JP2012188535A - Method for producing acrylonitrile-based polymer - Google Patents

Method for producing acrylonitrile-based polymer Download PDF

Info

Publication number
JP2012188535A
JP2012188535A JP2011052837A JP2011052837A JP2012188535A JP 2012188535 A JP2012188535 A JP 2012188535A JP 2011052837 A JP2011052837 A JP 2011052837A JP 2011052837 A JP2011052837 A JP 2011052837A JP 2012188535 A JP2012188535 A JP 2012188535A
Authority
JP
Japan
Prior art keywords
polymerization
acrylonitrile
based polymer
monomer
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011052837A
Other languages
Japanese (ja)
Inventor
Harumi Matsuda
治美 松田
Takeshi Futai
健 二井
Norifumi Hirota
憲史 廣田
Yusuke Niimen
祐介 新免
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011052837A priority Critical patent/JP2012188535A/en
Publication of JP2012188535A publication Critical patent/JP2012188535A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for continuous polymerization of an acrylonitrile-based polymer, which uses a redox-based catalyst as an initiator and by which a post-polymerization is controlled to reduce impurities.SOLUTION: The method for producing the acrylonitrile-based polymer uses a chelating agent and a polymerization inhibitor, when terminating the polymerization. The polymerization inhibitor contains at least one of cupferron, thiourea, ammonium rhodanide, and 4-aminoantipyrine, and the chelating agent is a compound containing oxalic acid.

Description

本発明は、衣料用繊維や炭素繊維用前駆体繊維束等の製造に用いられるアクリロニトリル系ポリマーの製造方法に関する。   The present invention relates to a method for producing an acrylonitrile-based polymer used for production of clothing fibers, carbon fiber precursor fiber bundles, and the like.

一般にアクリロニトリル系ポリマーの工業的製造法としては、水系析出重合法と溶液重合法が知られている。水系析出重合法は、水性媒体中、水溶性重合開始剤を用いて、アクリロニトリルと必要に応じて使用される共重合性成分とからなる単量体を重合する方法であって、重合反応が進行するにつれポリマーが析出する不均一系の重合法である。溶液重合法は、上述の単量体を溶解しうる無機溶媒または有機溶媒中で、該単量体を重合する方法であり、ポリマーも溶媒中に溶解する均一系の重合法である。   In general, an aqueous precipitation polymerization method and a solution polymerization method are known as industrial production methods for acrylonitrile-based polymers. The aqueous precipitation polymerization method is a method of polymerizing a monomer composed of acrylonitrile and a copolymerizable component that is used as necessary using a water-soluble polymerization initiator in an aqueous medium, and the polymerization reaction proceeds. This is a heterogeneous polymerization method in which the polymer is precipitated as it is. The solution polymerization method is a method in which the monomer is polymerized in an inorganic solvent or an organic solvent in which the above-mentioned monomer can be dissolved, and is a homogeneous polymerization method in which the polymer is also dissolved in the solvent.

これらの重合法によって連続重合を行う場合は、水性媒体、無機溶媒または有機溶媒と、重合開始剤と、単量体等の原料成分とは連続的に重合反応器に供給され、攪拌により分散させられながら重合され、連続的に重合反応器から排出される。これらのうち、特に、水系析出重合を連続的に行う水系析出連続重合法は、連続溶液重合法に比べて短い滞在時間で連続生産が可能で、しかも簡便な重合反応器を使用できるため、非常に生産性が優れている。   When performing continuous polymerization by these polymerization methods, an aqueous medium, an inorganic solvent or an organic solvent, a polymerization initiator, and raw material components such as monomers are continuously supplied to the polymerization reactor and dispersed by stirring. Polymerized and continuously discharged from the polymerization reactor. Among these, in particular, the aqueous precipitation continuous polymerization method in which the aqueous precipitation polymerization is continuously performed can be continuously produced in a shorter residence time than the continuous solution polymerization method, and a simple polymerization reactor can be used. Productivity is excellent.

連続重合において重合反応器から排出される重合反応液は、重合転化率が100%に達しておらず、未反応の単量体を含んでいる。未反応の単量体は洗浄や蒸留によって除去されるが、未反応の単量体が重合反応器外で除去工程までに重合(以下「後重合」とも言う。)すると、分子量分布の広がりや、共重合体を製造している場合には組成分布の広がりが生じる恐れがあり、その成分がポリマー中の不純物となって、毛羽発生など繊維の物性低下に繋がるため、重合反応液が重合反応器外に排出された後、重合停止剤が添加されることが多い。   The polymerization reaction liquid discharged from the polymerization reactor in the continuous polymerization does not reach the polymerization conversion rate of 100% and contains unreacted monomers. Unreacted monomers are removed by washing or distillation, but if unreacted monomers are polymerized by the removal step outside the polymerization reactor (hereinafter also referred to as “post-polymerization”), When a copolymer is produced, the composition distribution may spread, and the components become impurities in the polymer, leading to fiber properties such as fluff generation. A polymerization terminator is often added after being discharged out of the vessel.

