JP2014201728A - Acrylonitrile-based copolymer particle, and production method of the same - Google Patents

Acrylonitrile-based copolymer particle, and production method of the same Download PDF

Info

Publication number
JP2014201728A
JP2014201728A JP2013081566A JP2013081566A JP2014201728A JP 2014201728 A JP2014201728 A JP 2014201728A JP 2013081566 A JP2013081566 A JP 2013081566A JP 2013081566 A JP2013081566 A JP 2013081566A JP 2014201728 A JP2014201728 A JP 2014201728A
Authority
JP
Japan
Prior art keywords
acrylonitrile
copolymer particles
reactor
mol
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013081566A
Other languages
Japanese (ja)
Inventor
直正 松山
Naomasa Matsuyama
直正 松山
治美 芝谷
Harumi Shibatani
治美 芝谷
青山 直樹
Naoki Aoyama
直樹 青山
二井 健
Takeshi Futai
健 二井
廣田 憲史
Norifumi Hirota
憲史 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2013081566A priority Critical patent/JP2014201728A/en
Publication of JP2014201728A publication Critical patent/JP2014201728A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve dissolubility of acrylonitrile-based copolymer particles, and to achieve reduction in load when filtering an acrylonitrile-based copolymer solution, and stability improvement of a manufacturing process and a quality of carbon fiber precursor acrylonitrile-based fibers, the reduction in load and the stability improvement accompanying the improvement of the dissolubility of the acrylonitrile-based copolymer particles.SOLUTION: A production method of acrylonitrile-based copolymer particles is that the acrylonitrile-based copolymer particles are produced by a redox aqueous precipitation polymerization in which a monomer, a redox initiator and deionization exchange water are continuously supplied to a reaction vessel, and a reaction liquid is continuously taken out from the reaction vessel. In this production method, a reaction vessel agitation power defined in the specification is at least 3.0 kW/mand at most 7.0 kW/m.

Description

本発明は、炭素繊維前駆体アクリロニトリル系繊維の原料となるアクリロニトリル系共重合体粒子とその製造方法に関する。   The present invention relates to acrylonitrile-based copolymer particles used as a raw material for a carbon fiber precursor acrylonitrile-based fiber and a method for producing the same.

炭素繊維は、他の繊維に比べて高い比強度及び比弾性率を有することが知られている。このため、複合材料用補強繊維として、従来からのスポーツ用途及び航空・宇宙用途に加え、自動車や土木、建築、圧力容器、風車ブレード等の一般産業用途にも幅広く展開されつつある。さらに、従来利用されてきたスポーツ用途、航空・宇宙用途においても、より高強度化や高弾性率化の要請が高い。   It is known that carbon fibers have a high specific strength and specific elastic modulus compared to other fibers. For this reason, in addition to conventional sports and aerospace applications, composite fibers are being widely deployed in general industrial applications such as automobiles, civil engineering, architecture, pressure vessels, and windmill blades. Furthermore, there is a high demand for higher strength and higher elastic modulus in sports and aerospace applications that have been used in the past.

炭素繊維の中で、アクリロニトリル系炭素繊維は最も広く利用されているものである。アクリロニトリル系炭素繊維は、例えば、アクリロニトリル系共重合体粒子を原料とした、炭素繊維前駆体アクリロニトリル系繊維を炭素繊維前駆体とし、該炭素繊維前駆体を200〜400℃の酸素存在雰囲気下で加熱処理することにより耐炎化繊維に転換し、引き続いて1000℃以上の不活性雰囲気下で炭素化して得ることができる。   Among the carbon fibers, acrylonitrile-based carbon fibers are the most widely used. Acrylonitrile-based carbon fiber is, for example, made from acrylonitrile-based copolymer particles as a raw material, carbon fiber precursor acrylonitrile-based fiber as a carbon fiber precursor, and heating the carbon fiber precursor in an oxygen-existing atmosphere at 200 to 400 ° C. By processing, it can be converted into flame-resistant fiber and subsequently carbonized under an inert atmosphere of 1000 ° C. or higher.

アクリロニトリル系共重合体粒子の工業的製造法としては、水系析出重合法と溶液重合法が知られているが、水系析出重合を連続的に行う水系析出連続重合法は、連続溶液重合法に比べて短い滞在時間で連続生産が可能で、しかも簡便な重合反応器を使用できるため、非常に生産性が優れている。   As an industrial production method of acrylonitrile copolymer particles, an aqueous precipitation polymerization method and a solution polymerization method are known, but an aqueous precipitation continuous polymerization method in which an aqueous precipitation polymerization is continuously performed is compared with a continuous solution polymerization method. In addition, continuous production is possible with a short residence time, and a simple polymerization reactor can be used.

水系析出連続重合法で生産されたアクリロニトリル系共重合体粒子から工業的に炭素繊維前駆体アクリロニトリル系繊維を得るには、まず、アクリロニトリル系共重合体粒子を含む懸濁液を洗浄、脱水、乾燥して、アクリロニトリル系共重合体粒子を得る。ついで、このアクリロニトリル系共重合体粒子を溶剤に溶解してアクリロニトリル系共重合体溶液を調製し、これを紡糸することで得られる。   To obtain the carbon fiber precursor acrylonitrile fiber industrially from acrylonitrile copolymer particles produced by the aqueous precipitation continuous polymerization method, first, the suspension containing the acrylonitrile copolymer particles is washed, dehydrated and dried. Thus, acrylonitrile copolymer particles are obtained. Next, the acrylonitrile copolymer particles are dissolved in a solvent to prepare an acrylonitrile copolymer solution, which is then spun.

アクリロニトリル系共重合体溶液中に存在する未溶解のアクリロニトリル系共重合体粒子は、炭素繊維前駆体アクリロニトリル系繊維の製造工程に悪影響を及ぼすだけでなく、炭素繊維前駆体アクリロニトリル系繊維中に異物、欠陥として残存し、結果的にアクリロニトリル系炭素繊維の強度低下を引き起こしてしまうため、アクリロニトリル系共重合体溶液は紡糸をする前にフィルターにて濾過をするのが一般的である。   Undissolved acrylonitrile copolymer particles present in the acrylonitrile copolymer solution not only adversely affect the production process of the carbon fiber precursor acrylonitrile fiber, but also foreign matter in the carbon fiber precursor acrylonitrile fiber. In general, the acrylonitrile-based copolymer solution is filtered through a filter before spinning, because it remains as a defect and results in a decrease in strength of the acrylonitrile-based carbon fiber.

しかし、アクリロニトリル系共重合体溶液中に存在する未溶解のアクリロニトリル系共重合体粒子が多くなるほど、アクリロニトリル系共重合体溶液を濾過するフィルターの交換頻度が多くなり、作業負荷が増大する。また、フィルターでの圧力増加が加速するため、フィルターに捕捉されていた異物が押し出されてしまい、結果としてアクリロニトリル系共重合体溶液中に存在する異物の量が増加してしまい、炭素繊維前駆体アクリロニトリル系繊維の製造工程や品質に悪影響を及ぼすだけでなく、得られるアクリロニトリル系炭素繊維の強度低下を引き起こしてしまう。   However, as the number of undissolved acrylonitrile copolymer particles present in the acrylonitrile copolymer solution increases, the frequency of replacement of the filter for filtering the acrylonitrile copolymer solution increases, and the work load increases. Further, since the pressure increase in the filter is accelerated, the foreign matter trapped in the filter is pushed out, resulting in an increase in the amount of foreign matter present in the acrylonitrile copolymer solution, and the carbon fiber precursor. In addition to adversely affecting the production process and quality of the acrylonitrile fiber, it causes a reduction in strength of the resulting acrylonitrile carbon fiber.

したがって炭素繊維前駆体アクリロニトリル系繊維の原料となるアクリロニトリル系共重合体粒子には、溶剤への溶解性が優れていることが求められる。
これらの問題を解決するため、特許文献1では、アクリロニトリル系共重合体粒子の嵩比重や細孔分布平均、結晶化指数などを制御することで、溶解性を向上させている。
Therefore, the acrylonitrile copolymer particles used as the raw material for the carbon fiber precursor acrylonitrile fiber are required to have excellent solubility in a solvent.
In order to solve these problems, Patent Document 1 improves solubility by controlling the bulk specific gravity, pore distribution average, crystallization index, and the like of acrylonitrile-based copolymer particles.

特許文献2では、アクリロニトリル系共重合体粒子の嵩比重や表層部の空孔率、平均粒子径を制御することで溶解性を向上させている。特許文献3ではアクリロニトリル系共重合体粒子の嵩比重や中心部と外周部の空孔率を制御することで溶解性を向上させている。特許文献4ではアクリロニトリル系共重合体粒子の平均粒子径を制御するだけでなく、粒子径80μm以上の粒子の体積割合を10%以下とすることで溶解性を向上させている。   In Patent Document 2, the solubility is improved by controlling the bulk specific gravity of the acrylonitrile copolymer particles, the porosity of the surface layer portion, and the average particle diameter. In Patent Document 3, the solubility is improved by controlling the bulk specific gravity of the acrylonitrile-based copolymer particles and the porosity of the central portion and the outer peripheral portion. In Patent Document 4, not only the average particle diameter of acrylonitrile-based copolymer particles is controlled, but the solubility is improved by setting the volume ratio of particles having a particle diameter of 80 μm or more to 10% or less.

特開平11−140131号公報JP-A-11-140131 特開2009−185273号公報JP 2009-185273 A 特開2009−203317号公報JP 2009-203317 A 特開2009−275202号公報JP 2009-275202 A

しかしながら、特許文献1〜4に記載の方法では、溶解性や分散性を向上させることは必ずしも十分とはいえなかった。本発明は、上記事情を鑑みてなされたもので、アクリロニトリル系共重合体粒子の溶解性の更なる向上とそれに伴うアクリロニトリル系共重合体溶液濾過時の負荷低減、炭素繊維前駆体アクリロニトリル系繊維の製造工程、品質の安定性向上を目指したものである。   However, the methods described in Patent Documents 1 to 4 have not always been sufficient to improve solubility and dispersibility. The present invention has been made in view of the above circumstances, further improving the solubility of acrylonitrile-based copolymer particles, reducing the load during filtration of the acrylonitrile-based copolymer solution, and the carbon fiber precursor acrylonitrile-based fibers. It aims to improve the stability of the manufacturing process and quality.

