JP2012188534A - Method for producing acrylonitrile-based polymer - Google Patents

Method for producing acrylonitrile-based polymer Download PDF

Info

Publication number
JP2012188534A
JP2012188534A JP2011052836A JP2011052836A JP2012188534A JP 2012188534 A JP2012188534 A JP 2012188534A JP 2011052836 A JP2011052836 A JP 2011052836A JP 2011052836 A JP2011052836 A JP 2011052836A JP 2012188534 A JP2012188534 A JP 2012188534A
Authority
JP
Japan
Prior art keywords
polymerization
acrylonitrile
units
monomer
polymerization reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011052836A
Other languages
Japanese (ja)
Inventor
Harumi Matsuda
治美 松田
Takeshi Futai
健 二井
Norifumi Hirota
憲史 廣田
Yusuke Niimen
祐介 新免
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011052836A priority Critical patent/JP2012188534A/en
Publication of JP2012188534A publication Critical patent/JP2012188534A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for continuous polymerization of an acrylonitrile-based polymer, which uses a redox-based catalyst as an initiator and by which a post-polymerization is controlled to reduce impurities.SOLUTION: The method for producing the acrylonitrile-based polymer includes adding a polymerization terminator to a polymerization reaction solution, and further evaporating off unreacted acrylonitrile units, while supplying oxygen in the polymerization reaction solution.

Description

本発明は、衣料用繊維や炭素繊維用前駆体繊維束等の製造に用いられるアクリロニトリル系ポリマーの製造方法に関する。   The present invention relates to a method for producing an acrylonitrile-based polymer used for production of clothing fibers, carbon fiber precursor fiber bundles, and the like.

一般にアクリロニトリル系ポリマーの工業的製造法としては、水系析出重合法と溶液重合法が知られている。水系析出重合法は、水性媒体中、水溶性重合開始剤を用いて、アクリロニトリルと必要に応じて使用される共重合性成分とからなる単量体を重合する方法であって、重合反応が進行するにつれポリマーが析出する不均一系の重合法である。溶液重合法は、上述の単量体を溶解しうる無機溶媒または有機溶媒中で、該単量体を重合する方法であり、ポリマーも溶媒中に溶解する均一系の重合法である。   In general, an aqueous precipitation polymerization method and a solution polymerization method are known as industrial production methods for acrylonitrile-based polymers. The aqueous precipitation polymerization method is a method of polymerizing a monomer composed of acrylonitrile and a copolymerizable component that is used as necessary using a water-soluble polymerization initiator in an aqueous medium, and the polymerization reaction proceeds. This is a heterogeneous polymerization method in which the polymer is precipitated as it is. The solution polymerization method is a method in which the monomer is polymerized in an inorganic solvent or an organic solvent in which the above-mentioned monomer can be dissolved, and is a homogeneous polymerization method in which the polymer is also dissolved in the solvent.

これらの重合法によって連続重合を行う場合は、水性媒体、無機溶媒または有機溶媒と、重合開始剤と、単量体等の原料成分とは連続的に重合反応器に供給され、攪拌により分散させられながら重合され、連続的に重合反応器から排出される。これらのうち、特に、水系析出重合を連続的に行う水系析出連続重合法は、連続溶液重合法に比べて短い滞在時間で連続生産が可能で、しかも簡便な重合反応器を使用できるため、非常に生産性が優れている。   When performing continuous polymerization by these polymerization methods, an aqueous medium, an inorganic solvent or an organic solvent, a polymerization initiator, and raw material components such as monomers are continuously supplied to the polymerization reactor and dispersed by stirring. Polymerized and continuously discharged from the polymerization reactor. Among these, in particular, the aqueous precipitation continuous polymerization method in which the aqueous precipitation polymerization is continuously performed can be continuously produced in a shorter residence time than the continuous solution polymerization method, and a simple polymerization reactor can be used. Productivity is excellent.

連続重合において重合反応器から排出される重合反応液は、重合転化率が100%に達しておらず、未反応の単量体を含んでいる。未反応の単量体は洗浄や気化によって除去されるが、未反応の単量体が重合反応器外で除去工程までに後重合すると、分子量分布の広がりや、共重合体を製造している場合には組成分布の広がりが生じる恐れがあり、その成分がポリマー中の不純物となって、毛羽発生など繊維の物性低下に繋がるため、重合反応液が重合反応器外に排出された後、重合停止剤が加えられることが多い。   The polymerization reaction liquid discharged from the polymerization reactor in the continuous polymerization does not reach the polymerization conversion rate of 100% and contains unreacted monomers. Unreacted monomer is removed by washing and vaporization, but when the unreacted monomer is post-polymerized by the removal step outside the polymerization reactor, the molecular weight distribution is broadened and a copolymer is produced. In some cases, the composition distribution may spread, and the components become impurities in the polymer, leading to fiber properties such as fluffing, and the polymerization reaction solution is discharged outside the polymerization reactor. Stopper is often added.