しかしながら、重合反応液が重合反応器外に排出されてから添加される重合停止剤が重合を抑制する効果は、単量体によって異なり、主成分の単量体の重合を抑制していれば重合は一旦停止するが、未反応の主成分の単量体を蒸留により除去する工程を含む場合、主成分の単量体が除去された後に少量含まれる共重合成分が重合する恐れがある。   However, the effect of the polymerization terminator added after the polymerization reaction solution is discharged outside the polymerization reactor is different depending on the monomer, and if the polymerization of the main component monomer is suppressed, the polymerization Is temporarily stopped, but in the case of including a step of removing unreacted main component monomer by distillation, there is a possibility that a small amount of the copolymer component is polymerized after the main component monomer is removed.

例えば、アクリロニトリル系ポリマーの連続水系析出において、重合停止剤としてシュウ酸アンモニウム、炭酸水素アンモニウムの混合水溶液を用いる方法が開示されている。
しかしながら、アクリロニトリル単位とアクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の少なくとも1種以上を有するビニル単量体単位とを共重合させ、上記重合停止剤を添加し、未反応のアクリロニトリル単位を気化により除去した場合、これらの重合停止剤のみでは未反応のアクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の重合が充分に抑制されないという問題がある。
For example, a method of using a mixed aqueous solution of ammonium oxalate and ammonium hydrogen carbonate as a polymerization terminator in continuous aqueous precipitation of an acrylonitrile-based polymer is disclosed.
However, an acrylonitrile unit, an acrylamide unit, and a vinyl monomer unit having at least one kind of vinyl monomer unit having a hydroxyalkyl ester group are copolymerized, and the polymerization terminator is added to form an unreacted acrylonitrile unit. Is removed by vaporization, there is a problem that polymerization of unreacted acrylamide units and vinyl monomer units having a hydroxyalkyl ester group is not sufficiently suppressed only by these polymerization terminators.

特開2000−26512号公報JP 2000-26512 A 特開昭47−28766号公報JP 47-28766 A 特開平06−92919号公報Japanese Patent Laid-Open No. 06-92919 特開2003−206268号公報JP 2003-206268 A

本発明は上記事情に鑑みてなされたもので、後重合を抑制することにより不純物を削減したアクリロニトリル系ポリマーを、レドックス系触媒を開始剤とした連続重合法にて提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the acrylonitrile type | system | group polymer which reduced the impurity by suppressing post-polymerization by the continuous polymerization method which used the redox type | system | group catalyst as the initiator.

本発明のアクリロニトリル系ポリマーの製造方法は、重合開始剤としてレドックス系触媒を用い、アクリロニトリル単位が95〜99モル%と、共重合成分として、アクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の少なくとも1種以上が1〜5モル%含有する単量体とを重合反応器内の水または溶媒中で重合反応させる工程、
重合反応器から排出された重合反応液に重合禁止剤とキレート剤とを添加する工程、
未反応のアクリロニトリル単位を気化分離させる工程
を有することを特徴とする。
The method for producing an acrylonitrile polymer of the present invention uses a redox catalyst as a polymerization initiator, 95 to 99 mol% of acrylonitrile units, and a vinyl monomer unit having an acrylamide unit and a hydroxyalkyl ester group as a copolymerization component. A step of polymerizing a monomer containing at least one of 1 to 5 mol% in water or a solvent in a polymerization reactor,
Adding a polymerization inhibitor and a chelating agent to the polymerization reaction solution discharged from the polymerization reactor;
It has a step of vaporizing and separating unreacted acrylonitrile units.

前記重合禁止剤がフェノール類、キノン類、ニトロソ化合物、硫黄化合物、ピラゾロン類の少なくとも1種からなり、前記キレート剤がシュウ酸を含む化合物からなることが好ましい。   It is preferable that the polymerization inhibitor is composed of at least one of phenols, quinones, nitroso compounds, sulfur compounds and pyrazolones, and the chelating agent is composed of a compound containing oxalic acid.

前記重合禁止剤の添加量が、未反応の単量体に対して、0.1〜15質量%であることが好ましい。   It is preferable that the addition amount of the said polymerization inhibitor is 0.1-15 mass% with respect to the unreacted monomer.

前記キレート剤の添加量が、使用した金属イオンに対して2〜100モル当量であることが好ましい。   It is preferable that the addition amount of the chelating agent is 2 to 100 molar equivalents relative to the metal ions used.

後重合を抑制することにより不純物を削減したアクリロニトリル系ポリマーを、レドックス系触媒を開始剤とした連続重合法にて提供できる。   An acrylonitrile-based polymer with reduced impurities by suppressing post-polymerization can be provided by a continuous polymerization method using a redox catalyst as an initiator.

