JP2010144079A - Method for producing acrylonitrile copolymer - Google Patents

Method for producing acrylonitrile copolymer Download PDF

Info

Publication number
JP2010144079A
JP2010144079A JP2008323795A JP2008323795A JP2010144079A JP 2010144079 A JP2010144079 A JP 2010144079A JP 2008323795 A JP2008323795 A JP 2008323795A JP 2008323795 A JP2008323795 A JP 2008323795A JP 2010144079 A JP2010144079 A JP 2010144079A
Authority
JP
Japan
Prior art keywords
polymerization
acrylonitrile
acrylonitrile copolymer
persulfate
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008323795A
Other languages
Japanese (ja)
Inventor
Yusuke Niimen
祐介 新免
Norifumi Hirota
憲史 廣田
Naomasa Matsuyama
直正 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2008323795A priority Critical patent/JP2010144079A/en
Publication of JP2010144079A publication Critical patent/JP2010144079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for allowing the viscosity of a polymerization suspension to be kept at a low level while coagulating polymer fine particles in a polymerization system, in aqueous suspension polymerization of an acrylonitrile copolymer. <P>SOLUTION: In the method for producing the acrylonitrile copolymer, a monomer composition containing acrylonitrile, a sulfite as a reducing agent, a persulfate as an oxidizing agent, and ammonium sulfate are continuously supplied into the system and subjected to aqueous suspension polymerization, and the acrylonitrile copolymer is continuously discharged to the outside of the system, wherein formula (1) and (2) are satisfied, wherein formula (1) is 5.7≤Y/X≤9.2 and formula (2) is 0.7≤Y/(X+Z)≤3.7, and X, Y, and Z are respectively molarity of the persulfate ion originating from the oxidizing agent, molarity of the sulfite ion originating from the reducing agent, and molarity of the sulfate ion originating from ammonium sulfate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アクリロニトリル系共重合体の製造方法に関する。   The present invention relates to a method for producing an acrylonitrile-based copolymer.

炭素繊維の前駆体となるアクリロニトリル系共重合体は、アクリロニトリルを含む単量体組成物を水系懸濁重合して製造されている。水系懸濁重合においては、重合系内の重合懸濁液の粘度を低く保つことで、単量体、重合開始剤、助剤及び重合体を均一に分散させることが重要である。しかし、一般的に、重合系内に重合体微粒子が多く存在すると、重合系内の重合懸濁液の粘度が上昇することが知られている。   The acrylonitrile copolymer used as the carbon fiber precursor is produced by aqueous suspension polymerization of a monomer composition containing acrylonitrile. In the aqueous suspension polymerization, it is important to uniformly disperse the monomer, the polymerization initiator, the auxiliary agent and the polymer by keeping the viscosity of the polymerization suspension in the polymerization system low. However, it is generally known that when a large amount of polymer fine particles are present in the polymerization system, the viscosity of the polymerization suspension in the polymerization system increases.

特許文献1では、水系懸濁重合後に硫酸アルミニウムとエチレンジアミン四酢酸を添加することで、重合懸濁液中の重合体微粒子を凝集会合させ、濾過洗浄に適した重合体粒子を形成させている。
特開昭63−43907号公報
In Patent Document 1, aluminum sulfate and ethylenediaminetetraacetic acid are added after aqueous suspension polymerization to aggregate and associate polymer fine particles in the polymerization suspension, thereby forming polymer particles suitable for filtration and washing.
JP-A 63-43907

しかし、この重合懸濁液を濾過洗浄するためには、pHを3.7以下に保つ必要がある。また、得られたアクリロニトリル系共重合体から炭素繊維を製造する場合、洗浄後重合体粒子中に残存した水酸化アルミニウムが、紡糸工程以降で種々のトラブルの要因となる。また、重合後の重合懸濁液にさらに操作を加えなければならないため、操作が煩雑になりやすいなどの問題がある。   However, in order to filter and wash this polymerization suspension, it is necessary to keep the pH at 3.7 or lower. Moreover, when manufacturing carbon fiber from the obtained acrylonitrile-type copolymer, the aluminum hydroxide which remained in the polymer particle after washing | cleaning becomes a cause of various trouble after a spinning process. In addition, since further operation must be added to the polymerization suspension after polymerization, there is a problem that the operation tends to be complicated.

本発明の目的は、アクリロニトリル系共重合体の水系懸濁重合において、重合系内の重合体微粒子を凝集させ、その重合懸濁液の粘度を低く保つことができる方法を提供することにある。   An object of the present invention is to provide a method capable of agglomerating polymer fine particles in a polymerization system and maintaining the viscosity of the polymerization suspension in an aqueous suspension polymerization of an acrylonitrile copolymer.