しかしながら、重合反応液が重合反応器外に排出されてから加える重合停止剤が重合を抑制する効果は、単量体によって異なり、主成分の単量体の重合を抑制していれば重合は一旦停止するが、未反応の主成分の単量体を気化により除去する工程を含む場合、主成分の単量体が除去された後に少量含まれる共重合成分が重合する恐れがある。   However, the effect of the polymerization terminator added after the polymerization reaction liquid is discharged out of the polymerization reactor is different depending on the monomer, and if the polymerization of the main component monomer is suppressed, the polymerization is once In the case of including a step of removing the unreacted main component monomer by vaporization, the copolymer component contained in a small amount may be polymerized after the main component monomer is removed.

例えば、アクリロニトリル系ポリマーの連続水系析出において、重合停止剤としてシュウ酸アンモニウム、炭酸水素アンモニウムの混合水溶液を用いる方法が開示されている。しかしながら、アクリロニトリル単位と、アクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の少なくとも1種以上とを共重合させ、上記重合停止剤を添加した後、未反応のアクリロニトリル単位を気化により除去した場合、これらの重合停止剤のみでは未反応のアクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の後重合が充分に抑制されないという問題がある。   For example, a method of using a mixed aqueous solution of ammonium oxalate and ammonium hydrogen carbonate as a polymerization terminator in continuous aqueous precipitation of an acrylonitrile-based polymer is disclosed. However, after the acrylonitrile unit is copolymerized with at least one of an acrylamide unit and a vinyl monomer unit having a hydroxyalkyl ester group, the polymerization stopper is added, and then the unreacted acrylonitrile unit is removed by vaporization. In such a case, there is a problem that the post-polymerization of unreacted acrylamide units and vinyl monomer units having a hydroxyalkyl ester group is not sufficiently suppressed only by these polymerization terminators.

特開2000−26512号公報JP 2000-26512 A

本発明は上記事情に鑑みてなされたもので、後重合を抑制することにより不純物を削減したアクリロニトリル系ポリマーを、レドックス系触媒を開始剤とした連続重合法にて提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the acrylonitrile type | system | group polymer which reduced the impurity by suppressing post-polymerization by the continuous polymerization method which used the redox type | system | group catalyst as the initiator.

本発明のアクリロニトリル系ポリマーの製造方法は、重合開始剤としてレドックス系触媒を用い、アクリロニトリル単位が95〜99モル%と、共重合成分としてアクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の1種以上の単量体単位が1〜5モル%含有する単量体とを、重合反応器内の水または溶媒中で重合反応させる工程、
重合反応器から排出された重合反応液に重合停止剤を添加する工程、
さらに重合反応液中に酸素を供給しながら未反応のアクリロニトリル単位を気化分離する工程
を有することを特徴とする。
The method for producing an acrylonitrile-based polymer of the present invention uses a redox catalyst as a polymerization initiator, 95 to 99 mol% of acrylonitrile units, an acrylamide unit as a copolymerization component, and a vinyl monomer unit having a hydroxyalkyl ester group. A step of polymerizing a monomer containing 1 to 5 mol% of one or more monomer units in water or a solvent in a polymerization reactor,
Adding a polymerization terminator to the polymerization reaction solution discharged from the polymerization reactor,
Furthermore, it has a step of vaporizing and separating unreacted acrylonitrile units while supplying oxygen into the polymerization reaction solution.

本発明のアクリロニトリル系ポリマーの製造方法は、重合開始剤としてレドックス系触媒を用い、アクリロニトリル単位が95〜99モル%と、共重合成分としてアクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の1種以上の単量体単位が1〜5モル%含有する単量体とを、重合反応器内の水または溶媒中で重合反応させる工程、
重合反応器から排出された重合反応液に重合停止剤の添加と、酸素の供給を行う工程、
さらに未反応のアクリロニトリル単位を気化分離する工程
を有することを特徴とする。
The method for producing an acrylonitrile-based polymer of the present invention uses a redox catalyst as a polymerization initiator, 95 to 99 mol% of acrylonitrile units, an acrylamide unit as a copolymerization component, and a vinyl monomer unit having a hydroxyalkyl ester group. A step of polymerizing a monomer containing 1 to 5 mol% of one or more monomer units in water or a solvent in a polymerization reactor,
Adding a polymerization terminator to the polymerization reaction solution discharged from the polymerization reactor and supplying oxygen;
The method further comprises a step of vaporizing and separating unreacted acrylonitrile units.