アクリロニトリル系共重合体粒子を溶剤に分散させたときの分散性を向上させることで、アクリロニトリル系共重合体溶液中のアクリロニトリル系共重合体粒子未溶解物を削減できること、アクリロニトリル系共重合体粒子を溶剤に分散させたときの分散性はアクリロニトリル系共重合体粒子の嵩比重や粒子の構造、体積平均粒子径を制御することで向上可能であることは先行文献から周知のことである。   By improving the dispersibility when acrylonitrile copolymer particles are dispersed in a solvent, it is possible to reduce undissolved acrylonitrile copolymer particles in the acrylonitrile copolymer solution, acrylonitrile copolymer particles It is well known from the prior literature that the dispersibility when dispersed in a solvent can be improved by controlling the bulk specific gravity of the acrylonitrile copolymer particles, the structure of the particles, and the volume average particle diameter.

本発明者は更なるアクリロニトリル系共重合体粒子の溶解性向上について鋭意検討した結果、アクリロニトリル系共重合体粒子の体積平均粒子径に加えて、粒度分布を制御することにより、アクリロニトリル系共重合体粒子を溶剤に分散させたときの分散性が向上し、アクリロニトリル系共重合体粒子の溶解性の更なる向上が可能になること、アクリロニトリル系共重合体粒子の粒度分布は反応器攪拌動力により制御できることを見出した。即ち、本発明は以下の構成からなる。   As a result of earnest study on the improvement in solubility of further acrylonitrile-based copolymer particles, the present inventor has found that the acrylonitrile-based copolymer is controlled by controlling the particle size distribution in addition to the volume average particle size of the acrylonitrile-based copolymer particles. Dispersibility is improved when the particles are dispersed in a solvent, and the solubility of the acrylonitrile copolymer particles can be further improved. The particle size distribution of the acrylonitrile copolymer particles is controlled by the reactor stirring power. I found out that I can do it. That is, the present invention has the following configuration.

本発明のアクリロニトリル系共重合体粒子の製造方法は、反応器に単量体、レドックス系開始剤及び脱イオン交換水を連続的に供給し、反応器から反応液を連続的に取り出すレドックス水系析出重合による、アクリロニトリル系共重合体粒子の製造方法であって、反応器攪拌動力が3.0kW/m以上7.0kW/m以下である。 The method for producing acrylonitrile-based copolymer particles of the present invention is a redox aqueous precipitation in which a monomer, a redox initiator and deionized water are continuously supplied to a reactor, and a reaction liquid is continuously taken out from the reactor. by polymerization, a method for producing acrylonitrile copolymer particles, reactor stirring power is less than 3.0 kW / m 3 or more 7.0 kW / m 3.

ただし、本発明における反応器攪拌動力とは、反応器内に溢流口まで満たした水が攪拌により受けた正味の単位体積当たりの電力であり、具体的には、反応器内が空の状態で攪拌翼を回転させた場合の電力値と、反応器内に溢流口まで水を満たした状態で攪拌翼を回転させた場合の電力値の差を求め、反応器内に溢流口まで満たした水の量で割った数値である。   However, the reactor agitation power in the present invention is the net electric power per unit volume received by the agitation of the water filled up to the overflow port in the reactor, specifically, the reactor is empty. The difference between the power value when the stirring blade is rotated and the power value when the stirring blade is rotated while the reactor is filled with water up to the overflow port is calculated. The number divided by the amount of water filled.

本発明のアクリロニトリル系共重合体粒子の製造方法は、反応器に供給する、供給液中に含まれるアクリロニトリル単量体のmol濃度A(mol/l)と、供給液中に含まれる全単量体のmol濃度B(mol/l)が以下の式を満たすことが好ましい。
0.95≦A/B≦0.995
The method for producing acrylonitrile-based copolymer particles according to the present invention includes a mol concentration A (mol / l) of an acrylonitrile monomer contained in a supply liquid to be supplied to a reactor, and a total single amount contained in the supply liquid. It is preferable that the mol concentration B (mol / l) of the body satisfies the following formula.
0.95 ≦ A / B ≦ 0.995

本発明のアクリロニトリル系共重合体粒子の製造方法は、反応器に供給する、供給液中に含まれるレドックス開始剤のmol濃度C(mol/l)と、供給液中に含まれる全単量体のmol濃度B(mol/l)が以下の式を満たすことが好ましい。
0.20≦C/B×100≦0.65
The method for producing acrylonitrile-based copolymer particles according to the present invention includes a molar concentration C (mol / l) of a redox initiator contained in a feed solution supplied to a reactor, and all monomers contained in the feed solution. It is preferable that the mol concentration B (mol / l) satisfies the following formula.
0.20 ≦ C / B × 100 ≦ 0.65

本発明のアクリロニトリル系共重合体粒子の製造方法は反応器に供給する、供給液中のイオン交換水W(kg)と供給液中の全単量体の量M(kg)が以下の式を満たすことが好
ましい。
1.5≦W/M≦5.5
In the method for producing acrylonitrile-based copolymer particles of the present invention, the ion exchange water W (kg) in the feed liquid supplied to the reactor and the amount M (kg) of the total monomers in the feed liquid are expressed by the following equations. It is preferable to satisfy.
1.5 ≦ W / M ≦ 5.5

本発明のアクリロニトリル系共重合体粒子は体積平均粒子径が30μm以上40μm以下かつ、以下の式により得られる、体積平均粒子径の標準偏差σが0.25以下である。   The acrylonitrile copolymer particles of the present invention have a volume average particle diameter of 30 μm or more and 40 μm or less, and a standard deviation σ of the volume average particle diameter obtained by the following formula is 0.25 or less.

Figure 2014201728
Figure 2014201728

本発明のアクリロニトリル系共重合体粒子は、体積換算粒子径が10μm以下の粒子の体積の割合が1.5%以下であることが好ましい。   The acrylonitrile-based copolymer particles of the present invention preferably have a volume ratio of particles having a volume-converted particle diameter of 10 μm or less of 1.5% or less.

本発明のアクリロニトリル系共重合体粒子は、体積換算粒子径が200μm以上の粒子の体積の割合が1.0%以下であることが好ましい。   The acrylonitrile-based copolymer particles of the present invention preferably have a volume ratio of particles having a volume conversion particle diameter of 200 μm or more of 1.0% or less.

本発明のアクリロニトリル系共重合体粒子は、体積換算粒子径が300μm以上の粒子の体積の割合が0.1%以下であることが好ましい。   The acrylonitrile-based copolymer particles of the present invention preferably have a volume ratio of particles having a volume-converted particle diameter of 300 μm or more of 0.1% or less.

本発明により、溶解性に優れたアクリロニトリル系共重合体粒子を得ることができる。また、本発明のアクリロニトリル系共重合体粒子を用いた、アクリロニトリル系共重合体溶液を用いることで、アクリロニトリル系共重合体溶液濾過時の負荷が低減し工程、品質安定性の高い、炭素繊維前駆体アクリロニトリル系繊維を製造することができる。また、この炭素繊維前駆体アクリロニトリル系繊維を用いることで、強度低下を引き起こす異物や欠陥点の少ないアクリロニトリル系炭素繊維を製造できる。   According to the present invention, acrylonitrile copolymer particles having excellent solubility can be obtained. In addition, by using the acrylonitrile copolymer solution using the acrylonitrile copolymer particles of the present invention, the load during filtration of the acrylonitrile copolymer solution is reduced, and the carbon fiber precursor has high process and quality stability. A body acrylonitrile fiber can be produced. Further, by using this carbon fiber precursor acrylonitrile fiber, it is possible to produce acrylonitrile carbon fiber with few foreign matters and defects that cause a decrease in strength.

以下に本発明の詳細を説明する。
本発明のアクリロニトリル系共重合体粒子は、アクリロニトリル単量体単位の含有量が95.0モル%以上99.5モル%以下であることが好ましく、97.0モル%以上99.5モル%以下であることがより好ましい。アクリロニトリル系共重合体粒子中のアクリロニトリル単量体単位を95.0モル%以上とすることで炭素繊維前駆体アクリロニトリル系繊維をアクリロニトリル系炭素繊維に転換するための焼成工程で、繊維同士の融着を招くことがなく、アクリロニトリル系炭素繊維の優れた品質及び性能を維持できる。加えて、アクリロニトリル系共重合体粒子の耐熱性が低下せず、炭素繊維前駆体アクリロニトリル系繊維を紡糸する際に乾燥を抑制することができる。さらに、加熱ローラーや加圧水蒸気による延伸等の処理において、単繊維間の接着を回避できる。
Details of the present invention will be described below.
The acrylonitrile-based copolymer particles of the present invention preferably have an acrylonitrile monomer unit content of 95.0 mol% or more and 99.5 mol% or less, and 97.0 mol% or more and 99.5 mol% or less. It is more preferable that In the firing step for converting the carbon fiber precursor acrylonitrile fiber to acrylonitrile carbon fiber by setting the acrylonitrile monomer unit in the acrylonitrile copolymer particles to 95.0 mol% or more, the fibers are fused. The excellent quality and performance of the acrylonitrile-based carbon fiber can be maintained without incurring any damage. In addition, the heat resistance of the acrylonitrile copolymer particles does not decrease, and drying can be suppressed when the carbon fiber precursor acrylonitrile fiber is spun. Furthermore, adhesion between single fibers can be avoided in processing such as stretching with a heating roller or pressurized steam.

また、アクリロニトリル系共重合体粒子中のアクリロニトリル単量体単位を99.5モル%以下とすることで溶剤への溶解性を十分確保でき、アクリロニトリル系共重合体粒子のアクリロニトリル系共重合体溶液中への析出を防ぐことができる。   Further, by setting the acrylonitrile monomer unit in the acrylonitrile copolymer particles to 99.5 mol% or less, sufficient solubility in the solvent can be secured, and the acrylonitrile copolymer particles in the acrylonitrile copolymer solution Precipitation into can be prevented.

アクリロニトリル系共重合体粒子中のアクリロニトリル以外の単量体としては、アクリロニトリルと共重合可能なビニル系単量体から適宣選択することができ、アクリロニトリル系共重合体粒子の親水性を向上させるビニル系単量体、耐炎化促進効果を有するビニル系単量体が好ましい。   As the monomer other than acrylonitrile in the acrylonitrile copolymer particles, a vinyl monomer that can be copolymerized with acrylonitrile can be suitably selected, and vinyl that improves the hydrophilicity of the acrylonitrile copolymer particles. A monomer based on vinyl and a monomer based on flame resistance are preferred.

