JP2015160953A - Method for producing acrylonitrile-based polymer - Google Patents

Method for producing acrylonitrile-based polymer Download PDF

Info

Publication number
JP2015160953A
JP2015160953A JP2014039230A JP2014039230A JP2015160953A JP 2015160953 A JP2015160953 A JP 2015160953A JP 2014039230 A JP2014039230 A JP 2014039230A JP 2014039230 A JP2014039230 A JP 2014039230A JP 2015160953 A JP2015160953 A JP 2015160953A
Authority
JP
Japan
Prior art keywords
acrylonitrile
polymerization
mass
polymer
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014039230A
Other languages
Japanese (ja)
Inventor
祐太郎 中村
Yutaro Nakamura
祐太郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2014039230A priority Critical patent/JP2015160953A/en
Publication of JP2015160953A publication Critical patent/JP2015160953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an acrylonitrile-based polymer, in which the supply amount of acrylonitrile is reduced just after polymerization is initiated to prevent an acrylonitrile-rich polymer, that is produced at the initial stage of polymerization, from being produced so that the acrylonitrile-based polymer having excellent solubility can be produced.SOLUTION: The method for producing the acrylonitrile-based polymer comprises the steps of: continuously feeding monomers including acrylonitrile and (meth)acrylate, a redox polymerization initiator and water to a reactor; and continuously withdrawing a reaction solution from the reactor. Until X hours since a feed of the monomers to the reactor is started, the average value of the supply amounts of the (meth)acrylate for 10 minutes is controlled to be 1.1×A mass% to 2.0×A mass% of the supply amounts of all monomers. After X hours since the feed of the monomers to the reactor is started, the supply amount of the (meth)acrylate is controlled to be A mass% of the supply amounts of all monomers. On condition that A satisfies 3≤A≤10 and X satisfies 0.5≤X≤3.

Description

本発明は、アクリル繊維に適したアクリロニトリル系重合体の製造方法に関する。   The present invention relates to a method for producing an acrylonitrile-based polymer suitable for acrylic fibers.

アクリル繊維の原料となるアクリロニトリル系重合体は、一般に水系析出重合又は溶液重合によって製造されている。特に水系析出重合方式は、溶液重合に比べて短い滞在時間で連続生産が可能で、しかも、簡便な反応器を使用するため非常に生産性に優れている。   The acrylonitrile polymer used as a raw material for acrylic fibers is generally produced by aqueous precipitation polymerization or solution polymerization. In particular, the aqueous precipitation polymerization method enables continuous production with a shorter residence time than solution polymerization, and is extremely excellent in productivity because it uses a simple reactor.

一般に水系析出重合で連続生産する開始方法は、重合開始時に、水及び重合開始剤を予め反応器の溢流開始位置まで所定量を仕込み、この中に重合開始剤、単量体及び水を所定の比率で連続的に供給することで重合を開始させることが行われている。   In general, the starting method for continuous production by aqueous precipitation polymerization is such that, at the start of polymerization, a predetermined amount of water and a polymerization initiator are charged in advance to the overflow start position of the reactor, and a polymerization initiator, a monomer and water are predetermined therein. The polymerization is started by continuously feeding at a ratio of

ポリアクリロニトリル系繊維の製造工程の安定性や繊維の品質は、ポリアクリロニトリル系重合体粒子の溶剤への溶解性に影響される。重合体粒子の溶解性は、個々の粒子の溶解性と重合体粒子の分散性に影響される。例えば、紡糸原液中に未溶解の重合体粒子が存在すると、それが核となってゲルが発生するので、原液の安定性が損なわれたり、糸切れや毛羽の原因となる。ポリアクリロニトリル系重合体粒子のアクリロニトリル単量体単位が95質量%未満であれば、溶剤への溶解性は概ね良好であるが、アクリロニトリル単量体単位が95質量%以上であると、重合体粒子の形状が溶解性に大きな影響を与える。また、重合体粒子の分散性が低いと、重合体粒子同士が融着してしまう。   The stability of the production process of polyacrylonitrile fiber and the quality of the fiber are affected by the solubility of the polyacrylonitrile polymer particles in the solvent. The solubility of the polymer particles is affected by the solubility of the individual particles and the dispersibility of the polymer particles. For example, if undissolved polymer particles are present in the spinning dope, it becomes a nucleus and a gel is generated, so that the stability of the dope is impaired, and thread breakage and fluff are caused. If the acrylonitrile monomer unit of the polyacrylonitrile polymer particles is less than 95% by mass, the solubility in the solvent is generally good, but if the acrylonitrile monomer unit is 95% by mass or more, the polymer particles The shape of has a great effect on solubility. In addition, when the dispersibility of the polymer particles is low, the polymer particles are fused.

以上の問題の解決策として、特許文献1では、重合体粒子嵩密度を0.33g/cm以上0.50g/cm以下、体積平均粒径を15μm以上30μm以下に制御することで、溶剤に対する分散性と溶解性に優れ、紡糸工程の安定性を向上できるアクリロニトリル系重合体粒子の製造方法を開示している。 As a solution to the above problem, in Patent Document 1, the polymer particle bulk density is controlled to 0.33 g / cm 3 or more and 0.50 g / cm 3 or less, and the volume average particle size is controlled to 15 μm or more and 30 μm or less. Discloses a method for producing acrylonitrile-based polymer particles, which are excellent in dispersibility and solubility in water and can improve the stability of the spinning process.