前記アクリロニトリル系ポリマーの製造方法は、未反応のアクリロニトリル単位を気化分離した工程後の重合反応液に、さらに酸素を供給する工程を有することが好ましい。   The method for producing the acrylonitrile-based polymer preferably further includes a step of supplying oxygen to the polymerization reaction solution after the step of vaporizing and separating unreacted acrylonitrile units.

前記アクリロニトリル系ポリマー製造方法は、酸素供給後の重合反応液の溶存酸素量を3〜20mg/Lとすることが好ましい。   In the acrylonitrile-based polymer production method, the amount of dissolved oxygen in the polymerization reaction solution after supplying oxygen is preferably 3 to 20 mg / L.

後重合を抑制することにより不純物を削減したアクリロニトリル系ポリマーを、レドックス系触媒を開始剤とした連続重合法にて提供できる。   An acrylonitrile-based polymer with reduced impurities by suppressing post-polymerization can be provided by a continuous polymerization method using a redox catalyst as an initiator.

以下、本発明を詳細に説明する。
本発明のアクリロニトリル系ポリマーの製造方法は、レドックス系触媒を重合開始剤として、アクリロニトリル単位と共重合成分としてアクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の少なくとも1種以上を含有する単量体を重合反応させ、重合反応器から排出された未反応の単量体を含む重合反応液に重合停止剤を添加し、重合反応液を加熱して未反応のアクリロニトリル単位を気化分離する工程から成る。重合法は特に限定しないが、水性媒体中で単量体を連続的に重合する水系析出連続重合が好ましい。
Hereinafter, the present invention will be described in detail.
The method for producing an acrylonitrile-based polymer of the present invention comprises a redox catalyst as a polymerization initiator, an acrylonitrile unit and a monomer component containing at least one acrylonitrile unit and a vinyl monomer unit having a hydroxyalkyl ester group as a copolymerization component. A step of polymerizing the monomer, adding a polymerization terminator to the polymerization reaction liquid containing the unreacted monomer discharged from the polymerization reactor, and heating the polymerization reaction liquid to vaporize and separate unreacted acrylonitrile units. Consists of. The polymerization method is not particularly limited, but aqueous precipitation continuous polymerization in which monomers are continuously polymerized in an aqueous medium is preferable.

重合工程で重合される単量体は、アクリロニトリル単位と共重合成分としてアクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の少なくとも1種以上の単量体を含有する。必要に応じて他のモノマー単位を共重合させてもよい。該アクリロニトリル系ポリマーには、炭素繊維にしたときの共重合成分に起因する欠陥点を少なくし、炭素繊維の品質並びに性能を向上させる目的からアクリロニトリル単位が97.5モル%以上含まれることが好ましく、より好ましくは98.5モル%以上である。   The monomer polymerized in the polymerization step contains at least one monomer selected from an acrylonitrile unit and a vinyl monomer unit having a hydroxyalkyl ester group as a copolymerization component. If necessary, other monomer units may be copolymerized. The acrylonitrile-based polymer preferably contains 97.5 mol% or more of acrylonitrile units for the purpose of reducing defects caused by copolymerization components when carbon fibers are used and improving the quality and performance of carbon fibers. More preferably, it is 98.5 mol% or more.

また、本発明のアクリロニトリル系ポリマーは、アクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の少なくとも1種以上を1.0モル%以上含有する。1.0モル%以上であると、紡糸工程における凝固時の繊維内部への水の拡散を緩やかにする効果が得られやすい。なお、ヒドロキシアルキルエステル基を有するビニル単量体単位の含有量の上限は、耐炎化反応の暴走の抑制や、耐炎化工程でのヒドロキシアルキル基の脱離に伴う炭素化収率の低下を抑える上でも、2.5モル%を越えない範囲とするのが好ましい。ヒドロキシアルキルエステル基を有するビニル単量体としては、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、イタコン酸ジ−2−ヒドロキシエチル、イタコン酸ジ−2ヒドロキシプロピル等が挙げられる。   The acrylonitrile-based polymer of the present invention contains 1.0 mol% or more of at least one kind of vinyl monomer unit having an acrylamide unit and a hydroxyalkyl ester group. When it is 1.0 mol% or more, it is easy to obtain an effect of gradual diffusion of water into the fiber during coagulation in the spinning process. The upper limit of the content of the vinyl monomer unit having a hydroxyalkyl ester group is to suppress the runaway of the flameproofing reaction and to suppress the decrease in the carbonization yield accompanying the elimination of the hydroxyalkyl group in the flameproofing process. Also in the above, it is preferable to set it within a range not exceeding 2.5 mol%. Examples of the vinyl monomer having a hydroxyalkyl ester group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl itaconate, Examples thereof include di-2-hydroxypropyl itaconate.

