CN102199249A - High molecular weight acrylonitrile terpolymer and preparation method thereof - Google Patents

High molecular weight acrylonitrile terpolymer and preparation method thereof Download PDF

Info

Publication number
CN102199249A
CN102199249A CN2010101338036A CN201010133803A CN102199249A CN 102199249 A CN102199249 A CN 102199249A CN 2010101338036 A CN2010101338036 A CN 2010101338036A CN 201010133803 A CN201010133803 A CN 201010133803A CN 102199249 A CN102199249 A CN 102199249A
Authority
CN
China
Prior art keywords
weight
molecular weight
preparation
vinyl cyanide
methylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010101338036A
Other languages
Chinese (zh)
Other versions
CN102199249B (en
Inventor
沈志刚
屠晓萍
吴粮华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN2010101338036A priority Critical patent/CN102199249B/en
Publication of CN102199249A publication Critical patent/CN102199249A/en
Application granted granted Critical
Publication of CN102199249B publication Critical patent/CN102199249B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention relates to acrylonitrile terpolymer and a preparation method thereof, which mainly solves the problem that acrylonitrile/acrylamide/beta-acrylonitrileitaconic acid ester terpolymer is not related in the prior art. The general formula is shown as the description, wherein m=2,001-4,000; n=5-400; k=5-400; the weight-average molecular weight of the terpolymer is between 150,000 and 400,000; and the molecular weight distribution index is between 1.5 and 2.5. By the technical scheme of the terpolymer and the preparation method thereof, the problem is better solved, and the invention can be applied to industrial production of high performance polyacrylonitrile spinning solution.

