅が挙げられる。特に、過硫酸アンモニウム−亜硫酸水素アンモニウム−硫酸第一鉄を組合せて用いることが好ましい。助剤の濃度は特に規定されないが、重合をより効率よく進める点から0.01ppm以上が好ましく、重合体粒子中への過剰な残存を防ぐ点から1000ppm以下が好ましい。   Moreover, it is preferable to use a redox-type auxiliary agent together with the redox initiator. Examples of the auxiliary agent include ferrous sulfate and copper sulfate. In particular, it is preferable to use a combination of ammonium persulfate-ammonium hydrogen sulfite-ferrous sulfate. The concentration of the auxiliary agent is not particularly defined, but is preferably 0.01 ppm or more from the viewpoint of allowing the polymerization to proceed more efficiently, and preferably 1000 ppm or less from the viewpoint of preventing excessive remaining in the polymer particles.

本発明に用いる単量体は、アクリロニトリルを主成分として含み、さらにヒドロキシアルキルメタクリレート及び/又はヒドロキシアルキルアクリレートも含む。このヒドロキシアルキルメタクリレート及び/又はヒドロキシアルキルアクリレートを含むことによって、例えば、ポリアクリロニトリル系重合体粒子を湿式又は乾湿式紡糸する工程で、親水性基であるヒドロキシアルキル基が凝固時の繊維内部への水の拡散速度を緩やかにし、緻密な又は均質な前駆体繊維束が得られるという効果を奏する。   The monomer used in the present invention contains acrylonitrile as a main component, and further contains hydroxyalkyl methacrylate and / or hydroxyalkyl acrylate. By including this hydroxyalkyl methacrylate and / or hydroxyalkyl acrylate, for example, in the step of wet or dry-wet spinning of polyacrylonitrile polymer particles, the hydroxyalkyl group that is a hydrophilic group is water in the fiber during coagulation. As a result, the diffusion rate is moderated and a dense or homogeneous precursor fiber bundle is obtained.

ヒドロキシアルキルメタクリレート及びヒドロキシアルキルアクリレートの具体例としては、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート、グリセリンモノアクリレート、テトラヒドロフルフリルアクリレート、2−ヒドロキシプロピルメタクリレート、4−ヒドロキシブチルメタクリレート、グリセリンモノメタクリレート、2−ヒドロキシエチルメタクリレートが挙げられる。中でも、アクリロニトリルに対する共重合性や工業的な入手のし易さの点から、2−ヒドロキシエチルメタクリレートが特に好ましい。   Specific examples of hydroxyalkyl methacrylate and hydroxyalkyl acrylate include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, glycerin monoacrylate, tetrahydrofurfuryl acrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl. Methacrylate, glycerin monomethacrylate, and 2-hydroxyethyl methacrylate are listed. Among these, 2-hydroxyethyl methacrylate is particularly preferable from the viewpoint of copolymerization with acrylonitrile and industrial availability.

ヒドロキシアルキルメタクリレート及び/又はヒドロキシアルキルアクリレートの配合量は、アクリルニトリル100質量部に対して、1質量部以上(好ましくは2重量部以上)、5質量部以下である。これら各範囲の下限値は、凝固時の繊維内部への水の拡散速度を緩やかにする点で意義が有る。また、上限値は、耐炎化工程でのヒドロキシアルキル基の脱離に伴う炭素化収率の低下を抑制する点で意義が有る。   The amount of the hydroxyalkyl methacrylate and / or hydroxyalkyl acrylate is 1 part by mass or more (preferably 2 parts by mass or more) and 5 parts by mass or less with respect to 100 parts by mass of acrylonitrile. The lower limits of these ranges are significant in that the rate of water diffusion into the fiber during solidification is moderated. The upper limit is significant in that it suppresses the decrease in carbonization yield associated with the elimination of the hydroxyalkyl group in the flameproofing step.

水は重合媒体として用いられるものであり、特に、脱イオン交換水を使用することが好ましい。   Water is used as a polymerization medium, and it is particularly preferable to use deionized water.

本発明においては、以上説明した単量体、開始剤及び水を、水/単量体の質量比が1.5以上(好ましくは1.8以上)、2.6以下(好ましくは2.5以下)となるように連続的に反応器内に供給する。これら各範囲の下限値は、重合熱の除熱を容易にして重合反応を制御する点で意義が有る。また上限値は、得られる重合体粒子の嵩比重を高くする点で意義が有る。ここで、反応器内の水相に析出した重合体粒子は互いに衝突しながら凝集するので、重合体粒子間の距離が近ければ凝集し易くなる。したがって、水/単量体比は重合体粒子の形状に大きく影響する。   In the present invention, the monomer, initiator and water described above have a water / monomer mass ratio of 1.5 or more (preferably 1.8 or more), 2.6 or less (preferably 2.5). The following is continuously fed into the reactor. The lower limits of these ranges are significant in that the polymerization reaction is controlled by facilitating heat removal from the polymerization heat. The upper limit is significant in that the bulk specific gravity of the resulting polymer particles is increased. Here, the polymer particles precipitated in the aqueous phase in the reactor are aggregated while colliding with each other. Therefore, if the distance between the polymer particles is short, the polymer particles are easily aggregated. Therefore, the water / monomer ratio greatly affects the shape of the polymer particles.