特開2012−201739号公報JP 2012-201739 A

しかしながら、特許文献1に記載の方法では、重合初期にアクリロニトリル単量体単位が95質量%以上の重合体粒子が生成する可能性があった。これが重合初期に生成・混入してしまうと、溶解性に影響を与える可能性がある。   However, in the method described in Patent Document 1, polymer particles having an acrylonitrile monomer unit of 95% by mass or more may be generated at the initial stage of polymerization. If this is generated / mixed in the early stage of polymerization, the solubility may be affected.

本発明の課題は、重合開始直後のアクリロニトリル供給組成を低くすることで、重合初期に生成するアクリロニトリルリッチな重合体が生成するのを防ぎ、溶解性に優れたアクリロニトリル系重合体を製造することができるアクリロニトリル系重合体の製造方法を提供することである。   An object of the present invention is to reduce the acrylonitrile supply composition immediately after the start of polymerization, thereby preventing the formation of an acrylonitrile-rich polymer generated at the initial stage of polymerization, and producing an acrylonitrile-based polymer having excellent solubility. It is to provide a method for producing an acrylonitrile-based polymer.

前記課題は本発明によって解決される。
本発明のアクリロニトリル系重合体の製造方法は、アクリロニトリル及び、(メタ)アクリル酸エステルを含む単量体、レドックス系重合開始剤及び水を反応器に連続して供給し、反応液を反応器から連続して取り出すアクリロニトリル系重合体の製造方法であって、前記単量体を反応器へ供給開始からX時間までは(メタ)アクリル酸エステル供給量の10分間の平均値が全単量体の供給量に対して1.1×A質量%〜2.0×A質量%であり、供給開始からX時間以降は、(メタ)アクリル酸エステル供給量が全単量体の供給量に対してA質量%とするアクリロニトリル系重合体の製造方法である。
ただし、3≦A≦10、0.5≦X≦3とする。
The above problems are solved by the present invention.
The method for producing an acrylonitrile-based polymer of the present invention comprises continuously supplying acrylonitrile and a monomer containing a (meth) acrylic ester, a redox polymerization initiator and water to the reactor, and supplying the reaction liquid from the reactor. A process for producing an acrylonitrile-based polymer continuously taken out, wherein the average value of (meth) acrylic acid ester supply amount for 10 minutes is X 1.1 × A mass% to 2.0 × A mass% with respect to the supply amount, and after X hours from the start of supply, the (meth) acrylic ester supply amount is based on the supply amount of all monomers. It is a manufacturing method of the acrylonitrile-type polymer made into A mass%.
However, 3 ≦ A ≦ 10 and 0.5 ≦ X ≦ 3.

本発明によれば、重合初期における溶解性に優れたアクリロニトリル系重合体を製造することができるアクリロニトリル系重合体の製造方法を提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the acrylonitrile-type polymer which can manufacture the acrylonitrile-type polymer excellent in the solubility in the initial stage of superposition | polymerization is provided.

以下に本発明の詳細を説明する。
<反応器>
本発明に用いる反応器は、例えば、反応器内の反応液を攪拌させる装置、重合開始剤、単量体及び水を供給する供給口、重合熱除去手段及び溢流口を有する装置である。
Details of the present invention will be described below.
<Reactor>
The reactor used in the present invention is, for example, a device having a device for stirring the reaction liquid in the reactor, a polymerization initiator, a supply port for supplying monomer and water, a polymerization heat removing means, and an overflow port.

<単量体>
アクリロニトリル系重合体を製造する場合は、アクリロニトリル単位が質量で40質量%以上含有していることが好ましく、該重合体から製造される繊維の耐熱性等を考慮するとアクリロニトリル単位が質量で90質量%以上含有されていることが更に好ましい。さらにアクリロニトリルと共重合可能な他のビニル単量体を含むことができる。共重合可能な他のビニル単量体としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類及びそれらの塩類、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α―メチルスチレン、酢酸ビニル、(メタ)アリルスルホン酸ナトリウム、(メタ)アリルオキシベンゼンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸及びそれらの塩類などが挙げられる。
<Monomer>
In the case of producing an acrylonitrile-based polymer, it is preferable that the acrylonitrile unit is contained in an amount of 40% by mass or more, and considering the heat resistance of fibers produced from the polymer, the acrylonitrile unit is 90% by mass. More preferably, it is contained. Further, other vinyl monomers copolymerizable with acrylonitrile can be included. Examples of other copolymerizable vinyl monomers include (meth) acrylic acid such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth) acrylate. Esters, vinyl halides such as vinyl chloride, vinyl bromide, vinylidene chloride, acids such as (meth) acrylic acid, itaconic acid, crotonic acid and their salts, maleic imide, phenylmaleimide, (meth) acrylamide, Examples include styrene, α-methylstyrene, vinyl acetate, sodium (meth) allylsulfonate, sodium (meth) allyloxybenzenesulfonate, sodium styrenesulfonate, 2-acrylamido-2-methylpropanesulfonic acid, and salts thereof. It is done.