重合に使用される開始剤はレドックス系触媒を用い、重合反応を促進するために、重合反応器内に微量の金属イオンを添加する。レドックス開始剤とは、酸化剤と還元剤を存在させ、酸化剤と還元剤との間における酸化還元反応によってラジカルを発生する開始剤である。ここに金属イオンを触媒として添加すると、金属イオンを介した酸化還元反応が起こり、開始反応が促進される。レドックス系触媒における酸化剤、還元剤の組合せ、酸化剤と還元剤の供給比率、金属イオン添加量は単量体の組成などに応じて適宜選択できる。   The initiator used for the polymerization uses a redox catalyst, and a small amount of metal ions is added to the polymerization reactor in order to accelerate the polymerization reaction. The redox initiator is an initiator that causes an oxidizing agent and a reducing agent to exist and generates radicals by an oxidation-reduction reaction between the oxidizing agent and the reducing agent. When a metal ion is added here as a catalyst, an oxidation-reduction reaction through the metal ion occurs and the initiation reaction is promoted. The combination of the oxidizing agent and the reducing agent, the supply ratio of the oxidizing agent and the reducing agent, and the metal ion addition amount in the redox catalyst can be appropriately selected according to the composition of the monomer.

水系析出連続重合法で重合する際には、例えば、あらかじめ重合反応器に水(水性媒体)を仕込んでおき、そこへ開始剤が溶解した開始剤溶液や単量体を連続的に供給し、攪拌により均一に分散させながら重合を進行させる。   When the polymerization is performed by the aqueous precipitation continuous polymerization method, for example, water (aqueous medium) is previously charged in the polymerization reactor, and an initiator solution and a monomer in which the initiator is dissolved are continuously supplied thereto, Polymerization proceeds while being uniformly dispersed by stirring.

ここで、重合反応器内へ仕込む水の単量体に対する質量比は、単量体の組成などに応じて適宜選択されるが、水/単量体が1.5〜8.0の範囲が好ましい。水/単量体が1.5以上であると、重合反応器内が粘調にならず、攪拌困難となることを抑制しやすくなる。一方、水/単量体が8.0以下であると生産性が向上しやすくなる。   Here, the mass ratio of water charged into the polymerization reactor with respect to the monomer is appropriately selected according to the composition of the monomer, but the range of water / monomer is in the range of 1.5 to 8.0. preferable. When the water / monomer is 1.5 or more, the inside of the polymerization reactor does not become viscous and it becomes easy to suppress the difficulty of stirring. On the other hand, when the water / monomer is 8.0 or less, the productivity is easily improved.

重合反応器における単量体の平均滞在時間は、30分〜150分の範囲が好ましい。30分以上であると重合率が高くしやすくなり、150分以下であると生産性が向上しやすくなる。なお、平均滞在時間とは、下記式(1)で定義される。   The average residence time of the monomer in the polymerization reactor is preferably in the range of 30 minutes to 150 minutes. When it is 30 minutes or more, the polymerization rate is easily increased, and when it is 150 minutes or less, the productivity is easily improved. The average stay time is defined by the following formula (1).

平均滞在時間[hr]=[重合反応器容量(L)]/[重合反応器への供給量(L/hr)]・・・(1)
ここで供給量とは、単位時間あたりに定常状態時に重合反応器に供給される水性媒体、単量体、開始剤などの総量である。
Average residence time [hr] = [Polymerization reactor capacity (L)] / [Supply amount to polymerization reactor (L / hr)] (1)
Here, the supply amount is the total amount of the aqueous medium, monomer, initiator and the like supplied to the polymerization reactor in a steady state per unit time.

重合反応器内のpH、温度などは、単量体の組成などに応じて適宜選択可能である。必要に応じて、通常用いられる界面活性剤や凝集剤を重合反応器内に供給してもよい。   The pH, temperature, and the like in the polymerization reactor can be appropriately selected according to the monomer composition and the like. If necessary, a commonly used surfactant or flocculant may be supplied into the polymerization reactor.

重合反応器外へ排出された重合反応液には、水に溶解させた重合停止剤を連続的に供給する。重合停止剤にはキレート剤とpH調整剤を併用する。   A polymerization terminator dissolved in water is continuously supplied to the polymerization reaction liquid discharged to the outside of the polymerization reactor. A chelating agent and a pH adjuster are used in combination as the polymerization terminator.