アクリロニトリル系共重合体粒子の親水性を向上する単量体としては、例えば、カルボキシル基、スルホ基、アミノ基、アミド基、ヒドロキシル基等の親水性の官能基を有するビニル化合物がある。カルボキシル基を有する単量体としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、シトラコン酸、エタクリル酸、マレイン酸、メサコン酸等が挙げられ、中でもアクリル酸、メタクリル酸、イタコン酸が好ましい。スルホ基を有する単量体としては、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、ビニルスルホン酸、スルホプロピルメタクリレート等が挙げられ、中でも、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸が好ましい。アミノ基を有する単量体としては、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、ターシャリーブチルアミノエチルメタクリレート、アリルアミン、o−アミノスチレン、p−アミノスチレン等が挙げられ、中でもジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレートが好ましい。アミド基を有する単量体としては、アクリルアミド、メタクリルアミド、ジメチルアクリルアミド、クロトンアミドが好ましい。ヒドロキシル基を有する単量体としては、ヒドロキシメチルメタクリレート、ヒドロキシメチルアクリレート、2―ヒドロキシエチルメタクリレート、2−ヒドロキシエチルアクリレート、3−ヒドロキシプロピルメタクリレート、3−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルメタクリレート、2−ヒドロキシプロピルアクリレートなどが挙げられる。   Examples of the monomer that improves the hydrophilicity of the acrylonitrile-based copolymer particles include a vinyl compound having a hydrophilic functional group such as a carboxyl group, a sulfo group, an amino group, an amide group, or a hydroxyl group. Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid, mesaconic acid and the like, among which acrylic acid, methacrylic acid, and itaconic acid are preferable. Examples of the monomer having a sulfo group include allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, vinyl sulfonic acid, and sulfopropyl methacrylate. Acid, methallylsulfonic acid, styrenesulfonic acid, and 2-acrylamido-2-methylpropanesulfonic acid are preferred. Examples of the monomer having an amino group include dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoethyl acrylate, diethylaminoethyl acrylate, tertiary butylaminoethyl methacrylate, allylamine, o-aminostyrene, and p-aminostyrene. Of these, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoethyl acrylate, and diethylaminoethyl acrylate are preferable. As the monomer having an amide group, acrylamide, methacrylamide, dimethylacrylamide, and crotonamide are preferable. Examples of the monomer having a hydroxyl group include hydroxymethyl methacrylate, hydroxymethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 3-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 2- And hydroxypropyl acrylate.

このような単量体を配合することで、アクリロニトリル系共重合体粒子は親水性が向上する。親水性が向上すると、得られる炭素繊維前駆体アクリロニトリル系繊維の緻密性が向上し、表層部のミクロボイド発生を抑制することができる。上述の単量体は、1種単独で又は2種以上を適宜組み合わせて用いることができる。このようなアクリロニトリル系共重合体粒子の親水性を向上させる単量体の配合量は、アクリロニトリル系共重合体粒子中0.5〜5.0モル%とすることが好ましく、0.5〜3.0モル%とすることがより好ましい。   By blending such a monomer, the hydrophilicity of the acrylonitrile-based copolymer particles is improved. When the hydrophilicity is improved, the denseness of the obtained carbon fiber precursor acrylonitrile-based fiber is improved, and generation of microvoids in the surface layer portion can be suppressed. The above-mentioned monomers can be used alone or in combination of two or more. The blending amount of the monomer for improving the hydrophilicity of such acrylonitrile-based copolymer particles is preferably 0.5 to 5.0 mol% in the acrylonitrile-based copolymer particles, and 0.5 to 3 More preferably, the content is 0.0 mol%.

耐炎化促進効果を有する単量体としては、アクリル酸、メタクリル酸、エタクリル酸、イタコン酸、クロトン酸、シトラコン酸、マレイン酸、メサコン酸又はこれらの低級アルキルエステル、アルカリ金属塩、アンモニウム塩もしくはアクリルアミド、メタクリルアミド等が挙げられる。中でも、少量の配合量でより高い耐炎化促進効果を得る観点から、カルボキシル基を有する単量体が好ましく、特にアクリル酸、メタクリル酸、イタコン酸等のビニル系単量体がより好ましい。このような単量体を配合することで、焼成工程の時間を短縮でき、製造コストを低減できる。上述の単量体は、1種単独で又は2種以上を適宜組み合わせて用いることができる。このような耐炎化促進効果を有する単量体の配合量は、アクリロニトリル系共重合体粒子中0.5〜5.0モル%であることが好ましく、0.5〜3.0モル%とすることがより好ましい。   Monomers having an effect of promoting flame resistance include acrylic acid, methacrylic acid, ethacrylic acid, itaconic acid, crotonic acid, citraconic acid, maleic acid, mesaconic acid or their lower alkyl esters, alkali metal salts, ammonium salts or acrylamides. , Methacrylamide and the like. Among these, from the viewpoint of obtaining a higher flame resistance-promoting effect with a small amount, a monomer having a carboxyl group is preferable, and vinyl monomers such as acrylic acid, methacrylic acid, and itaconic acid are particularly preferable. By blending such a monomer, the time for the firing process can be shortened, and the manufacturing cost can be reduced. The above-mentioned monomers can be used alone or in combination of two or more. The blending amount of the monomer having the effect of promoting flame resistance is preferably 0.5 to 5.0 mol% in the acrylonitrile-based copolymer particles, and is 0.5 to 3.0 mol%. It is more preferable.

本発明のアクリロニトリル系共重合体粒子は、体積平均粒子径が30μm以上40μm以下かつ、以下の式により得られる、体積平均粒子径の標準偏差σが0.25以下であることが好ましい。   The acrylonitrile-based copolymer particles of the present invention preferably have a volume average particle diameter of 30 μm or more and 40 μm or less, and a standard deviation σ of the volume average particle diameter obtained by the following formula is 0.25 or less.

Figure 2014201728
Figure 2014201728

なお、アクリロニトリル系共重合体粒子の粒度分布はレーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製、製品名:LA−910)にて、分散媒にイオン交換水を用い、ポリマー粒子の屈折率を1.14として測定した。また、体積平均粒子径とは、本測定による体積平均換算でのメジアン径のことをいう。   In addition, the particle size distribution of the acrylonitrile-based copolymer particles was measured using a laser diffraction / scattering particle size distribution measuring apparatus (manufactured by Horiba, Ltd., product name: LA-910) using ion-exchanged water as a dispersion medium. The refractive index was measured as 1.14. The volume average particle diameter means a median diameter in terms of volume average in this measurement.

一般的に、粒子径の小さいアクリロニトリル系共重合体粒子は、溶剤に分散させると、急速に溶解が進行してしまい、分散液の粘度が上昇する。分散液の粘度が上昇すると、部分的に溶解途中のポリマー粒子が凝集した、溶解しにくい分散不良物が発生してしまう。また、粒子径の大きいアクリロニトリル系共重合体粒子は溶剤が中心部まで浸透しがたく、溶解しにくい。   In general, when acrylonitrile-based copolymer particles having a small particle diameter are dispersed in a solvent, dissolution rapidly proceeds and the viscosity of the dispersion increases. When the viscosity of the dispersion increases, polymer particles that are in the middle of dissolution are partially aggregated, resulting in poor dispersion that is difficult to dissolve. In addition, the acrylonitrile copolymer particles having a large particle diameter are difficult to dissolve because the solvent does not easily penetrate to the center.

アクリロニトリル系共重合体粒子の体積平均粒子径を30μm以上かつ、標準偏差σを0.25以下とすることで分散不良の原因となる粒子径の小さいアクリロニトリル系共重合体粒子の割合を大きく減らすことができ、溶剤への分散性が良好であり、結果的に溶解性にも優れたアクリロニトリル系共重合体粒子を得ることができる。   By reducing the volume average particle diameter of the acrylonitrile copolymer particles to 30 μm or more and the standard deviation σ to 0.25 or less, the ratio of acrylonitrile copolymer particles having a small particle diameter that causes poor dispersion is greatly reduced. As a result, it is possible to obtain acrylonitrile-based copolymer particles having good dispersibility in a solvent and excellent solubility.

また、アクリロニトリル系共重合体粒子の体積平均粒子径を40μm以下かつ、標準偏差σを0.25以下とすることで、溶解しにくい粒子径の大きいアクリロニトリル系共重合体粒子の割合を大きく減らすことができ、溶解性に優れたアクリロニトリル系共重合体粒子を得ることができる。   In addition, by setting the volume average particle diameter of acrylonitrile copolymer particles to 40 μm or less and the standard deviation σ to 0.25 or less, the ratio of acrylonitrile copolymer particles having a large particle diameter that is difficult to dissolve is greatly reduced. Acrylonitrile-based copolymer particles having excellent solubility can be obtained.

溶解性に優れたアクリロニトリル系共重合体粒子を得るという観点から、アクリロニトリル系共重合体粒子の体積平均粒子径が30μm以上35μm以下とすることがより好ましい。また体積平均粒子径の標準偏差σは0.22以下とすることがより好ましく、0.20以下とすることが更に好ましい。   From the viewpoint of obtaining acrylonitrile-based copolymer particles having excellent solubility, it is more preferable that the volume average particle diameter of the acrylonitrile-based copolymer particles be 30 μm or more and 35 μm or less. The standard deviation σ of the volume average particle diameter is more preferably 0.22 or less, and further preferably 0.20 or less.

本発明のアクリロニトリル系共重合体粒子は、体積換算粒子径が10μm以下の粒子の体積の割合が1.5%以下であることが好ましい。体積換算粒子径が10μm以下の粒子の割合を1.5%以下とすることで、分散不良の原因となる粒子径の小さいアクリロニトリル系共重合体粒子の割合を大きく減らすことができるため、溶剤への分散性が良好であり、結果的に溶解性にも優れたアクリロニトリル系共重合体粒子を得ることができる。   The acrylonitrile-based copolymer particles of the present invention preferably have a volume ratio of particles having a volume-converted particle diameter of 10 μm or less of 1.5% or less. Since the ratio of particles having a volume-converted particle diameter of 10 μm or less is 1.5% or less, the ratio of acrylonitrile-based copolymer particles having a small particle diameter that causes poor dispersion can be greatly reduced. As a result, it is possible to obtain acrylonitrile-based copolymer particles having excellent dispersibility.

溶解性に優れたアクリロニトリル系共重合体粒子を得るという観点から、体積換算粒子径が10μm以下の粒子の割合を1.0%以下とすることがより好ましく、0.5%以下とすることが更に好ましい。   From the viewpoint of obtaining acrylonitrile-based copolymer particles having excellent solubility, the ratio of particles having a volume conversion particle diameter of 10 μm or less is more preferably 1.0% or less, and more preferably 0.5% or less. Further preferred.

本発明のアクリロニトリル系共重合体粒子は、体積換算粒子径が200μm以上の粒子の体積の割合が1.0%以下であることが好ましい。体積換算粒子径が200μm以上の粒子の割合を1.0%以下とすることで、溶解しにくい粒子径の大きいアクリロニトリル系共重合体粒子の割合を大きく減らすことができるため、溶解性に優れたアクリロニトリル系共重合体粒子を得ることができる。   The acrylonitrile-based copolymer particles of the present invention preferably have a volume ratio of particles having a volume conversion particle diameter of 200 μm or more of 1.0% or less. By setting the ratio of particles having a volume-converted particle diameter of 200 μm or more to 1.0% or less, the ratio of acrylonitrile copolymer particles having a large particle diameter that is difficult to dissolve can be greatly reduced, so that the solubility is excellent. Acrylonitrile copolymer particles can be obtained.