<重合開始剤>
レドックス水系析出重合では、酸化剤として、一般的に、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の無機系酸化剤や、過酸化ベンゾイル、メチルエチルケトンパーオキサイド、t−ブチルヒドロパーオキサイド、ジ−t−ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド、ジ(2−エトキシエチル)パーオキシジカーボネート等の有機過酸化物などが用いられる。
<Polymerization initiator>
In redox aqueous precipitation polymerization, as an oxidizing agent, generally, an inorganic oxidizing agent such as ammonium persulfate, potassium persulfate, sodium persulfate, benzoyl peroxide, methyl ethyl ketone peroxide, t-butyl hydroperoxide, di-t Organic peroxides such as butyl peroxide, cumene hydroperoxide, succinic acid peroxide, and di (2-ethoxyethyl) peroxydicarbonate are used.

また、還元剤としては一般的に、亜硫酸ナトリウム、亜硫酸アンモニウム、重亜硫酸ナトリウム、重亜硫酸アンモニウム、チオ硫酸ナトリウム、チオ硫酸アンモニウム、亜二チオン酸ナトリウム、ナトリウムホルムアルデヒドスルフォキシレート、L−アルコルビン酸、デキストロ−ズ等が用いられる。
また、酸化剤、還元剤と共に、酸化還元系の助剤を用いることが好ましい。その助剤としては、例えば、硫酸第一鉄、硫酸銅が挙げられる。助剤の濃度は特に規定されないが、重合をより効率よく進める点から0.01ppm以上が好ましく、重合体粒子中への過剰な残存を防ぐ点から1000ppm以下が好ましい。
特に、過硫酸アンモニウム−亜硫酸水素アンモニウム−硫酸第一鉄を組合せて用いることが好ましい。
As the reducing agent, sodium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium thiosulfate, ammonium thiosulfate, sodium dithionite, sodium formaldehyde sulfoxylate, L-alcorbic acid, dextro -Etc. are used.
Moreover, it is preferable to use a redox-type auxiliary agent together with the oxidizing agent and the reducing agent. Examples of the auxiliary agent include ferrous sulfate and copper sulfate. The concentration of the auxiliary agent is not particularly defined, but is preferably 0.01 ppm or more from the viewpoint of more efficient polymerization, and preferably 1000 ppm or less from the viewpoint of preventing excessive remaining in the polymer particles.
In particular, it is preferable to use a combination of ammonium persulfate-ammonium hydrogen sulfite-ferrous sulfate.

<重合反応>
本発明は、水系析出重合法により単量体を連続重合する方法であるため、公知の方法が使用できる。例えばあらかじめ反応器内に脱イオン交換水(重合媒体)を仕込んでおき、そこへ酸化剤、還元剤、酸化還元系助剤、脱イオン交換水、単量体を連続的に供給し、攪拌しながら重合反応を進行させることが好ましい。
<Polymerization reaction>
Since the present invention is a method of continuously polymerizing monomers by an aqueous precipitation polymerization method, a known method can be used. For example, deionized water (polymerization medium) is charged in the reactor in advance, and oxidant, reducing agent, redox system auxiliary, deionized water, and monomer are continuously supplied to the reactor and stirred. The polymerization reaction is preferably allowed to proceed.

<開始剤が溶解した水溶液>
反応器内に単量体を供給開始した直後は、単量体濃度が非常に希薄な状態である。更に、開始剤の濃度も希薄な場合には、重合が速やかに開始しない場合がある。したがって、重合反応を速やかに開始するためには、単量体を供給開始する以前に、開始剤をあらかじめ仕込んでおくことが好ましい。あらかじめ仕込む開始剤濃度は、オリゴマーの多量の生成を抑制する観点から1質量%以下が好ましく、0.8質量%以下がより好ましい。また、前記濃度は、重合反応を速やかに開始する観点から0.01質量%以上が好ましく、0.1質量%以上がより好ましい。
<Aqueous solution in which initiator is dissolved>
Immediately after starting to supply the monomer into the reactor, the monomer concentration is very dilute. Furthermore, when the concentration of the initiator is also dilute, the polymerization may not start quickly. Therefore, in order to start the polymerization reaction promptly, it is preferable to charge the initiator in advance before starting to supply the monomer. The initiator concentration charged in advance is preferably 1% by mass or less, and more preferably 0.8% by mass or less from the viewpoint of suppressing a large amount of oligomer formation. The concentration is preferably 0.01% by mass or more, more preferably 0.1% by mass or more from the viewpoint of promptly starting the polymerization reaction.

<規定位置まで貯留した反応器内に、連続して供給を開始し、>
単量体を供給開始した直後は、急激に重合体粒子が析出し、重合体粒子の濃度が上昇する。重合体粒子の濃度が高くなりすぎると反応液が粘稠となり、攪拌不良となり、重合熱の除熱が局所的に不十分となる可能性がある。したがって、急激な重合体粒子濃度の上昇を極力抑制するため、単量体の供給開始と同時に、反応液を反応器から取り出すことが好ましい。
<Start supplying continuously into the reactor stored up to the specified position>
Immediately after starting to supply the monomer, polymer particles are rapidly precipitated, and the concentration of the polymer particles increases. If the concentration of the polymer particles becomes too high, the reaction solution becomes viscous, resulting in poor stirring, and the heat removal from the polymerization heat may be locally insufficient. Therefore, in order to suppress the rapid increase in the polymer particle concentration as much as possible, it is preferable to take out the reaction solution from the reactor at the same time as the start of the monomer supply.