キレート剤としてはシュウ酸、クエン酸、エチレンジアミン四酢酸、フィチン酸ニトリロ三酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミン三酢酸等とそれらの塩類、アセチルアセトン、オキシン、2,2‘−ジピリジル、o−フェナントロリン等が挙げられ、使用量は重合反応液のpH、濃度、添加した金属イオン種等によって異なるが、通常は使用した金属イオンに対して2〜10000モル当量使用すればよい。このような範囲であれば、重合を充分に抑制することができ、繊維の物性に悪影響を及ぼさない。   Chelating agents include oxalic acid, citric acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid phytate, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid and their salts, acetylacetone, oxine, 2,2'-dipyridyl, o-phenanthroline, etc. The amount used varies depending on the pH and concentration of the polymerization reaction solution, the added metal ion species, and the like, but usually 2 to 10,000 molar equivalents may be used relative to the metal ion used. If it is such a range, superposition | polymerization can fully be suppressed and it does not exert a bad influence on the physical property of a fiber.

pH調整剤としては重合反応液のpHを上げるアンモニウム塩、ナトリウム塩、カリウム塩等の塩が挙げられる。
例えば炭酸、炭酸水素、水酸化物、リン酸、リン酸水素等のアンモニウム塩、ナトリウム塩、カリウム塩等が挙げられる。
使用量は重合反応液のpH、濃度、添加した開始剤量によって異なり、重合反応液のpHが4〜7になるように加えればよい。このような範囲であれば、重合を充分に抑制することができ、繊維の物性に悪影響を及ぼさない。
Examples of the pH adjuster include salts such as ammonium salt, sodium salt and potassium salt that increase the pH of the polymerization reaction solution.
Examples thereof include ammonium salts such as carbonic acid, hydrogen carbonate, hydroxide, phosphoric acid and hydrogen phosphate, sodium salts and potassium salts.
The amount used varies depending on the pH and concentration of the polymerization reaction solution and the amount of initiator added, and may be added so that the pH of the polymerization reaction solution is 4-7. If it is such a range, superposition | polymerization can fully be suppressed and it does not exert a bad influence on the physical property of a fiber.

重合反応器から排出された重合反応液に酸素を供給しながら、重合反応液を温度40〜80℃、圧力20〜101kPa(a)の範囲内のアクリロニトリルが気化する条件で加熱して、未反応のアクリロニトリル単位を気化し、重合反応液中の未反応のアクリロニトリル単位が100ppm以下、好ましくは10ppm以下になるまで、未反応のアクリロニトリル単位を気化分離する。
重合反応液に酸素を供給する酸素供給方法としては酸素吹き込み、空気吹き込み、酸素を含有した水の投入などが挙げられ、重合反応液中の溶存酸素量が3〜20mg/L、好ましくは5〜20mg/Lであれば未反応の単量体の重合が抑制されやすくなる。重合反応液に、アクリロニトリル単位を気化分離した後、水分除去工程まで液中に酸素を供給し続けるのが好ましい。
重合反応器から排出された重合反応液への酸素の供給は、未反応のアクリロニトリル単位を気化分離する前でも良く、前記重合反応液への重合停止剤の供給前後または同時であっても良い。
While supplying oxygen to the polymerization reaction liquid discharged from the polymerization reactor, the polymerization reaction liquid is heated under conditions where acrylonitrile within a temperature range of 40 to 80 ° C. and a pressure of 20 to 101 kPa (a) is vaporized, and is unreacted. The acrylonitrile unit is vaporized and the unreacted acrylonitrile unit is vaporized and separated until the unreacted acrylonitrile unit in the polymerization reaction solution becomes 100 ppm or less, preferably 10 ppm or less.
Examples of the oxygen supply method for supplying oxygen to the polymerization reaction liquid include blowing oxygen, blowing air, and adding water containing oxygen. The amount of dissolved oxygen in the polymerization reaction liquid is 3 to 20 mg / L, preferably 5 to 5 mg. If it is 20 mg / L, it will become easy to suppress superposition | polymerization of an unreacted monomer. After the acrylonitrile unit is vaporized and separated in the polymerization reaction solution, it is preferable to continue supplying oxygen into the solution until the water removal step.
The supply of oxygen to the polymerization reaction liquid discharged from the polymerization reactor may be before vaporization and separation of unreacted acrylonitrile units, or may be before, after or simultaneously with the supply of the polymerization terminator to the polymerization reaction liquid.