溶解性に優れたアクリロニトリル系共重合体粒子を得るという観点から、体積換算粒子径が200μm以上の粒子の体積の割合が0.5%以下とすることがより好ましく、0.1%以下とすることが更に好ましい。   From the viewpoint of obtaining acrylonitrile-based copolymer particles having excellent solubility, the volume ratio of particles having a volume-converted particle size of 200 μm or more is more preferably 0.5% or less, and 0.1% or less. More preferably.

本発明のアクリロニトリル系共重合体粒子は、体積換算粒子径が300μm以上の粒子の体積の割合が0.1%以下であることが好ましい。体積換算粒子径が300μm以上の粒子の割合を0.1%以下とすることで、より溶解しにくい粒子径の大きいアクリロニトリル系共重合体粒子の割合を大きく減らすことができるため、溶解性に優れたアクリロニトリル系共重合体粒子を得ることができる。   The acrylonitrile-based copolymer particles of the present invention preferably have a volume ratio of particles having a volume-converted particle diameter of 300 μm or more of 0.1% or less. By setting the ratio of particles having a volume-converted particle diameter of 300 μm or more to 0.1% or less, the ratio of acrylonitrile-based copolymer particles having a large particle diameter that is difficult to dissolve can be greatly reduced, so that the solubility is excellent. In addition, acrylonitrile-based copolymer particles can be obtained.

溶解性に優れたアクリロニトリル系共重合体粒子を得るという観点から、体積換算粒子径が300μm以上の粒子の体積の割合が0.05%以下とすることがより好ましい。   From the viewpoint of obtaining acrylonitrile-based copolymer particles having excellent solubility, it is more preferable that the volume ratio of particles having a volume-converted particle diameter of 300 μm or more is 0.05% or less.

本発明のアクリロニトリル系共重合体粒子は、反応器に単量体、レドックス系開始剤及び脱イオン交換水を連続的に供給し、反応器から反応液を連続的に取り出すレドックス水系析出重合により得ることができる。   The acrylonitrile copolymer particles of the present invention are obtained by redox aqueous precipitation polymerization in which a monomer, a redox initiator and deionized exchange water are continuously supplied to the reactor, and the reaction liquid is continuously taken out from the reactor. be able to.

重合反応釜内での水素イオン濃度は、使用される開始剤がすみやかに酸化・還元反応を起こす範囲であればよく、pH2.0〜3.5の酸性領域が好ましい。レドックス系開始剤には公知のものを使用できる。   The hydrogen ion concentration in the polymerization reaction vessel may be within a range where the initiator used promptly causes an oxidation / reduction reaction, and an acidic region having a pH of 2.0 to 3.5 is preferable. Known redox initiators can be used.

反応器内の反応液温度は、30〜80℃にすることが好ましい。反応液温度を80℃以下とすることで、アクリロニトリルが蒸発して反応系外へ離散することなく、重合転化率が向上する。また、反応液温度を30℃以上とすることで、重合速度が高まって生産性が向上するばかりでなく、重合安定性も高くなる。   The temperature of the reaction solution in the reactor is preferably 30 to 80 ° C. By setting the reaction liquid temperature to 80 ° C. or less, the polymerization conversion rate is improved without acrylonitrile evaporating and being dispersed outside the reaction system. Further, by setting the reaction liquid temperature to 30 ° C. or higher, not only the polymerization rate is increased and the productivity is improved, but also the polymerization stability is increased.

反応器内は酸素によるラジカル失活防止のため、不活性気体雰囲気下とすることが好ましく、コスト面から窒素を使用することがより好ましい。
本発明の反応器攪拌動力は3.0kW/m以上7.0kW/m以下であることが好ましい。
In order to prevent radical deactivation due to oxygen, the inside of the reactor is preferably in an inert gas atmosphere, and more preferably nitrogen is used from the viewpoint of cost.
It is preferred reactor agitation power of the present invention is less than 3.0 kW / m 3 or more 7.0 kW / m 3.

一般的に、反応器攪拌動力が小さくなるほど反応器内のアクリロニトリル系共重合体粒子中に含まれる粒子径の大きい粒子の割合は増加し、溶解の進行しにくいアクリロニトリル系共重合体粒子となってしまう。また、反応器内の流動状態に斑が多くなり、生成するアクリロニトリル系共重合体粒子の粒度分布は広がり、工程安定性も低下する。   In general, the smaller the reactor stirring power, the larger the proportion of particles having a large particle size contained in the acrylonitrile copolymer particles in the reactor, resulting in acrylonitrile copolymer particles that are difficult to dissolve. End up. Further, the flow state in the reactor is increased in spots, the particle size distribution of the acrylonitrile-based copolymer particles to be generated is widened, and the process stability is also lowered.

一方、反応器攪拌動力が高くなるほど、反応器内のアクリロニトリル系共重合体粒子中に含まれる粒子径の小さい粒子の割合は増加し、分散不良となりやすいアクリロニトリル系共重合体粒子となってしまう。また、反応器内の反応液液面での液がはねやすくなるため、はねた液が反応器内上部に付着し、気相中の単量体と重合することで発生する、通常のアクリロニトリル系共重合体粒子よりも分子量が高く、溶解しにくい異常重合物の混入量が増加してしまう。   On the other hand, as the reactor stirring power increases, the proportion of particles having a small particle size contained in the acrylonitrile copolymer particles in the reactor increases, resulting in acrylonitrile copolymer particles that tend to be poorly dispersed. In addition, since the liquid at the reaction liquid level in the reactor becomes easy to splash, the splashed liquid adheres to the upper part of the reactor and is generated by polymerization with a monomer in the gas phase. The molecular weight is higher than that of acrylonitrile-based copolymer particles, and the amount of abnormal polymer that is difficult to dissolve increases.

反応器攪拌動力を3.0kW/m以上とすることで、溶剤が中心部まで浸透しがたく、溶解しにくい粒子径の大きいアクリロニトリル系共重合体粒子の割合を減らすことができる。また、反応器内の流動状態が均一になり、生成するアクリロニトリル系共重合体粒子の粒度分布を狭くすることが可能になり、工程安定性も向上する。 By setting the reactor stirring power to 3.0 kW / m 3 or more, it is possible to reduce the proportion of acrylonitrile-based copolymer particles having a large particle diameter that is difficult for the solvent to permeate to the central portion and difficult to dissolve. Further, the flow state in the reactor becomes uniform, the particle size distribution of the acrylonitrile-based copolymer particles to be produced can be narrowed, and the process stability is also improved.

反応器攪拌動力を7.0kW/m以下とすることで、分散不良の原因となる粒子径の小さいアクリロニトリル系共重合体粒子の割合増加を抑制することができ、前述の異常重合物発生も抑制することが可能になる。 By setting the reactor stirring power to 7.0 kW / m 3 or less, it is possible to suppress an increase in the proportion of acrylonitrile-based copolymer particles having a small particle diameter that causes poor dispersion. It becomes possible to suppress.

溶解性に優れたアクリロニトリル系共重合体粒子を得るという観点から、反応器攪拌動力を3.5kW/m以上6.5kW/m以下とすることがより好ましく、3.5kW/m以上6.0kW/m以下とすることが更に好ましい。ただし、本発明における反応器攪拌動力とは、反応器内に溢流口まで満たした水が攪拌により受けた正味の単位体積当たりの電力であり、具体的には、反応器内が空の状態で攪拌翼を回転させた場合の電力値と、反応器内に溢流口まで水を満たした状態で攪拌翼を回転させた場合の電力値の差を求め、反応器内に溢流口まで満たした水の量で割った数値である。 From the viewpoint of obtaining excellent acrylonitrile copolymer particles in solubility, the reactor stirring power, more preferably to 3.5 kW / m 3 or more 6.5 kW / m 3 or less, 3.5 kW / m 3 or more More preferably, it is 6.0 kW / m 3 or less. However, the reactor agitation power in the present invention is the net electric power per unit volume received by the agitation of the water filled up to the overflow port in the reactor, specifically, the reactor is empty. The difference between the power value when the stirring blade is rotated and the power value when the stirring blade is rotated while the reactor is filled with water up to the overflow port is calculated. The number divided by the amount of water filled.

本発明のアクリロニトリル系共重合体粒子の製造方法は、反応器に供給する、供給液中に含まれるアクリロニトリル単量体のmol濃度A(mol/l)と、供給液中に含まれる全単量体のmol濃度B(mol/l)が以下の式を満たすことが好ましい。
0.95≦A/B≦0.995
The method for producing acrylonitrile-based copolymer particles according to the present invention includes a mol concentration A (mol / l) of an acrylonitrile monomer contained in a supply liquid to be supplied to a reactor, and a total single amount contained in the supply liquid. It is preferable that the mol concentration B (mol / l) of the body satisfies the following formula.
0.95 ≦ A / B ≦ 0.995

A/Bを0.95以上とすることで、アクリロニトリル単量体単位の含有量が95.0モル%以上のアクリロニトリル系共重合体粒子を得ることができるため、アクリロニトリル系共重合体粒子の耐熱性が低下せず、炭素繊維前駆体アクリロニトリル系繊維を紡糸する際に乾燥を抑制することができる。さらに、加熱ローラーや加圧水蒸気による延伸等の処理において、単繊維間の接着を回避できる。また、炭素繊維前駆体アクリロニトリル系繊維をアクリロニトリル系炭素繊維に転換するための焼成工程で、繊維同士の融着を招くことがなく、アクリロニトリル系炭素繊維の優れた品質及び性能を維持できる。   By setting A / B to 0.95 or more, it is possible to obtain acrylonitrile-based copolymer particles having an acrylonitrile monomer unit content of 95.0 mol% or more. Therefore, the heat resistance of acrylonitrile-based copolymer particles Therefore, drying can be suppressed when the carbon fiber precursor acrylonitrile fiber is spun. Furthermore, adhesion between single fibers can be avoided in processing such as stretching with a heating roller or pressurized steam. Further, in the firing step for converting the carbon fiber precursor acrylonitrile-based fiber into acrylonitrile-based carbon fiber, the excellent quality and performance of the acrylonitrile-based carbon fiber can be maintained without causing fusion between the fibers.

また、A/Bを0.995以下とすることで、アクリロニトリル単量体単位の含有量が99.5モル%以下のアクリロニトリル系共重合体粒子を得ることができるため、アクリロニトリル系共重合体粒子の溶剤への溶解性を十分確保することができる。   Further, by setting A / B to 0.995 or less, it is possible to obtain acrylonitrile-based copolymer particles having an acrylonitrile monomer unit content of 99.5 mol% or less. Therefore, acrylonitrile-based copolymer particles Can be sufficiently secured in the solvent.