重合体組成は、初期(非定常状態)と定常状態で異なるが、特に連続重合方式においては、単量体や開始剤などの供給と同時に同量の反応液を取り出す必要があるため、初期に生成された重合体は直接後工程へと影響する可能性がある。よって、重合初期における重合体中のアクリロニトリル単位を定常状態のアクリロニトリル単位以下とするのが、溶解性の観点から好ましい。また一方で、重合体中野アクリロニトリル単位が少なすぎると、炭素繊維の性能低下の懸念があるため、重合初期のアクリロニトリル単位の下限は定常状態と比べて著しく低くならない様にする必要がある。   The polymer composition differs between the initial state (unsteady state) and the steady state. However, in the continuous polymerization method, it is necessary to take out the same amount of the reaction liquid at the same time as the supply of monomers and initiators. The produced polymer may directly affect the subsequent process. Therefore, it is preferable from the viewpoint of solubility that the acrylonitrile unit in the polymer in the initial stage of polymerization is not more than the acrylonitrile unit in the steady state. On the other hand, if there are too few polymer acrylonitrile units in the polymer, there is a concern that the performance of the carbon fiber will be lowered. Therefore, the lower limit of the acrylonitrile units at the initial stage of polymerization must not be significantly lower than that in the steady state.

以上のことから、重合初期の重合体のアクリロニトリル単位を、定常状態のアクリロニトリル単位以下でかつ著しく低くならない様にするため、重合初期のアクリロニトリル供給量を定常条件より低くする方法が有効である。   In view of the above, in order to prevent the acrylonitrile unit of the polymer in the initial stage of polymerization from being lower than the acrylonitrile unit in the steady state and not significantly lower, it is effective to make the acrylonitrile supply amount in the initial stage of polymerization lower than the steady state.

本発明において、定常状態に供給する(メタ)アクリル酸エステル単位を質量でA質量%とする。Aは、アクリロニトリル系重合体を得られる範囲であれば特に制限はないが、アクリロニトリル単位の低下は炭素繊維性能低下のおそれがあるため、Aは10質量%以下であることが好ましい。また、アクリロニトリル単位が高すぎると当該重合体の溶解性悪化をもたらし、紡糸工程通過上の問題となる可能性があることから、Aは3質量%以上が好ましい。   In the present invention, the (meth) acrylic acid ester unit supplied to the steady state is A mass% by mass. A is not particularly limited as long as acrylonitrile-based polymer can be obtained. However, since a decrease in acrylonitrile units may cause a decrease in carbon fiber performance, A is preferably 10% by mass or less. Further, if the acrylonitrile unit is too high, the solubility of the polymer is deteriorated, which may cause a problem in passing through the spinning process. Therefore, A is preferably 3% by mass or more.

重合開始からX時間までに供給する(メタ)アクリル酸エステル単位は、アクリロニトリル系重合体を得られる範囲であれば特に制限はないが、アクリロニトリル単位の低下は炭素繊維性能低下のおそれがあるため、A×2.0以下であることが好ましい。また、重合初期のアクリロニトリル単位が高すぎると当該重合体の溶解性悪化をもたらし、紡糸工程通過上の問題となる可能性があることから、A×1.1以上であることが好ましい。   The (meth) acrylic acid ester unit supplied from the start of polymerization to X hours is not particularly limited as long as an acrylonitrile-based polymer can be obtained, but the decrease in the acrylonitrile unit may cause a decrease in carbon fiber performance. It is preferable that it is A * 2.0 or less. Further, if the acrylonitrile unit at the initial stage of polymerization is too high, the solubility of the polymer is deteriorated, which may cause a problem in passing through the spinning process. Therefore, it is preferably A × 1.1 or more.

アクリロニトリル単位の高い重合体が生成する懸念がある非定常状態から定常状態となった段階で一時的に低くしていたアクリロニトリル単位を定常状態にすることが好ましい。重合開始から単量体と開始剤の比を定常状態にする時間をX時間とする。Xは0.5≦X≦3が好ましい。Xは1.5以下がさらに好ましい。   It is preferable that the acrylonitrile unit, which has been temporarily lowered at the stage when the steady state is changed from the unsteady state where there is a concern that a polymer having a high acrylonitrile unit is formed, be brought into a steady state. X time is defined as the time from the start of polymerization until the ratio of the monomer to the initiator reaches a steady state. X is preferably 0.5 ≦ X ≦ 3. X is more preferably 1.5 or less.