水分除去工程では、重合工程で得られた重合反応液を例えば70℃程度のイオン交換水で洗浄、脱水後、熱風循環型の乾燥機などで乾燥することによって、ポリマー粉体として回収する。こうして回収されたポリマー粉体は、例えばこのポリマー粉体が衣料用繊維や炭素繊維用前駆体繊維束等の繊維製造用途である場合には、溶剤に溶解されて紡糸原液とされ、紡糸される。   In the water removal step, the polymerization reaction solution obtained in the polymerization step is washed with ion-exchanged water at, for example, about 70 ° C., dehydrated, and then dried with a hot air circulation type dryer or the like to be recovered as polymer powder. The polymer powder collected in this manner is dissolved in a solvent to form a spinning dope, for example, when the polymer powder is used for fiber production such as clothing fibers and precursor fiber bundles for carbon fibers. .

以上説明したように、このようなアクリロニトリル系ポリマーの製造方法によれば、後重合により共重合成分のみからなるポリマーが発生することがなく、不純物を削減したアクリロニトリル系ポリマーを得ることができる。   As described above, according to such a method for producing an acrylonitrile-based polymer, an acrylonitrile-based polymer with reduced impurities can be obtained without generating a polymer composed only of a copolymerization component by post-polymerization.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.

(溶存酸素の測定)
セントラル科学株式会社製デジタル溶存酸素計UC−12型を使用し、未反応のアクリロニトリルを気化分離した後の重合反応液の溶存酸素を測定した。
(Measurement of dissolved oxygen)
Using a digital dissolved oxygen meter UC-12 manufactured by Central Science Co., Ltd., the dissolved oxygen in the polymerization reaction solution after vaporizing and separating unreacted acrylonitrile was measured.

(ポリマー生成の確認)
東ソー製HLC−8020を使用し、ガードカラムには東ソー製TSK−GEL SuperH4000、カラムには東ソー製TSK−GEL SuperH2000およびSuperH1000を用い、溶離液には0.20mol/L−硝酸ナトリウムの水、アセトニトリル混合溶液(水/アセトニトリル=9/1)を用いて、未反応のアクリロニトリル単位を気化分離した後の重合反応液のGPC測定を行い、20〜25分に発現するポリマーのピークの有無によりポリマー生成を確認した。
(Confirmation of polymer formation)
Using Tosoh HLC-8020, Tosoh TSK-GEL SuperH4000 as guard column, Tosoh TSK-GEL SuperH2000 and SuperH1000 as column, 0.20 mol / L-sodium nitrate water, acetonitrile as eluent Using a mixed solution (water / acetonitrile = 9/1), GPC measurement of the polymerization reaction solution after vaporization and separation of unreacted acrylonitrile units was performed, and polymer formation was observed depending on the presence or absence of a polymer peak that appeared between 20 and 25 minutes. It was confirmed.