粒子径が小さいアクリロニトリル系共重合体粒子および粒子径が大きいアクリロニトリル系共重合体粒子の割合を少なくする観点からA/Bを0.965以上0.992以下とすることがより好ましい   From the viewpoint of reducing the proportion of acrylonitrile copolymer particles having a small particle diameter and acrylonitrile copolymer particles having a large particle diameter, A / B is more preferably 0.965 or more and 0.992 or less.

本発明のアクリロニトリル系共重合体粒子の製造方法は、反応器に供給する、供給液中に含まれるレドックス開始剤のmol濃度C(mol/l)と、供給液中に含まれる全単量体のmol濃度B(mol/l)が以下の式を満たすことが好ましい。
20≦C/B×100≦0.65
The method for producing acrylonitrile-based copolymer particles according to the present invention includes a molar concentration C (mol / l) of a redox initiator contained in a feed solution supplied to a reactor, and all monomers contained in the feed solution. It is preferable that the mol concentration B (mol / l) satisfies the following formula.
20 ≦ C / B × 100 ≦ 0.65

C/B×100を0.65以下とすることで、反応液中の電解質が及ぼすアクリロニトリル系共重合体粒子同士の反発力が大きくなりすぎることを防ぎ、アクリロニトリル系共重合体粒子同士が緻密に凝集せず、アクリロニトリル系共重合体粒子が、隙間が大きく、粒子径の大きな粒子に成長し、結果的に溶解しにくい、粒子径の大きなアクリロニトリル系共重合体粒子の割合が増えることを抑制することができる。   By setting C / B × 100 to 0.65 or less, the repulsive force between acrylonitrile-based copolymer particles exerted by the electrolyte in the reaction solution is prevented from becoming too large, and the acrylonitrile-based copolymer particles are densely packed. Suppresses the increase in the proportion of acrylonitrile copolymer particles having large particle diameters that do not agglomerate and grow into particles having large gaps and large particle diameters, resulting in difficulty in dissolution. be able to.

また、C/B×100を0.20以上とすることで、反応液中の電解質が及ぼすアクリロニトリル系共重合体粒子同士の反発力が小さくなりすぎることを防ぎ、反応液中のアクリロニトリル系共重合体粒子同士が凝集して緻密になりすぎ、粒子径が小さくなり、結果的に分散不良の原因となる粒子径の小さいアクリロニトリル系共重合体粒子の割合増加を抑制することができる。   Further, by setting C / B × 100 to 0.20 or more, the repulsive force between the acrylonitrile copolymer particles exerted by the electrolyte in the reaction solution is prevented from becoming too small, and the acrylonitrile copolymer in the reaction solution is prevented. The coalesced particles are aggregated and become too dense, the particle size is reduced, and as a result, an increase in the proportion of acrylonitrile copolymer particles having a small particle size that causes poor dispersion can be suppressed.

粒子径が小さいアクリロニトリル系共重合体粒子および粒子径が大きいアクリロニトリル系共重合体粒子の割合を少なくし、溶解性良好なアクリロニトリル系共重合体粒子を得るという観点からC/B×100を0.30以上0.60以下とすることがより好ましく、0.35以上0.55以下とすることが更に好ましい。   From the viewpoint of reducing the ratio of acrylonitrile copolymer particles having a small particle diameter and acrylonitrile copolymer particles having a large particle diameter to obtain acrylonitrile copolymer particles having good solubility, the C / B × 100 is set to 0.00. It is more preferably 30 or more and 0.60 or less, and further preferably 0.35 or more and 0.55 or less.

本発明のアクリロニトリル系共重合体粒子の製造方法は反応器に供給する、供給液中のイオン交換水W(kg)と供給液中の全単量体の量M(kg)が以下の式を満たすことが好
ましい。
5≦W/M≦5.5
In the method for producing acrylonitrile-based copolymer particles of the present invention, the ion exchange water W (kg) in the feed liquid supplied to the reactor and the amount M (kg) of the total monomers in the feed liquid are expressed by the following equations. It is preferable to satisfy.
5 ≦ W / M ≦ 5.5

W/Mを1.5以上とすることで反応器内の重合熱の除去を安定に行うことができ、反応器内の状態を均一にできるため、粒度分布が狭いアクリロニトリル系共重合体粒子を得やすくなる。また、アクリロニトリル系共重合体粒子同士が凝集しやすくなり、結果的に分散不良の原因となる粒子径の小さいアクリロニトリル系共重合体粒子の割合増加を抑制することができ、溶解性良好なアクリロニトリル系共重合体粒子を得ることができる。   Since the heat of polymerization in the reactor can be stably removed by setting W / M to 1.5 or more, and the state in the reactor can be made uniform, acrylonitrile copolymer particles having a narrow particle size distribution can be obtained. It becomes easy to obtain. Also, the acrylonitrile copolymer particles are likely to aggregate with each other, and as a result, an increase in the proportion of acrylonitrile copolymer particles having a small particle diameter that causes poor dispersion can be suppressed, and the acrylonitrile system has good solubility. Copolymer particles can be obtained.

W/Mを5.5以下とすることで、アクリロニトリル系共重合体粒子同士の過剰な凝集を防ぐことができ、溶解しにくい、粒子径の大きなアクリロニトリル系共重合体粒子の割合を十分少なくすることができ、溶解性良好なアクリロニトリル系共重合体粒子を得ることができる。   By setting W / M to 5.5 or less, excessive aggregation of acrylonitrile-based copolymer particles can be prevented, and the ratio of acrylonitrile-based copolymer particles that are difficult to dissolve and have a large particle diameter is sufficiently reduced. And acrylonitrile copolymer particles having good solubility can be obtained.

粒度分布が狭く、粒子径の大きなアクリロニトリル系共重合体粒子及び小さなアクリロニトリル系共重合体粒子の割合を少なくし、溶解性良好なアクリロニトリル系共重合体粒子を得るという観点から、W/Mを2.0以上4.0以下とすることが好ましく、2.0以上3.0以下とすることがより好ましい。   From the viewpoint of obtaining a acrylonitrile-based copolymer particle having good solubility by reducing the proportion of acrylonitrile-based copolymer particles having a narrow particle size distribution and a large particle size, and a small proportion of acrylonitrile-based copolymer particles. It is preferable to set it as 0.0 or more and 4.0 or less, and it is more preferable to set it as 2.0 or more and 3.0 or less.

反応器内にて得られたアクリロニトリル系共重合体粒子を含む反応液は、連続的に反応器系外に排出させ、重合停止剤を添加して反応を停止させ、重合体分散液とする。重合反応の停止剤は、通常アクリロニトリル系共重合体粒子を水系懸濁重合で製造する際使用されるものであれば問題はない。   The reaction liquid containing the acrylonitrile-based copolymer particles obtained in the reactor is continuously discharged out of the reactor system, and the reaction is stopped by adding a polymerization terminator to obtain a polymer dispersion. The polymerization reaction terminator is not a problem as long as it is usually used when producing acrylonitrile-based copolymer particles by aqueous suspension polymerization.

重合停止剤を添加した後、重合体分散液から未反応単量体の回収を行う。未反応単量体の回収方法としては、重合体分散液を直接蒸留する方法、また一旦脱水し、未反応単量体を重合体と分離した後蒸留する方法があるが、本発明では、両方式とも採用可能である。   After adding a polymerization terminator, unreacted monomers are recovered from the polymer dispersion. As a method for recovering the unreacted monomer, there are a method of directly distilling the polymer dispersion, and a method of once dehydrating and separating the unreacted monomer from the polymer, followed by distillation. Both methods can be adopted.

未反応の単量体を除去した後、アクリロニトリル系共重合体粒子中に含まれるレドックス開始剤等の残渣を公知の洗浄方法にて取り除き、残った水分を通常の乾燥方式によって取り除く。   After the unreacted monomer is removed, residues such as redox initiator contained in the acrylonitrile copolymer particles are removed by a known washing method, and the remaining water is removed by a normal drying method.

乾燥後、公知の粉砕方法にて粉砕し、アクリロニトリル系共重合体粒子を得る。   After drying, it is pulverized by a known pulverization method to obtain acrylonitrile-based copolymer particles.

上述の方法により得られたアクリロニトリル系共重合体粒子は、溶剤に対する分散性が優れており、未溶解物の少ないアクリロニトリル系共重合体溶液を得ることができる。得られたアクリロニトリル系共重合体溶液を使用することで、アクリロニトリル系共重合体溶液濾過時の負荷低減でき、炭素繊維前駆体アクリロニトリル系繊維の製造工程、品質の安定性を向上することが可能になる。また、得られた炭素繊維前駆体アクリロニトリル系繊維からは異物や欠陥の少ない、強度発現性良好なアクリロニトリル系炭素繊維を得ることができる。   The acrylonitrile-based copolymer particles obtained by the above-described method have excellent dispersibility in a solvent, and an acrylonitrile-based copolymer solution with little undissolved material can be obtained. By using the obtained acrylonitrile copolymer solution, the load during filtration of the acrylonitrile copolymer solution can be reduced, and the production process and quality stability of the carbon fiber precursor acrylonitrile fiber can be improved. Become. Moreover, from the obtained carbon fiber precursor acrylonitrile-based fiber, acrylonitrile-based carbon fiber with less foreign matter and defects and good strength development can be obtained.

以下、本発明について実施例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these.

[アクリロニトリル系共重合体粒子の組成]
ポリアクリロニトリル系共重合体粒子の組成(各単量体単位の比率(質量%))は、H−NMR法により、以下のようにして測定した。溶媒としてジメチルスルホキシド−d溶媒を用い、共重合体を溶解させ、NMR測定装置(日本電子社製、製品名:GSZ−400型)により、積算回数40回、測定温度120℃の条件で測定し、ケミカルシフトの積分比から各単量体単位の比率を求めた。
[Composition of acrylonitrile copolymer particles]
The composition of polyacrylonitrile-based copolymer particles (ratio of each monomer unit (mass%)) was measured by 1 H-NMR method as follows. Using dimethyl sulfoxide -d 6 solvent as a solvent to dissolve the copolymer, NMR measuring apparatus (manufactured by JEOL Ltd., product name: GSZ-400 type), the number of integration 40 times, measured under the conditions of measurement temperature 120 ° C. The ratio of each monomer unit was determined from the chemical shift integral ratio.