反応器内の反応液の温度は、単量体が重合可能な温度であれば特に限定されない。ただし、アクリロニトリルが蒸発して反応系外へ離散することを防ぐ点から、80℃以下が好ましく、60℃以下がより好ましい。重合反応が速やかに進行するためには、30℃以上である必要がある。また、重合体の分子量の安定化の点から、反応液の温度は一定に保つことが好ましい。
反応器内の単量体の平均滞在時間は特に制限されず、従来よりアクリロニトリル系重合体を水系析出重合により製造する際に採用される時間でよい。この平均滞在時間は、生産性の点から200分以下が好ましく、重合を十分に完結させる点から20分以上が好ましい。反応器内での水素イオン濃度は、開始剤がすみやかに酸化・還元反応を起こすような濃度であればよく、pH2.0〜3.5の酸性領域が好ましい。
The temperature of the reaction liquid in the reactor is not particularly limited as long as the monomer can be polymerized. However, it is preferably 80 ° C. or less, more preferably 60 ° C. or less, from the viewpoint of preventing acrylonitrile from evaporating and being dispersed outside the reaction system. In order for the polymerization reaction to proceed rapidly, it is necessary to be 30 ° C. or higher. Moreover, it is preferable to keep the temperature of the reaction liquid constant from the viewpoint of stabilizing the molecular weight of the polymer.
The average residence time of the monomer in the reactor is not particularly limited, and may be a time conventionally employed when producing an acrylonitrile-based polymer by aqueous precipitation polymerization. The average residence time is preferably 200 minutes or less from the viewpoint of productivity, and preferably 20 minutes or more from the viewpoint of sufficiently completing the polymerization. The hydrogen ion concentration in the reactor may be a concentration such that the initiator promptly causes an oxidation / reduction reaction, and an acidic region having a pH of 2.0 to 3.5 is preferable.

<反応液の取り出し>
本発明においては、以上のようにして単量体を反応器内で重合させながら、その重合体粒子を含む反応液を例えば反応器の溢流口から連続的に取り出す。
そしてこの反応液に、例えば、脱イオン交換水に溶解させた重合停止剤を添加することにより重合を停止する。重合停止剤としては、従来よりアクリロニトリル系重合体を水系析出重合で製造する際使用される重合停止剤を制限無く使用できる。続いて、重合体水溶液から未反応単量体の回収を行う。未反応単量体の回収方法としては、重合体水溶液を直接蒸留する方法、また一旦脱水し、未反応単量体を重合体と分離した後蒸留する方法があるが、本発明では、両方式とも採用可能である。後者の方法に用いる脱水洗浄機としては、通常公知の濾過脱水機を用いることができ、例えば、回転式真空濾過器、遠心脱水機等が使用することができる。これらの装置を用いて反応液から重合体を分離する際に、効率の観点から、硫酸アンモニウム、硫酸アルミニウム、硫酸ナトリウム等の凝集剤を添加することができ、さらに重合体の凝集を促進する観点から重合体水溶液を昇温する等の操作を行うこともできる。また、重合体中に残った水分は通常の乾燥方式によって取り除くことができる。
<Removal of reaction solution>
In the present invention, while the monomer is polymerized in the reactor as described above, the reaction liquid containing the polymer particles is continuously taken out from, for example, the overflow port of the reactor.
The polymerization is stopped by adding, for example, a polymerization terminator dissolved in deionized exchange water to the reaction solution. As the polymerization terminator, a polymerization terminator conventionally used when producing an acrylonitrile-based polymer by aqueous precipitation polymerization can be used without limitation. Subsequently, the unreacted monomer is recovered from the aqueous polymer solution. As a method for recovering the unreacted monomer, there is a method of directly distilling the polymer aqueous solution, or a method of once dehydrating and separating the unreacted monomer from the polymer, followed by distillation. Both can be adopted. As the dehydration washer used in the latter method, a generally known filter dehydrator can be used. For example, a rotary vacuum filter, a centrifugal dehydrator, or the like can be used. From the viewpoint of efficiency, a flocculant such as ammonium sulfate, aluminum sulfate, or sodium sulfate can be added when separating the polymer from the reaction solution using these apparatuses, and further from the viewpoint of promoting the aggregation of the polymer. Operations such as raising the temperature of the aqueous polymer solution can also be performed. Further, water remaining in the polymer can be removed by a normal drying method.

上記のアクリロニトリル系重合体を、アミド系溶剤に溶解して紡糸原液が得られる。アミド系溶剤としては、緻密性の高いアクリロニトリル系共重合体繊維を得ることが可能なジメチルアセトアミド及びジメチルホルムアミドが好ましく、ジメチルアセトアミドが特に好ましい。   The above acrylonitrile polymer is dissolved in an amide solvent to obtain a spinning dope. As the amide solvent, dimethylacetamide and dimethylformamide capable of obtaining highly dense acrylonitrile copolymer fibers are preferable, and dimethylacetamide is particularly preferable.

本発明においては、生産性に優れ、かつ残留単量体等の不要成分の量を減少できる点でレドックス開始剤を用いた水系析出重合を採用しているが、重合方法としては、水系析出重合、懸濁重合、溶液重合、乳化重合など特に限定されない。本発明におけるレドックス開始剤を用いた水系析出重合は、反応器内に、アクリロニトリルを主成分とする単量体、レドックス開始剤及び脱イオン交換水を連続的に供給して単量体を重合させる方法である。   In the present invention, aqueous precipitation polymerization using a redox initiator is adopted because it is excellent in productivity and can reduce the amount of unnecessary components such as residual monomers, but the polymerization method is aqueous precipitation polymerization. , Suspension polymerization, solution polymerization, emulsion polymerization and the like are not particularly limited. In the aqueous precipitation polymerization using the redox initiator in the present invention, the monomer is polymerized by continuously supplying a monomer mainly composed of acrylonitrile, a redox initiator and deionized water in the reactor. Is the method.