本発明は、アクリロニトリルを含む単量体組成物、還元剤としての亜硫酸塩、酸化剤としての過硫酸塩、及び硫酸アンモニウムを連続して系内に供給して水系懸濁重合し、連続して系外にアクリロニトリル系共重合体を排出するアクリロニトリル系共重合体の製造方法であって、下記式(1)及び(2)を満足することを特徴とするアクリロニトリル系共重合体の製造方法である。   In the present invention, a monomer composition containing acrylonitrile, a sulfite as a reducing agent, a persulfate as an oxidizing agent, and ammonium sulfate are continuously supplied into the system to carry out aqueous suspension polymerization, A method for producing an acrylonitrile-based copolymer that discharges acrylonitrile-based copolymer to the outside, wherein the following formulas (1) and (2) are satisfied.

5.7≦Y/X≦9.2 (1)
0.7≦Y/(X+Z)≦3.7 (2)
ただし、X、Y及びZは、それぞれ、重合系内に供給される、酸化剤由来の過硫酸イオンのモル濃度、還元剤由来の亜硫酸イオンのモル濃度、及び硫酸アンモニウム由来の硫酸イオンのモル濃度である。
5.7 ≦ Y / X ≦ 9.2 (1)
0.7 ≦ Y / (X + Z) ≦ 3.7 (2)
However, X, Y and Z are respectively the molar concentration of persulfate ions derived from the oxidizing agent, the molar concentration of sulfite ions derived from the reducing agent, and the molar concentration of sulfate ions derived from ammonium sulfate, which are supplied into the polymerization system. is there.

本発明によれば、アクリロニトリル系共重合体の水系懸濁重合において、重合体微粒子を凝集させ、その重合懸濁液粘度を低く保つことができる。   According to the present invention, in the aqueous suspension polymerization of an acrylonitrile copolymer, polymer fine particles can be aggregated, and the viscosity of the polymerization suspension can be kept low.

(単量体組成物について)
本発明で用いる単量体は、アクリロニトリルと、アクリロニトリルと共重合可能なビニル系単量体である。この共重合可能なビニル系単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル類;塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類;(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸等の酸類及びそれらの塩類;マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル等が挙げられる。これらは1種で使用又は2種以上を併用できる。
(About monomer composition)
The monomer used in the present invention is acrylonitrile and a vinyl monomer copolymerizable with acrylonitrile. Examples of the copolymerizable vinyl monomer include (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth) acrylate. Vinyl halides such as vinyl chloride, vinyl bromide and vinylidene chloride; acids such as (meth) acrylic acid, itaconic acid, maleic acid, fumaric acid and crotonic acid and salts thereof; maleic acid imide, phenylmaleimide, (Meth) acrylamide, styrene, α-methylstyrene, vinyl acetate and the like can be mentioned. These can be used alone or in combination of two or more.

例えば、カルボン酸基を有するアクリロニトリル系共重合体を製造するためには、共重合可能なビニル系単量体として、(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸等のカルボキシル基を有するビニル系単量体を用いればよい。中でも、(メタ)アクリル酸、イタコン酸が好ましい。また、アクリルアミド単位を有するアクリロニトリル系共重合体を製造するためには、共重合可能なビニル系単量体として、アクリルアミドを用いればよい。   For example, in order to produce an acrylonitrile copolymer having a carboxylic acid group, as a copolymerizable vinyl monomer, carboxyl such as (meth) acrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, etc. A vinyl monomer having a group may be used. Of these, (meth) acrylic acid and itaconic acid are preferred. In order to produce an acrylonitrile copolymer having an acrylamide unit, acrylamide may be used as a copolymerizable vinyl monomer.

単量体組成物の組成比は、目的とするアクリロニトリル系共重合体の組成に応じて適宜設定することができる。   The composition ratio of the monomer composition can be appropriately set according to the composition of the target acrylonitrile-based copolymer.

(アクリロニトリル系共重合体について)
本発明で製造するアクリロニトリル系共重合体は、炭素繊維にしたときの共重合成分に起因する欠陥点を少なくし、炭素繊維の品質並びに性能を向上させる目的から、アクリロニトリル単位を90質量%以上含むことが好ましく、96質量%以上含むことがより好ましく、98.5質量%以上含むことがよりさらに好ましい。
(Acrylonitrile copolymer)
The acrylonitrile-based copolymer produced in the present invention contains 90% by mass or more of acrylonitrile units for the purpose of reducing defects caused by copolymerization components when converted into carbon fibers and improving the quality and performance of carbon fibers. The content is preferably 96% by mass or more, more preferably 98.5% by mass or more.