Description

High molecular ternary acrylonitrile compolymer body and preparation method thereof
Technical field
The present invention relates to a kind of high molecular ternary acrylonitrile compolymer body and preparation method thereof.
Background technology
Polyacrylonitrile (PAN) base carbon fibre is the type material that develops rapidly the sixties in 20th century, has both had the intrinsic person's character of carbon material, has the soft workability of textile fibres again, is dual-use novel material of new generation.The fine or not key of carbon fiber performance is the quality of precursor, and carbon fiber manufacturer is all the top-secret technology of polyacrylonitrile fibril production technology as the production carbon fiber in the world.Domesticly also fall behind because of the polyacrylonitrile fibril production technology just, make carbon fiber in output with all differ greatly qualitatively with foreign level.Therefore, the high-performance carbon fibre interpolymer is the prerequisite of producing high-performance carbon fibre.
As high performance carbon fiber interpolymer, should have following performance: 1, the molecular weight distribution of polymkeric substance is narrower in the interpolymer, and is evenly distributed; 2, improve the wetting ability of spinning solution and the compactness of strand; 3, reduce in the oxidation carbonization process cyclisation temperature etc.Therefore, when selecting comonomer, above-mentioned requirements be should satisfy, second monomer and the 3rd monomer in the acrylonitrile polymerization process, added usually.The big more options of comonomer commonly used contain carboxylic acid group's unsaturated ethylene vinyl compound.List the reactivity ratio of vinyl cyanide and other monomer reactions below, vinyl cyanide (AN)/vinylformic acid (AA): r (AN)=0.35, r (AA)=1.15; Acrylonitrile/methyl acrylate: r (AN)=0.25, r (MA)=0.75; Vinyl cyanide/methylene-succinic acid (IA): r (AN)=0.865, r (IA)=0.568; Vinyl cyanide/methyl methacrylate (MMA): r (NA)=0.18, r (MMA)=1.35; Vinyl cyanide/acrylamide (AAM): r (AN)=0.875, r (AAM)=1.375.Because the reactivity ratio of methylene-succinic acid and vinyl cyanide is the most approaching, so be the comonomer of using always in carbon fiber stoste preparation process.Wetting ability is poor, the heat release peak width is narrow and the shortcoming of spinning property difference but methylene-succinic acid and the polymerization of vinyl cyanide binary still exist; Shanxi Inst. of Coal Chemistry, Chinese Academy of Sciences discloses three Chinese invention patent (application numbers: 02130021.6,02130023.2,02130024.0), their first synthesis of acrylonitrile homopolymer, in reaction solution, feed ammonia then, reacted 2 hours down at 80~100 ℃, make part functional group be converted into carboxyl and amide group, indirectly the synthesis of ternary interpolymer.This method can be improved the wetting ability of polyacrylonitrile effectively.Yet the reaction of ammonia and polyacrylonitrile viscous fluid is the heterogeneous reaction of a complexity, and the mass transfer difficulty reacts wayward, and circulation ratio is relatively poor.
The carbon current fiber industry generally adopts is that the method for vinyl cyanide/unsaturated carboxylic acid/esters of unsaturated carboxylic acids terpolymer prepares spinning solution, wherein the main effect of unsaturated carboxylic acid is to reduce the cyclisation temperature, widen exothermic peak, relax the rate of heat release of precursor in the preoxidation cyclization process, be not easy when preoxidation, to occur fracture of wire.And the main effect of esters of unsaturated carboxylic acids is a spinning property of improving interpolymer, makes carefully dawnization of precursor.But ternary is free-radical polymerized is a very complicated process, and especially controllability is poorer under reactivity ratio between monomer differs than the situation of big and high conversion.Changchun Inst. of Applied Chemistry, Chinese Academy of Sciences discloses three patents (application number: 200410011039.X, 200510016572.X, 200710056329.X) and discloses a kind of novel comonomer vinyl cyanide/β-itaconic ester, vinyl cyanide/methylene-succinic acid/β-itaconic ester, vinyl cyanide/methylene-succinic acid/β-methylene-succinic acid acid amides respectively.This reactivity ratio of monomer and vinyl cyanide near and have the bi-functional monomer of unsaturated carboxylic acid and two kinds of comonomer functions of esters of unsaturated carboxylic acids concurrently, its objective is and reduce the cyclisation temperature, widen exothermic peak, improve spinning property, though but can improve spinning property through our above-mentioned characteristic that experimental results show that, but the heat release peak width is still narrow, and molecular weight wider distribution during binary polymerization.Patent (application number: 200710056083.6) disclose the employing 2,2'-Azobis(2,4-dimethylvaleronitrile) and replaced Diisopropyl azodicarboxylate, add chain-transfer agent, adopt vinyl cyanide/acrylate/methylene-succinic acid (or vinylformic acid, methacrylic acid), can make the interpolymer of high molecular, narrow molecular weight distributions, but still can not solve the narrow shortcoming of exothermic peak.
Summary of the invention
One of technical problem to be solved by this invention is the vinyl cyanide/acrylamide/β-itaconic ester interpolymer problem that does not relate in the prior art, and a kind of new high molecular ternary acrylonitrile compolymer body and preparation method thereof is provided.This interpolymer has the heat release peak width, molecular weight height, the advantage of narrow molecular weight distribution.Two of technical problem to be solved by this invention provides preparation method a kind of and one of technical solution problem corresponding interpolymer.
In order to solve the problems of the technologies described above, the technical solution used in the present invention is as follows: a kind of ternary acrylonitrile compolymer body comprises following general formula:
Figure GSA00000064422500021
m=2001~4000;n=5~400;k=5~400
Wherein the interpolymer weight-average molecular weight is between 150000 to 400000; Molecular weight distributing index is between 1.5 to 2.5.