[アクリロニトリル系共重合体粒子の粒子径]
レーザー回折/散乱式粒度分布測定装置(株式会社堀場製作所製、製品名:LA−910)を用いて、ポリマー粒子の粒度分布を測定した。ポリマー粒子の分散媒にはイオン交換水を用い、ポリマー粒子の屈折率は1.14とした。なお、本明細書中における体積平均粒子径とは、本測定による体積平均換算でのメジアン径のことをいう。
[Particle size of acrylonitrile copolymer particles]
The particle size distribution of the polymer particles was measured using a laser diffraction / scattering particle size distribution measuring device (manufactured by Horiba, Ltd., product name: LA-910). Ion exchange water was used as a dispersion medium for the polymer particles, and the refractive index of the polymer particles was 1.14. In addition, the volume average particle diameter in this specification means the median diameter in terms of volume average according to this measurement.

[フィルター差圧]
得られたアクリロニトリル系共重合体粒子を固形分が23.2%となるよう−25℃のジメチルホルムアミドに分散させ、アクリロニトリル系共重合体粒子分散液を得る。得られたアクリロニトリル系共重合体粒子分散液を、125℃の熱媒を通した、内径12mmの加熱用多管式熱交換器一基に平均滞在時間が10分となるよう通液した後、65℃の冷媒を通した、内径12mmの冷却用多管式熱交換器に平均滞在時間が6分となるよう通液してアクリロニトリル系共重合体溶液を得た。得られたアクリロニトリル系共重合体溶液を65℃に保温し、1分当たり65L/mの流量でフィルター(型番:NF2−05S、(株)明成商会製)にて連続的に濾過を行った。その際にフィルターでの積算通液量が、0から0.5Lになるまでのフィルターの入圧変化を求め、その値をフィルター差圧とした。
[Filter differential pressure]
The obtained acrylonitrile copolymer particles are dispersed in dimethylformamide at −25 ° C. so that the solid content is 23.2% to obtain an acrylonitrile copolymer particle dispersion. After passing the obtained acrylonitrile-based copolymer particle dispersion through a heating medium of 125 ° C. through one heating multitubular heat exchanger with an inner diameter of 12 mm so that the average residence time is 10 minutes, An acrylonitrile-based copolymer solution was obtained by passing a 65 ° C. refrigerant through a cooling multitubular heat exchanger having an inner diameter of 12 mm so that the average residence time was 6 minutes. The obtained acrylonitrile-based copolymer solution was kept at 65 ° C. and continuously filtered with a filter (model number: NF2-05S, manufactured by Meisei Shokai Co., Ltd.) at a flow rate of 65 L / m 2 per minute. . At that time, the change in the pressure applied to the filter until the cumulative flow rate through the filter reached 0 to 0.5 L was determined, and the value was taken as the filter differential pressure.

(実施例1)
[アクリロニトリル系共重合体粒子の製造]
容量80リットルのタービン撹拌翼付きアルミニウム製重合釜(攪拌翼:240φ、55mm×57mmの2段4枚羽)に、脱イオン交換水が重合釜オーバーフロー口まで達するよう76.5リットル入れ、硫酸第一鉄(FeSO・7HO)を0.01g加え、反応液のpHが3.0になるように硫酸を用いて調節し、重合釜内の温度を57℃で保持した。
Example 1
[Production of Acrylonitrile Copolymer Particles]
Place 76.5 liters of deionized water in an aluminum polymerization kettle with a capacity of 80 liters (stirring wing: 240φ, 55 mm x 57 mm, 2 stages, 4 blades) so that the deionized water reaches the polymerization kettle overflow port. 0.01 g of ferrous iron (Fe 2 SO 4 .7H 2 O) was added and the reaction solution was adjusted with sulfuric acid so that the pH was 3.0, and the temperature in the polymerization kettle was maintained at 57 ° C.

次に、重合開始50分前から、重合開始時投入予定の単量体(100mol%)に対してレドックス重合開始剤である過硫酸アンモニウムを0.09mol%、亜硫酸水素アンモニウムを0.32mol%、硫酸第一鉄(FeSO・7HO)を0.3ppm、硫酸を0.05mol%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌動力5.4kW/mにて撹拌を行い、重合釜内での単量体の平均滞在時間が77分になるように設定した。 Next, from 50 minutes before the start of the polymerization, 0.09 mol% of ammonium persulfate, which is a redox polymerization initiator, 0.32 mol% of ammonium bisulfite, and sulfuric acid with respect to the monomer (100 mol%) to be charged at the start of the polymerization. Ferrous iron (Fe 2 SO 4 · 7H 2 O) was dissolved in deionized water and continuously supplied so that the concentration was 0.3 ppm and sulfuric acid was 0.05 mol%, and the stirring power was 5.4 kW / stirring is carried out for at m 3, the average residence time of the monomers in the polymerization vessel was set to be 77 minutes.

ついで、重合開始時に、アクリロニトリル(以下ANと略す)単量体単位:メタクリル酸(以下MAAと略す)単量体単位(モル比)=99.1:0.9からなる単量体を水/単量体=2.4(質量比)となるように、単量体の連続供給を開始した。   Then, at the start of polymerization, a monomer consisting of acrylonitrile (hereinafter abbreviated as AN) monomer unit: methacrylic acid (hereinafter abbreviated as MAA) monomer unit (molar ratio) = 99.1: 0.9 was added to water / The continuous supply of the monomer was started so that the monomer was 2.4 (mass ratio).

このときの供給液中に含まれるアクリロニトリル単量体のmol濃度A(mol/l)、全単量体のmol濃度B(mol/l)レドックス開始剤のmol濃度C(mol/l)およびA/B、C/B×100は表1に示したとおりである。   The mol concentration A (mol / l) of the acrylonitrile monomer contained in the supply liquid at this time, the mol concentration B (mol / l) of all monomers, the mol concentration C (mol / l) of the redox initiator, and A / B and C / B × 100 are as shown in Table 1.

その後、重合開始1時間後に重合反応温度を50℃まで下げて温度を10時間保持した後、重合釜オーバーフロー口より連続的に重合体スラリーを取り出した。   Thereafter, 1 hour after the start of polymerization, the polymerization reaction temperature was lowered to 50 ° C. and the temperature was maintained for 10 hours, and then the polymer slurry was continuously taken out from the polymerization kettle overflow port.

重合体スラリーには、シュウ酸ナトリウム0.37×10−2モル%、重炭酸ナトリウム1.78×10−2モル%を脱イオン交換水に溶解した重合停止剤水溶液を、重合スラリーのpHが5.5〜6.0になるように加えた。このときの重合スラリーを用いてアクリロニトリル系共重合体粒子の粒子径を測定した。結果を表2に示す。   For the polymer slurry, an aqueous solution of a polymerization terminator in which sodium oxalate 0.37 × 10 −2 mol% and sodium bicarbonate 1.78 × 10 −2 mol% was dissolved in deionized water was used. It added so that it might become 5.5-6.0. The particle diameter of the acrylonitrile copolymer particles was measured using the polymerization slurry at this time. The results are shown in Table 2.

この重合スラリーをオリバー型連続フィルターによって脱水、洗浄処理した後、重合体に対して10倍量の脱イオン交換水(70リットル)を加え、再び分散させた。再分散後の重合体スラリーを再度オリバー型連続フィルターによって脱水処理し、ペレット成形して、80℃にて8時間、熱風循環型の乾燥機で乾燥後、ハンマーミルで粉砕し、ポリアクリロニトリル系共重合体粒子を得た。得られたポリアクリロニトリル系粒子の組成、フィルター差圧を表2に示す。
(実施例2)
The polymer slurry was dehydrated and washed with an Oliver type continuous filter, and 10 times the amount of deionized water (70 liters) was added to the polymer and dispersed again. The polymer slurry after re-dispersion is again dehydrated with an Oliver type continuous filter, pelletized, dried at 80 ° C. for 8 hours in a hot air circulating dryer, pulverized with a hammer mill, and polyacrylonitrile-based copolymer. Polymer particles were obtained. Table 2 shows the composition of the obtained polyacrylonitrile-based particles and the filter differential pressure.
(Example 2)

重合開始50分前から、重合開始時投入予定の単量体(100mol%)に対してレドックス重合開始剤である過硫酸アンモニウムを0.12mol%、亜硫酸水素アンモニウムを0.41mol%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌動力3.4kW/mにて撹拌を行い、重合開始時に、単量体を水/単量体=5.0(質量比)となるように、単量体の連続供給を開始した以外は実施例1と同様に実施した。得られたアクリロニトリル系共重合体粒子の組成、粒子径、フィルター差圧は表2に示す。
(実施例3)
From 50 minutes before the start of polymerization, the redox polymerization initiator ammonium persulfate is 0.12 mol% and ammonium bisulfite is 0.41 mol% with respect to the monomer (100 mol%) to be charged at the start of polymerization. Each was dissolved in deionized water and continuously supplied, stirred with a stirring power of 3.4 kW / m 3, and at the start of polymerization, the monomer was water / monomer = 5.0 (mass ratio). In the same manner as in Example 1 except that continuous monomer supply was started. Table 2 shows the composition, particle diameter, and filter differential pressure of the resulting acrylonitrile copolymer particles.
(Example 3)

重合開始50分前から、重合開始時投入予定の単量体(100mol%)に対してレドックス重合開始剤である過硫酸アンモニウムを0.12mol%、亜硫酸水素アンモニウムを0.40mol%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌動力3.1kW/mにて撹拌を行い、重合開始時に、単量体を水/単量体=4.8(質量比)となるように、単量体の連続供給を開始した以外は実施例1と同様に実施した。得られたアクリロニトリル系共重合体粒子の組成、粒子径、フィルター差圧は表2に示す。
(実施例4)
From 50 minutes before the start of polymerization, the redox polymerization initiator ammonium persulfate is 0.12 mol% and ammonium bisulfite is 0.40 mol% with respect to the monomer (100 mol%) to be charged at the start of polymerization. Each was dissolved in deionized water and continuously supplied, stirred with a stirring power of 3.1 kW / m 3, and at the start of polymerization, the monomer was water / monomer = 4.8 (mass ratio). In the same manner as in Example 1 except that continuous monomer supply was started. Table 2 shows the composition, particle diameter, and filter differential pressure of the resulting acrylonitrile copolymer particles.
Example 4