反応器内の反応液の温度は、単量体が重合可能な温度であれば特に限定されない。ただし、アクリロニトリルが蒸発して反応系外へ離散することを防ぐ点から、80℃以下が好ましく、60℃以下がより好ましい。また、重合を安定して進行させる点から、30℃以上が好ましく、40℃以上がより好ましい。また、重合体の分子量の安定化の点から、反応液の温度は一定に保つことが好ましい。   The temperature of the reaction liquid in the reactor is not particularly limited as long as the monomer can be polymerized. However, it is preferably 80 ° C. or less, more preferably 60 ° C. or less, from the viewpoint of preventing acrylonitrile from evaporating and being dispersed outside the reaction system. Moreover, 30 degreeC or more is preferable and 40 degreeC or more is more preferable from the point which advances superposition | polymerization stably. Moreover, it is preferable to keep the temperature of the reaction liquid constant from the viewpoint of stabilizing the molecular weight of the polymer.

本発明は、レドックス水系析出重合法により単量体を連続重合する方法なので、例えばあらかじめ反応器内に水(重合媒体)を仕込んでおき、そこへ開始剤溶液、酸化還元系助剤、水、単量体を連続的に供給し、攪拌しながら重合反応を進行させることが好ましい。   Since the present invention is a method in which a monomer is continuously polymerized by a redox aqueous precipitation polymerization method, for example, water (polymerization medium) is previously charged in a reactor, and an initiator solution, a redox auxiliary agent, water, It is preferable to continuously supply the monomer and advance the polymerization reaction while stirring.

本発明に用いる反応器は、例えば、重合反応釜、反応器内の反応液を循環させる装置、各成分を供給する供給口、重合熱除去装置及び溢流口を有する装置である。循環装置としては、溶液中の各成分をすみやかに拡散させる点から、攪拌機が好適に用いられる。   The reactor used in the present invention is, for example, a polymerization reaction kettle, a device for circulating the reaction liquid in the reactor, a supply port for supplying each component, a polymerization heat removal device, and an overflow port. As the circulation device, a stirrer is preferably used from the viewpoint of promptly diffusing each component in the solution.

本発明においては、単量体の重合に際して反応器内を攪拌する攪拌動力を、2.4kW/m3以上5.3kW/m3以下の範囲内とする。この攪拌動力を2.4kW/m3以上とすることにより、反応器の攪拌槽内の内容物を十分均一に攪拌することが可能となる。また、5.3kW/m3以下とすることにより、飛び散った反応液によるカレット生成を抑制できる。攪拌動力とは、攪拌槽内の内容物が攪拌により受けた正味の単位体積当たりのエネルギーである。具体的には、攪拌槽が空の状態で攪拌翼を回転させた場合の電力値と、槽内に水を満たした状態で攪拌翼を回転させた場合の電力値の差を求め、反応器内容量で割った数値を攪拌動力とする。 In the present invention, the stirring power for stirring the inside of the reactor during the polymerization of the monomer is set in the range of 2.4 kW / m 3 to 5.3 kW / m 3 . By setting the stirring power to 2.4 kW / m 3 or more, the contents in the stirring tank of the reactor can be stirred sufficiently uniformly. Moreover, the production | generation of the cullet by the scattered reaction liquid can be suppressed by setting it as 5.3 kW / m < 3 > or less. Stirring power is the net energy per unit volume received by the contents in the stirring tank. Specifically, the difference between the power value when the stirring blade is rotated while the stirring tank is empty and the power value when the stirring blade is rotated while the tank is filled with water is determined, and the reactor The value divided by the internal volume is the stirring power.

反応器内の単量体の平均滞在時間(具体的には重合反応釜内での平均滞在時間)は特に制限されず、従来よりポリアクリロニトリル系重合体を水系析出重合により製造する際に採用される時間でよい。この平均滞在時間は、生産性の点から200分以下が好ましく、重合を十分に完結させる点から20分以上が好ましい。反応器内(具体的には重合反応釜内)での水素イオン濃度は、開始剤がすみやかに酸化・還元反応を起こすような濃度であればよく、pH2.0〜3.5の酸性領域が好ましい。   The average residence time of the monomer in the reactor (specifically, the average residence time in the polymerization reaction kettle) is not particularly limited, and has been conventionally employed when producing polyacrylonitrile polymers by aqueous precipitation polymerization. It's enough time. The average residence time is preferably 200 minutes or less from the viewpoint of productivity, and preferably 20 minutes or more from the viewpoint of sufficiently completing the polymerization. The hydrogen ion concentration in the reactor (specifically, in the polymerization reaction kettle) may be such a concentration that the initiator quickly causes an oxidation / reduction reaction, and an acidic region of pH 2.0 to 3.5 is present. preferable.