以下、本発明を詳細に説明する。
本発明のアクリロニトリル系ポリマーの製造方法は、レドックス系触媒を重合開始剤として、アクリロニトリル単位と、アクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の少なくとも1種以上を含有する単量体とを重合反応させる工程、重合反応器から排出された未反応の単量体を含む重合反応液に重合停止剤を添加する工程、未反応のアクリロニトリル単位を気化分離する工程から成る。重合法は特に限定しないが、水性媒体中で単量体を連続的に重合する水系析出連続重合が好ましい。
Hereinafter, the present invention will be described in detail.
The method for producing an acrylonitrile-based polymer of the present invention comprises a monomer containing at least one of an acrylonitrile unit, an acrylamide unit and a vinyl monomer unit having a hydroxyalkyl ester group, using a redox catalyst as a polymerization initiator. A polymerization reaction step, a step of adding a polymerization terminator to a polymerization reaction solution containing unreacted monomers discharged from the polymerization reactor, and a step of vaporizing and separating unreacted acrylonitrile units. The polymerization method is not particularly limited, but aqueous precipitation continuous polymerization in which monomers are continuously polymerized in an aqueous medium is preferable.

重合工程で重合される単量体は、アクリロニトリル単位と、アクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の少なくとも1種以上とを含有する。必要に応じて他のモノマー単位を共重合させてもよい。該アクリロニトリル系ポリマーには、炭素繊維にしたときの共重合成分に起因する欠陥点を少なくし、炭素繊維の品質並びに性能を向上させる目的からアクリロニトリル単位が95モル%以上含まれることが好ましく、より好ましくは97.5モル%以上である。   The monomer to be polymerized in the polymerization step contains an acrylonitrile unit, an acrylamide unit, and at least one vinyl monomer unit having a hydroxyalkyl ester group. If necessary, other monomer units may be copolymerized. The acrylonitrile-based polymer preferably contains 95 mol% or more of acrylonitrile units for the purpose of reducing the number of defects caused by copolymerization components when converted into carbon fibers and improving the quality and performance of carbon fibers. Preferably it is 97.5 mol% or more.

また、本発明のアクリロニトリル系ポリマーは、ヒドロキシアルキルエステル基を有するビニル単量体単位を1.0モル%以上含有するのが好ましい。1.0モル%以上であると、紡糸工程における凝固時の繊維内部への水の拡散を緩やかにする効果が得られやすい。さらに、炭素繊維とする場合には、耐炎化工程においてヒドロキシアルキルエステル基を有するビニル単量体単位のカルボン酸2−ヒドロキシアルキル基がカルボン酸基となった際に、耐炎化反応を促進する効果も得られやすくなる。なお、ヒドロキシアルキルエステル基を有するビニル単量体単位の含有量の上限は、耐炎化反応の暴走の抑制や、耐炎化工程でのヒドロキシアルキル基の脱離に伴う炭素化収率の低下を抑える上でも、2.5モル%以下が好ましい。ヒドロキシアルキルエステル基を有するビニル単量体としては、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、イタコン酸ジ−2−ヒドロキシエチル、イタコン酸ジ−2ヒドロキシプロピル等が挙げられる。   Moreover, it is preferable that the acrylonitrile-type polymer of this invention contains 1.0 mol% or more of vinyl monomer units which have a hydroxyalkylester group. When it is 1.0 mol% or more, it is easy to obtain an effect of gradual diffusion of water into the fiber during coagulation in the spinning process. Further, when carbon fiber is used, the effect of promoting the flameproofing reaction when the 2-hydroxyalkyl group of carboxylic acid of the vinyl monomer unit having a hydroxyalkylester group in the flameproofing step becomes a carboxylic acid group. Is also easier to obtain. The upper limit of the content of the vinyl monomer unit having a hydroxyalkyl ester group is to suppress the runaway of the flameproofing reaction and to suppress the decrease in the carbonization yield accompanying the elimination of the hydroxyalkyl group in the flameproofing process. Also in the above, 2.5 mol% or less is preferable. Examples of the vinyl monomer having a hydroxyalkyl ester group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl itaconate, Examples thereof include di-2-hydroxypropyl itaconate.

また、単量体には、アクリルアミド単位が0.5質量%以上含まれることが好ましい。アクリルアミド単位は、得られたポリマー粉体を溶剤に溶解して紡糸原液とし、この紡糸原液を紡糸した際の凝固過程において、凝固を緩慢にする効果がある。そのため、アクリルアミド単位を含有する単量体から製造されたポリマー粉体を用いると、緻密な繊維構造が形成されやすい。よって、例えば、炭素繊維前駆体繊維束を製造する場合などには、単量体中にアクリルアミド単位が含まれることが好ましく、凝固を緩慢にする効果を十分に得るためには、単量体中に0.5質量%以上含まれることが好ましい。   Further, the monomer preferably contains 0.5% by mass or more of acrylamide units. Acrylamide units have the effect of slowing the coagulation in the coagulation process when the obtained polymer powder is dissolved in a solvent to form a spinning stock solution and the spinning stock solution is spun. Therefore, when a polymer powder produced from a monomer containing an acrylamide unit is used, a dense fiber structure is easily formed. Therefore, for example, when producing a carbon fiber precursor fiber bundle, it is preferable that an acrylamide unit is contained in the monomer, and in order to sufficiently obtain the effect of slowing the coagulation, It is preferable that 0.5 mass% or more is contained in.

重合に使用される開始剤はレドックス系触媒を用い、重合反応を促進するために、重合反応器内に微量の金属イオンを添加する。レドックス開始剤とは、酸化剤と還元剤を存在させ、酸化剤と還元剤との間における酸化還元反応によってラジカルを発生する開始剤である。ここに金属イオンを触媒として添加すると、金属イオンを介した酸化還元反応が起こり、開始反応が促進される。レドックス系触媒における酸化剤、還元剤の組合せ、酸化剤と還元剤の供給比率、金属イオン添加量は単量体の組成などに応じて適宜選択できる。   The initiator used for the polymerization uses a redox catalyst, and a small amount of metal ions is added to the polymerization reactor in order to accelerate the polymerization reaction. The redox initiator is an initiator that causes an oxidizing agent and a reducing agent to exist and generates radicals by an oxidation-reduction reaction between the oxidizing agent and the reducing agent. When a metal ion is added here as a catalyst, an oxidation-reduction reaction through the metal ion occurs and the initiation reaction is promoted. The combination of the oxidizing agent and the reducing agent, the supply ratio of the oxidizing agent and the reducing agent, and the metal ion addition amount in the redox catalyst can be appropriately selected according to the composition of the monomer.

水系析出連続重合法で重合する際には、例えば、予め重合反応器に水(水性媒体)を仕込んでおき、そこへ開始剤が溶解した開始剤溶液や単量体を連続的に供給し、攪拌により均一に分散させながら重合を進行させる。
ここで、重合反応器内へ仕込む水の単量体に対する質量比は、単量体の組成などに応じて適宜選択されるが、水/単量体が1.5〜8.0の範囲が好ましい。水/単量体が1.5以上であると、重合反応器内が粘調らず、攪拌困難となりにくく、一方、水/単量体が8.0以下であると、生産性が向上しやすくなる。
When polymerizing by the aqueous precipitation continuous polymerization method, for example, water (aqueous medium) is charged in advance in a polymerization reactor, and an initiator solution and a monomer in which the initiator is dissolved are continuously supplied thereto, Polymerization proceeds while being uniformly dispersed by stirring.
Here, the mass ratio of water charged into the polymerization reactor with respect to the monomer is appropriately selected according to the composition of the monomer, but the range of water / monomer is in the range of 1.5 to 8.0. preferable. When the water / monomer is 1.5 or more, the inside of the polymerization reactor is not viscous and difficult to stir. On the other hand, when the water / monomer is 8.0 or less, productivity is improved. It becomes easy.

重合反応器における単量体の平均滞在時間は、30分〜150分の範囲が好ましい。30分以上であると重合率が高くしやすくなり、150分以下であると生産性が向上しやすくなる。なお、平均滞在時間とは、下記式(1)で定義される。   The average residence time of the monomer in the polymerization reactor is preferably in the range of 30 minutes to 150 minutes. When it is 30 minutes or more, the polymerization rate is easily increased, and when it is 150 minutes or less, the productivity is easily improved. The average stay time is defined by the following formula (1).

平均滞在時間[hr]=[重合反応器容量(L)]/[重合反応器への供給量(L/hr)]・・・(1)
ここで供給量とは、単位時間あたりに定常状態時に重合反応器に供給される水性媒体、単量体、開始剤などの総量である。
Average residence time [hr] = [Polymerization reactor capacity (L)] / [Supply amount to polymerization reactor (L / hr)] (1)
Here, the supply amount is the total amount of the aqueous medium, monomer, initiator and the like supplied to the polymerization reactor in a steady state per unit time.

重合反応器内のpH、温度などは、単量体の組成などに応じて適宜選択可能である。必要に応じて、通常用いられる界面活性剤や凝集剤を重合反応器内に供給してもよい。   The pH, temperature, and the like in the polymerization reactor can be appropriately selected according to the monomer composition and the like. If necessary, a commonly used surfactant or flocculant may be supplied into the polymerization reactor.

重合反応器外へ排出された重合反応液には、水に溶解させた重合停止剤を連続的に添加する。重合停止剤にはキレート剤と重合禁止剤を併用する。キレート剤のみでは金属イオンを介さないラジカル発生反応を抑制することができず、重合禁止剤のみでは重合を抑制するために必要な重合禁止剤量が多くなる。   A polymerization terminator dissolved in water is continuously added to the polymerization reaction liquid discharged to the outside of the polymerization reactor. A chelating agent and a polymerization inhibitor are used in combination as the polymerization terminator. The chelating agent alone cannot suppress the radical generation reaction not involving metal ions, and the polymerization inhibitor alone increases the amount of the polymerization inhibitor necessary for suppressing the polymerization.