<昇圧度:重合体粒子の溶解性評価>
−15℃に冷却したジメチルアセドアミドに、重合体粒子を固形分21質量%で均一に分散させて分散液を得る。この分散液を、熱媒を循環可能なジャケット付きの内径11mmの配管に通過させ、滞在時間4.2分で110℃まで加熱して溶解させ、重合体溶液を得る。この重合体溶液を、90%捕集効率5μmの金属不織布のフィルター(日本精線製:NF−05S)に、11g/minにて330g通過させた時の差圧上昇の値を昇圧度(MPa)として、重合体粒子の溶解性の指標とする。昇圧度はその値が小さいほどフィルターに捕捉される未溶解物が少なく溶解性に優れる。
<Pressure degree: Evaluation of solubility of polymer particles>
Polymer particles are uniformly dispersed at a solid content of 21% by mass in dimethylacedamide cooled to −15 ° C. to obtain a dispersion. This dispersion is passed through a pipe with an inner diameter of 11 mm with a jacket through which the heat medium can be circulated, and dissolved by heating to 110 ° C. with a residence time of 4.2 minutes to obtain a polymer solution. When the polymer solution is passed through a metal non-woven fabric filter (manufactured by Nippon Seisen: NF-05S) with a 90% collection efficiency of 5 μm at 330 g at 11 g / min, the value of the differential pressure increase is expressed as the degree of pressure increase (MPa ) As an index of solubility of polymer particles. The smaller the value of the pressurization degree, the less the undissolved substance captured by the filter, and the better the solubility.

<実施例1>
容量76.5リットルのディスクタービン撹拌翼付きアルミ製反応器に、硫酸第一鉄0.0000097質量%、過硫酸アンモニウム0.098質量%、亜硫酸水素アンモニウム0.15質量%を溶解した脱イオン交換水を満水になるまで仕込み、反応器内部温度を57℃まで昇温した後、アクリロニトリル259g/min、2−ヒドロキシエチルメタクリレート25質量%水溶液56g/min、脱イオン交換水578g/min、過硫酸アンモニウム2.75質量%水溶液55g/min、亜硫酸水素アンモニウム5質量%水溶液45g/min、硫酸第一鉄0.0002質量%水溶液41g/min、硫酸0.5質量%水溶液63g/minを流体として同時に連続的に供給を開始した。
<Example 1>
Deionized exchange water in which 0.0000097 mass% ferrous sulfate, 0.098 mass% ammonium persulfate, and 0.15 mass% ammonium bisulfite were dissolved in an aluminum reactor equipped with a 76.5 liter disc turbine stirring blade Was charged until the reactor was full and the internal temperature of the reactor was raised to 57 ° C., then acrylonitrile 259 g / min, 2-hydroxyethyl methacrylate 25% by weight aqueous solution 56 g / min, deionized water 578 g / min, ammonium persulfate 2. A 75 mass% aqueous solution 55 g / min, an ammonium bisulfite 5 mass% aqueous solution 45 g / min, a ferrous sulfate 0.0002 mass% aqueous solution 41 g / min, and a sulfuric acid 0.5 mass% aqueous solution 63 g / min were simultaneously and continuously used as fluids. Supply started.

重合熱の発生が確認された後、反応液温度を上記単量体の供給開始後約1時
後に50℃まで緩やかに低下させた。更に、上記単量体の供給開始後1時間の時点で上記供給流体のうち、アクリロニトリル262g/min、2−ヒドロキシエチルメタクリレート45g/min、脱イオン交換水612g/min、過硫酸アンモニウム水溶液46g/min、亜硫酸水素アンモニウム水溶液38g/min、硫酸水溶液53/minとなる様に供給流量を速やかに変更した。
After the generation of polymerization heat was confirmed, the temperature of the reaction solution was gradually lowered to 50 ° C. about 1 hour after the start of the monomer supply. Furthermore, at the time of 1 hour after starting the supply of the monomer, among the supply fluid, 262 g / min of acrylonitrile, 45 g / min of 2-hydroxyethyl methacrylate, 612 g / min of deionized water, 46 g / min of an aqueous ammonium persulfate solution, The supply flow rate was quickly changed so that the aqueous solution of ammonium hydrogen sulfite was 38 g / min and the aqueous solution of sulfuric acid 53 / min.

重合反応を通して、撹拌を行いながら連続的に重合反応を行い、単量体の平均滞在時間が70分になるように反応器溢流口より連続的に反応液を取り出した。反応器内の反応液は、pHが3.0になるように硫酸水溶液供給量で調節しながら重合を行った。昇圧度測定用の反応液は重合開始7時間後に溢流口から採取した。   Through the polymerization reaction, the polymerization reaction was continuously carried out while stirring, and the reaction solution was continuously taken out from the reactor overflow port so that the average residence time of the monomers was 70 minutes. The reaction liquid in the reactor was polymerized while adjusting the sulfuric acid aqueous solution supply amount so that the pH was 3.0. The reaction solution for measuring the pressure increase was collected from the overflow port 7 hours after the start of polymerization.