本発明においては、以上のようにして単量体を反応器内で重合させながら、その重合体粒子を含む反応液を例えば反応器の溢流口から連続的に取り出す。そしてこの反応液に、例えば、水に溶解させた重合停止剤を添加することにより重合を停止する。重合停止剤としては、従来よりポリアクリロニトリル系重合体を水系析出重合で製造する際使用される重合停止剤を制限無く使用できる。   In the present invention, while the monomer is polymerized in the reactor as described above, the reaction liquid containing the polymer particles is continuously taken out from, for example, the overflow port of the reactor. The polymerization is stopped by adding, for example, a polymerization terminator dissolved in water to the reaction solution. As the polymerization terminator, a polymerization terminator conventionally used for producing a polyacrylonitrile polymer by aqueous precipitation polymerization can be used without limitation.

次に、重合を停止した反応液から未反応単量体の回収を行う。その回収方法としては、例えば、その反応液を直接蒸留する方法や、一旦脱水して未反応単量体を重合体と分離した後に蒸留する方法がある。後者の方法に使用する脱水洗浄機としては、例えば、濾過脱水機である回転式真空濾過器、遠心脱水機が挙げられる。   Next, the unreacted monomer is recovered from the reaction solution in which the polymerization is stopped. Examples of the recovery method include a method of directly distilling the reaction solution and a method of once dehydrating and separating an unreacted monomer from a polymer and then distilling. Examples of the dehydrating and washing machine used in the latter method include a rotary vacuum filter and a centrifugal dehydrator that are filtration dehydrators.

ポリアクリロニトリル系重合体粒子は、例えば、70℃程度の水で洗浄し、脱水し、熱風循環型の乾燥機等で乾燥し、その後ハンマーミル等で粉砕することにより得られる。重合を停止した反応液から重合体を分離するにあたり、より効率よく分離を行う目的で硫酸アンモニウム、硫酸アルミニウム、硫酸ナトリウム等の凝集剤を添加したり、重合体の凝集を促進する目的で反応液を昇温する等の操作を行うこともできる。残った水分は通常の乾燥によって取り除けばよい。   The polyacrylonitrile-based polymer particles can be obtained, for example, by washing with water at about 70 ° C., dehydrating, drying with a hot air circulation type dryer, etc., and then pulverizing with a hammer mill or the like. When separating the polymer from the reaction liquid that has stopped polymerization, a flocculant such as ammonium sulfate, aluminum sulfate, or sodium sulfate is added for the purpose of more efficient separation, or the reaction liquid is used for the purpose of promoting the aggregation of the polymer. Operations such as raising the temperature can also be performed. The remaining water may be removed by ordinary drying.

本発明のポリアクリロニトリル系重合体粒子は、以上説明した方法によって得られる、特定の重合体粒子嵩比重と特定の体積平均粒径を有する重合体粒子である。また代表的には、レドックス水系析出重合において水相に析出した平均粒径0.1μm以上10μm以下の粒子同士が凝集して出来た重合体粒子(一次粒子の凝集体)である。   The polyacrylonitrile-based polymer particles of the present invention are polymer particles having a specific polymer particle bulk specific gravity and a specific volume average particle diameter obtained by the method described above. Further, typically, polymer particles (aggregates of primary particles) formed by agglomerating particles having an average particle diameter of 0.1 μm or more and 10 μm or less precipitated in the aqueous phase in redox aqueous precipitation polymerization.

ポリアクリロニトリル系重合体粒子の重合体粒子嵩比重は、0.33g/cm3以上(好ましくは0.35g/cm3以上)、0.50g/cm3以下である。これら各範囲の下限値は、継粉の生成を抑制する点で意義が有る。また上限値は、個々の重合体粒子の溶け残りを抑制する点で意義が有る。この重合体粒子嵩比重は、重合体粒子の質量を、重合体粒子が占有する体積で割ることにより得られる。 The polymer particle bulk density of the polyacrylonitrile-based polymer particles is 0.33 g / cm 3 or more (preferably 0.35 g / cm 3 or more) and 0.50 g / cm 3 or less. The lower limit of each of these ranges is significant in that it suppresses the formation of spatter. Further, the upper limit value is significant in that it suppresses undissolved remaining of individual polymer particles. The bulk density of the polymer particles is obtained by dividing the mass of the polymer particles by the volume occupied by the polymer particles.