アクリロニトリル系共重合体は、焼成工程での耐炎化反応性を高める観点から、カルボン酸基を有することが好ましい。   The acrylonitrile-based copolymer preferably has a carboxylic acid group from the viewpoint of enhancing the flame resistance reactivity in the firing step.

アクリロニトリル系共重合体中に含まれるカルボン酸基は、焼成工程での耐炎化反応性を向上させる役割を果たす一方、炭素繊維の欠陥点となるため、カルボン酸基の含有量を調節する必要がある。アクリロニトリル系共重合体中のカルボン酸基の含有量は、5.0×10-5当量/g以上2.0×10-4当量/g以下が好ましく、6.0×10-5当量/g以上1.5×10-4当量/g以下がより好ましい。カルボン酸基の含有量を5.0×10-5当量/g以上であれば、焼成工程での耐炎化反応性が低くなることがなく、さらに高温での処理を必要としない。高温で処理を行うと暴走反応が起こりやすく、安定した焼成工程通過性を得ることが困難となる一方、暴走反応を抑制するために低速度での焼成を行うと経済的でない。カルボン酸基の含有量を2.0×10-4当量/g以下であれば、ポリマー中のニトリル基の閉環反応が迅速になることがないため繊維内部にまで酸化反応が進行する。仮に、繊維表層近傍のみ耐炎化構造が進行すると、次のさらに高温の炭素化工程において繊維中心部の耐炎化構造未発達な部分の分解が抑制できないため、炭素繊維の性能、特に引張弾性率が著しく低下する場合がある。 While the carboxylic acid group contained in the acrylonitrile-based copolymer serves to improve the flame resistance reactivity in the firing step, it becomes a defect point of the carbon fiber, so it is necessary to adjust the content of the carboxylic acid group. is there. The content of the carboxylic acid group in the acrylonitrile-based copolymer is preferably 5.0 × 10 −5 equivalent / g or more and 2.0 × 10 −4 equivalent / g or less, and 6.0 × 10 −5 equivalent / g. More preferably, it is 1.5 × 10 −4 equivalent / g or less. When the content of the carboxylic acid group is 5.0 × 10 −5 equivalent / g or more, the flameproofing reactivity in the firing step is not lowered, and further, the treatment at a high temperature is not required. When the treatment is performed at a high temperature, a runaway reaction is likely to occur, and it is difficult to obtain a stable firing process passability. On the other hand, firing at a low speed in order to suppress the runaway reaction is not economical. If the content of the carboxylic acid group is 2.0 × 10 −4 equivalent / g or less, the cyclization reaction of the nitrile group in the polymer does not become rapid, so that the oxidation reaction proceeds to the inside of the fiber. If the flame-resistant structure advances only in the vicinity of the fiber surface layer, since the decomposition of the undeveloped portion of the fiber core at the next higher temperature carbonization process cannot be suppressed, the performance of the carbon fiber, particularly the tensile modulus, It may be significantly reduced.

また、アクリロニトリル系共重合体は、アクリルアミド単位を有することも好ましい。焼成工程での耐炎化反応性、及び熱環化反応速度は、カルボン酸基の含有量が支配的な要因であるが、少量のアクリルアミド単位が共存することで急激に増大する。また、アクリルアミド単位を含ませることで、溶剤に対する溶解性の向上、湿式紡糸又は乾湿式紡糸した凝固糸の緻密性が向上する。アクリロニトリル系共重合体中のアクリルアミド単位の含有量は、0.5質量%以上5質量%以下が好ましく、1質量%以上4質量%以下がより好ましい。   The acrylonitrile copolymer preferably has an acrylamide unit. The flameproofing reactivity and thermal cyclization reaction rate in the firing step are dominated by the content of carboxylic acid groups, but increase rapidly due to the coexistence of a small amount of acrylamide units. Further, by including an acrylamide unit, the solubility in a solvent is improved, and the denseness of a coagulated yarn obtained by wet spinning or dry-wet spinning is improved. The content of acrylamide units in the acrylonitrile copolymer is preferably 0.5% by mass or more and 5% by mass or less, and more preferably 1% by mass or more and 4% by mass or less.