キレート剤としてはシュウ酸、クエン酸、エチレンジアミン四酢酸、フィチン酸ニトリロ三酢酸、ジエチレントリアミン五酢酸、ヒドロキシエチルエチレンジアミン三酢酸等とそれらの塩類、アセチルアセトン、オキシン、2,2‘−ジピリジル、o−フェナントロリン等が挙げられ、使用量は重合反応液のpH、濃度、添加した金属イオン種等によって異なるが、通常は使用した金属イオンに対して2〜10000モル当量使用すればよい。このような範囲であれば、重合を充分に抑制することができ、繊維の物性に悪影響を及ぼさない。   Chelating agents include oxalic acid, citric acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid phytate, diethylenetriaminepentaacetic acid, hydroxyethylethylenediaminetriacetic acid and their salts, acetylacetone, oxine, 2,2'-dipyridyl, o-phenanthroline, etc. The amount used varies depending on the pH and concentration of the polymerization reaction solution, the added metal ion species, and the like, but usually 2 to 10,000 molar equivalents may be used relative to the metal ion used. If it is such a range, superposition | polymerization can fully be suppressed and it does not exert a bad influence on the physical property of a fiber.

重合禁止剤としては安定なラジカルを生成するものであれば良いが、特にヒドロキノン、p-メトキシフェノール、8−ヒドロキシキノリン、クペロン、チオ尿素、ロダンアンモン、4−アミノアンチピリン等が挙げられ、使用量は重合反応液のpH、濃度、添加した開始剤量によって異なるが、通常は未反応の残存単量体に対して0.01〜10質量%使用すればよい。このような範囲であれば、後重合を抑制しやすくなり、繊維の物性に悪影響を及ぼさない。   Any polymerization inhibitor may be used as long as it generates a stable radical, and hydroquinone, p-methoxyphenol, 8-hydroxyquinoline, cuperone, thiourea, rhodanammon, 4-aminoantipyrine, and the like are used. Is different depending on the pH and concentration of the polymerization reaction solution and the amount of the added initiator, but usually 0.01 to 10% by mass based on the unreacted residual monomer may be used. If it is such a range, it will become easy to suppress post-polymerization and will not exert a bad influence on the physical property of a fiber.

重合反応液を温度40〜80℃、圧力20〜101kPa(a)の範囲内の条件で未反応のアクリロニトリル単位を気化し、重合反応液中の未反応のアクリロニトリル単位が100ppm以下、好ましくは10ppm以下になるまで、未反応のアクリロニトリル単位を気化分離する。   The unreacted acrylonitrile unit is vaporized under the conditions of the temperature of 40 to 80 ° C. and the pressure of 20 to 101 kPa (a) in the polymerization reaction solution, and the unreacted acrylonitrile unit in the polymerization reaction solution is 100 ppm or less, preferably 10 ppm or less. Until unreacted, the unreacted acrylonitrile units are vaporized and separated.

水分除去工程では、重合工程で得られたポリマーが分散している重合反応液を例えば70℃程度のイオン交換水で洗浄、脱水後、熱風循環型の乾燥機などで乾燥することによって、ポリマー粉体として回収する。こうして回収されたポリマー粉体は、例えばこのポリマー粉体が衣料用繊維や炭素繊維用前駆体繊維束等の繊維製造用途である場合には、溶剤に溶解されて紡糸原液とされ、紡糸される。   In the water removal step, the polymer reaction solution in which the polymer obtained in the polymerization step is dispersed is washed with, for example, ion-exchanged water at about 70 ° C. Collect as a body. The polymer powder collected in this manner is dissolved in a solvent to form a spinning dope, for example, when the polymer powder is used for fiber production such as clothing fibers and precursor fiber bundles for carbon fibers. .

以上説明したように、このようなアクリロニトリル系ポリマーの製造方法によれば、重合を停止させる際に重合禁止剤とキレート剤とを併用し、重合禁止剤がフェノール類、キノン類、ニトロソ化合物、硫黄化合物、ピラゾロン類の少なくとも1種からなり、キレート剤はシュウ酸を含む化合物からなるため、後重合が抑制しやすくなり、不純物を削減したアクリロニトリル系ポリマーを得ることができる。   As described above, according to such a method for producing an acrylonitrile-based polymer, when the polymerization is stopped, a polymerization inhibitor and a chelating agent are used in combination, and the polymerization inhibitor is phenols, quinones, nitroso compounds, sulfur. Since it is composed of at least one of a compound and pyrazolones and the chelating agent is composed of a compound containing oxalic acid, post-polymerization is easily suppressed, and an acrylonitrile-based polymer with reduced impurities can be obtained.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.