この重合体粒子嵩比重が小さければ、その重合体粒子は疎な構造であり、重合体粒子嵩比重が大きければその重合体粒子は密な構造である。一般に、重合体粒子嵩比重の値が小さいと、すなわち重合体粒子が疎であると、重合体粒子を溶剤に分散させたときに、溶剤が重合体粒子の内部に浸透し易いので、一粒の重合体粒子は溶解し易い。しかしながら、重合体粒子が溶剤に分散するや否や、すぐに溶剤に溶解し始める。このため分散液の粘度が上昇し、分散性が悪化し、分散性が不均一となる傾向にある。一方、重合体粒子嵩比重の値が大きいと、すなわち重合体粒子が密であると、溶剤が重合体粒子の内部に浸透し難いので、一粒の重合体粒子は溶解し難い。しかしながら分散液の粘度の上昇は抑制されるので、分散性は良好となり、重合体粒子が均一に分散する。   If the polymer particle bulk specific gravity is small, the polymer particles have a sparse structure, and if the polymer particle bulk specific gravity is large, the polymer particles have a dense structure. In general, when the polymer particle bulk density is small, that is, when the polymer particles are sparse, when the polymer particles are dispersed in the solvent, the solvent easily penetrates into the inside of the polymer particles. The polymer particles are easily dissolved. However, as soon as the polymer particles are dispersed in the solvent, they immediately begin to dissolve in the solvent. For this reason, the viscosity of the dispersion is increased, the dispersibility is deteriorated, and the dispersibility tends to be non-uniform. On the other hand, when the value of the polymer particle bulk specific gravity is large, that is, when the polymer particles are dense, the solvent is difficult to penetrate into the inside of the polymer particles, so that one polymer particle is difficult to dissolve. However, since the increase in the viscosity of the dispersion is suppressed, the dispersibility is improved and the polymer particles are uniformly dispersed.

ポリアクリロニトリル系重合体粒子の体積平均粒径は、15μm以上(好ましくは17μm以上)、30μm以下である。これら各範囲の下限値は、分散性の点で意義が有る。また上限値は、未溶解物の発生を抑制する点で意義が有る。   The volume average particle diameter of the polyacrylonitrile-based polymer particles is 15 μm or more (preferably 17 μm or more) and 30 μm or less. The lower limits of these ranges are significant in terms of dispersibility. The upper limit is significant in that it suppresses the generation of undissolved substances.

先に述べた重合体粒子嵩比重は、重合体粒子の分散性に対し影響を及ぼすが、体積平均粒径もまた非常に重要である。体積平均粒径が大き過ぎれば、重合体粒子の内部まで溶剤が浸透し難く、未溶解物を発生する。逆に体積平均粒径が小さ過ぎれば、重合体粒子の内部まで溶剤が浸透し易くなる利点がある反面、溶剤に接触する表面積が大きくなるので分散時に溶解し易く、分散液の粘度が上昇して分散性が悪化し、分散液が不均一となる。   The polymer particle bulk density described above affects the dispersibility of the polymer particles, but the volume average particle size is also very important. If the volume average particle size is too large, the solvent hardly penetrates into the polymer particles, and undissolved matter is generated. Conversely, if the volume average particle size is too small, there is an advantage that the solvent can easily penetrate into the inside of the polymer particles. On the other hand, since the surface area in contact with the solvent is large, the polymer is easily dissolved during dispersion, and the viscosity of the dispersion increases. Dispersibility deteriorates and the dispersion becomes non-uniform.

本発明のポリアクリロニトリル系重合体粒子は、ポリアクリロニトリル系繊維を製造する為の紡糸原料として非常に有用である。紡糸原液を調製する方法としては、例えば、重合体粒子を溶剤に分散して加熱し、溶解する方法がある。重合体粒子を溶剤に分散する方法としては、例えば、撹拌装置を備えたタンク又は槽に規定量を計量した溶剤を入れ、そこに規定量を計量した重合体粒子を投入して分散液を調製する方法がある。また例えば、連続的に流下する溶剤に規定量の重合体を投入して分散液を調製する方法もある。均一な分散液とするには、撹拌装置等の設備や温度等の条件に注意を要する。   The polyacrylonitrile-based polymer particles of the present invention are very useful as a spinning raw material for producing polyacrylonitrile-based fibers. As a method for preparing the spinning dope, for example, there is a method in which polymer particles are dispersed in a solvent, heated and dissolved. As a method for dispersing polymer particles in a solvent, for example, a solvent with a specified amount is put into a tank or a tank equipped with a stirring device, and a polymer liquid with a specified amount is put therein to prepare a dispersion. There is a way to do it. Also, for example, there is a method of preparing a dispersion by introducing a specified amount of polymer into a solvent that flows continuously. In order to obtain a uniform dispersion, attention must be paid to the equipment such as a stirrer and the temperature.