(実施例1)
容量80リットルのタービン撹拌翼付きアルミニウム製重合釜に、イオン交換水が重合釜オーバーフロー口まで達するよう76.5リットル入れ、第一硫酸鉄(Fe2SO4
・7H2O)を0.01g加え、重合反応液のpHが3.0になるように硫酸を用いて調節し、重合釜内の温度を57℃で保持した。
次に、重合開始30分前から、単量体に対してレドックス重合開始剤である過硫酸アンモニウムを0.51×10−2モル%、亜硫酸水素アンモニウムを1.76×10−2モル%、硫酸第一鉄(Fe2SO4 ・7H2O)を0.3ppm、硫酸を0.1×10−2モル%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌速度180rpm、攪拌動力1.2kW/mにて撹拌を行い、重合反応器内での単量体の平均滞在時間が70分になるように設定した。
ついで、重合開始時に、アクリロニトリル単位97.0モル%、アクリルアミド単位2.6モル%、メタクリル酸単位0.4モル%から成る単量体を水/単量体=3(質量比)となるように、単量体の連続供給を開始した。その後、重合開始1時間後に重合反応温度を50℃まで下げて温度を保持し、重合反応器オーバーフロー口より連続的に重合反応液を排出した。
重合反応液には、シュウ酸ナトリウム0.37×10−2モル%、重炭酸ナトリウム1.78×10−2モル%をイオン交換水に溶解した重合停止剤水溶液を、重合反応液のpHが5.5〜6.0になるように加えた。
さらに、重合反応液100mlを取り出してろ過し、ろ液を大気圧下80℃で空気を50cc/min.で吹き込みながら30分間加熱して未反応のアクリロニトリルを気化分離した後、残渣のGPC測定を行いポリマー生成の有無を確認した。結果を表に示す。
Example 1
In an aluminum polymerization kettle with a capacity of 80 liters of turbine stirring blades, 76.5 liters of ion-exchanged water reaches the polymerization kettle overflow port, and ferrous sulfate (Fe2SO4
-0.01 g of 7H2O) was added, and the polymerization reaction solution was adjusted with sulfuric acid so that the pH was 3.0, and the temperature in the polymerization vessel was maintained at 57 ° C.
Next, from 30 minutes before the start of polymerization, 0.51 × 10 −2 mol% of ammonium persulfate, which is a redox polymerization initiator, 1.76 × 10 −2 mol% of ammonium bisulfite, sulfuric acid Ferrous iron (Fe2SO4 · 7H2O) was dissolved in deionized water so that the concentration was 0.3 ppm and sulfuric acid was 0.1 × 10 −2 mol%. Stirring was performed at 1.2 kW / m 3 and the average residence time of the monomer in the polymerization reactor was set to 70 minutes.
Next, at the start of polymerization, a monomer composed of 97.0 mol% of acrylonitrile units, 2.6 mol% of acrylamide units, and 0.4 mol% of methacrylic acid units is water / monomer = 3 (mass ratio). Then, continuous supply of the monomer was started. Thereafter, 1 hour after the start of the polymerization, the polymerization reaction temperature was lowered to 50 ° C. to maintain the temperature, and the polymerization reaction liquid was continuously discharged from the polymerization reactor overflow port.
In the polymerization reaction solution, an aqueous solution of a polymerization stopper obtained by dissolving sodium oxalate 0.37 × 10 −2 mol% and sodium bicarbonate 1.78 × 10 −2 mol% in ion-exchanged water was used. It added so that it might become 5.5-6.0.
Further, 100 ml of the polymerization reaction solution was taken out and filtered, and the filtrate was air at 50 cc / min. The mixture was heated for 30 minutes while blowing to vaporize and separate unreacted acrylonitrile, and then the residue was subjected to GPC measurement to confirm the presence or absence of polymer formation. The results are shown in the table.

(実施例2)
アクリロニトリル単位97.0モル%、アクリルアミド単位2.6モル%、メタクリル酸単位0.4モル%から成る単量体をアクリロニトリル単位98.9モル%、メタクリル酸2−ヒドロキシエチル単位1.1モル%から成る単量体に変更した以外は実施例1と同様にして評価した。結果を表に示す。
(Example 2)
A monomer composed of 97.0 mol% of acrylonitrile units, 2.6 mol% of acrylamide units, and 0.4 mol% of methacrylic acid units was converted to 98.9 mol% of acrylonitrile units and 1.1 mol% of 2-hydroxyethyl methacrylate units. Evaluation was conducted in the same manner as in Example 1 except that the monomer was changed to The results are shown in the table.

(比較例1)
重合反応液に空気を吹き込まないこと以外は実施例1と同様にして評価した。結果を表に示す。
(Comparative Example 1)
Evaluation was performed in the same manner as in Example 1 except that air was not blown into the polymerization reaction solution. The results are shown in the table.

(比較例2)
重合反応液に空気を吹き込まないこと以外は実施例2と同様にして評価した。結果を表に示す。
(Comparative Example 2)
Evaluation was performed in the same manner as in Example 2 except that air was not blown into the polymerization reaction solution. The results are shown in the table.

Figure 2012188534
Figure 2012188534

Claims (4)