取り出した反応液に、シュウ酸ナトリウム0.5質量%、重炭酸ナトリウム1.8質量%を脱イオン交換水に溶解した重合停止剤水溶液を、反応液のpHが5.5〜6.0になるように加え、遠心脱水機にて濾別し、未反応単量体、余剰の重合助剤の残査をポリマーから分離した。   A polymerization stopper aqueous solution in which 0.5% by mass of sodium oxalate and 1.8% by mass of sodium bicarbonate were dissolved in deionized water was added to the removed reaction solution, and the pH of the reaction solution was adjusted to 5.5 to 6.0. In addition, the mixture was filtered with a centrifugal dehydrator to separate unreacted monomers and surplus polymerization surplus from the polymer.

得られた湿潤ポリマーを通風バンド型乾燥機で乾燥して、アクリロニトリル系ポリマーを得た。重合開始7時間後の重合体のポリマー組成と昇圧度を表1に記す。   The obtained wet polymer was dried with a ventilation band type dryer to obtain an acrylonitrile-based polymer. Table 1 shows the polymer composition and the pressure increase degree of the polymer 7 hours after the start of the polymerization.

重合開始7時間後の重合体中のアクリロニトリル単位は95質量%以上であり、かつ昇圧度が低く抑えられていた。   The acrylonitrile unit in the polymer 7 hours after the start of the polymerization was 95% by mass or more, and the pressurization degree was kept low.

<実施例2>
表1の様にアクリロニトリルの供給比率を重合開始から1時間以前は92.85質量%、1時間以降は95.85質量%となる様に供給流量を変更した以外は実施例1と同様にしてアクリロニトリル系ポリマーを得た。
重合開始7時間後の重合体中のアクリロニトリル単位は95質量%以上であり、かつ昇圧度が低く抑えられていた。
<Example 2>
As in Table 1, the supply rate of acrylonitrile was changed to 92.85% by mass before 1 hour from the start of polymerization and 95.85% by mass after 1 hour. Acrylonitrile-based polymer was obtained.
The acrylonitrile unit in the polymer 7 hours after the start of the polymerization was 95% by mass or more, and the pressurization degree was kept low.

<比較例1>
表1の様にアクリロニトリルの供給比率を重合開始から供給量を変更せず、1時間以前、1時間以降ともに95.85質量%となる様に供給流量を変更した以外は実施例1と同様にしてアクリロニトリル系ポリマーを得た。
重合開始7時間後の重合体中のアクリロニトリル単位は実施例と同等であったが、昇圧度は高くなった。
<Comparative Example 1>
As in Table 1, the supply ratio of acrylonitrile was not changed from the start of polymerization, but the supply flow rate was changed so that it was 95.85% by mass before 1 hour and after 1 hour. As a result, an acrylonitrile-based polymer was obtained.
The acrylonitrile unit in the polymer 7 hours after the start of polymerization was the same as in the examples, but the degree of pressurization increased.

<比較例2>
表1の様にアクリロニトリルの供給比率を重合開始から1時間以前は96.54質量%、1時間以降は95.85質量%となる様に供給流量を変更した以外は実施例1と同様にしてアクリロニトリル系ポリマーを得た。
重合開始7時間後の重合体中のアクリロニトリル単位は実施例と同等であったが、昇圧度は高くなった。
<Comparative Example 2>
As in Table 1, the supply rate of acrylonitrile was changed to 96.54% by mass before 1 hour from the start of polymerization and 95.85% by mass after 1 hour. Acrylonitrile-based polymer was obtained.
The acrylonitrile unit in the polymer 7 hours after the start of polymerization was the same as in the examples, but the degree of pressurization increased.

Claims (2)

アクリロニトリル及び、(メタ)アクリル酸エステルを含む単量体、レドックス系重合開始剤及び水のそれぞれを、重合開始剤及び水が貯留された反応器に連続して供給して重合反応を開始し、重合体を含む反応液を反応器から連続して取り出すアクリロニトリル系重合体の製造方法であって、前記単量体を反応器へ供給開始してからX時間までは、(メタ)アクリル酸エステル供給量の10分間の平均値が全単量体の供給量に対して1.1×A質量%〜2.0×A質量%であり、供給開始からX時間以降は、(メタ)アクリル酸エステル供給量が全単量体の供給量に対してA質量%とするアクリロニトリル系重合体の製造方法。
ただし、3≦A≦10、 0.5≦X≦3とする。
Each of acrylonitrile and a monomer containing (meth) acrylic acid ester, a redox polymerization initiator and water are continuously supplied to a reactor in which the polymerization initiator and water are stored, and a polymerization reaction is started. A method for producing an acrylonitrile-based polymer in which a reaction liquid containing a polymer is continuously taken out from a reactor, wherein (meth) acrylic acid ester is supplied until X hours from the start of supplying the monomer to the reactor. The average value of the amount for 10 minutes is 1.1 × A mass% to 2.0 × A mass% with respect to the supply amount of all monomers, and after X hours from the start of supply, (meth) acrylic acid ester A method for producing an acrylonitrile-based polymer in which the supply amount is A mass% with respect to the supply amount of all monomers.
However, 3 ≦ A ≦ 10 and 0.5 ≦ X ≦ 3.
前記単量体を反応器へ供給開始してからX時間までは、(メタ)アクリル酸エステル供給量の10分間の平均値が全単量体の供給量に対して1.2×A質量%〜1.8×A質量%である請求項1に記載のアクリロニトリル系重合体の製造方法。   From the start of supplying the monomer to the reactor until the X hour, the average value of the (meth) acrylic acid ester supply amount for 10 minutes is 1.2 × A mass% with respect to the total monomer supply amount. It is -1.8 * A mass%, The manufacturing method of the acrylonitrile-type polymer of Claim 1.
JP2014039230A 2014-02-28 2014-02-28 Method for producing acrylonitrile-based polymer Pending JP2015160953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014039230A JP2015160953A (en) 2014-02-28 2014-02-28 Method for producing acrylonitrile-based polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014039230A JP2015160953A (en) 2014-02-28 2014-02-28 Method for producing acrylonitrile-based polymer