重合開始50分前から、重合開始時投入予定の単量体(100mol%)に対してレドックス重合開始剤である過硫酸アンモニウムを0.10mol%、亜硫酸水素アンモニウムを0.34mol%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌動力3.0kW/mにて撹拌を行い、重合開始時に、AN単量体単位:MAA単量体単位:アクリルアミド(以下AAmと略す)単量体単位(モル比)=97.1:0.6:2.3からなる単量体を水/単量体=2.6(質量比)となるように、単量体の連続供給を開始した以外は実施例1と同様に実施した。得られたアクリロニトリル系共重合体粒子の組成、粒子径、フィルター差圧は表2に示す。
(比較例1)
From 50 minutes before the start of the polymerization, the redox polymerization initiator ammonium persulfate is 0.10 mol% and the ammonium bisulfite is 0.34 mol% with respect to the monomer (100 mol%) to be charged at the start of the polymerization. Each was dissolved in deionized water and continuously supplied, and stirred at a stirring power of 3.0 kW / m 3. At the start of polymerization, AN monomer unit: MAA monomer unit: acrylamide (hereinafter referred to as AAm) Abbreviation) monomer unit (molar ratio) = 97.1: 0.6: 2.3 monomer to water / monomer = 2.6 (mass ratio) It implemented similarly to Example 1 except having started continuous supply. Table 2 shows the composition, particle diameter, and filter differential pressure of the resulting acrylonitrile copolymer particles.
(Comparative Example 1)

重合開始50分前から、重合開始時投入予定の単量体(100mol%)に対してレドックス重合開始剤である過硫酸アンモニウムを0.12mol%、亜硫酸水素アンモニウムを0.40mol%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌動力1.4kW/mにて撹拌を行い、重合開始時に、単量体を水/単量体=4.8(質量比)となるように、単量体の連続供給を開始した以外は実施例1と同様に実施した。得られたアクリロニトリル系共重合体粒子の組成、粒子径、フィルター差圧は表2に示した通りで、アクリロニトリル系共重合体粒子の粒度分布の標準偏差、体積平均粒子径、200μm以上及び300μm以上の粒子の体積割合が実施例1と比較して大きかった。また、実施例1と比較してフィルター差圧も高く、実施例1のアクリロニトリル系共重合体粒子よりも溶解しにくい粒子であった。
(比較例2)
From 50 minutes before the start of polymerization, the redox polymerization initiator ammonium persulfate is 0.12 mol% and ammonium bisulfite is 0.40 mol% with respect to the monomer (100 mol%) to be charged at the start of polymerization. Each was dissolved in deionized water and continuously supplied, and stirred with a stirring power of 1.4 kW / m 3. At the start of polymerization, the monomer was water / monomer = 4.8 (mass ratio). In the same manner as in Example 1 except that continuous monomer supply was started. The composition, particle diameter, and filter differential pressure of the obtained acrylonitrile copolymer particles are as shown in Table 2, and the standard deviation of the particle size distribution of the acrylonitrile copolymer particles, the volume average particle diameter, 200 μm or more and 300 μm or more. The volume ratio of the particles was larger than that of Example 1. Also, the filter differential pressure was higher than in Example 1, and the particles were more difficult to dissolve than the acrylonitrile copolymer particles in Example 1.
(Comparative Example 2)

重合開始50分前から、重合開始時投入予定の単量体(100mol%)に対してレドックス重合開始剤である過硫酸アンモニウムを0.11mol%、亜硫酸水素アンモニウムを0.36mol%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌動力2.7kW/mにて撹拌を行い、重合開始時に、単量体を水/単量体=2.4(質量比)となるように、AN単量体単位:MAA単量体単位(モル比)=99.0:1.0からなる単量体の連続供給を開始した以外は実施例1と同様に実施した。得られたアクリロニトリル系共重合体粒子の組成、粒子径、フィルター差圧は表2に示した通りで、アクリロニトリル系共重合体粒子の粒度分布の標準偏差、体積平均粒子径、200μm以上及び300μm以上の粒子の体積割合が実施例1と比較して大きかった。また、実施例1と比較してフィルター差圧も高く、実施例1のアクリロニトリル系共重合体粒子よりも溶解しにくい粒子であった。
(比較例3)
From 50 minutes before the start of polymerization, the redox polymerization initiator ammonium persulfate is 0.11 mol% and ammonium bisulfite is 0.36 mol% with respect to the monomer (100 mol%) to be charged at the start of polymerization. Each was dissolved in deionized water and continuously supplied, stirred with a stirring power of 2.7 kW / m 3, and at the start of polymerization, the monomer was water / monomer = 2.4 (mass ratio). Thus, the same procedure as in Example 1 was performed except that continuous supply of a monomer comprising AN monomer unit: MAA monomer unit (molar ratio) = 99.0: 1.0 was started. The composition, particle diameter, and filter differential pressure of the obtained acrylonitrile copolymer particles are as shown in Table 2, and the standard deviation of the particle size distribution of the acrylonitrile copolymer particles, the volume average particle diameter, 200 μm or more and 300 μm or more. The volume ratio of the particles was larger than that of Example 1. Also, the filter differential pressure was higher than in Example 1, and the particles were more difficult to dissolve than the acrylonitrile copolymer particles in Example 1.
(Comparative Example 3)

重合開始50分前から、重合開始時投入予定の単量体(100mol%)に対してレドックス重合開始剤である過硫酸アンモニウムを0.09mol%、亜硫酸水素アンモニウムを0.32mol%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌動力8.0kW/mにて撹拌を行い、重合開始時に、単量体を水/単量体=2.2(質量比)となるように、AN単量体単位:MAA単量体単位:AAm単量体単位(モル比)=97.1:0.6:2.3からなる単量体の連続供給を開始した以外は実施例1と同様に実施した。得られたアクリロニトリル系共重合体粒子の組成、粒子径、フィルター差圧は表2に示した通りで、アクリロニトリル系共重合体粒子の粒度分布の標準偏差が実施例1と比較して大きく、体積平均粒子径、200μm以上及び300μm以上の粒子の体積割合が実施例1と比較してかなり大きくなった。また、実施例1と比較してフィルター差圧も高く、実施例1のアクリロニトリル系共重合体粒子よりも溶解しにくい粒子であった。
(比較例4)
From 50 minutes before the start of polymerization, the redox polymerization initiator ammonium persulfate is 0.09 mol% and ammonium bisulfite is 0.32 mol% with respect to the monomer (100 mol%) to be charged at the start of polymerization. Each was dissolved in deionized water and continuously supplied, stirred at a stirring power of 8.0 kW / m 3, and at the start of polymerization, the monomer was water / monomer = 2.2 (mass ratio). Other than starting the continuous supply of the monomer consisting of AN monomer unit: MAA monomer unit: AAm monomer unit (molar ratio) = 97.1: 0.6: 2.3 Was carried out in the same manner as in Example 1. The composition, particle diameter, and filter differential pressure of the obtained acrylonitrile copolymer particles are as shown in Table 2, and the standard deviation of the particle size distribution of the acrylonitrile copolymer particles is larger than that of Example 1, and the volume Compared with Example 1, the volume ratio of particles having an average particle diameter of 200 μm or more and 300 μm or more was considerably increased. Also, the filter differential pressure was higher than in Example 1, and the particles were more difficult to dissolve than the acrylonitrile copolymer particles in Example 1.
(Comparative Example 4)

重合開始50分前から、重合開始時投入予定の単量体(100mol%)に対してレドックス重合開始剤である過硫酸アンモニウムを0.08mol%、亜硫酸水素アンモニウムを0.29mol%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌動力0.9kW/mにて撹拌を行い、重合開始時に、単量体を水/単量体=3.0(質量比)となるように、AN単量体単位:MAA単量体単位:AAm単量体単位(モル比)=97.1:0.6:2.3からなる単量体の連続供給を開始した以外は実施例1と同様に実施した。得られたアクリロニトリル系共重合体粒子の組成、粒子径、フィルター差圧は表2に示した通りで、アクリロニトリル系共重合体粒子の粒度分布の標準偏差、体積平均粒子径、10μm以下の粒子の体積割合が実施例1と比較して大きかった。また、実施例1と比較してフィルター差圧も高く、実施例1のアクリロニトリル系共重合体粒子よりも溶解しにくい粒子であった。
(比較例5)
From 50 minutes before the start of polymerization, the redox polymerization initiator ammonium persulfate is 0.08 mol% and ammonium bisulfite is 0.29 mol% with respect to the monomer (100 mol%) to be charged at the start of polymerization. Each is dissolved in deionized water and continuously supplied, and stirred at a stirring power of 0.9 kW / m 3. At the start of polymerization, the monomer is water / monomer = 3.0 (mass ratio). Other than starting the continuous supply of the monomer consisting of AN monomer unit: MAA monomer unit: AAm monomer unit (molar ratio) = 97.1: 0.6: 2.3 Was carried out in the same manner as in Example 1. The composition, particle size, and filter differential pressure of the obtained acrylonitrile copolymer particles are as shown in Table 2, and the standard deviation of the particle size distribution of the acrylonitrile copolymer particles, the volume average particle size of particles of 10 μm or less. The volume ratio was larger than that in Example 1. Also, the filter differential pressure was higher than in Example 1, and the particles were more difficult to dissolve than the acrylonitrile copolymer particles in Example 1.
(Comparative Example 5)

重合開始50分前から、重合開始時投入予定の単量体(100mol%)に対してレドックス重合開始剤である過硫酸アンモニウムを0.10mol%、亜硫酸水素アンモニウムを0.34mol%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌動力2.2kW/mにて撹拌を行い、重合開始時に、単量体を水/単量体=3.0(質量比)となるように、AN単単量体100mol%の単量体の連続供給を開始した以外は実施例1と同様に実施した。得られたアクリロニトリル系共重合体粒子の組成、粒子径、フィルター差圧は表2に示した通りで、アクリロニトリル系共重合体粒子の粒度分布の標準偏差、体積平均粒子径、200μm以上及び300μm以上の粒子の体積割合が実施例1と比較して大きかった。また、フィルター差圧を測定したところ、フィルター入圧の変化が大きく、測定できなかった。
(比較例6)
From 50 minutes before the start of the polymerization, the redox polymerization initiator ammonium persulfate is 0.10 mol% and the ammonium bisulfite is 0.34 mol% with respect to the monomer (100 mol%) to be charged at the start of the polymerization. Each is dissolved in deionized water and continuously supplied and stirred at a stirring power of 2.2 kW / m 3. At the start of polymerization, the monomer is water / monomer = 3.0 (mass ratio). In the same manner as in Example 1 except that continuous supply of 100 mol% of the AN single monomer was started. The composition, particle diameter, and filter differential pressure of the obtained acrylonitrile copolymer particles are as shown in Table 2, and the standard deviation of the particle size distribution of the acrylonitrile copolymer particles, the volume average particle diameter, 200 μm or more and 300 μm or more. The volume ratio of the particles was larger than that of Example 1. Further, when the filter differential pressure was measured, the change in the filter pressure was large and could not be measured.
(Comparative Example 6)