分散液を加熱し、溶解する方法としては、均一に加熱できる方法であればよく、特に制限はない。例えば、熱交換器や熱媒を循環するジャケット構造を有した二軸押出機に分散液を通過させる方法がある。   The method for heating and dissolving the dispersion is not particularly limited as long as it can be uniformly heated. For example, there is a method in which the dispersion is passed through a twin screw extruder having a jacket structure in which a heat exchanger or a heat medium is circulated.

以上のようにして得た紡糸原液を用いて、ポリアクリロニトリル系繊維を製造する為の公知の方法を実施すればよい。紡糸原液中の重合体濃度は、紡糸の際に緻密な凝固糸を得る点から、17質量%以上が好ましく、19質量%以上が好ましい。また、その重合体濃度は、通常25質量%以下である。   What is necessary is just to implement the well-known method for manufacturing a polyacrylonitrile-type fiber using the spinning dope obtained as mentioned above. The polymer concentration in the spinning dope is preferably 17% by mass or more, and preferably 19% by mass or more from the viewpoint of obtaining a dense coagulated yarn during spinning. The polymer concentration is usually 25% by mass or less.

以下、本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。物性の測定や評価は、以下の方法に従い実施した。   Examples of the present invention will be described below, but the present invention is not limited to these examples. The physical properties were measured and evaluated according to the following methods.

<重合体粒子嵩比重>
1)嵩比重測定用容器の容積(A)と質量(B)を測定する。
2)嵩比重測定用容器に重合体粒子をあふれるまで入れ、嵩比重測定用容器と同じ形状の底に穴の開いた蓋をかぶせる。
3)蓋の穴を指で押さえ嵩比重測定用容器を蓋と一緒に上下にゆっくり5回振る。
4)蓋を取り、容器に山盛りの重合体粒子が容器すりきり一杯になるように棒ですばやく除去する。
5)重合体粒子の入った嵩比重測定用容器の質量(C)を測定する。
上記操作を5回実施する。
6)重合体粒子嵩比重(ρ)=(C−B)/A の式により、重合体粒子の嵩比重を求め、5回の測定値の平均値をその重合体粒子の嵩比重とする。
<Polymer particle bulk density>
1) The volume (A) and mass (B) of the bulk specific gravity measurement container are measured.
2) Put polymer particles in a bulk specific gravity measurement container until it overflows, and cover the bottom with the same shape as the bulk specific gravity measurement container with a hole.
3) Hold the lid hole with your finger and gently shake the bulk specific gravity measurement container up and down with the lid 5 times.
4) Remove the lid and quickly remove with a stick so that a pile of polymer particles fills the container.
5) The mass (C) of the container for measuring bulk specific gravity containing the polymer particles is measured.
The above operation is performed 5 times.
6) Polymer particle bulk specific gravity (ρ) = (C−B) / A The bulk specific gravity of the polymer particles is obtained by the following formula, and the average value of five measurements is taken as the bulk specific gravity of the polymer particles.

<重合体粒子の体積平均粒径>
レーザー回折散乱法を原理としたセイシン企業製SKレーザーマイクロンサイザーLMS−350の装置を用いて、重合体粒子の粒度分布を屈折率1.330−0.01i、形状係数1.000にて測定し、体積平均から算出された50%正規分布の値を体積平均粒径とする。
<Volume average particle diameter of polymer particles>
The particle size distribution of the polymer particles was measured at a refractive index of 1.330-0.01i and a shape factor of 1,000 using an apparatus of SK Laser Micronizer LMS-350 manufactured by Seishin Enterprise based on the principle of laser diffraction scattering. The value of 50% normal distribution calculated from the volume average is defined as the volume average particle size.

<攪拌動力>
反応器を空にしておいた状態と、反応器内に水を満たした状態の電力値の差を求め、反応器容量で割った数値を攪拌動力とした。電力値の測定には共立電気計器株式会社製のデジタルパワーメーター(MODEL6300)を使用した。
<Stirring power>
The difference in power value between the state in which the reactor was emptied and the state in which the reactor was filled with water was determined, and the numerical value divided by the reactor capacity was used as the stirring power. A digital power meter (MODEL 6300) manufactured by Kyoritsu Electric Instruments Co., Ltd. was used for measuring the electric power value.

<ゲル化日数>
30℃で保持した紡糸原液にステンレス製の球(UNI AISHIN製 直径1/4”)が10cm落球する秒数が200秒を超えた時点をゲル化日数とした。
<Number of days for gelation>
The time when the number of seconds in which a stainless steel ball (diameter 1/4 "manufactured by UNI AISHIN) dropped 10 cm in the stock solution kept at 30 ° C. exceeded 200 seconds was defined as the number of days for gelation.