Publications (1)

Publication Number Publication Date
JP2015160953A true JP2015160953A (en) 2015-09-07

Family

ID=54184281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014039230A Pending JP2015160953A (en) 2014-02-28 2014-02-28 Method for producing acrylonitrile-based polymer

Country Status (1)

Country Link
JP (1) JP2015160953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115182064A (en) * 2021-04-01 2022-10-14 中国石油天然气股份有限公司 Plant antibacterial acrylic fiber and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193752A (en) * 1995-02-27 2006-07-27 Inst Of Textile Technology Process for making high nitrile multipolymer prepared from acrylonitrile and olefinically unsaturated monomer
JP2012201739A (en) * 2011-03-24 2012-10-22 Mitsubishi Rayon Co Ltd Polyacrylonitrile polymer particle and method for producing the same
JP2012214657A (en) * 2011-04-01 2012-11-08 Mitsubishi Rayon Co Ltd Acrylonitrile-based copolymer for carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193752A (en) * 1995-02-27 2006-07-27 Inst Of Textile Technology Process for making high nitrile multipolymer prepared from acrylonitrile and olefinically unsaturated monomer
JP2012201739A (en) * 2011-03-24 2012-10-22 Mitsubishi Rayon Co Ltd Polyacrylonitrile polymer particle and method for producing the same
JP2012214657A (en) * 2011-04-01 2012-11-08 Mitsubishi Rayon Co Ltd Acrylonitrile-based copolymer for carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115182064A (en) * 2021-04-01 2022-10-14 中国石油天然气股份有限公司 Plant antibacterial acrylic fiber and production method thereof
CN115182064B (en) * 2021-04-01 2023-12-22 中国石油天然气股份有限公司 Plant antibacterial acrylic fiber and production method thereof

Similar Documents

Publication Publication Date Title
TWI465468B (en) Production method of acrylonitrile-based copolymer, and production method of polyacrylonitrile precursor for carbon fiber
CN104371060A (en) Preparation method of polyacrylonitrile resin with evenly-distributed copolymerization sequence
JP2007197672A (en) Manufacturing method of polyacrylonitrile
JP2015160953A (en) Method for producing acrylonitrile-based polymer
KR860000807B1 (en) Process for producing high molecular weight acrylonitrile polymers
JP2015048378A (en) Acrylonitrile-based polymer particle and production method
JP2012201739A (en) Polyacrylonitrile polymer particle and method for producing the same
CN113402658B (en) Polyacrylonitrile and preparation method and application thereof
JP2014201600A (en) Method for producing acrylonitrile polymer
JP6606387B2 (en) Dispersion aid for suspension polymerization, aqueous liquid thereof, and method for producing vinyl resin using them
JP2012214657A (en) Acrylonitrile-based copolymer for carbon fiber
JP2006348422A (en) Acrylonitrile based polymer solution for carbon fiber and method for producing the same
JP2014201728A (en) Acrylonitrile-based copolymer particle, and production method of the same
JP2013237746A (en) Method for producing acrylonitrile-based polymer
JP2013043904A (en) Acrylonitrile-based polymer and method for producing the same
JP2010144079A (en) Method for producing acrylonitrile copolymer
CN105585660B (en) The preparation method of sodium sulfocyanate method dry-wet spinning stoste
JP2008214816A (en) Spinning dope for acrylic fiber and method for producing the same
US3003993A (en) Process for color stabilizing acrylonitrile polymers by washing with ethylene diamine tetraacetic acid
JP7420608B2 (en) Method for producing carbon fiber precursor fiber
JP2004143267A (en) Method for producing resin particle
JP2017186682A (en) Manufacturing method of precursor fiber bundle for carbon fiber and manufacturing method of carbon fiber
JP2009275202A (en) Acrylonitrile-based polymer powder and its production method, and acrylonitrile-based polymer solution and its production method
JPS61266416A (en) Production of acrylonitrile polymer solution
JP2008111065A (en) Manufacturing method of vinyl chloride polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180731