重合開始剤としてレドックス系触媒を用い、アクリロニトリル単位が95〜99モル%と、共重合成分としてアクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の1種以上の単量体単位が1〜5モル%含有する単量体とを、重合反応器内の水または溶媒中で重合反応させる工程、
重合反応器から排出された重合反応液に重合停止剤を添加する工程、
さらに重合反応液中に酸素を供給しながら未反応のアクリロニトリル単位を気化分離する工程
を有するアクリロニトリル系ポリマーの製造方法。
A redox catalyst is used as a polymerization initiator, 95 to 99 mol% of acrylonitrile units, and one or more monomer units of vinyl monomer units having acrylamide units and hydroxyalkyl ester groups as copolymerization components are 1 to 1. A step of polymerizing a monomer containing 5 mol% in water or a solvent in a polymerization reactor,
Adding a polymerization terminator to the polymerization reaction solution discharged from the polymerization reactor,
Furthermore, the manufacturing method of the acrylonitrile-type polymer which has the process of vapor-separating an unreacted acrylonitrile unit, supplying oxygen in a polymerization reaction liquid.
重合開始剤としてレドックス系触媒を用い、アクリロニトリル単位が95〜99モル%と、共重合成分としてアクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の1種以上の単量体単位が1〜5モル%含有する単量体とを、重合反応器内の水または溶媒中で重合反応させる工程、
重合反応器から排出された重合反応液に重合停止剤の添加と、酸素の供給を行う工程、
さらに未反応のアクリロニトリル単位を気化分離する工程
を有するアクリロニトリル系ポリマーの製造方法。
A redox catalyst is used as a polymerization initiator, 95 to 99 mol% of acrylonitrile units, and one or more monomer units of vinyl monomer units having acrylamide units and hydroxyalkyl ester groups as copolymerization components are 1 to 1. A step of polymerizing a monomer containing 5 mol% in water or a solvent in a polymerization reactor,
Adding a polymerization terminator to the polymerization reaction solution discharged from the polymerization reactor and supplying oxygen;
Furthermore, the manufacturing method of the acrylonitrile-type polymer which has the process of vapor-separating the unreacted acrylonitrile unit.
未反応のアクリロニトリル単位を気化分離した工程後の重合反応液に、さらに酸素を供給する工程を有する請求項1または2に記載のアクリロニトリル系ポリマーの製造方法。   The method for producing an acrylonitrile-based polymer according to claim 1 or 2, further comprising a step of supplying oxygen to the polymerization reaction liquid after the step of vaporizing and separating unreacted acrylonitrile units. 酸素供給後の重合反応液の溶存酸素量を3〜20mg/Lとする請求項1、2または3記載のアクリロニトリル系ポリマーの製造方法。   The method for producing an acrylonitrile-based polymer according to claim 1, 2 or 3, wherein the amount of dissolved oxygen in the polymerization reaction solution after supplying oxygen is 3 to 20 mg / L.
JP2011052836A 2011-03-10 2011-03-10 Method for producing acrylonitrile-based polymer Withdrawn JP2012188534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011052836A JP2012188534A (en) 2011-03-10 2011-03-10 Method for producing acrylonitrile-based polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052836A JP2012188534A (en) 2011-03-10 2011-03-10 Method for producing acrylonitrile-based polymer

Publications (1)

Publication Number Publication Date
JP2012188534A true JP2012188534A (en) 2012-10-04

Family

ID=47082055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052836A Withdrawn JP2012188534A (en) 2011-03-10 2011-03-10 Method for producing acrylonitrile-based polymer

Country Status (1)

Country Link
JP (1) JP2012188534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015997A (en) * 2018-07-25 2020-01-30 帝人株式会社 Method for producing precursor fiber for carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015997A (en) * 2018-07-25 2020-01-30 帝人株式会社 Method for producing precursor fiber for carbon fiber

Similar Documents

Publication Publication Date Title
EP2281847B1 (en) Acrylonitrile copolymer and method for manufacturing the same, and acrylonitrile copolymer solution and polyacrylonitrile precursor fiber for carbon fiber and method for manufacturing the same
JP2018090791A (en) Carbon material precursor and method for producing carbon material using the same
JP6883267B2 (en) Manufacturing method of carbon material
JP2007197672A (en) Manufacturing method of polyacrylonitrile
JP2012188534A (en) Method for producing acrylonitrile-based polymer
KR101490529B1 (en) Preparation method of polyacrylonitrile precursor based carbon Fiber
JP2012188535A (en) Method for producing acrylonitrile-based polymer
JP7178489B2 (en) Acrylonitrile-based copolymer for carbon fiber
US11040882B2 (en) Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using these
JP2012214657A (en) Acrylonitrile-based copolymer for carbon fiber
EP3548524B1 (en) Process for the production of polyacrylonitrile
JP2009256859A (en) Acrylonitrile-based copolymer solution and polyacrylonitrile-based precursor fiber for carbon fiber
JP2010150302A (en) Method for producing acrylonitrile-based polymer
JP7116908B2 (en) Carbon material precursor, carbon material precursor composition containing same, and method for producing carbon material using same
JP2019167516A (en) Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using these
JP2019167271A (en) Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using these
JP2010144079A (en) Method for producing acrylonitrile copolymer
US11001660B2 (en) Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using the same
US3003993A (en) Process for color stabilizing acrylonitrile polymers by washing with ethylene diamine tetraacetic acid
EP0543418A1 (en) Method of purifying polyacrylonitrile
JP2017186682A (en) Manufacturing method of precursor fiber bundle for carbon fiber and manufacturing method of carbon fiber
JP7168908B2 (en) Carbon material precursor and method for producing carbon material using the same
JP2020117633A (en) Carbon material precursor and method for producing carbon material using the same
JP2014201728A (en) Acrylonitrile-based copolymer particle, and production method of the same
JP2018053389A (en) Carbon fiber precursor fiber and method for producing carbon fiber

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513