重合開始50分前から、重合開始時投入予定の単量体(100mol%)に対してレドックス重合開始剤である過硫酸アンモニウムを0.02mol%、亜硫酸水素アンモニウムを0.16mol%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌動力2.2kW/mにて撹拌を行い、重合開始時に、単量体を水/単量体=4.0(質量比)となるように、AN単量体単位:MAA単量体単位:AAm単量体単位(モル比)=98.0:0.5:1.5からなる単量体の連続供給を開始した以外は実施例1と同様に実施した。得られたアクリロニトリル系共重合体粒子の組成、粒子径、フィルター差圧は表2に示した通りで、アクリロニトリル系共重合体粒子の粒度分布の標準偏差、体積平均粒子径、200μm以上及び300μm以上の粒子の体積割合が実施例1と比較して大きかった。また、フィルター差圧を測定したところ、フィルター入圧の変化が大きく、測定できなかった。 From 50 minutes before the start of polymerization, the redox polymerization initiator ammonium persulfate is 0.02 mol% and ammonium bisulfite is 0.16 mol% with respect to the monomer (100 mol%) to be charged at the start of polymerization. Each was dissolved in deionized water and continuously supplied, and stirred with a stirring power of 2.2 kW / m 3. At the start of polymerization, the monomer was water / monomer = 4.0 (mass ratio). Other than starting the continuous supply of the monomer consisting of AN monomer unit: MAA monomer unit: AAm monomer unit (molar ratio) = 98.0: 0.5: 1.5 Was carried out in the same manner as in Example 1. The composition, particle diameter, and filter differential pressure of the obtained acrylonitrile copolymer particles are as shown in Table 2, and the standard deviation of the particle size distribution of the acrylonitrile copolymer particles, the volume average particle diameter, 200 μm or more and 300 μm or more. The volume ratio of the particles was larger than that of Example 1. Further, when the filter differential pressure was measured, the change in the filter pressure was large and could not be measured.

Figure 2014201728
Figure 2014201728

Figure 2014201728
Figure 2014201728

Claims (8)

反応器に単量体、レドックス系開始剤及び脱イオン交換水を連続的に供給し、反応器から反応液を連続的に取り出すレドックス水系析出重合による、アクリロニトリル系共重合体粒子の製造方法であって、以下に定義する反応器攪拌動力が3.0kW/m以上7.0kW/m以下であるアクリロニトリル系共重合体粒子の製造方法。
反応器攪拌動力とは、反応器内に溢流口まで満たした水が攪拌により受けた正味の単位体積当たりの電力であり、具体的には、反応器内が空の状態で攪拌翼を回転させた場合の電力値と、反応器内に溢流口まで水を満たした状態で攪拌翼を回転させた場合の電力値の差を求め、反応器内に溢流口まで満たした水の量で割った数値である。
This is a method for producing acrylonitrile-based copolymer particles by redox aqueous precipitation polymerization in which a monomer, a redox initiator and deionized water are continuously supplied to a reactor, and a reaction solution is continuously taken out from the reactor. Te method of reactor stirring power is 3.0 kW / m 3 or more 7.0 kW / m 3 or less is acrylonitrile copolymer particles as defined below.
Reactor agitation power is the net power per unit volume received by agitation of water that has been filled to the overflow in the reactor. Specifically, the agitation blades are rotated while the reactor is empty. The amount of water filled in the reactor up to the overflow port is obtained by calculating the difference between the power value in the reactor and the power value in the case where the stirring blade is rotated while the reactor is filled with water up to the overflow port. The number divided by.
反応器に供給する、供給液中に含まれるアクリロニトリル単量体のmol濃度A(mol/l)と、供給液中に含まれる全単量体のmol濃度B(mol/l)が以下の式を満たす請求項1に記載のアクリロニトリル系共重合体粒子の製造方法。
0.95≦A/B≦0.995
The mol concentration A (mol / l) of the acrylonitrile monomer contained in the feed liquid supplied to the reactor and the mol concentration B (mol / l) of all monomers contained in the feed liquid are expressed by the following equations. The manufacturing method of the acrylonitrile-type copolymer particle of Claim 1 which satisfy | fills.
0.95 ≦ A / B ≦ 0.995
反応器に供給する、供給液中に含まれるレドックス開始剤のmol濃度C(mol/l)と、供給液中に含まれる全単量体のmol濃度B(mol/l)が以下の式を満たす請求項1または2に記載のアクリロニトリル系共重合体粒子の製造方法。
0.20≦C/B×100≦0.65
The molar concentration C (mol / l) of the redox initiator contained in the feed liquid supplied to the reactor and the molar concentration B (mol / l) of all monomers contained in the feed liquid are expressed by the following equations. The manufacturing method of the acrylonitrile-type copolymer particle of Claim 1 or 2 satisfy | filled.
0.20 ≦ C / B × 100 ≦ 0.65
反応器に供給する、供給液中のイオン交換水W(kg)と供給液中の全単量体の量M(k
g)が以下の式を満たす請求項1から3いずれか一項に記載のアクリロニトリル系共重合体粒子の製造方法。
1.5≦W/M≦5.5
Ion-exchanged water W (kg) in the feed solution and total monomer amount M (k in the feed solution supplied to the reactor
The method for producing acrylonitrile-based copolymer particles according to any one of claims 1 to 3, wherein g) satisfies the following formula.
1.5 ≦ W / M ≦ 5.5
体積平均粒子径が30μm以上40μm以下かつ、以下の式により得られる、体積平均粒子径の標準偏差σが0.25以下であるアクリロニトリル系共重合体粒子。

Figure 2014201728
Acrylonitrile copolymer particles having a volume average particle diameter of 30 μm or more and 40 μm or less and a standard deviation σ of volume average particle diameter of 0.25 or less obtained by the following formula.

Figure 2014201728
体積換算粒子径が10μm以下の粒子の体積の割合が1.5%以下である請求項5に記載のアクリロニトリル系共重合体粒子。   The acrylonitrile copolymer particles according to claim 5, wherein the volume ratio of the particles having a volume conversion particle diameter of 10 μm or less is 1.5% or less. 体積換算粒子径が200μm以上の粒子の体積の割合が1.0%以下である請求項5または6に記載のアクリロニトリル系共重合体粒子。   The acrylonitrile-based copolymer particles according to claim 5 or 6, wherein a volume ratio of particles having a volume-converted particle diameter of 200 µm or more is 1.0% or less. 体積換算粒子径が300μm以上の粒子の体積の割合が0.1%以下である請求項5から7いずれか一項に記載のアクリロニトリル系共重合体粒子。   The acrylonitrile copolymer particles according to any one of claims 5 to 7, wherein a volume ratio of particles having a volume-converted particle diameter of 300 µm or more is 0.1% or less.
JP2013081566A 2013-04-09 2013-04-09 Acrylonitrile-based copolymer particle, and production method of the same Pending JP2014201728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081566A JP2014201728A (en) 2013-04-09 2013-04-09 Acrylonitrile-based copolymer particle, and production method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081566A JP2014201728A (en) 2013-04-09 2013-04-09 Acrylonitrile-based copolymer particle, and production method of the same

Publications (1)

Publication Number Publication Date
JP2014201728A true JP2014201728A (en) 2014-10-27

Family

ID=52352464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081566A Pending JP2014201728A (en) 2013-04-09 2013-04-09 Acrylonitrile-based copolymer particle, and production method of the same

Country Status (1)

Country Link
JP (1) JP2014201728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066342A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Method for preparing (meth)acrylonitrile-based polymer for manufacture of carbon fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066342A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Method for preparing (meth)acrylonitrile-based polymer for manufacture of carbon fiber
KR20190038321A (en) * 2017-09-29 2019-04-08 주식회사 엘지화학 Method for preparing (meth)acrylonitrile based polymer for preparing carbon fiber
CN110062773A (en) * 2017-09-29 2019-07-26 株式会社Lg化学 It is used to prepare the preparation method of (methyl) acrylonitrile polymers of carbon fiber
JP2020510120A (en) * 2017-09-29 2020-04-02 エルジー・ケム・リミテッド Method for producing (meth) acrylonitrile-based polymer for producing carbon fiber
KR102169501B1 (en) 2017-09-29 2020-10-23 주식회사 엘지화학 Method for preparing (meth)acrylonitrile based polymer for preparing carbon fiber
CN110062773B (en) * 2017-09-29 2021-05-25 株式会社Lg化学 Method for producing (meth) acrylonitrile polymer for producing carbon fiber
US11046792B2 (en) 2017-09-29 2021-06-29 Lg Chem, Ltd. Method of preparing (meth)acrylonitrile-based polymer for preparing carbon fiber

Similar Documents

Publication Publication Date Title
JP5274774B2 (en) Vinylidene fluoride polymer and method for producing the same
TW201718661A (en) Aqueous emulsion of modified polytetrafluoroethylene, fine powder and method for producing stretched porous body
JP5484906B2 (en) Method for producing polyacrylonitrile-based precursor fiber for carbon fiber
CN104372445A (en) Preparation method of polyacrylonitrile carbon fiber with evenly distributed copolymerization sequence
JP2010229577A (en) Method for producing carbon fiber precursor fiber and method for producing carbon fiber
JP2013103992A (en) Polyacrylonitrile-based copolymer for carbon fiber precursor fiber
JP2014201728A (en) Acrylonitrile-based copolymer particle, and production method of the same
CN115043963B (en) Polyvinylidene fluoride dispersion liquid with high solid content and preparation method and application thereof
JP2012201739A (en) Polyacrylonitrile polymer particle and method for producing the same
JP2012214657A (en) Acrylonitrile-based copolymer for carbon fiber
CN113402658B (en) Polyacrylonitrile and preparation method and application thereof
CN111304768B (en) High-crystallinity polyacrylonitrile nascent fiber and preparation method thereof
JP5148137B2 (en) Acrylic fiber spinning dope and method for producing the same
CN109926026B (en) Gel membrane for decolorizing ion exchange type printing and dyeing wastewater and preparation method thereof
JP2010174161A (en) Method for producing dispersion of polyacrylonitrile-based polymer for precursor fiber of carbon fiber
JP2015160953A (en) Method for producing acrylonitrile-based polymer
JP2013044057A (en) Acrylonitrile-based polymer solution, method for producing the same and method for producing carbon fiber precursor acrylonitrile-based fiber
CN113056504A (en) Method for producing a heat-treated PVDF
JP2009084553A (en) Method for producing rubbery polymer for electronic material and rubbery polymer for electronic material
JP5207459B2 (en) Polymer particle for carbon fiber precursor acrylic fiber and carbon fiber precursor acrylic fiber
JP2010144079A (en) Method for producing acrylonitrile copolymer
JP2015048378A (en) Acrylonitrile-based polymer particle and production method
JP2013237746A (en) Method for producing acrylonitrile-based polymer
JPH11140131A (en) Polyacrylonitrile-based polymer particle having excellent solubility, preparation thereof and evaluation method
JP2013043904A (en) Acrylonitrile-based polymer and method for producing the same