<実施例1>
容量80リットルのタービン撹拌翼付きアルミ製反応器に、脱イオン交換水を満水になるまで仕込み、釜内部温度を57℃まで昇温し、表1に示す単量体、レドックス重合開始剤、脱イオン交換水を流体として連続的に供給した。この供給流体としては、過硫酸アンモニウム2.75質量%、亜硫酸水素アンモニウム5質量%、硫酸第一鉄(Fe2SO4・7H2O)2ppm、硫酸0.5質量%をそれぞれ脱イオン交換水に溶解したものを用いた。
<Example 1>
Charge an aluminum reactor with a turbine stirring blade with a capacity of 80 liters until deionized exchange water is full, raise the temperature inside the kettle to 57 ° C., and add the monomers, redox polymerization initiator, Ion exchange water was continuously supplied as a fluid. As the supply fluid, 2.75% by mass of ammonium persulfate, 5% by mass of ammonium hydrogen sulfite, 2 ppm of ferrous sulfate (Fe 2 SO 4 .7H 2 O), and 0.5% by mass of sulfuric acid were respectively added to deionized water. The dissolved one was used.

反応容器の重合釜内の反応液は、pHが3.0になるように硫酸供給量で調節し、重合反応液温度を50℃に保ち、十分な撹拌を行いながら連続的に重合反応を行い、単量体の平均滞在時間が70分になるように重合釜溢流口より連続的に反応液を取り出した。   The reaction solution in the polymerization vessel of the reaction vessel is adjusted with the sulfuric acid supply amount so that the pH is 3.0, the polymerization reaction solution temperature is kept at 50 ° C., and the polymerization reaction is continuously performed with sufficient stirring. The reaction liquid was continuously taken out from the overflow of the polymerization kettle so that the average residence time of the monomers was 70 minutes.

取り出した反応液に、シュウ酸ナトリウム0.5質量%、重炭酸ナトリウム1.5質量%を脱イオン交換水に溶解した重合停止剤水溶液を、反応液のpHが5.5〜6.0になるように加えた。次いで、この反応液をオリバー型連続フィルターによって脱水処理し、さらに重合体に対して10倍量の70℃の脱イオン交換水を加えて再び分散させた。再分散後の反応液を再度オリバー型連続フィルターによって脱水処理し、ペレット成形した。   A polymerization stopper aqueous solution in which 0.5% by mass of sodium oxalate and 1.5% by mass of sodium bicarbonate were dissolved in deionized water was added to the removed reaction solution, and the pH of the reaction solution was adjusted to 5.5 to 6.0. It was added to become. Next, the reaction solution was dehydrated with an Oliver type continuous filter, and 10 times the amount of deionized water at 70 ° C. was added to the polymer and dispersed again. The reaction solution after redispersion was again dehydrated by an Oliver type continuous filter and formed into a pellet.

このペレットを、80℃にて8時間熱風循環型の乾燥機で乾燥し、ハンマーミルで粉砕することによって、表3に示す様に重合体粒子嵩比重が0.39g/cm3、体積平均粒径が23μmのポリアクリロニトリル系重合体粒子を得た。 The pellets were dried at 80 ° C. for 8 hours with a hot air circulation type dryer and pulverized with a hammer mill, so that the polymer particles had a bulk specific gravity of 0.39 g / cm 3 and a volume average particle size as shown in Table 3. Polyacrylonitrile polymer particles having a diameter of 23 μm were obtained.

次に、この重合体粒子を−15℃に冷却したジメチルアセドアミドに重合体濃度が21質量%になるように分散させて分散液を得た。この分散液を、熱媒を循環可能なジャケット付きの内径12mmの配管に通過させ、滞在時間9分で110℃まで加熱し溶解して紡糸原液を得た。この紡糸原液を、水循環式の恒温槽中に30℃で保持してゲル化日数の測定を行った。表3に示す様にゲル化日数は40日であった。   Next, the polymer particles were dispersed in dimethylacetamide cooled to −15 ° C. so that the polymer concentration was 21% by mass to obtain a dispersion. This dispersion was passed through a pipe with an inner diameter of 12 mm with a jacket capable of circulating the heat medium, heated to 110 ° C. with a residence time of 9 minutes, and dissolved to obtain a spinning dope. This spinning dope was kept at 30 ° C. in a water-circulating thermostat and the number of days for gelation was measured. As shown in Table 3, the number of days for gelation was 40 days.

<実施例2〜5>
重合条件を表1記載のように変更したこと以外は、実施例1と同様にしてポリアクリロニトリル系重合体粒子を製造し、溶解性評価を行った。表3に示す様に、何れもゲル化日数が40日であった。
<Examples 2 to 5>
Except that the polymerization conditions were changed as shown in Table 1, polyacrylonitrile-based polymer particles were produced in the same manner as in Example 1, and the solubility was evaluated. As shown in Table 3, the gelation days were 40 days.

<比較例1〜8>
重合条件を表2記載のように変更したこと以外は、実施例1と同様にしてポリアクリロニトリル系重合体粒子を製造し、溶解性評価を行った。表4に示す様に、比較例4では反応器中の反応液が粘稠で流動性が悪化し、重合反応が暴走し、重合体粒子が得られなかった。それ以外の比較例では、何れもゲル化日数が30日以下であった。
<Comparative Examples 1-8>
Except that the polymerization conditions were changed as shown in Table 2, polyacrylonitrile-based polymer particles were produced in the same manner as in Example 1, and the solubility was evaluated. As shown in Table 4, in Comparative Example 4, the reaction solution in the reactor was viscous and fluidity deteriorated, the polymerization reaction runaway, and no polymer particles were obtained. In other comparative examples, the gelation days were 30 days or less in all cases.

<参考例>
特開11−140131号公報の比較例1では、重合体粒子嵩比重が0.50g/cm3の重合体粒子が得られている。しかし、開始剤には亜硫酸水素ナトリウムを使用しているので、炭素繊維の強度低下を招くナトリウムが含まれる。したがって、炭素繊維前躯体用重合体としては望ましくない。また、亜硫酸水素アンモニウムを使用した場合、反応液の流動性を保つため5.3kW/m3より大きい攪拌動力が必要であり、カレットの生成が懸念される。
<Reference example>
In Comparative Example 1 of JP-A-11-140131, polymer particles having a polymer particle bulk specific gravity of 0.50 g / cm 3 are obtained. However, since sodium bisulfite is used as the initiator, sodium that causes a decrease in strength of the carbon fiber is included. Therefore, it is not desirable as a polymer for a carbon fiber precursor. In addition, when ammonium bisulfite is used, a stirring power greater than 5.3 kW / m 3 is necessary to maintain the fluidity of the reaction solution, and cullet formation is a concern.

Figure 2012201739
Figure 2012201739

Figure 2012201739
Figure 2012201739

Figure 2012201739
Figure 2012201739

Figure 2012201739
Figure 2012201739

Figure 2012201739
Figure 2012201739

Figure 2012201739
Figure 2012201739

表中の略号は、以下の化合物を示す。
・「AN」:アクリロニトリル
・「MAA」:メタクリル酸
・「HEMA」2-ヒドロキシエチルメタクリレート
・「AAm」アクリルアミド
The abbreviations in the table indicate the following compounds.
-"AN": Acrylonitrile-"MAA": Methacrylic acid-"HEMA" 2-hydroxyethyl methacrylate-"AAm" acrylamide

Claims (2)

反応器内に、単量体、開始剤及び水を連続的に供給し、該反応器内で該単量体を重合させながら、該反応器内から反応液を連続的に取り出す工程を有するレドックス水系析出重合によるポリアクリロニトリル系重合体粒子の製造方法であって、
前記単量体は、アクリロニトリル100質量部と、ヒドロキシアルキルメタクリレート及び/又はヒドロキシアルキルアクリレート1質量部以上5質量部以下を含み、
前記開始剤は、亜硫酸水素アンモニウムと過硫酸アンモニウムを、そのモル比(亜硫酸水素アンモニウム/過硫酸アンモニウム)が0.5以上3.8以下となる割合で含み、
前記単量体、前記開始剤及び前記水を、水/単量体の質量比が1.5以上2.6以下となるように連続的に前記反応器内に供給し、
前記単量体の重合に際して前記反応器内を攪拌する攪拌動力を、2.4kW/m3以上5.3kW/m3以下の範囲内とすることを特徴とするポリアクリロニトリル系重合体粒子の製造方法。
A redox having a step of continuously supplying a monomer, an initiator and water into the reactor, and continuously taking out the reaction liquid from the reactor while polymerizing the monomer in the reactor. A method for producing polyacrylonitrile-based polymer particles by aqueous precipitation polymerization,
The monomer includes 100 parts by mass of acrylonitrile and 1 to 5 parts by mass of hydroxyalkyl methacrylate and / or hydroxyalkyl acrylate,
The initiator includes ammonium bisulfite and ammonium persulfate in a ratio such that the molar ratio (ammonium bisulfite / ammonium persulfate) is 0.5 or more and 3.8 or less,
The monomer, the initiator and the water are continuously fed into the reactor so that the water / monomer mass ratio is 1.5 or more and 2.6 or less,
Production of polyacrylonitrile-based polymer particles, characterized in that the stirring power for stirring the reactor in the polymerization of the monomer is in the range of 2.4 kW / m 3 to 5.3 kW / m 3. Method.
請求項1記載の方法によって得られる、重合体粒子嵩比重が0.33g/cm3以上0.50g/cm3以下、体積平均粒径が15μm以上30μm以下のポリアクリロニトリル系重合体粒子。 Polyacrylonitrile-based polymer particles obtained by the method according to claim 1, having a polymer particle bulk specific gravity of 0.33 g / cm 3 to 0.50 g / cm 3 and a volume average particle size of 15 μm to 30 μm.
JP2011065861A 2011-03-24 2011-03-24 Polyacrylonitrile polymer particle and method for producing the same Withdrawn JP2012201739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065861A JP2012201739A (en) 2011-03-24 2011-03-24 Polyacrylonitrile polymer particle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065861A JP2012201739A (en) 2011-03-24 2011-03-24 Polyacrylonitrile polymer particle and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012201739A true JP2012201739A (en) 2012-10-22

Family

ID=47183080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065861A Withdrawn JP2012201739A (en) 2011-03-24 2011-03-24 Polyacrylonitrile polymer particle and method for producing the same

Country Status (1)

Country Link
JP (1) JP2012201739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048378A (en) * 2013-08-30 2015-03-16 三菱レイヨン株式会社 Acrylonitrile-based polymer particle and production method
JP2015160953A (en) * 2014-02-28 2015-09-07 三菱レイヨン株式会社 Method for producing acrylonitrile-based polymer
WO2019066342A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Method for preparing (meth)acrylonitrile-based polymer for manufacture of carbon fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048378A (en) * 2013-08-30 2015-03-16 三菱レイヨン株式会社 Acrylonitrile-based polymer particle and production method
JP2015160953A (en) * 2014-02-28 2015-09-07 三菱レイヨン株式会社 Method for producing acrylonitrile-based polymer
WO2019066342A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Method for preparing (meth)acrylonitrile-based polymer for manufacture of carbon fiber
KR20190038321A (en) * 2017-09-29 2019-04-08 주식회사 엘지화학 Method for preparing (meth)acrylonitrile based polymer for preparing carbon fiber
CN110062773A (en) * 2017-09-29 2019-07-26 株式会社Lg化学 It is used to prepare the preparation method of (methyl) acrylonitrile polymers of carbon fiber
JP2020510120A (en) * 2017-09-29 2020-04-02 エルジー・ケム・リミテッド Method for producing (meth) acrylonitrile-based polymer for producing carbon fiber
KR102169501B1 (en) 2017-09-29 2020-10-23 주식회사 엘지화학 Method for preparing (meth)acrylonitrile based polymer for preparing carbon fiber
CN110062773B (en) * 2017-09-29 2021-05-25 株式会社Lg化学 Method for producing (meth) acrylonitrile polymer for producing carbon fiber
US11046792B2 (en) 2017-09-29 2021-06-29 Lg Chem, Ltd. Method of preparing (meth)acrylonitrile-based polymer for preparing carbon fiber

Similar Documents

Publication Publication Date Title
TWI422598B (en) Method of producing the same, method of producing precursor fiber used for producing carbon fiber by using polyacrylonitrile polymer, carbon fiber and method of producing the same
CN102517671B (en) Method for preparing carbon fiber precursor by two-step process of aqueous suspension and solution polymerization
JP5169939B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
US20150376391A1 (en) Process for the production of acrylic fibers
CN102869689A (en) A process for the production of a superabsorbent polymer
JP4924484B2 (en) Method for producing carbon fiber precursor fiber
JP2012201739A (en) Polyacrylonitrile polymer particle and method for producing the same
JP5484906B2 (en) Method for producing polyacrylonitrile-based precursor fiber for carbon fiber
JP2021105244A (en) High-performance fiber and dope used in manufacturing of the fiber
CN103952797A (en) Preparation method of wet-process high-strength polyacrylonitrile-based carbon fiber
JP5109936B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
CN104151487B (en) PNA carbon fibre precursor acrylonitrile polymer aqueous-phase suspending production system and method thereof
JP2015048378A (en) Acrylonitrile-based polymer particle and production method
JP5207459B2 (en) Polymer particle for carbon fiber precursor acrylic fiber and carbon fiber precursor acrylic fiber
JP5207450B2 (en) Polyacrylonitrile-based polymer particles and method for producing the same
JP2015160953A (en) Method for producing acrylonitrile-based polymer
JP2013237746A (en) Method for producing acrylonitrile-based polymer
JP2014201728A (en) Acrylonitrile-based copolymer particle, and production method of the same
CN109721678B (en) Method for preparing polyacrylonitrile resin for carbon fibers by adopting water-phase precipitation continuous polymerization process
CN111304768A (en) High-crystallinity polyacrylonitrile nascent fiber and preparation method thereof
JP2013043904A (en) Acrylonitrile-based polymer and method for producing the same
JP2012214657A (en) Acrylonitrile-based copolymer for carbon fiber
EP3536716B1 (en) Method for preparing (meth)acrylonitrile-based polymer for manufacture of carbon fiber
JP2017160587A (en) Manufacturing method of acryl and modacrylic fiber
JP2010144079A (en) Method for producing acrylonitrile copolymer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603