For solve the problems of the technologies described above two, the technical solution used in the present invention is as follows: a kind of preparation method of acrylonitrile compolymer body may further comprise the steps:
A) with the 2,2'-Azobis(2,4-dimethylvaleronitrile) being initiator, is comonomer with vinyl cyanide, acrylamide, β-itaconic ester, is solvent to be selected from least a in dimethyl sulfoxide (DMSO), dimethyl formamide or the N,N-DIMETHYLACETAMIDE.
B) in the desired amount solvent, monomer, initiator are mixed, join in the reactor, use with reaction to be the inert gasses displacement for several times, under 30~50 ℃ of temperature, reacted 6~48 hours, remove residual monomer and bubble, obtain ternary acrylonitrile compolymer body.
It is characterized in that in the technique scheme by weight percentage: vinyl cyanide accounts for 90~99% of total monomer weight, acrylamide accounts for 0.1~5% of total monomer weight, β-itaconic ester accounts for total monomer weight 0.1~5%, and it is 15~30% that comonomer accounts for total system weight percent concentration; β-itaconic ester is selected from least a in β-methylene-succinic acid methyl esters, β-methylene-succinic acid ethyl ester, β-methylene-succinic acid propyl ester or the β-itaconic acid n-butyl; It is 70~85% that solvent accounts for total system weight percent concentration; Initiator amount is 0.2~1% of a comonomer weight.
Because bifunctional monomer's β-itaconic ester has carboxyl and ester group simultaneously concurrently among the present invention, the characteristic of acrylamide possess hydrophilic property and reduction cyclisation temperature, two kinds of comonomers and main monomer vinyl cyanide reactivity ratio are approaching, and cause with 2,2'-Azobis(2,4-dimethylvaleronitrile) low temperature, the interpolymer molecule amount height that makes, narrow molecular weight distribution confirms it is vinyl cyanide/acrylamide/β-itaconic acid n-butyl terpolymer body structure through infrared spectra and ultimate analysis.Adopt technical solution of the present invention, can obtain the heat release peak width and reach 97 ℃, weight-average molecular weight can reach 300,000, the interpolymer of molecular weight distributing index in 1.5~2.0 scopes.Obtained better technical effect.
The present invention is further elaborated below by embodiment.
Embodiment
[embodiment 1]
By 800: 196: 1.5: 2.5: 1 weight ratio took by weighing dimethyl sulfoxide (DMSO), vinyl cyanide, acrylamide, β-itaconic acid n-butyl, 2,2'-Azobis(2,4-dimethylvaleronitrile), use nitrogen replacement at normal temperatures three times, 35 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, obtain vinyl cyanide/acrylamide/β-itaconic acid n-butyl terpolymers, confirm it is this ternary structural, m=2778 through infrared spectra and ultimate analysis, n=30, k=50; The interpolymer weight-average molecular weight is 25.8 ten thousand, and molecular weight distributing index is 1.72.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=215 ℃, heat release end temp T 2=308 ℃, Δ T=T 2-T 1=93 ℃, the exothermic peak broad.
[embodiment 2]
By 800: 196: 3: 1: 1 weight ratio took by weighing dimethyl sulfoxide (DMSO), vinyl cyanide, acrylamide, β-itaconic acid n-butyl, 2,2'-Azobis(2,4-dimethylvaleronitrile), use nitrogen replacement at normal temperatures four times, 40 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, obtain vinyl cyanide/acrylamide/β-itaconic acid n-butyl terpolymers, confirm it is this ternary structural through infrared spectra and ultimate analysis, the interpolymer weight-average molecular weight is 18.2 ten thousand, m=1995, n=75, k=25 molecular weight distributing index are 1.69.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=214 ℃, heat release end temp T 2=304 ℃, Δ T=T 2-T 1=90 ℃.
[embodiment 3]
By 800: 196: 2: 2: 1 weight ratio took by weighing dimethyl sulfoxide (DMSO), vinyl cyanide, acrylamide, β-methylene-succinic acid ethyl ester, 2,2'-Azobis(2,4-dimethylvaleronitrile), use nitrogen replacement at normal temperatures five times, 50 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, obtain vinyl cyanide/acrylamide/β-methylene-succinic acid ethyl ester terpolymers, confirm it is this ternary structural through infrared spectra and ultimate analysis, m=1556, n=25, k=25 interpolymer weight-average molecular weight is 15.6 ten thousand, and molecular weight distributing index is 1.87.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=212 ℃, heat release end temp T 2=306 ℃, Δ T=T 2-T 1=94 ℃.
[embodiment 4]
By 800: 198: 1: 1: 1 weight ratio took by weighing dimethyl formamide, vinyl cyanide, acrylamide, β-itaconic acid n-butyl, 2,2'-Azobis(2,4-dimethylvaleronitrile), use argon replaces at normal temperatures three times, 35 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, obtain vinyl cyanide/acrylamide/β-itaconic acid n-butyl terpolymers, confirm it is this ternary structural through infrared spectra and ultimate analysis, m=2578, n=35, k=35 interpolymer weight-average molecular weight is 25.9 ten thousand, and molecular weight distributing index is 1.97.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=219 ℃, heat release end temp T 2=311 ℃, Δ T=T 2-T 1=92 ℃.
[embodiment 5]
By 800: 198: 1.5: 0.5: 1 weight ratio took by weighing N,N-DIMETHYLACETAMIDE, vinyl cyanide, acrylamide, β-methylene-succinic acid methyl esters, 2,2'-Azobis(2,4-dimethylvaleronitrile), use the argon replaces secondary at normal temperatures, 40 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, obtain vinyl cyanide/acrylamide/β-methylene-succinic acid methyl esters terpolymers, confirm it is this ternary structural through infrared spectra and ultimate analysis, m=1898, n=35, k=9 interpolymer weight-average molecular weight is 18.6 ten thousand, and molecular weight distributing index is 1.86.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=217 ℃, heat release end temp T 2=311 ℃, Δ T=T 2-T 1=94 ℃.
[embodiment 6]
By 700: 196: 2: 2: 1 weight ratio took by weighing dimethyl sulfoxide (DMSO), vinyl cyanide, acrylamide, β-itaconic acid n-butyl, 2,2'-Azobis(2,4-dimethylvaleronitrile), use helium replacement at normal temperatures three times, 35 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, obtain vinyl cyanide/acrylamide/β-itaconic acid n-butyl terpolymers, confirm it is this ternary structural through infrared spectra and ultimate analysis, the interpolymer weight-average molecular weight is 27.9 ten thousand, m=2878, n=45, k=45 molecular weight distributing index are 1.77.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=219 ℃, heat release end temp T 2=311 ℃, Δ T=T 2-T 1=92 ℃.