重合体粒子の平均粒子径は、7μm以上9以下が好ましく、7.5μm以上8.5以下がより好ましい。重合体粒子の平均粒子径が7μm以上であれば、重合体粒子が程よく凝集し、重合時の釜内の粘度が低く保たれ、単量体、重合開始剤、助剤及び重合体を均一に分散させることができる。重合体粒子の平均粒子径が9μm以下であれば、溶剤への溶解時に溶剤が素早く浸透し、均一に溶解することができる。   The average particle diameter of the polymer particles is preferably 7 μm or more and 9 or less, and more preferably 7.5 μm or more and 8.5 or less. If the average particle diameter of the polymer particles is 7 μm or more, the polymer particles are moderately aggregated, the viscosity in the kettle during polymerization is kept low, and the monomer, polymerization initiator, auxiliary agent and polymer are uniformly distributed. Can be dispersed. If the average particle diameter of the polymer particles is 9 μm or less, the solvent can quickly permeate and dissolve uniformly when dissolved in the solvent.

(還元剤)
本発明では、レドックス重合開始剤を構成する還元剤として、亜硫酸塩を用いる。亜硫酸塩としては、亜硫酸水素アンモニウム、亜硫酸水素ナトリウム、亜硫酸ナトリウム等を用いることができる。
(Reducing agent)
In the present invention, sulfite is used as a reducing agent constituting the redox polymerization initiator. As the sulfite, ammonium bisulfite, sodium bisulfite, sodium sulfite and the like can be used.

(酸化剤)
本発明では、レドックス重合開始剤を構成する還元剤として、過硫酸塩を用いる。過硫酸塩としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等を用いることができる。
(Oxidant)
In the present invention, persulfate is used as a reducing agent constituting the redox polymerization initiator. As the persulfate, ammonium persulfate, sodium persulfate, potassium persulfate and the like can be used.

(還元剤と酸化剤の比について)
重合系内に供給される、酸化剤由来の過硫酸イオンのモル濃度をX、還元剤由来の亜硫酸イオンのモル濃度をYとしたとき、下記式(1)を満たすようにする。
(About the ratio of reducing agent to oxidizing agent)
When the molar concentration of the persulfate ions derived from the oxidizing agent supplied into the polymerization system is X and the molar concentration of the sulfite ions derived from the reducing agent is Y, the following formula (1) is satisfied.

5.7≦Y/X≦9.2 (1)
モル濃度比(Y/X)が5.7以上であれば、触媒の酸化還元反応によるラジカル生成が効率よく起こり、重合反応効率が上昇するため、工業的に非常に有利である。また、モル濃度比(Y/X)が9.2以下であれば、酸化還元反応により生成する亜硫酸水素ラジカルの濃度の増大を抑え、逆にラジカル同士が反応し失活することによる重合速度の低下を抑制することができる。モル濃度比(Y/X)は、6.5以上8.3以下がより好ましい。
5.7 ≦ Y / X ≦ 9.2 (1)
If the molar concentration ratio (Y / X) is 5.7 or more, radical generation by the oxidation-reduction reaction of the catalyst occurs efficiently and the polymerization reaction efficiency increases, which is industrially very advantageous. Moreover, if the molar concentration ratio (Y / X) is 9.2 or less, the increase in the concentration of hydrogen sulfite radicals generated by the oxidation-reduction reaction is suppressed, and conversely, the polymerization rate of the radicals reacts and deactivates The decrease can be suppressed. The molar concentration ratio (Y / X) is more preferably 6.5 or more and 8.3 or less.

(硫酸アンモニウム)
本発明では、さらに助剤として硫酸アンモニウムを用いる。硫酸アンモニウムの使用量は、重合系内に供給される硫酸アンモニウム由来の硫酸イオンのモル濃度をZとしたとき、下記式(2)を満たすようにする。
(Ammonium sulfate)
In the present invention, ammonium sulfate is further used as an auxiliary agent. The amount of ammonium sulfate used satisfies the following formula (2), where Z is the molar concentration of ammonium sulfate-derived sulfate ions supplied into the polymerization system.

0.7≦Y/(X+Z)≦3.7 (2)
モル濃度比(Y/(X+Z))が0.7以上であれば、重合系内における硫酸イオンのモル濃度が適切に保たれ、重合体粒子の凝集が緩やかに促進し、重合系内の粘度を低く保つことができる。さらに、重合後の濾過洗浄においても、硫酸アンモニウムを洗い落とすことが容易である。また、モル濃度比(Y/(X+Z))が3.7以下であれば、重合系内に存在する重合体粒子を凝集するのに必要な硫酸イオンが存在するため、重合系内の粘度を低く保つことができる。更に、モル濃度比(Y/(X+Z))が3.7を越えると、重合体粒子が重合初期に著しく凝集し、重合体の平均粒子径が大きくなるにも関わらず、重合系内の粘度が高くなってしまう。モル濃度比(Y/(X+Z))は、1.2以上3.2以下がより好ましい。
0.7 ≦ Y / (X + Z) ≦ 3.7 (2)
If the molar concentration ratio (Y / (X + Z)) is 0.7 or more, the molar concentration of sulfate ions in the polymerization system is maintained appropriately, the aggregation of the polymer particles is gradually promoted, and the viscosity in the polymerization system is increased. Can be kept low. Furthermore, it is easy to wash off ammonium sulfate in filtration and washing after polymerization. Further, if the molar concentration ratio (Y / (X + Z)) is 3.7 or less, since sulfate ions necessary to agglomerate the polymer particles existing in the polymerization system are present, the viscosity in the polymerization system is reduced. Can be kept low. Further, when the molar concentration ratio (Y / (X + Z)) exceeds 3.7, the polymer particles are remarkably aggregated at the initial stage of polymerization, and the viscosity within the polymerization system is increased despite the increase in the average particle diameter of the polymer. Becomes higher. The molar concentration ratio (Y / (X + Z)) is more preferably 1.2 or more and 3.2 or less.

(水性懸濁重合)
本発明では、アクリロニトリルを含む単量体組成物、還元剤としての亜硫酸塩、酸化剤としての過硫酸塩、及び硫酸アンモニウムを連続して系内に供給して水系懸濁重合する。
(Aqueous suspension polymerization)
In the present invention, a monomer composition containing acrylonitrile, a sulfite as a reducing agent, a persulfate as an oxidizing agent, and ammonium sulfate are continuously supplied into the system to carry out aqueous suspension polymerization.

重合媒体である水としては、イオン交換水を使用することが好ましい。単量体組成物に対する水の割合(以下、水/単量体組成物の質量比という)は、いかなる比率でもよいが、1.0〜5.0の範囲であることが好ましい。重合反応釜内での水素イオン濃度は、使用される触媒がすみやかに酸化・還元反応を起こす範囲であればよく、pH2.0〜3.5の酸性領域が好ましい。重合反応釜内での単量体組成物の平均滞在時間は、アクリロニトリル系重合体を水系懸濁重合方式で製造する際に採用される通常の時間でよい。水系懸濁重合の反応温度は、30〜80℃にすることが好ましい。反応温度を80℃以下とすることで、アクリロニトリルが蒸発して反応系外へ離散することなく、重合転化率が向上する。また、反応温度を30℃以上とすることで、重合速度が高まって生産性が向上するばかりでなく、重合安定性も高くなる。   It is preferable to use ion-exchanged water as the polymerization medium. The ratio of water to the monomer composition (hereinafter referred to as water / monomer composition mass ratio) may be any ratio, but is preferably in the range of 1.0 to 5.0. The hydrogen ion concentration in the polymerization reaction vessel may be within a range in which the catalyst used promptly undergoes an oxidation / reduction reaction, and an acidic region having a pH of 2.0 to 3.5 is preferable. The average residence time of the monomer composition in the polymerization reaction vessel may be a normal time employed when an acrylonitrile polymer is produced by an aqueous suspension polymerization method. The reaction temperature of the aqueous suspension polymerization is preferably 30 to 80 ° C. By setting the reaction temperature to 80 ° C. or less, the polymerization conversion rate is improved without the acrylonitrile evaporating and being dispersed outside the reaction system. Further, by setting the reaction temperature to 30 ° C. or higher, not only the polymerization rate is increased and the productivity is improved, but also the polymerization stability is increased.

そして、連続して系外にアクリロニトリル系共重合体を排出する。このとき、水系懸濁重合により得られたアクリロニトリル系共重合体から、未反応単量体や重合触媒残査、その他の不純物類を極力除くことが、ポリマー末端の硫酸基の加水分解を阻害するため、好ましい。   Then, the acrylonitrile copolymer is continuously discharged out of the system. At this time, removal of unreacted monomer, polymerization catalyst residue, and other impurities as much as possible from the acrylonitrile copolymer obtained by aqueous suspension polymerization inhibits hydrolysis of sulfate groups at the polymer terminals. Therefore, it is preferable.

具体的には、まず、重合反応釜から取り出した重合体水溶液に、重合停止剤を添加して反応を停止させる。重合反応の停止剤は、通常アクリロニトリル系重合体を水系懸濁重合で製造する際使用されるものであれば問題はない。重合停止剤を添加した後、重合体水溶液から未反応単量体の回収を行う。未反応単量体の回収方法としては、重合体水溶液を直接蒸留する方法、また一旦脱水し未反応単量体を重合体と分離した後蒸留する方法があるが、両方式とも採用が可能である。後者における脱水洗浄機としては、通常公知の濾過脱水機である回転式真空濾過器、遠心脱水機等が使用される。重合体中に残った水分は、通常の乾燥方式によって取り除かれる。   Specifically, first, a polymerization terminator is added to the polymer aqueous solution taken out from the polymerization reaction kettle to stop the reaction. The polymerization terminator is not a problem as long as it is usually used when an acrylonitrile-based polymer is produced by aqueous suspension polymerization. After adding the polymerization terminator, the unreacted monomer is recovered from the polymer aqueous solution. There are two methods for recovering the unreacted monomer: a method in which the aqueous polymer solution is directly distilled, and a method in which the unreacted monomer is once dehydrated and separated from the polymer, followed by distillation. is there. As the dehydrating and washing machine in the latter, a rotary vacuum filter, a centrifugal dehydrator or the like that is a generally known filter dehydrator is used. Water remaining in the polymer is removed by a normal drying method.

以下に実施例を示して本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。なお、以下で「%」は質量%を表す。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the following, “%” represents mass%.

(アクリロニトリル系共重合体の組成比)
アクリロニトリル系共重合体の組成比(各単量体単位の比率(質量比))は、1H−NMR法(日本電子社製、製品名:GSZ−400型超伝導FT−NMR)により、溶媒としてジメチルスルホキシド−d6溶媒を用い、積算回数40回、測定温度120℃の条件にて測定して、ケミカルシフトの積分比から求めた。
(Composition ratio of acrylonitrile copolymer)
The composition ratio of acrylonitrile-based copolymer (ratio of each monomer unit (mass ratio)) was determined by 1 H-NMR method (manufactured by JEOL Ltd., product name: GSZ-400 type superconducting FT-NMR). Dimethyl sulfoxide-d 6 solvent was used, and the number of times of integration was 40, and the measurement temperature was 120 ° C.

(重合懸濁液の粘度)
0.1%重合停止剤水溶液100mlに対して、重合懸濁液を400ml加えた水性分散液の粘度を、43℃においてB型粘度計を用いて測定した。
(Viscosity of polymerization suspension)
The viscosity of an aqueous dispersion obtained by adding 400 ml of a polymerization suspension to 100 ml of a 0.1% polymerization stopper aqueous solution was measured at 43 ° C. using a B-type viscometer.

(重合体粒子の平均粒子径)
レーザー回折散乱法を原理としたSKレーザーマイクロンサイザー装置(セイシン企業製、製品名:LMS−350)により、重合体粒子の粒度分布を屈折率1.330−0.01i、形状係数1.000にて測定し、体積平均から算出された50%正規分布の値を平均粒子径とした。
(Average particle diameter of polymer particles)
The particle size distribution of the polymer particles is adjusted to a refractive index of 1.330-0.01i and a shape factor of 1.000 using an SK laser micronizer system (product name: LMS-350, manufactured by Seishin Enterprise) based on the laser diffraction scattering method. The value of 50% normal distribution calculated from the volume average was taken as the average particle size.

(実施例1)
まず、容量80リットルのステンレス製でグラスライニングした、240φ、55mm×57mmの2段4枚羽のタービン撹拌翼付き重合釜に、脱イオン交換水が重合釜オーバーフロー口まで達するよう76.5リットル入れ、第一硫酸鉄(Fe2SO4・7H2O)を0.01g加え、反応液のpHが3.0になるように硫酸を用いて調節し、重合釜内の温度を57℃で保持した。次に、重合開始30分前から、重合に用いる単量体組成物に対して、レドックス重合開始剤を構成する酸化剤としての過硫酸アンモニウムを0.39%、還元剤としての亜硫酸水素アンモニウムを1.18%、助剤としての硫酸アンモニウムを0.59%、硫酸第一鉄(Fe2SO4・7H2O)を0.3ppm、硫酸を0.1%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌速度200rpm、攪拌動力2.4KW/m3にて撹拌を行い、重合釜内での単量体組成物の平均滞在時間が70分になるようにした。さらに、重合開始時に、これらに加えて、表1に示した組成比の単量体組成物を水/単量体組成物=4(w/w)となるように、連続的に供給した。その後、重合開始1時間後に、重合反応温度を50℃まで下げて保ち、重合釜オーバーフロー口より連続的に重合懸濁液を取り出した。
Example 1
First, put 76.5 liters of deionized water in a polymerization vessel with a turbine stirring blade of 240φ, 55mm x 57mm, 2 stages and 4 blades, made of stainless steel with a capacity of 80 liters, so that the deionized water reaches the overflow port of the polymerization vessel. Add 0.01 g of ferrous sulfate (Fe 2 SO 4 · 7H 2 O) and adjust with sulfuric acid so that the pH of the reaction solution becomes 3.0, and keep the temperature in the polymerization vessel at 57 ° C. did. Next, from 30 minutes before the start of the polymerization, 0.39% of ammonium persulfate as the oxidizing agent constituting the redox polymerization initiator and 1% of ammonium bisulfite as the reducing agent are used for the monomer composition used for the polymerization. .18%, deionized water with 0.59% ammonium sulfate as auxiliary, 0.3 ppm ferrous sulfate (Fe 2 SO 4 .7H 2 O), and 0.1% sulfuric acid, respectively. The mixture was continuously dissolved and supplied, and stirred at a stirring speed of 200 rpm and a stirring power of 2.4 KW / m 3 so that the average residence time of the monomer composition in the polymerization kettle was 70 minutes. . Further, at the start of polymerization, in addition to these, a monomer composition having a composition ratio shown in Table 1 was continuously supplied so that water / monomer composition = 4 (w / w). Thereafter, 1 hour after the start of the polymerization, the polymerization reaction temperature was lowered to 50 ° C., and the polymerization suspension was continuously taken out from the polymerization kettle overflow port.

この重合懸濁液について、重合開始7時間目の粘度を、B型粘度計を用いて測定したところ、43℃において300cp(0.3Pa・s)であった。   With respect to this polymerization suspension, the viscosity at 7 hours after the start of polymerization was measured using a B-type viscometer, and it was 300 cp (0.3 Pa · s) at 43 ° C.

重合懸濁液には、シュウ酸ナトリウム0.5%、重炭酸ナトリウム1.5%を脱イオン交換水に溶解した重合停止剤水溶液を、重合懸濁液のpHが5.5〜6.0になるように加えた。この重合懸濁液をオリバー型連続フィルターによって脱水処理した後、重合体に対して10倍量の70リットルの脱イオン交換水を加え、再び分散させた。再分散後の重合懸濁液を再度オリバー型連続フィルターによって脱水処理し、ペレット成形し、80℃にて8時間熱風循環型の乾燥機で乾燥後、ハンマーミルで粉砕した。得られた重合体粒子の平均粒子径は、7.90μmであった。   In the polymerization suspension, an aqueous solution of a polymerization stopper prepared by dissolving 0.5% sodium oxalate and 1.5% sodium bicarbonate in deionized water, the pH of the polymerization suspension is 5.5 to 6.0. It was added to become. The polymer suspension was dehydrated by an Oliver type continuous filter, and then 10 times the amount of 70 liters of deionized water was added to the polymer and dispersed again. The polymer suspension after re-dispersion was again dehydrated with an Oliver type continuous filter, formed into pellets, dried in a hot air circulation type dryer at 80 ° C. for 8 hours, and then pulverized with a hammer mill. The average particle diameter of the obtained polymer particles was 7.90 μm.

(実施例2)
重合条件を表1の記載のように変更した以外は、実施例1と同様に重合した。結果を表2に示す。
(Example 2)
Polymerization was carried out in the same manner as in Example 1 except that the polymerization conditions were changed as shown in Table 1. The results are shown in Table 2.

(比較例1)
重合条件を表1の記載のように変更した以外は、実施例1と同様に重合した。結果を表2に示す。
(Comparative Example 1)
Polymerization was carried out in the same manner as in Example 1 except that the polymerization conditions were changed as shown in Table 1. The results are shown in Table 2.

(比較例2)
重合条件を表1の記載のように変更した以外は、実施例1と同様に重合した。結果を表2に示す。
(Comparative Example 2)
Polymerization was carried out in the same manner as in Example 1 except that the polymerization conditions were changed as shown in Table 1. The results are shown in Table 2.

Figure 2010144079
Figure 2010144079

Figure 2010144079
Figure 2010144079

実施例1及び2においては、比較例1及び2と比べて、硫酸アンモニウムを適切に加えることで、重合系内の粘度を低く保ち、更には溶剤への溶解に適した平均粒子径を有する重合体粒子を得ることができた。   In Examples 1 and 2, compared to Comparative Examples 1 and 2, by adding ammonium sulfate appropriately, the viscosity in the polymerization system is kept low, and the polymer has an average particle size suitable for dissolution in a solvent. Particles could be obtained.