(ポリマー生成の確認)
東ソー製HLC−8020を使用し、ガードカラムには東ソー製TSK−GEL SuperH4000、カラムには東ソー製TSK−GEL SuperH2000およびSuperH1000を用い、溶離液には0.20mol/L−硝酸ナトリウムの水、アセトニトリル混合溶液(水/アセトニトリル=9/1)を用いて、未反応のアクリロニトリル単位を気化分離した後の重合反応液のGPC測定を行い、20〜25分に発現するポリマーのピークの有無によりポリマー生成を確認した。
(Confirmation of polymer formation)
Using Tosoh HLC-8020, Tosoh TSK-GEL SuperH4000 as guard column, Tosoh TSK-GEL SuperH2000 and SuperH1000 as column, 0.20 mol / L-sodium nitrate water, acetonitrile as eluent Using a mixed solution (water / acetonitrile = 9/1), GPC measurement of the polymerization reaction solution after vaporization and separation of unreacted acrylonitrile units was performed, and polymer formation was observed depending on the presence or absence of a polymer peak that appeared between 20 and 25 minutes. It was confirmed.

(実施例1)
容量80リットルのタービン撹拌翼付きアルミニウム製重合釜に、イオン交換水が重合釜オーバーフロー口まで達するよう76.5リットル入れ、第一硫酸鉄(Fe2SO4
・7H2O)を0.01g加え、重合反応液のpHが3.0になるように硫酸を用いて調節し、重合釜内の温度を57℃で保持した。
次に、重合開始30分前から、単量体に対してレドックス重合開始剤である過硫酸アンモニウムを0.51×10−2モル%、亜硫酸水素アンモニウムを1.76×10−2モル%、硫酸第一鉄(Fe2SO4 ・7H2O)を0.3ppm、硫酸を0.1×10−2モル%となるように、それぞれ脱イオン交換水に溶解して連続的に供給し、攪拌速度180rpm、攪拌動力1.2kW/mにて撹拌を行い、重合釜内での単量体の平均滞在時間が70分になるように設定した。
ついで、重合開始時に、アクリロニトリル単位98.9モル%、メタクリル酸2−ヒドロキシエチル単位1.1モル%から成る単量体を水/単量体=3(質量比)となるように、単量体の連続供給を開始した。その後、重合開始1時間後に重合反応温度を50℃まで下げて温度を保持し、重合釜オーバーフロー口より連続的に重合反応液を取り出した。
重合反応液には、シュウ酸ナトリウム0.46×10−2モル%、クペロン0.46×10−2モル%をイオン交換水に溶解した重合停止剤水溶液を、重合反応液/重合停止剤水溶液=98.5/1.5(質量比)となるように加えた。
さらに、重合反応液100mlを取り出してろ過し、ろ液を大気圧下80℃で加熱して蒸留して未反応のアクリロニトリルを気化分離した後、残渣のGPC測定を行いポリマー生成の有無を確認した。結果を表1に示す。
Example 1
In an aluminum polymerization kettle with a capacity of 80 liters of turbine stirring blades, 76.5 liters of ion-exchanged water reaches the polymerization kettle overflow port, and ferrous sulfate (Fe2SO4
-0.01 g of 7H2O) was added, and the polymerization reaction solution was adjusted with sulfuric acid so that the pH was 3.0, and the temperature in the polymerization vessel was maintained at 57 ° C.
Next, from 30 minutes before the start of polymerization, 0.51 × 10 −2 mol% of ammonium persulfate, which is a redox polymerization initiator, 1.76 × 10 −2 mol% of ammonium bisulfite, sulfuric acid Ferrous iron (Fe2SO4 · 7H2O) was dissolved in deionized water so that the concentration was 0.3 ppm and sulfuric acid was 0.1 × 10 −2 mol%. Stirring was performed at 1.2 kW / m 3 and the average residence time of the monomer in the polymerization kettle was set to 70 minutes.
Next, at the start of polymerization, a monomer comprising 98.9 mol% of acrylonitrile units and 1.1 mol% of 2-hydroxyethyl methacrylate units was added in a single amount so that water / monomer = 3 (mass ratio). Started continuous feeding of the body. Thereafter, 1 hour after the start of polymerization, the polymerization reaction temperature was lowered to 50 ° C. to maintain the temperature, and the polymerization reaction liquid was continuously taken out from the polymerization kettle overflow port.
The polymerization reaction solution, sodium oxalate 0.46 × 10 -2 mol%, a polymerization terminator solution of cupferron 0.46 × 10 -2 mol% was dissolved in deionized water, the polymerization reaction solution / polymerization terminator solution = 98.5 / 1.5 (mass ratio).
Further, 100 ml of the polymerization reaction solution was taken out and filtered, and the filtrate was heated and distilled at 80 ° C. under atmospheric pressure to evaporate and separate unreacted acrylonitrile. Then, the residue was subjected to GPC measurement to confirm the presence or absence of polymer formation. . The results are shown in Table 1.

(実施例2)
重合禁止剤を0.46×10−2モル%のヒドロキノンに変更した以外は実施例1と同様にして評価した。結果を表1に示す。
(Example 2)
Evaluation was conducted in the same manner as in Example 1 except that the polymerization inhibitor was changed to 0.46 × 10 −2 mol% of hydroquinone. The results are shown in Table 1.

(実施例3)
重合禁止剤を0.46×10−2モル%のp−メトキシフェノールに変更した以外は実施例1と同様にして評価した。結果を表1に示す。
(Example 3)
Evaluation was conducted in the same manner as in Example 1 except that the polymerization inhibitor was changed to 0.46 × 10 −2 mol% of p-methoxyphenol. The results are shown in Table 1.

(実施例4)
重合禁止剤を0.46×10−2モル%のチオ尿素に変更した以外は実施例1と同様にして評価した。結果を表1に示す。
Example 4
Evaluation was conducted in the same manner as in Example 1 except that the polymerization inhibitor was changed to 0.46 × 10 −2 mol% of thiourea. The results are shown in Table 1.

(実施例5)
重合禁止剤を0.46×10−2モル%のロダンアンモンに変更した以外は実施例1と同様にして評価した。結果を表1に示す。
(Example 5)
Evaluation was conducted in the same manner as in Example 1 except that the polymerization inhibitor was changed to 0.46 × 10 −2 mol% of rhodanammon. The results are shown in Table 1.

(実施例6)
重合禁止剤を0.46×10−2モル%の4−アミノアンチピリンに変更した以外は実施例1と同様にして評価した。結果を表1に示す。
(Example 6)
Evaluation was conducted in the same manner as in Example 1 except that the polymerization inhibitor was changed to 0.46 × 10 −2 mol% of 4-aminoantipyrine. The results are shown in Table 1.

(比較例1)
重合禁止剤を0.46×10−2モル%の炭酸水素アンモニウムに変更した以外は実施例1と同様にして評価した。結果を表1に示す。
(Comparative Example 1)
Evaluation was conducted in the same manner as in Example 1 except that the polymerization inhibitor was changed to 0.46 × 10 −2 mol% ammonium hydrogen carbonate. The results are shown in Table 1.

(比較例2)
クペロンを除いた以外は実施例1と同様にして評価した。結果を表1に示す。
(Comparative Example 2)
Evaluation was performed in the same manner as in Example 1 except that cuperone was excluded. The results are shown in Table 1.

(比較例3)
シュウ酸を除いた以外は実施例1と同様にして反応を行った。結果を表1に示す。
(Comparative Example 3)
The reaction was performed in the same manner as in Example 1 except that oxalic acid was removed. The results are shown in Table 1.

Figure 2012188535
Figure 2012188535

(実施例7〜12)
アクリルニトリル単位98.9モル%、メタクリル酸2−ヒドロキシエチル単位1.1モル%を、アクリルニトリル単位98.0モル%、アクリルアミド単位2.0モル%に変更した以外は実施例1〜6と同様にして評価した。結果を表2に示す。
(Examples 7 to 12)
Examples 1 to 6 except that 98.9 mol% of acrylonitrile units and 1.1 mol% of 2-hydroxyethyl methacrylate units were changed to 98.0 mol% of acrylonitrile units and 2.0 mol% of acrylamide units. Evaluation was performed in the same manner. The results are shown in Table 2.

(比較例4、5)
アクリルニトリル単位98.9モル%、メタクリル酸2−ヒドロキシエチル単位1.1モル%を、アクリルニトリル単位98.0モル%、アクリルアミド単位2.0モル%に変更した以外は比較例2、3と同様にして評価した。結果を表2に示す。
(Comparative Examples 4 and 5)
Comparative Examples 2 and 3 except that 98.9 mol% of acrylonitrile units and 1.1 mol% of 2-hydroxyethyl methacrylate units were changed to 98.0 mol% of acrylonitrile units and 2.0 mol% of acrylamide units. Evaluation was performed in the same manner. The results are shown in Table 2.

Figure 2012188535
Figure 2012188535


Claims (4)

重合開始剤としてレドックス系触媒を用い、アクリロニトリル単位が95〜99モル%と、共重合成分として、アクリルアミド単位、ヒドロキシアルキルエステル基を有するビニル単量体単位の少なくとも1種以上が1〜5モル%含有する単量体とを重合反応器内の水または溶媒中で重合反応させる工程、
重合反応器から排出された重合反応液に重合禁止剤とキレート剤とを添加する工程、
未反応のアクリロニトリル単位を気化分離させる工程
を有するアクリロニトリル系ポリマーの製造方法。
Using a redox catalyst as a polymerization initiator, 95 to 99 mol% of acrylonitrile units, and 1 to 5 mol% of at least one kind of vinyl monomer units having acrylamide units and hydroxyalkyl ester groups as copolymerization components. A step of polymerizing the contained monomer with water or a solvent in a polymerization reactor,
Adding a polymerization inhibitor and a chelating agent to the polymerization reaction solution discharged from the polymerization reactor;
A method for producing an acrylonitrile-based polymer comprising a step of vaporizing and separating unreacted acrylonitrile units.
前記重合禁止剤がフェノール類、キノン類、ニトロソ化合物、硫黄化合物、ピラゾロン類の少なくとも1種からなり、前記キレート剤がシュウ酸を含む化合物からなる請求項1記載のアクリロニトリル系ポリマーの製造方法。   The method for producing an acrylonitrile-based polymer according to claim 1, wherein the polymerization inhibitor comprises at least one of phenols, quinones, nitroso compounds, sulfur compounds, and pyrazolones, and the chelating agent comprises a compound containing oxalic acid. 前記重合禁止剤の添加量が、未反応の単量体に対して、0.1〜15質量%である請求項1または2に記載のアクリロニトリル系ポリマーの製造方法。   The method for producing an acrylonitrile-based polymer according to claim 1 or 2, wherein an addition amount of the polymerization inhibitor is 0.1 to 15% by mass with respect to an unreacted monomer. 前記キレート剤の添加量が、重合に反応器内に添加した金属イオンに対して2〜100モル当量である請求項1〜3のいずれか1項に記載のアクリロニトリル系ポリマーの製造方法。   The method for producing an acrylonitrile-based polymer according to any one of claims 1 to 3, wherein the addition amount of the chelating agent is 2 to 100 molar equivalents relative to metal ions added to the reactor during polymerization.
JP2011052837A 2011-03-10 2011-03-10 Method for producing acrylonitrile-based polymer Withdrawn JP2012188535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011052837A JP2012188535A (en) 2011-03-10 2011-03-10 Method for producing acrylonitrile-based polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052837A JP2012188535A (en) 2011-03-10 2011-03-10 Method for producing acrylonitrile-based polymer

Publications (1)

Publication Number Publication Date
JP2012188535A true JP2012188535A (en) 2012-10-04

Family

ID=47082056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052837A Withdrawn JP2012188535A (en) 2011-03-10 2011-03-10 Method for producing acrylonitrile-based polymer

Country Status (1)

Country Link
JP (1) JP2012188535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015997A (en) * 2018-07-25 2020-01-30 帝人株式会社 Method for producing precursor fiber for carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015997A (en) * 2018-07-25 2020-01-30 帝人株式会社 Method for producing precursor fiber for carbon fiber

Similar Documents

Publication Publication Date Title
JP2017088608A (en) Manufacturing method of (meth)acrylate
EP2281847B1 (en) Acrylonitrile copolymer and method for manufacturing the same, and acrylonitrile copolymer solution and polyacrylonitrile precursor fiber for carbon fiber and method for manufacturing the same
JP2018090791A (en) Carbon material precursor and method for producing carbon material using the same
CN102199248B (en) Acrylonitrile ternary interpolymer and preparation method thereof
JP2012188535A (en) Method for producing acrylonitrile-based polymer
JPH0699516B2 (en) Method for producing high degree of polymerization polyvinyl ester-based polymer and method for producing high degree of polymerization polyvinyl alcohol-based polymer
CN102199249A (en) High molecular weight acrylonitrile terpolymer and preparation method thereof
JP4067807B2 (en) (Meth) acrylic acid (salt) polymer and production method thereof
JP2012188534A (en) Method for producing acrylonitrile-based polymer
JPH083229A (en) Production of aqueous copolymer solution
US6187853B1 (en) Process for the preparation of dispersions using viscosity-increase inhibitors of water-soluble polymers
KR101490529B1 (en) Preparation method of polyacrylonitrile precursor based carbon Fiber
JP2010150302A (en) Method for producing acrylonitrile-based polymer
CN113136581B (en) Copper surface cleaning agent and preparation method thereof
US11192966B2 (en) Process for the production of polyacrylonitrile
JP2010144079A (en) Method for producing acrylonitrile copolymer
JP2012214657A (en) Acrylonitrile-based copolymer for carbon fiber
JP2008308775A (en) Method for producing carbon fiber precursor fiber and carbon fiber
JP4140379B2 (en) How to prevent scale
EP0543418A1 (en) Method of purifying polyacrylonitrile
US3308109A (en) Process for recovering unpolymerized monomer
KR101219965B1 (en) Preparation method of carbon fiber Precursor
JP2017186682A (en) Manufacturing method of precursor fiber bundle for carbon fiber and manufacturing method of carbon fiber
JP7116908B2 (en) Carbon material precursor, carbon material precursor composition containing same, and method for producing carbon material using same
JP5170563B2 (en) Humic substance removing agent and method for removing humic substance contained in water

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513