[embodiment 7]
By 1000: 194: 3: 3: 1.2 weight ratio took by weighing dimethyl sulfoxide (DMSO), vinyl cyanide, acrylamide, β-itaconic acid n-butyl, 2,2'-Azobis(2,4-dimethylvaleronitrile), use helium replacement at normal temperatures four times, 35 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, obtain vinyl cyanide/acrylamide/β-itaconic acid n-butyl terpolymers, confirm it is this ternary structural through infrared spectra and ultimate analysis, m=2358, n=75, k=75 interpolymer weight-average molecular weight is 23.7 ten thousand, and molecular weight distributing index is 1.77.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=220 ℃, heat release end temp T 2=319 ℃, Δ T=T 2-T 1=97 ℃.
[embodiment 8]
By 750: 194: 4: 2: 0.8 weight ratio took by weighing dimethyl sulfoxide (DMSO), vinyl cyanide, acrylamide, β-methylene-succinic acid propyl ester, 2,2'-Azobis(2,4-dimethylvaleronitrile), use nitrogen replacement at normal temperatures five times, 30 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, obtain vinyl cyanide/acrylamide/β-methylene-succinic acid propyl ester terpolymers, confirm it is this ternary structural, m=2878 through infrared spectra and ultimate analysis, n=75, k=50; The interpolymer weight-average molecular weight is 30.7 ten thousand, and molecular weight distributing index is 1.97.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=209 ℃, heat release end temp T 2=306 ℃, Δ T=T 2-T 1=97 ℃.
[comparative example 1]
By 800: 196: 2: 2: 1 weight ratio took by weighing dimethyl sulfoxide (DMSO), vinyl cyanide, methylene-succinic acid, β-itaconic acid n-butyl, Diisopropyl azodicarboxylate, use nitrogen replacement at normal temperatures three times, 60 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, the interpolymer weight-average molecular weight is 10.8 ten thousand, and molecular weight distributing index is 3.57.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=241 ℃, heat release end temp T 2=287 ℃, Δ T=T 2-T 1=46 ℃.
[comparative example 2]
By 800: 196: 2: 2: 1 weight ratio took by weighing dimethyl sulfoxide (DMSO), vinyl cyanide, β-methylene-succinic acid acid amides, β-itaconic acid n-butyl, Diisopropyl azodicarboxylate, use nitrogen replacement at normal temperatures three times, 60 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, the interpolymer weight-average molecular weight is 10.1 ten thousand, and molecular weight distributing index is 3.69.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=240 ℃, heat release end temp T 2=286 ℃, Δ T=T 2-T 1=46 ℃.
[comparative example 3]
By 800: 196: 4: 1 weight ratio took by weighing dimethyl formamide, vinyl cyanide, methylene-succinic acid, Diisopropyl azodicarboxylate, use nitrogen replacement at normal temperatures three times, 60 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, the interpolymer weight-average molecular weight is 11.8 ten thousand, and molecular weight distributing index is 2.76.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=241 ℃, heat release end temp T 2=285 ℃, Δ T=T 2-T 1=44 ℃.
[comparative example 4]
By 800: 196: 4: 1 weight ratio took by weighing N,N-DIMETHYLACETAMIDE, vinyl cyanide, β-methylene-succinic acid methyl esters, Diisopropyl azodicarboxylate, use nitrogen replacement at normal temperatures three times, 60 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, the interpolymer weight-average molecular weight is 10.8 ten thousand, and molecular weight distributing index is 2.96.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=235 ℃, heat release end temp T 2=281 ℃, Δ T=T 2-T 1=46 ℃, exothermic peak is narrower.
[comparative example 5]
By 800: 196: 2: 2: 1 weight ratio took by weighing N,N-DIMETHYLACETAMIDE, vinyl cyanide, methylene-succinic acid, methyl acrylate, 2,2'-Azobis(2,4-dimethylvaleronitrile), use nitrogen replacement at normal temperatures three times, 40 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, the interpolymer weight-average molecular weight is 17.8 ten thousand, and molecular weight distributing index is 2.12.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=240 ℃, heat release end temp T 2=291 ℃, Δ T=T 2-T 1=51 ℃.
[comparative example 6]
By 800: 198: 1: 1: 1 weight ratio took by weighing dimethyl sulfoxide (DMSO), vinyl cyanide, methylene-succinic acid, methyl acrylate, 2,2'-Azobis(2,4-dimethylvaleronitrile), use nitrogen replacement at normal temperatures three times, 45 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, the interpolymer weight-average molecular weight is 15.8 ten thousand, and molecular weight distributing index is 2.02.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=243 ℃, heat release end temp T 2=291 ℃, Δ T=T 2-T 1=48 ℃.
[comparative example 7]
Weight ratio by 800/196/2/2/1 takes by weighing dimethyl sulfoxide (DMSO), vinyl cyanide, acrylamide, β-itaconic acid n-butyl, Diisopropyl azodicarboxylate, use nitrogen replacement at normal temperatures three times, 60 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, the interpolymer weight-average molecular weight is 11.6 ten thousand, and molecular weight distributing index is 2.57.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=211 ℃, heat release end temp T 2=293 ℃, Δ T=T 2-T 1=84 ℃.
[comparative example 8]
Weight ratio by 800/198/1/1/1 takes by weighing dimethyl sulfoxide (DMSO), vinyl cyanide, acrylamide, β-itaconic acid n-butyl, Diisopropyl azodicarboxylate, use nitrogen replacement at normal temperatures three times, 60 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, the interpolymer weight-average molecular weight is 11.9 ten thousand, and molecular weight distributing index is 2.37.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=209 ℃, heat release end temp T 2=291 ℃, Δ T=T 2-T 1=82 ℃.
[comparative example 9]
Weight ratio by 700/198/1.5/0.5/1 takes by weighing dimethyl sulfoxide (DMSO), vinyl cyanide, acrylamide, β-itaconic acid n-butyl, Diisopropyl azodicarboxylate, use nitrogen replacement at normal temperatures three times, 60 ℃ of polyreactions 24 hours, vacuum removal residual monomer and bubble, the interpolymer weight-average molecular weight is 11.6 ten thousand, and molecular weight distributing index is 2.66.Heat is analyzed DSC and is shown Exotherm Onset Temperature T 1=207 ℃, heat release end temp T 2=292 ℃, Δ T=T 2-T 1=85 ℃.