Claims (1)

アクリロニトリルを含む単量体組成物、還元剤としての亜硫酸塩、酸化剤としての過硫酸塩、及び硫酸アンモニウムを連続して系内に供給して水系懸濁重合し、連続して系外にアクリロニトリル系共重合体を排出するアクリロニトリル系共重合体の製造方法であって、下記式(1)及び(2)を満足することを特徴とするアクリロニトリル系共重合体の製造方法。
5.7≦Y/X≦9.2 (1)
0.7≦Y/(X+Z)≦3.7 (2)
ただし、X、Y及びZは、それぞれ、重合系内に供給される、酸化剤由来の過硫酸イオンのモル濃度、還元剤由来の亜硫酸イオンのモル濃度、及び硫酸アンモニウム由来の硫酸イオンのモル濃度である。
A monomer composition containing acrylonitrile, a sulfite as a reducing agent, a persulfate as an oxidizing agent, and ammonium sulfate are continuously supplied into the system for aqueous suspension polymerization. A method for producing an acrylonitrile copolymer, which discharges the copolymer, and satisfies the following formulas (1) and (2).
5.7 ≦ Y / X ≦ 9.2 (1)
0.7 ≦ Y / (X + Z) ≦ 3.7 (2)
However, X, Y and Z are respectively the molar concentration of persulfate ions derived from the oxidizing agent, the molar concentration of sulfite ions derived from the reducing agent, and the molar concentration of sulfate ions derived from ammonium sulfate, which are supplied into the polymerization system. is there.
JP2008323795A 2008-12-19 2008-12-19 Method for producing acrylonitrile copolymer Pending JP2010144079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323795A JP2010144079A (en) 2008-12-19 2008-12-19 Method for producing acrylonitrile copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323795A JP2010144079A (en) 2008-12-19 2008-12-19 Method for producing acrylonitrile copolymer

Publications (1)

Publication Number Publication Date
JP2010144079A true JP2010144079A (en) 2010-07-01

Family

ID=42564827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323795A Pending JP2010144079A (en) 2008-12-19 2008-12-19 Method for producing acrylonitrile copolymer

Country Status (1)

Country Link
JP (1) JP2010144079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112300310A (en) * 2019-08-02 2021-02-02 中国石油化工股份有限公司 Method for synthesizing polyacrylonitrile by using stainless steel reaction kettle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112300310A (en) * 2019-08-02 2021-02-02 中国石油化工股份有限公司 Method for synthesizing polyacrylonitrile by using stainless steel reaction kettle
CN112300310B (en) * 2019-08-02 2022-04-08 中国石油化工股份有限公司 Method for synthesizing polyacrylonitrile by using stainless steel reaction kettle

Similar Documents

Publication Publication Date Title
JP5484906B2 (en) Method for producing polyacrylonitrile-based precursor fiber for carbon fiber
JP2011046942A (en) Polyacrylonitrile copolymer, polyacrylonitrile precursor fiber for carbon fiber, and manufacturing method for carbon fiber
JP2010144079A (en) Method for producing acrylonitrile copolymer
JP2012201739A (en) Polyacrylonitrile polymer particle and method for producing the same
EP0543418B1 (en) Method of purifying polyacrylonitrile
JP2012214657A (en) Acrylonitrile-based copolymer for carbon fiber
JP2014201728A (en) Acrylonitrile-based copolymer particle, and production method of the same
JP2015160953A (en) Method for producing acrylonitrile-based polymer
JP3073580B2 (en) Acrylonitrile-based carbon fiber and method for producing the same
JP2012188535A (en) Method for producing acrylonitrile-based polymer
JP3041655B2 (en) Acrylonitrile fiber and method for producing the same
JP7420608B2 (en) Method for producing carbon fiber precursor fiber
JP3033923B2 (en) Acrylonitrile-based carbon fiber and method for producing the same
JPS61266416A (en) Production of acrylonitrile polymer solution
JP2017186682A (en) Manufacturing method of precursor fiber bundle for carbon fiber and manufacturing method of carbon fiber
JPH0827620A (en) Production of acrylic synthetic fiber
JPH11200140A (en) Production of acrylic fiber precursor
JP5207450B2 (en) Polyacrylonitrile-based polymer particles and method for producing the same
JP2013043904A (en) Acrylonitrile-based polymer and method for producing the same
JP3172545B2 (en) Method for producing acrylonitrile polymer
JP2021147729A (en) Method for producing carbon fiber precursor fiber
JP2013237746A (en) Method for producing acrylonitrile-based polymer
JP2013221218A (en) Method for producing precursor fiber bundle for carbon fiber
JP2014201600A (en) Method for producing acrylonitrile polymer
JPH0952907A (en) Production of spinning dope for producing flame-retardant acrylic fiber