Claims (6)

1. ternary acrylonitrile compolymer body comprises following general formula:
Figure FSA00000064422400011
m=2001~4000;n=5~400;k=5~400
Wherein the interpolymer weight-average molecular weight is between 150000 to 400000; Molecular weight distributing index is between 1.5 to 2.5.
2. the preparation method of the described acrylonitrile compolymer body of claim 1 may further comprise the steps:
A) with the 2,2'-Azobis(2,4-dimethylvaleronitrile) being initiator, is comonomer with vinyl cyanide, acrylamide, β-itaconic ester, is solvent to be selected from least a in dimethyl sulfoxide (DMSO), dimethyl formamide or the N,N-DIMETHYLACETAMIDE.
B) in the desired amount solvent, monomer, initiator are mixed, join in the reactor, use with reaction to be the inert gasses displacement for several times, under 30~50 ℃ of temperature, reacted 6~48 hours, remove residual monomer and bubble, obtain ternary acrylonitrile compolymer body.
3. according to the preparation method of the described acrylonitrile compolymer body of claim 2, it is characterized in that by weight percentage: vinyl cyanide accounts for 90~99% of total monomer weight, acrylamide accounts for 0.1~5% of total monomer weight, β-itaconic ester accounts for total monomer weight 0.1~5%, and it is 15~30% that comonomer accounts for total system weight percent concentration.
4. the preparation method of acrylonitrile compolymer body according to claim 2 is characterized in that β-itaconic ester is selected from least a in β-methylene-succinic acid methyl esters, β-methylene-succinic acid ethyl ester, β-methylene-succinic acid propyl ester or the β-itaconic acid n-butyl.
5. the preparation method of acrylonitrile compolymer body according to claim 2 is characterized in that it is 70~85% that solvent accounts for total system weight percent concentration.
6. the preparation method of acrylonitrile compolymer body according to claim 2 is characterized in that initiator amount is 0.2~1% of a comonomer weight.
CN2010101338036A 2010-03-26 2010-03-26 High molecular weight acrylonitrile terpolymer and preparation method thereof Active CN102199249B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101338036A CN102199249B (en) 2010-03-26 2010-03-26 High molecular weight acrylonitrile terpolymer and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101338036A CN102199249B (en) 2010-03-26 2010-03-26 High molecular weight acrylonitrile terpolymer and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102199249A true CN102199249A (en) 2011-09-28
CN102199249B CN102199249B (en) 2013-03-06

Family

ID=44660262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101338036A Active CN102199249B (en) 2010-03-26 2010-03-26 High molecular weight acrylonitrile terpolymer and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102199249B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668524A (en) * 2012-09-05 2014-03-26 中国石油化工股份有限公司 Preparation method of low-viscosity high-performance binary acrylonitrile polymer spinning liquor
CN104628935A (en) * 2013-11-06 2015-05-20 中国石油化工股份有限公司 Preparation method of carbon fiber spinning stock solution with low viscosity, high molecular weight and narrow molecular weight distribution
CN104695037A (en) * 2015-01-08 2015-06-10 江南大学 Preparation method of high-performance polyacrylonitrile-based carbon fiber precursor
CN104693348A (en) * 2015-03-17 2015-06-10 东华大学 Method for preparing ternary polyacrylonitrile copolymer applicable to carbon fiber precursor
CN104710565A (en) * 2015-03-17 2015-06-17 东华大学 Preparation method of ternary polyacrylonitrile copolymer
CN111085088A (en) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 Polyacrylonitrile fiber for gas filtration and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033712B1 (en) * 1971-04-05 1975-11-01
CN101158060A (en) * 2007-11-20 2008-04-09 中国科学院长春应用化学研究所 Binary acrylonitrile copolymer spinning fluid and preparation method thereof
CN101161694A (en) * 2007-11-22 2008-04-16 吉林奇峰化纤股份有限公司 Preparation method of polymer for polyacrylonitrile base carbon fiber precursors
CN101402698A (en) * 2008-11-10 2009-04-08 东华大学 Process for producing high-molecular weight vinyl cyanide polymer in ionic liquid water solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033712B1 (en) * 1971-04-05 1975-11-01
CN101158060A (en) * 2007-11-20 2008-04-09 中国科学院长春应用化学研究所 Binary acrylonitrile copolymer spinning fluid and preparation method thereof
CN101161694A (en) * 2007-11-22 2008-04-16 吉林奇峰化纤股份有限公司 Preparation method of polymer for polyacrylonitrile base carbon fiber precursors
CN101402698A (en) * 2008-11-10 2009-04-08 东华大学 Process for producing high-molecular weight vinyl cyanide polymer in ionic liquid water solution

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668524A (en) * 2012-09-05 2014-03-26 中国石油化工股份有限公司 Preparation method of low-viscosity high-performance binary acrylonitrile polymer spinning liquor
CN103668524B (en) * 2012-09-05 2016-07-13 中国石油化工股份有限公司 Low viscosity, high-performance binary acrylonitrile copolymer spinning solution preparation method
CN104628935A (en) * 2013-11-06 2015-05-20 中国石油化工股份有限公司 Preparation method of carbon fiber spinning stock solution with low viscosity, high molecular weight and narrow molecular weight distribution
CN104628935B (en) * 2013-11-06 2017-02-15 中国石油化工股份有限公司 Preparation method of carbon fiber spinning stock solution with low viscosity, high molecular weight and narrow molecular weight distribution
CN104695037A (en) * 2015-01-08 2015-06-10 江南大学 Preparation method of high-performance polyacrylonitrile-based carbon fiber precursor
CN104693348A (en) * 2015-03-17 2015-06-10 东华大学 Method for preparing ternary polyacrylonitrile copolymer applicable to carbon fiber precursor
CN104710565A (en) * 2015-03-17 2015-06-17 东华大学 Preparation method of ternary polyacrylonitrile copolymer
CN111085088A (en) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 Polyacrylonitrile fiber for gas filtration and preparation method and application thereof
CN111085088B (en) * 2018-10-23 2022-04-05 中国石油化工股份有限公司 Polyacrylonitrile fiber for gas filtration and preparation method and application thereof

Also Published As

Publication number Publication date
CN102199249B (en) 2013-03-06

Similar Documents

Publication Publication Date Title
CN102199248B (en) Acrylonitrile ternary interpolymer and preparation method thereof
CN102199249B (en) High molecular weight acrylonitrile terpolymer and preparation method thereof
CN100545327C (en) The uniform carbon fiber of a kind of chain structure is with binary acrylonitrile copolymer spinning fluid and preparation method
CN101805936A (en) Acrylonitrile copolymer spinning solution with high molecular weight and narrow distribution and preparation method thereof
CN103422187B (en) The preparation method of low viscosity, high-performance carbon fibre spinning solution
CN100545181C (en) A kind of hydrophilicity spinning fluid of PAN-based carbon fiber and preparation method
CN100545326C (en) A kind of method for preparing the acrylonitrile copolymer of high molecular, Narrow Molecular Weight Distribution
CN103014894B (en) Preparation method of acrylonitrile copolymer spinning solution with low molecular weight distribution
CN101205280B (en) Acrylonitrile copolymer as well as preparation and use thereof
CN1288292C (en) High-performance polyacrylonitrile base carbon fibre spinning solution and its preparation method
CN104558397B (en) The preparation method of the controllable high-hydrophilic acrylonitrile copolymer spinning solution of ammonification degree
CN101781809B (en) Acrylonitrile copolymer spinning solution with uniform chain structure and narrow molecular-weight distribution and preparation method thereof
CN104558394A (en) Method for preparing viscosity-controllable polyacrylonitrile carbon fiber spinning solution
CN102746453B (en) Method for preparing high-performance polyacrylonitrile solution for carbon fibers
JP7037585B2 (en) Method for producing acrylonitrile-based polymer for carbon fiber production
CN101831729B (en) High-hydrophilic and exothermal spinning solution for polyacrylonitrile-based carbon fibers and preparation method thereof
CN100545328C (en) A kind of polyacryl-nitrile spinning fluid that contains imidazole salts and preparation method thereof
KR102571367B1 (en) Method for preparing acrylonitrile based polymer
KR101252789B1 (en) Acrylonitrile Copolymer For PAN Based Carbon Fiber Precursor
CN101413153A (en) Acrylonitrile biopolymer spinning fluid having homogeneous chain structure and preparation thereof
KR102161029B1 (en) Method for preparing acrylonitrile based polymer for preparing carbon fiber
CN104558395A (en) Preparation method of high-hydrophilcity acrylonitrile copolymer spinning solution
CN104628935A (en) Preparation method of carbon fiber spinning stock solution with low viscosity, high molecular weight and narrow molecular weight distribution
CN101768078A (en) Itaconic acid derivant for copolymerization of acrylonitrile
JPH11229232A (en) Production of acrylonitrile-based precursor yarn for carbon fiber

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant