JP2013237746A - Method for producing acrylonitrile-based polymer - Google Patents

Method for producing acrylonitrile-based polymer Download PDF

Info

Publication number
JP2013237746A
JP2013237746A JP2012110534A JP2012110534A JP2013237746A JP 2013237746 A JP2013237746 A JP 2013237746A JP 2012110534 A JP2012110534 A JP 2012110534A JP 2012110534 A JP2012110534 A JP 2012110534A JP 2013237746 A JP2013237746 A JP 2013237746A
Authority
JP
Japan
Prior art keywords
reactor
polymerization
polymer
hours
acrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012110534A
Other languages
Japanese (ja)
Inventor
Naoki Aoyama
直樹 青山
Norifumi Hirota
憲史 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012110534A priority Critical patent/JP2013237746A/en
Publication of JP2013237746A publication Critical patent/JP2013237746A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an acrylonitrile-based polymer by suppressing the increase of a viscosity of a reaction liquid while keeping the mixing of the reaction liquid well by properly controlling coagulated particle diameters of the polymer under the polymerization reaction.SOLUTION: The stirring power for stirring a reaction liquid in a reactor is regulated so as to be ≥2.3 kW/mand ≤6 kW/mfrom the start of the feed of a monomer to the reactor to X hours, so as to be ≥3.0 kW/mand ≤6 kW/mfrom over X hours to Y hours, and so as to be ≥2.3 kW/mand ≤2.7 kW/mfrom over Y hours (wherein, 1≤X≤3, and 4≤Y≤6) when producing an acrylonitrile-based polymer by continuously feeding a monomer containing ≥40 mass% of acrylonitrile, a redox-type polymerization initiator and water into a mixture obtained by charging the polymerization initiator and water to an overflow port of the reactor, and continuously taking out the reaction liquid from the reactor.

Description

本発明は、アクリロニトリル系重合体、特にアクリロニトリル系繊維に適したアクリロニトリル系重合体の製造方法に関する。   The present invention relates to a method for producing an acrylonitrile polymer, particularly an acrylonitrile polymer suitable for acrylonitrile fibers.

アクリロニトリル系重合体は、一般に水系析出重合又は溶液重合によって製造されている。特に水系析出重合方式は、溶液重合に比べて短い滞在時間で連続生産が可能で、しかも、簡便な反応器を使用するため非常に生産性に優れている。   The acrylonitrile-based polymer is generally produced by aqueous precipitation polymerization or solution polymerization. In particular, the aqueous precipitation polymerization method enables continuous production with a shorter residence time than solution polymerization, and is extremely excellent in productivity because it uses a simple reactor.

一般に水系析出重合で連続生産する場合、重合開始時に、予め反応器の溢流口まで水及び重合開始剤を仕込み、この中に、重合開始剤、単量体及び水を所定の比率で連続的に供給し、溢流した重合体懸濁液を回収する。重合開始から定常状態に至るまでは溢流した重合体懸濁液中に含まれる重合体は、その粒子形状及び濃度が大きく変化する。   Generally, in the case of continuous production by aqueous precipitation polymerization, water and a polymerization initiator are charged in advance to the overflow port of the reactor at the start of polymerization, and the polymerization initiator, monomer and water are continuously added at a predetermined ratio. And the overflowed polymer suspension is recovered. From the start of polymerization to the steady state, the polymer contained in the overflowed polymer suspension greatly changes in particle shape and concentration.

すなわち、重合開始直後は、反応器内の水は、単量体に対して極めて過剰な状態にある。そして、単量体等の供給を開始して直ちに、反応器から重合体懸濁液が溢流を始めるため、得られる重合体懸濁液中には、ほとんど重合体が含まれておらず、微少量含まれている重合体は極めて微粒である。   That is, immediately after the start of polymerization, the water in the reactor is in an extremely excessive state with respect to the monomer. And, immediately after starting the supply of monomers and the like, the polymer suspension begins to overflow from the reactor, so the resulting polymer suspension contains almost no polymer, The polymer contained in a very small amount is very fine.

重合反応が進むにつれて、溢流した重合体懸濁液中に含まれる重合体の粒子濃度は徐々に高くなり、重合体の粒子は、凝集、破壊を繰り返しながら成長し、粒子形状及び濃度が定常状態に至る。この定常状態に至るまでの間は、重合体懸濁液の粘度が大きく変動する。すなわち、重合体の濃度の上昇と凝集の進行に応じて一旦反応液の粘度が上昇し、その後粘度が下がり、その後一定となるが、粘度が上昇しすぎると攪拌できなくなり生産を中断することになる。   As the polymerization reaction proceeds, the polymer particle concentration in the overflowed polymer suspension gradually increases, and the polymer particles grow while repeating aggregation and destruction, and the particle shape and concentration are steady. To the state. Until this steady state is reached, the viscosity of the polymer suspension varies greatly. That is, as the concentration of the polymer increases and the agglomeration progresses, the viscosity of the reaction solution once increases, then the viscosity decreases and then becomes constant, but if the viscosity increases too much, stirring becomes impossible and the production is interrupted. Become.

以上の問題の一解決策として、反応器の溢流開始容量よりも少ない水を仕込んだ状態から、反応器に単量体及び重合開始剤を連続的に供給開始することで、溢流開始時の重合体の濃度を改善すると共に、重合体粒子が所定の平均粒径とする方法が知られている(特許文献1)。   One solution to the above problem is to start supplying the monomer and polymerization initiator continuously to the reactor from a state where less water than the reactor overflow start capacity is charged. A method is known in which the concentration of the polymer is improved and the polymer particles have a predetermined average particle size (Patent Document 1).

しかしながら、この方法では、初期濃度は低く、重合の進行に伴い、濃度上昇や凝集の進行により、定常状態になる前に、反応液の粘度が高くなり、攪拌できなくなる可能性がある。   However, in this method, the initial concentration is low, and as the polymerization progresses, the viscosity of the reaction solution becomes high and cannot be stirred before it reaches a steady state due to the increase in concentration or the progress of aggregation.

特開2000−26512号公報JP 2000-26512 A

本発明の課題は、重合反応中の重合体の凝集粒子径を好適に制御することで、反応液の粘度の上昇を抑え、反応液の混合を良好に保ちながら、アクリロニトリル系重合体を製造する方法を提供することである。   An object of the present invention is to produce an acrylonitrile-based polymer while suitably controlling the agglomerated particle size of the polymer during the polymerization reaction, thereby suppressing an increase in the viscosity of the reaction solution and maintaining good mixing of the reaction solution. Is to provide a method.

前記課題は、下記によって解決される。   The problem is solved by the following.

本発明は、重合開始剤及び水を反応器の溢流口まで仕込み、アクリロニトリルを40質量%以上含む単量体、重合開始剤及び水を反応器に連続して供給し、反応液を反応器から連続して取り出すアクリロニトリル系重合体の製造方法であって、
反応器内の反応液を攪拌する攪拌動力が、前記単量体を反応器へ供給開始してからX時間までは2.3kW/m3以上6kW/m3以下で、X時間超からY時間までは3.0kW/m3以上6kW/m3以下で、Y時間からは2.3kW/m3以上2.7kW/m3以下であるアクリロニトリル系重合体の製造方法である(但し、1≦X≦3、4≦Y≦6)。
(ここで、攪拌動力は、反応器内に溢流口まで満たした反応液が攪拌により受けた正味の単位体積(1m3)当たりの電力であり、具体的には、反応器が空の状態で攪拌装置を稼働させたときの電力値と反応器の溢流口まで反応液を満たした状態で攪拌装置を稼働させたときの電力値との差を反応器の溢流口までの容積で割り、規格化した数値として規定される。)
In the present invention, a polymerization initiator and water are charged to the overflow port of the reactor, a monomer containing 40% by mass or more of acrylonitrile, a polymerization initiator and water are continuously supplied to the reactor, and a reaction liquid is supplied to the reactor. A process for producing an acrylonitrile-based polymer continuously taken out from
Stirring power for stirring the reaction liquid in the reactor is, the from the start supplying monomer to the reactor until the X time is 2.3 kW / m 3 or more 6 kW / m 3 or less, X times greater than the Y Time until 3.0 kW / m 3 or more 6 kW / m 3 or less, from the Y time is a manufacturing method of 2.3 kW / m 3 or more 2.7 kW / m 3 or less is acrylonitrile polymer (where, 1 ≦ X ≦ 3, 4 ≦ Y ≦ 6).
(Here, the agitation power is the electric power per unit volume (1 m 3 ) received by agitation of the reaction liquid filled up to the overflow port in the reactor, specifically, the reactor is empty. The difference between the power value when the stirrer is operated and the power value when the stirrer is operated in a state where the reaction liquid is filled up to the overflow port of the reactor is the volume to the overflow port of the reactor. (It is specified as a divided and standardized numerical value.)

また、溢流する反応液に含まれる重合体粒子の体積平均粒子径が、単量体を反応器へ供給開始してから8時間までは50μm以下であり、8時間超からは該体積平均粒子径が30μm以上40μm以下とする請求項1に記載のアクリロニトリル系重合体の製造方法である。   In addition, the volume average particle diameter of the polymer particles contained in the overflowing reaction solution is 50 μm or less until 8 hours from the start of supplying the monomer to the reactor, and the volume average particles after 8 hours or more. The method for producing an acrylonitrile-based polymer according to claim 1, wherein the diameter is 30 μm or more and 40 μm or less.

本発明によれば、反応液の粘度の上昇を抑制して、反応液の混合を良好に保つことができ、洗浄性に優れた粒子状のアクリロニトリル系重合体を製造することができる。   According to the present invention, it is possible to suppress the increase in the viscosity of the reaction liquid, to keep the reaction liquid mixed well, and to produce a particulate acrylonitrile-based polymer excellent in detergency.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明においては、アクリロニトリルを主成分とする単量体、重合開始剤及び水を、反応器内に連続して供給して単量体を重合させる。本発明では、この単量体の重合を、重合開始剤としてレドックス系開始剤を用いたレドックス水系析出重合により行うので、懸濁重合、溶液重合、乳化重合等の他の重合法と比較して生産性に優れ、かつ残留単量体等の不要成分の量を減少できる。   In this invention, the monomer which has acrylonitrile as a main component, a polymerization initiator, and water are continuously supplied in a reactor, and a monomer is polymerized. In the present invention, since the polymerization of this monomer is performed by redox aqueous precipitation polymerization using a redox initiator as a polymerization initiator, it is compared with other polymerization methods such as suspension polymerization, solution polymerization, and emulsion polymerization. It is excellent in productivity and the amount of unnecessary components such as residual monomers can be reduced.

本発明は、レドックス水系析出重合法により単量体を連続重合する方法なので、例えばあらかじめ反応器内に水(重合媒体)を仕込んでおき、そこへ酸化剤、還元剤、酸化還元系助剤、水及び単量体を連続して供給し、攪拌しながら重合反応を進行させることが好ましい。なお、水としては、重合の障害にならない程度に精製されているものが用いられ、通常脱イオン交換水が好ましい。   Since the present invention is a method in which a monomer is continuously polymerized by a redox aqueous precipitation polymerization method, for example, water (polymerization medium) is previously charged in a reactor, and an oxidizing agent, a reducing agent, a redox auxiliary agent, It is preferable that water and the monomer are continuously supplied and the polymerization reaction proceeds while stirring. In addition, as water, what was refine | purified to such an extent that it does not become a disorder | damage | failure of superposition | polymerization is used, and deionized water is usually preferable.

レドックス水系析出重合では、重合開始剤として、酸化剤と還元剤が対で用いられる。酸化剤としては、一般的に、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の無機系酸化剤や、過酸化ベンゾイル、メチルエチルケトンパーオキサイド、t−ブチルヒドロパーオキサイド、ジ−t−ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド、ジ(2−エトキシエチル)パーオキシジカーボネート等の有機過酸化物などが適当である。なお、酸化剤の使用量は、目的の重合体の分子量によって決定され、通常、酸化剤/単量体が0.005〜0.05質量%になるよう設定される。   In redox aqueous precipitation polymerization, an oxidizing agent and a reducing agent are used in pairs as a polymerization initiator. As the oxidizing agent, generally, an inorganic oxidizing agent such as ammonium persulfate, potassium persulfate, sodium persulfate, benzoyl peroxide, methyl ethyl ketone peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, Suitable are organic peroxides such as cumene hydroperoxide, succinic acid peroxide, and di (2-ethoxyethyl) peroxydicarbonate. The amount of the oxidizing agent used is determined by the molecular weight of the target polymer, and is usually set so that the oxidizing agent / monomer is 0.005 to 0.05 mass%.

また、還元剤としては、一般的に、亜硫酸ナトリウム、亜硫酸アンモニウム、重亜硫酸ナトリウム、重亜硫酸アンモニウム、チオ硫酸ナトリウム、チオ硫酸アンモニウム、亜二チオン酸ナトリウム、ナトリウムホルムアルデヒドスルフォキシレート(SFS)、L−アルコルビン酸、デキストローズ等がある。なお、還元剤の使用量は、目的の重合体の分子量によって決定され、通常、還元剤/単量体が0.005〜0.05質量%になるよう設定される。   Moreover, as a reducing agent, generally sodium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium thiosulfate, ammonium thiosulfate, sodium dithionite, sodium formaldehyde sulfoxylate (SFS), L- Examples include alcorbic acid and dextrose. In addition, the usage-amount of a reducing agent is determined by the molecular weight of the target polymer, and is normally set so that a reducing agent / monomer may be 0.005-0.05 mass%.

また、酸化剤、還元剤と共に、酸化還元系の助剤を用いることが好ましい。その助剤としては、例えば、硫酸第一鉄、硫酸銅が挙げられる。特に、過硫酸アンモニウム−亜硫酸水素アンモニウム−硫酸第一鉄を組合せて用いることが好ましい。助剤の濃度は特に規定されないが、重合をより効率よく進める点から、反応液中で0.01ppm以上が好ましく、重合体への残存が問題にならない量となる点から1000ppm以下が好ましい。   Moreover, it is preferable to use a redox-type auxiliary agent together with the oxidizing agent and the reducing agent. Examples of the auxiliary agent include ferrous sulfate and copper sulfate. In particular, it is preferable to use a combination of ammonium persulfate-ammonium hydrogen sulfite-ferrous sulfate. The concentration of the auxiliary agent is not particularly defined, but is preferably 0.01 ppm or more in the reaction solution from the viewpoint of more efficiently proceeding the polymerization, and preferably 1000 ppm or less from the point that remaining in the polymer does not cause a problem.

本発明では、単量体はアクリロニトリルを主成分として含むものであるが、通常アクリロニトリルを40質量%以上含有していることが好ましく、得られる重合体が繊維用である場合は、その耐熱性等を考慮すると、アクリロニトリルを90質量%以上含有していることが更に好ましい。   In the present invention, the monomer contains acrylonitrile as a main component, but usually preferably contains acrylonitrile in an amount of 40% by mass or more. When the resulting polymer is for fibers, its heat resistance and the like are taken into consideration. Then, it is still more preferable that 90 mass% or more of acrylonitrile is contained.

アクリロニトリルと共に使用されるビニル単量体は、アクリロニトリルと共重合可能なものであれば特に限定されないが、得られる重合体が繊維用である場合は、共重合可能なビニル単量体として、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類及びそれらの塩類、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル、(メタ)アリルスルホン酸ナトリウム、(メタ)アリルオキシベンゼンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸及びそれらの塩類などを挙げることができる。   The vinyl monomer used together with acrylonitrile is not particularly limited as long as it is copolymerizable with acrylonitrile, but when the resulting polymer is for fibers, as a copolymerizable vinyl monomer, for example, (Meth) acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, vinyl chloride, vinyl bromide, vinylidene chloride, etc. Vinyl halides, acids such as (meth) acrylic acid, itaconic acid, crotonic acid and their salts, maleic imide, phenylmaleimide, (meth) acrylamide, styrene, α-methylstyrene, vinyl acetate, (meth) allyl Sodium sulfonate, (meth) allyloxybenzenesulfone Sodium, sodium styrene sulfonate, and the like 2-acrylamido-2-methylpropanesulfonic acid and salts thereof.

本発明に用いる反応器は、例えば、反応器内の反応液を循環させる装置、各成分を供給する供給口、重合熱除去装置及び溢流口を有する装置である。循環装置としては、溶液中の各成分をすみやかに拡散させる点から、攪拌機が好適に用いられる。   The reactor used in the present invention is, for example, a device that circulates a reaction liquid in the reactor, a supply port that supplies each component, a polymerization heat removal device, and an overflow port. As the circulation device, a stirrer is preferably used from the viewpoint of promptly diffusing each component in the solution.

反応器内の反応液の温度は、単量体が重合可能な温度であれば特に限定されない。ただし、アクリロニトリルが蒸発して反応系外へ離散することを防ぐ点から、80℃以下が好ましく、60℃以下がより好ましい。また、重合体の分子量の安定化の点から、反応液の温度は一定に保つことが好ましい。   The temperature of the reaction liquid in the reactor is not particularly limited as long as the monomer can be polymerized. However, it is preferably 80 ° C. or less, more preferably 60 ° C. or less, from the viewpoint of preventing acrylonitrile from evaporating and being dispersed outside the reaction system. Moreover, it is preferable to keep the temperature of the reaction liquid constant from the viewpoint of stabilizing the molecular weight of the polymer.

反応器内の単量体の平均滞留時間は、特に制限されず、アクリロニトリル系重合体を水系析出重合により製造する際に採用される時間が適当である。すなわち、この平均滞留時間としては、生産性の点から200分以下が好ましく、重合を十分に完結させる点から20分以上が好ましい。   The average residence time of the monomer in the reactor is not particularly limited, and the time employed when producing the acrylonitrile polymer by aqueous precipitation polymerization is appropriate. That is, the average residence time is preferably 200 minutes or less from the viewpoint of productivity, and preferably 20 minutes or more from the viewpoint of sufficiently completing the polymerization.

単量体の反応器への供給量は、上記滞留時間を考慮して、同時に供給する水、重合開始剤、pH調節剤等の供給と合わせて決定され、通常反応液の重合体濃度が10〜40質量%になるようにされる。   The amount of monomer supplied to the reactor is determined in consideration of the residence time, and is determined together with the supply of water, a polymerization initiator, a pH regulator and the like to be supplied at the same time. It is made to become 40 mass%.

反応器内での水素イオン濃度は、開始剤がすみやかに酸化・還元反応を起こすような濃度であればよく、pH2.0〜3.5の酸性領域が好ましい。   The hydrogen ion concentration in the reactor may be a concentration such that the initiator promptly causes an oxidation / reduction reaction, and an acidic region having a pH of 2.0 to 3.5 is preferable.

本発明においては、以上のようにして単量体を反応器内で重合させながら、その重合体粒子を含む反応液を反応器の溢流口から連続的に取り出す。   In the present invention, while the monomer is polymerized in the reactor as described above, the reaction liquid containing the polymer particles is continuously taken out from the overflow port of the reactor.

そしてこの反応液に、例えば、脱イオン交換水に溶解させた重合停止剤を添加することにより重合を停止する。重合停止剤としては、アクリロニトリル系重合体を水系析出重合で製造する際使用される重合停止剤を支障無く使用できる。   The polymerization is stopped by adding, for example, a polymerization terminator dissolved in deionized exchange water to the reaction solution. As the polymerization terminator, a polymerization terminator used when the acrylonitrile polymer is produced by aqueous precipitation polymerization can be used without any trouble.

続いて、重合体水分散液から未反応単量体の回収を行う。未反応単量体の回収方法としては、重合体分散液から直接蒸留する方法、また一旦脱水し、未反応単量体を重合体と分離した後蒸留する方法があり、本発明では、両方法とも採用可能である。後者の方法に用いる脱水洗浄機としては、通常公知の濾過脱水機を用いることができ、例えば、回転式真空濾過器、遠心脱水機等が使用することができる。これらの装置を用いて反応液から重合体を分離する際に、効率の観点から、硫酸アンモニウム、硫酸アルミニウム、硫酸ナトリウム等の凝集剤を添加することができ、さらに重合体の凝集を促進する観点から重合体分散液を昇温する等の操作を行うこともできる。また、重合体中に残った水分は通常の乾燥方式によって取り除くことができる。   Subsequently, the unreacted monomer is recovered from the polymer aqueous dispersion. As a method for recovering the unreacted monomer, there are a method of directly distilling from the polymer dispersion, and a method of once dehydrating and separating the unreacted monomer from the polymer and then distilling. In the present invention, both methods Both can be adopted. As the dehydration washer used in the latter method, a generally known filter dehydrator can be used. For example, a rotary vacuum filter, a centrifugal dehydrator, or the like can be used. From the viewpoint of efficiency, a flocculant such as ammonium sulfate, aluminum sulfate, or sodium sulfate can be added when separating the polymer from the reaction solution using these apparatuses, and further from the viewpoint of promoting the aggregation of the polymer. Operations such as raising the temperature of the polymer dispersion can also be performed. Further, water remaining in the polymer can be removed by a normal drying method.

重合体粒子とは、代表的には、水系析出重合において水相に析出した体積平均粒径0.1μm以上10μm以下の粒子同士が凝集して出来た重合体粒子(一次粒子の凝集体)である。かかる重合体粒子は、反応器中では凝集、破壊を繰り返しながら成長し、定常状態に至る。   The polymer particles are typically polymer particles (aggregates of primary particles) formed by agglomerating particles having a volume average particle size of 0.1 μm or more and 10 μm or less deposited in an aqueous phase in aqueous precipitation polymerization. is there. Such polymer particles grow while repeating aggregation and destruction in the reactor, and reach a steady state.

すなわち、水相に析出した重合体粒子は、攪拌の循環によって他の重合体粒子と衝突しながら凝集し、粒子径は大きくなるが、ある粒子径に到達すると攪拌のせん断による破壊が支配的となり粒子径は小さくなる。最終的に凝集とせん断が釣り合う粒子径で定常状態となる。   In other words, polymer particles precipitated in the aqueous phase aggregate while colliding with other polymer particles by the circulation of stirring, and the particle size increases. However, when a certain particle size is reached, destruction by shearing of the stirring becomes dominant. The particle size becomes smaller. Finally, a steady state is obtained with a particle diameter in which aggregation and shear are balanced.

上記非定常状態においては、攪拌によるせん断が弱い条件で成長した重合体粒子は、緩やかに凝集するため疎な構造をとる。疎な構造の重合体粒子は重合体粒子中に吸着する分散媒が多く、かさ高な粒子となり、反応液の粘度を高くする。   In the unsteady state, the polymer particles grown under conditions where shearing by stirring is weak has a sparse structure because it aggregates slowly. The sparse polymer particles have a large amount of dispersion medium adsorbed in the polymer particles, become bulky particles, and increase the viscosity of the reaction solution.

重合体粒子の粒子径が最大となる時間は、重合条件を任意に選択することにより制御できるが、一般に単量体を反応器へ供給開始してから8時間までに、体積平均粒子径が最大になった後、徐々に小さくなり、定常状態となる。なお、本発明においては、単量体を反応器へ供給開始した時点を重合開始としている。以下、簡単のために、単量体を反応器へ供給開始してからを「重合開始後」という。   The time at which the particle diameter of the polymer particles becomes maximum can be controlled by arbitrarily selecting the polymerization conditions. Generally, the volume average particle diameter is maximum by 8 hours after the start of supplying the monomer to the reactor. Then, it gradually becomes smaller and becomes a steady state. In the present invention, the time when the monomer starts to be supplied to the reactor is regarded as the start of polymerization. Hereinafter, for the sake of simplicity, the period after the start of supplying the monomer to the reactor is referred to as “after the start of polymerization”.

体積平均粒子径が大きくなると、反応液中に占める重合体粒子の体積割合が増加し、反応液の粘度が高くなり、反応器内の混合状態が悪化する。一方、粒子径が小さくなると、脱水洗浄機で形成される重合体粒子のケーク層が緻密になりすぎるため、洗浄水が通過しにくくなり、洗浄性が悪化する。   As the volume average particle diameter increases, the volume ratio of the polymer particles in the reaction liquid increases, the viscosity of the reaction liquid increases, and the mixing state in the reactor deteriorates. On the other hand, when the particle size is reduced, the cake layer of polymer particles formed by a dehydration washing machine becomes too dense, so that the washing water is difficult to pass and the washing property is deteriorated.

反応器内の混合状態を良好に保つ観点から、重合開始後8時間までの重合体粒子の体積平均粒子径は50μm以下であり、45μm以下であれば、更に好ましい。さらに、該体積平均粒子径は重合開始から徐々に大きくなり、8時間後には下記の体積平均粒子径の範囲に収まるようになるのが好ましい。また、体積平均粒子径は、8時間までにおいても脱水洗浄機で形成される重合体粒子のケーク層が緻密になりすぎるのを防ぐために、1時間から2時間までは10μm以上、2時間からは20μm以上であることが好ましい。重合体粒子の体積平均粒子径が10μm以上であれば、フィルターの目詰まりもなく、洗浄性が低下することもない。   From the viewpoint of maintaining a good mixed state in the reactor, the volume average particle diameter of the polymer particles up to 8 hours after the start of polymerization is 50 μm or less, more preferably 45 μm or less. Furthermore, the volume average particle diameter gradually increases from the start of polymerization, and after 8 hours, preferably falls within the following volume average particle diameter range. The volume average particle size is 10 μm or more from 1 hour to 2 hours from 2 hours in order to prevent the cake layer of polymer particles formed by the dehydration washing machine from becoming too dense even up to 8 hours. It is preferable that it is 20 micrometers or more. If the volume average particle diameter of the polymer particles is 10 μm or more, the filter is not clogged and the cleaning property is not deteriorated.

なお、本発明においては、重合開始後8時間まで、1時間毎に反応器溢流口より採取した重合体懸濁液に含まれる重合体粒子の体積平均粒子径を測定した値をもとに単量体供給開始後8時間までの重合体粒子の体積平均粒子径を決定した。   In the present invention, based on the value obtained by measuring the volume average particle diameter of the polymer particles contained in the polymer suspension collected from the reactor overflow port every hour until 8 hours after the start of polymerization. The volume average particle diameter of the polymer particles up to 8 hours after the start of monomer supply was determined.

また、重合体粒子の洗浄性を良好に保つ観点から、重合開始後8時間以降の重合体粒子の体積平均粒子径は30μm以上が好ましく、反応器内の混合状態を良好に保つ観点から、40μm以下が好ましく、36μm以下が更に好ましい。   Further, from the viewpoint of maintaining good cleaning properties of the polymer particles, the volume average particle diameter of the polymer particles after 8 hours from the start of polymerization is preferably 30 μm or more, and from the viewpoint of maintaining a good mixed state in the reactor, 40 μm The following is preferable, and 36 μm or less is more preferable.

なお、本発明においては、重合開始後8時間以降の重合体粒子の体積平均粒子径の平均値は、反応器溢流口より採取した重合体懸濁液に含まれる重合体粒子の体積平均粒子径をもとに算出した。すなわち、算出する時点の前後1時間の体積平均粒子径の測定値を算術平均した値を採用した。   In the present invention, the average value of the volume average particle diameter of the polymer particles after 8 hours from the start of polymerization is the volume average particle diameter of the polymer particles contained in the polymer suspension collected from the reactor overflow port. Calculation was based on the diameter. That is, a value obtained by arithmetically averaging the measured values of the volume average particle diameter for 1 hour before and after the time of calculation was adopted.

重合体粒子の粒子径は、重合条件を任意に選択することにより制御できるが、生産性を損なうことなく実施できる点から、攪拌動力による制御が好ましく行われる。攪拌動力を高くすることにより、攪拌のせん断による重合体の凝集粒子は破壊されるため、重合体粒子の粒子径は小さくなる。逆に、攪拌動力を低くすることにより、重合体粒子の凝集が破壊に勝るため、重合体粒子の粒子径は大きくなる。   The particle size of the polymer particles can be controlled by arbitrarily selecting the polymerization conditions, but is preferably controlled by stirring power because it can be carried out without impairing the productivity. By increasing the stirring power, the aggregated particles of the polymer due to the shearing of the stirring are broken, so that the particle size of the polymer particles is reduced. On the contrary, by reducing the stirring power, the aggregation of the polymer particles is superior to the destruction, so that the particle size of the polymer particles is increased.

本発明で、攪拌動力とは、反応器の内容物が攪拌により受けた正味の単位体積当たりの電力である。具体的には、撹拌を撹拌翼で行う場合、反応器が空の状態で攪拌翼を回転させた場合の電力値と、反応器の溢流口まで反応液を満たした状態で攪拌翼を回転させた場合の電力値の差を求め、反応器内反応液1m3当りに換算した数値を攪拌動力とする。なお、外部循環装置による場合は、外部循環装置を空の状態で稼働させた場合の電力値と反応器の溢流口まで反応液を満たした状態で外部循環装置を稼働させた場合の電力値の差から撹拌動力を求める。反応器内容量は、供給液と反応液の合計の体積である。本発明においては、電力値を共立電気計器株式会社製のコンパクトパワーメータMODEL6300(商品名)を用いて測定した。 In the present invention, the stirring power is the net power per unit volume received by the contents of the reactor by stirring. Specifically, when stirring is performed with a stirring blade, the power value when the stirring blade is rotated while the reactor is empty and the stirring blade is rotated with the reaction liquid filled to the overflow port of the reactor. The difference in power value is calculated, and the numerical value converted per 1 m 3 of the reaction liquid in the reactor is used as the stirring power. In the case of using an external circulation device, the power value when the external circulation device is operated in an empty state and the power value when the external circulation device is operated with the reaction liquid filled to the overflow port of the reactor. The stirring power is obtained from the difference. The reactor internal volume is the total volume of the supply liquid and the reaction liquid. In the present invention, the power value was measured using a compact power meter MODEL 6300 (trade name) manufactured by Kyoritsu Electric Instruments Co., Ltd.

本発明において、攪拌動力の平均値は、算出する時点の前後30分間の10秒毎に採取した攪拌動力を算術平均した値を採用した。   In the present invention, as the average value of the stirring power, a value obtained by arithmetically averaging the stirring power collected every 10 seconds for 30 minutes before and after the calculation time point was adopted.

重合開始すぐは単量体濃度が小さいため、得られる重合体が微粒子となりやすい。そこで、攪拌動力を、重合開始後1〜3時間(X時間)までを重合体の凝集が進行しやすいように低めに設定することが好ましいが、高くしても、重合体濃度が低いため、せん断を受け過ぎず、重合体粒子が小さくなりすぎることはない。   Since the monomer concentration is small immediately after the start of polymerization, the resulting polymer tends to be fine particles. Therefore, it is preferable to set the stirring power low so that the aggregation of the polymer easily proceeds until 1 to 3 hours (X hours) after the start of polymerization, but even if it is high, the polymer concentration is low. The polymer particles do not become too small without undergoing excessive shearing.

その後、重合開始後4〜6時間(Y時間)まで撹拌動力を高くして重合体凝集による粘度の上昇・体積平均粒子径の増大を抑え、その後、所定の重合体粒子径が維持できるように撹拌動力を調節することもできる。   Thereafter, the stirring power is increased to 4 to 6 hours (Y time) after the start of polymerization to suppress an increase in viscosity and an increase in volume average particle size due to polymer aggregation, and then a predetermined polymer particle size can be maintained. The stirring power can also be adjusted.

すなわち、重合開始後X時間までは、反応器の内容物を十分均一に攪拌するために、攪拌動力を2.3kW/m3以上とする。また、急激な凝集を抑制する点と、反応液への気泡の巻き込みを防止する点から、攪拌動力を6.0kW/m3以下とする。 That is, the stirring power is set to 2.3 kW / m 3 or more in order to stir the contents of the reactor sufficiently uniformly until X hours after the start of polymerization. In addition, the stirring power is set to 6.0 kW / m 3 or less from the viewpoint of suppressing abrupt aggregation and the prevention of bubble entrainment in the reaction solution.

X時間の後、重合開始後Y時間までは、攪拌動力を、3.0kW/m3以上6.0kW/m3以下の範囲内とする。攪拌動力を3.0kW/m3以上とすることにより、反応器の内容物を十分均一に攪拌することが可能であって、重合体粒子の体積平均粒子径を十分小さく保つことができる。また、反応液への気泡の巻き込みを防止するためには攪拌動力を6.0kW/m3以下とする。更に5.0kW/m3以下とすることにより、飛び散った反応液によるカレット生成を抑制できる点でより好ましい。 After the X time, until the polymerization started after Y hours, the stirring power, and 3.0 kW / m 3 or more 6.0 kW / m 3 within the following range. By setting the stirring power to 3.0 kW / m 3 or more, the contents of the reactor can be stirred sufficiently uniformly, and the volume average particle diameter of the polymer particles can be kept sufficiently small. Further, in order to prevent bubbles from being involved in the reaction solution, the stirring power is set to 6.0 kW / m 3 or less. Furthermore, by setting it as 5.0 kW / m < 3 > or less, it is more preferable at the point which can suppress the cullet production | generation by the scattered reaction liquid.

重合開始後Y時間付近からは、重合体粒子の体積平均粒子径が小さくなっていくため、攪拌動力が高めのままであると、重合体粒子の体積平均粒子径が小さくなり過ぎて、脱水洗浄機で形成される重合体粒子のケーク層が緻密になるため、洗浄水が通過しにくくなり、洗浄性が悪化する。したがって、重合開始後Y時間超からは、重合体粒子の洗浄性を良好に保つために、攪拌動力は2.7kW/m3以下とする。また、反応器の内容物を十分均一に攪拌するために、攪拌動力は2.3kW/m3以上とする。 Since the volume average particle diameter of the polymer particles becomes smaller from around Y hours after the start of the polymerization, if the stirring power remains high, the volume average particle diameter of the polymer particles becomes too small, and dewatering washing is performed. Since the cake layer of the polymer particles formed by the machine becomes dense, it becomes difficult for the washing water to pass through and the washing properties deteriorate. Therefore, the stirring power is set to 2.7 kW / m 3 or less in order to maintain good cleaning performance of the polymer particles from the time over Y hours after the start of polymerization. Moreover, in order to stir the contents of the reactor sufficiently uniformly, the stirring power is set to 2.3 kW / m 3 or more.

上記X時間は、重合初期に水相に析出する重合体粒子を適度に凝集せしめ、脱水洗浄機などを用いた重合体の回収を容易にする効果を得るためには、1時間以上が好ましく、2時間以上がより好ましい。また、重合体粒子の体積平均粒子径の最大値を小さくする効果を得るためには、3時間以下とすることが好ましい。   The above X time is preferably 1 hour or more in order to appropriately agglomerate the polymer particles precipitated in the aqueous phase at the initial stage of polymerization and to facilitate the recovery of the polymer using a dehydration washing machine, Two hours or more are more preferable. Moreover, in order to acquire the effect of making the maximum value of the volume average particle diameter of a polymer particle small, it is preferable to set it as 3 hours or less.

また、Y時間が小さいと、重合体粒子の体積平均粒子径の最大値を小さくする効果が十分得られない。Y時間が大きいと、体積平均粒子径の小さい重合体粒子が発生するために、脱水洗浄機で形成される重合体粒子のケーク層が緻密になりすぎるため、洗浄水が通過しにくくなり、洗浄性が悪化する。かかる観点から、重合体粒子の体積平均粒子径の最大値を小さくするために、4時間以上とする。重合体粒子の洗浄性を良好に保つために6時間以下とする。   Moreover, when Y time is small, the effect which makes the maximum value of the volume average particle diameter of a polymer particle small cannot fully be acquired. If the Y time is large, polymer particles having a small volume average particle diameter are generated, and the cake layer of the polymer particles formed by the dehydration washing machine becomes too dense, so that it is difficult for washing water to pass through and washing. Sex worsens. From this viewpoint, in order to reduce the maximum value of the volume average particle diameter of the polymer particles, the time is set to 4 hours or more. In order to keep the detergency of the polymer particles good, the time is 6 hours or less.

以下、実施例により、本発明を説明する。なお、実施例における評価は以下に依った。   Hereinafter, the present invention will be described by way of examples. In addition, the evaluation in an Example depended on the following.

[洗浄性(リーフテスト)]
重合体粒子の洗浄性は種々の方法で評価できる。本発明では、洗浄性の指標として、重合体粒子のケーク層中を洗浄水が通過する速度を測定した。
[Cleanability (leaf test)]
The detergency of the polymer particles can be evaluated by various methods. In the present invention, as an index of detergency, the speed at which the washing water passes through the cake layer of the polymer particles was measured.

反応器から溢流してきた反応液にシュウ酸ナトリウム0.5質量%及び重炭酸ナトリウム1.5質量%で含む重合停止剤水溶液を、反応液がpH5.5〜6.0になるよう添加し、反応液を濾布を用いて濾過し、重合体粒子のケーク層を形成する。その後、所定量の水がケーク層を通過する時間を測定する。なお、ケーク層にひび割れができている場合は、ケーク層が均一になるようひび割れを埋めてから水通過時間を測定する。なお、測定条件は下記表1の通りとする。   A polymerization stopper aqueous solution containing 0.5% by mass of sodium oxalate and 1.5% by mass of sodium bicarbonate was added to the reaction solution overflowing from the reactor so that the reaction solution had a pH of 5.5 to 6.0. The reaction solution is filtered using a filter cloth to form a cake layer of polymer particles. Then, the time for a predetermined amount of water to pass through the cake layer is measured. If the cake layer is cracked, the water passage time is measured after filling the crack so that the cake layer is uniform. The measurement conditions are as shown in Table 1 below.

Figure 2013237746
Figure 2013237746

所定量の水がケーク層を通過する時間が短ければ、重合体粒子の洗浄処理速度が速くても、洗浄水を十分ケーク層に通過させることができるため、洗浄性が良好に保てる。前記の観点から、200ccの水がケーク層を通過する時間は18秒以下である。   If the time required for the predetermined amount of water to pass through the cake layer is short, the washing water can be sufficiently passed through the cake layer even if the washing speed of the polymer particles is high, so that the detergency can be kept good. From the above viewpoint, the time for 200 cc of water to pass through the cake layer is 18 seconds or less.

[反応液粘度]
溢流してきた反応液に上記重合停止剤水溶液をpH5.5〜6.0になるように添加し、B型粘度計により反応液粘度を測定した。なお、重合停止剤水溶液の添加は反応液1m3当り約50mlであった。
[Reaction liquid viscosity]
The polymerization stopper aqueous solution was added to the overflowing reaction solution so as to have a pH of 5.5 to 6.0, and the reaction solution viscosity was measured with a B-type viscometer. The addition of the polymerization stopper aqueous solution was about 50 ml per 1 m 3 of the reaction solution.

[体積平均粒子径]
重合体粒子の体積平均粒子径は、顕微鏡検査画像の画像解析、レーザー回折、又は集束ビーム反射率モードなどのレーザー散乱技術を用いて測定される。本発明においては、レーザー回折散乱式粒度分布測定器((株)セイシン企業製、SKレーザーマイクロンサイザーLMS−350(商品名))を用いて、重合体粒子の粒度分布を屈折率1.330−0.01i、形状係数1.000にて測定し、体積平均から算出した50%正規分布の値を体積平均粒子径とした。
[Volume average particle diameter]
The volume average particle size of the polymer particles is measured using laser scattering techniques such as image analysis of microscopic images, laser diffraction, or focused beam reflectivity mode. In the present invention, the particle size distribution of the polymer particles is adjusted to have a refractive index of 1.330- by using a laser diffraction / scattering particle size distribution analyzer (manufactured by Seisin Corporation, SK Laser Micron Sizer LMS-350 (trade name)). A value of 50% normal distribution measured from 0.01i and a shape factor of 1.000 and calculated from the volume average was taken as the volume average particle size.

<実施例1>
容量76.5リットルのディスクタービン撹拌翼付きアルミ製反応器に、硫酸第一鉄0.000013質量%、過硫酸アンモニウム0.07質量%、亜硫酸水素アンモニウム0.11質量%を溶解した脱イオン交換水を満水になるまで仕込み、反応器内部温度を57℃まで昇温した。その中に、アクリロニトリル100質量部、アクリルアミド3.61質量部、メタクリル酸0.55質量部、脱イオン交換水204質量部、過硫酸アンモニウム0.39質量部、亜硫酸水素アンモニウム0.59質量部、硫酸第一鉄0.0003質量部及び硫酸0.06質量部を連続的に供給し、重合反応を行った。なお、アクリロニトル以外の成分は、それぞれ脱イオン交換水に溶解し、アクリルアミド25質量%水溶液、メタクリル酸6質量%水溶液、過硫酸アンモニウム2.75質量%水溶液、亜硫酸水素アンモニウム5質量%水溶液、硫酸第一鉄(Fe2SO4・7H2O)2ppm水溶液、硫酸0.5質量%水溶液として用いた。
<Example 1>
Deionized exchange water in which 0.000013% by mass of ferrous sulfate, 0.07% by mass of ammonium persulfate, and 0.11% by mass of ammonium hydrogen sulfite are dissolved in a 76.5 liter aluminum reactor with a disc turbine stirring blade. Was charged until the water was full, and the internal temperature of the reactor was raised to 57 ° C. Among them, 100 parts by mass of acrylonitrile, 3.61 parts by mass of acrylamide, 0.55 parts by mass of methacrylic acid, 204 parts by mass of deionized water, 0.39 parts by mass of ammonium persulfate, 0.59 parts by mass of ammonium bisulfite, sulfuric acid 0.0003 parts by mass of ferrous iron and 0.06 parts by mass of sulfuric acid were continuously supplied to carry out a polymerization reaction. Components other than acrylonitrile are each dissolved in deionized water, and acrylamide 25% by weight aqueous solution, methacrylic acid 6% by weight aqueous solution, ammonium persulfate 2.75% by weight aqueous solution, ammonium hydrogen sulfite 5% by weight aqueous solution, sulfuric acid first Iron (Fe 2 SO 4 .7H 2 O) 2 ppm aqueous solution and sulfuric acid 0.5 mass% aqueous solution were used.

反応器内の反応液は、pHが3.0になるように硫酸供給量で調節し、反応液温度を50℃に保ち、撹拌を行いながら連続的に重合反応を行い、単量体の平均滞在時間が70分になるように反応器溢流口より連続的に反応液を取り出した。反応液の単位体積あたりの攪拌動力が重合開始後5時間までは4.0kW/m3、それ以降は2.7kW/m3となる様に攪拌を調整した。 The reaction solution in the reactor was adjusted with the sulfuric acid supply amount so that the pH was 3.0, the reaction solution temperature was kept at 50 ° C., and the polymerization reaction was continuously carried out while stirring, The reaction solution was continuously taken out from the reactor overflow so that the residence time was 70 minutes. The reaction mixture stirring power until the polymerization initiator after 5 hours 4.0 kW / m 3 per unit volume of, thereafter adjusting the stirring as a 2.7 kW / m 3.

取り出した反応液に、シュウ酸ナトリウムと重炭酸ナトリウムをそれぞれ濃度が0.5質量%、1.5質量%になるように脱イオン交換水に溶解した重合停止剤水溶液を、反応液のpHが5.5〜6.0になるように加え、反応を停止した。   A polymerization stopper aqueous solution in which sodium oxalate and sodium bicarbonate were dissolved in deionized exchange water so that the concentration was 0.5% by mass and 1.5% by mass, respectively, was added to the removed reaction solution. The reaction was stopped by adding 5.5 to 6.0.

得られたアクリロニトリル系重合体粒子の体積平均粒子径、洗浄性、反応液粘度を評価して表2に示した。   The obtained acrylonitrile-based polymer particles were evaluated for volume average particle diameter, detergency, and reaction solution viscosity, and are shown in Table 2.

重合反応を通して、重合体粒子の体積平均粒子径は50μm以下に保たれていたため、反応液粘度は低く抑えられ、反応器内部の流動性も十分保たれていた。また、重合開始後8時間以後に得られた重合体粒子は洗浄性も良好であった。   Throughout the polymerization reaction, the volume average particle diameter of the polymer particles was kept at 50 μm or less, so the viscosity of the reaction solution was kept low and the fluidity inside the reactor was kept sufficiently. Further, the polymer particles obtained after 8 hours from the start of polymerization also had good detergency.

<実施例2>
反応液の単位体積あたりの攪拌動力が、重合開始後3時間まで2.7kW/m3、その後重合開始後5時間まで4.0kW/m3、それ以降は2.7kW/m3となる様に攪拌を調節した以外は実施例1と同様にして重合体粒子を得、以下実施例1と同様の評価をした。その結果を表2に示した。
<Example 2>
Agitation power of per unit volume of the reaction solution, 2.7 kW / m 3 to the polymerization initiator after 3 hours, then the polymerization initiator until after 5 hours 4.0 kW / m 3, thereafter like a 2.7 kW / m 3 The polymer particles were obtained in the same manner as in Example 1 except that the stirring was adjusted. The results are shown in Table 2.

重合反応を通して、重合体粒子の体積平均粒子径は50μm以下に保たれていたため、反応液粘度は低く抑えられ、反応器内部の流動性も十分保たれていた。また、重合開始後8時間以後に得られた重合体粒子は洗浄性も良好であった。   Throughout the polymerization reaction, the volume average particle diameter of the polymer particles was kept at 50 μm or less, so the viscosity of the reaction solution was kept low and the fluidity inside the reactor was kept sufficiently. Further, the polymer particles obtained after 8 hours from the start of polymerization also had good detergency.

<実施例3>
反応液の単位体積あたりの攪拌動力が、重合開始後5時間まで5.5kW/m3、それ以降は2.4kW/m3となる様に攪拌を調節した以外は実施例1と同様にして重合体粒子を得、以下実施例1と同様の評価をした。その結果を表2に示した。
<Example 3>
The same as in Example 1 except that the stirring power was adjusted so that the stirring power per unit volume of the reaction solution was 5.5 kW / m 3 until 5 hours after the start of polymerization, and 2.4 kW / m 3 thereafter. Polymer particles were obtained and evaluated in the same manner as in Example 1 below. The results are shown in Table 2.

重合反応を通して、重合体粒子の体積平均粒子径は50μm以下に保たれていたため、反応液粘度は低く抑えられ、反応器内部の流動性も十分保たれていた。また、重合開始後8時間以後に得られた重合体粒子は洗浄性も良好であった。   Throughout the polymerization reaction, the volume average particle diameter of the polymer particles was kept at 50 μm or less, so the viscosity of the reaction solution was kept low and the fluidity inside the reactor was kept sufficiently. Further, the polymer particles obtained after 8 hours from the start of polymerization also had good detergency.

<実施例4>
反応液の単位体積あたりの攪拌動力が、重合開始後3時間まで2.7kW/m3、その後重合開始後5時間まで5.5kW/m3、それ以降は2.4kW/m3となる様に攪拌を調節した以外は実施例1と同様にして重合体粒子を得、以下実施例1と同様の評価をした。その結果を表2に示した。
<Example 4>
Agitation power of per unit volume of the reaction solution, 2.7 kW / m 3 to the polymerization initiator after 3 hours, then the polymerization initiator until after 5 hours 5.5 kW / m 3, thereafter like a 2.4 kW / m 3 The polymer particles were obtained in the same manner as in Example 1 except that the stirring was adjusted. The results are shown in Table 2.

重合反応を通して、重合体粒子の体積平均粒子径は50μm以下に保たれていたため、反応液粘度は低く抑えられ、反応器内部の流動性も十分保たれていた。また、重合開始後8時間以後に得られた重合体粒子は洗浄性も良好であった。   Throughout the polymerization reaction, the volume average particle diameter of the polymer particles was kept at 50 μm or less, so the viscosity of the reaction solution was kept low and the fluidity inside the reactor was kept sufficiently. Further, the polymer particles obtained after 8 hours from the start of polymerization also had good detergency.

<比較例1>
攪拌動力を最初から2.7kW/m3である様に攪拌を保ち、実施例1と同様にしてアクリロニトリル系重合体粒子を得、以下実施例1と同様の評価をした。その結果を表2に示した。
<Comparative Example 1>
Stirring was maintained so that the stirring power was 2.7 kW / m 3 from the beginning, and acrylonitrile-based polymer particles were obtained in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 1 below. The results are shown in Table 2.

重合開始後8時間までの間に重合体粒子の体積平均粒子径が50μm以上となる時間があり、結果、反応液粘度は高くなり、反応器内部の流動状態は悪化した。なお、重合開始後8時間までに撹拌性が回復したので、反応開始後8時間以降に得られた重合体粒子の洗浄性は良好であった。   There was time for the volume average particle diameter of the polymer particles to be 50 μm or more by 8 hours after the start of the polymerization. As a result, the viscosity of the reaction solution increased and the flow state inside the reactor deteriorated. In addition, since stirring property recovered | restored by 8 hours after the start of superposition | polymerization, the washability of the polymer particle obtained after 8 hours after the start of reaction was favorable.

<比較例2>
攪拌動力を最初から4.0kW/m3である様に攪拌を保ち、実施例1と同様にしてアクリロニトリル系重合体粒子を得、以下実施例1と同様の評価をした。その結果を表2に示した。
<Comparative example 2>
Stirring was maintained so that the stirring power was 4.0 kW / m 3 from the beginning, and acrylonitrile-based polymer particles were obtained in the same manner as in Example 1. Evaluation was performed in the same manner as in Example 1 below. The results are shown in Table 2.

重合反応の全期間を通して、重合体粒子の体積平均粒子径は50μm以下に保たれていたため、反応液粘度は低く抑えられ、反応器内部の流動性も十分保たれていたが、撹拌動力が強すぎて、重合体粒子の凝集が弱くて、微粉が多くなった(体積平均粒子径が28μmを下回るようになった)ために、反応開始後8時間以降に得られた重合体粒子の洗浄性が悪くなった。   Since the volume average particle diameter of the polymer particles was kept at 50 μm or less throughout the polymerization reaction, the reaction solution viscosity was kept low and the fluidity inside the reactor was kept sufficiently, but the stirring power was strong. Too much agglomeration of polymer particles and increase in fine powder (volume average particle diameter became less than 28 μm), so that the detergency of polymer particles obtained after 8 hours from the start of the reaction Became worse.

<比較例3>
攪拌動力を最初から2.0kW/m3である様に攪拌して、実施例1と同様にして重合反応を行ったところ、重合開始後1時間で反応液の粘度が上昇し、反応器内部の流動状態は悪化したので、重合を中止した。
<Comparative Example 3>
When the polymerization reaction was carried out in the same manner as in Example 1 while stirring at a stirring power of 2.0 kW / m 3 from the beginning, the viscosity of the reaction solution increased within 1 hour after the start of polymerization. Since the flow state of the liquid deteriorated, the polymerization was stopped.

<比較例4>
攪拌動力を最初から6.5kW/m3である様に攪拌して、実施例1と同様にして重合を行ったところ、重合開始直後から、反応液に反応器内部の酸素を巻き込み、重合がほとんど進行しなかったので、1時間で反応器の運転をやめた。
<Comparative example 4>
Stirring was performed so that the stirring power was 6.5 kW / m 3 from the beginning, and polymerization was performed in the same manner as in Example 1. Immediately after the start of polymerization, oxygen inside the reactor was involved in the reaction solution, and polymerization was performed. Since it did not progress much, the reactor was turned off in 1 hour.

Figure 2013237746
Figure 2013237746

Claims (2)

重合開始剤及び水を反応器の溢流口まで仕込み、アクリロニトリルを40質量%以上含む単量体、レドックス系重合開始剤及び水を反応器に連続して供給し、反応液を反応器から連続して取り出すアクリロニトリル系重合体の製造方法であって、
反応器内の反応液を攪拌する攪拌動力が、前記単量体を反応器へ供給開始してからX時間までは2.3kW/m3以上6kW/m3以下であり、X時間超からY時間までは3.0kW/m3以上6kW/m3以下であり、Y時間超からは2.3kW/m3以上2.7kW/m3以下であるアクリロニトリル系重合体の製造方法(但し、1≦X≦3、4≦Y≦6)。
(ここで、攪拌動力は、反応器内の溢流口まで満たした反応液が攪拌により受けた正味の単位体積(1m3)当たりの電力であり、具体的には、反応器が空の状態で攪拌装置を稼働させたときの電力値と反応器の溢流口まで反応液を満たした状態で攪拌装置を稼働させたときの電力値との差を、反応器の溢流口までの容積で割り、規格化した数値として規定される。)
A polymerization initiator and water are charged to the overflow of the reactor, a monomer containing 40% by mass or more of acrylonitrile, a redox polymerization initiator and water are continuously supplied to the reactor, and the reaction solution is continuously supplied from the reactor. A process for producing an acrylonitrile-based polymer to be taken out,
Stirring power for stirring the reaction liquid in the reactor is, the from the start supplying monomer to the reactor until the X time is less 2.3 kW / m 3 or more 6 kW / m 3, from X time than Y until the time is at 3.0 kW / m 3 or more 6 kW / m 3 or less, from the Y time than 2.3 kW / m 3 or more 2.7 kW / m 3 or less is a manufacturing method for acrylonitrile type polymer (however, 1 ≦ X ≦ 3, 4 ≦ Y ≦ 6).
(Here, the stirring power is the electric power per unit volume (1 m 3 ) received by the stirring of the reaction liquid filled up to the overflow port in the reactor. Specifically, the reactor is empty. The difference between the power value when the stirrer is operated and the power value when the stirrer is operated while the reaction liquid is filled up to the overflow port of the reactor is the volume to the overflow port of the reactor. Divided by and specified as a standardized number.)
反応器から溢流する反応液に含まれる重合体粒子の体積平均粒子径が、単量体を反応器へ供給開始してから8時間までは50μm以下であり、8時間からは30μm以上40μm以下とする請求項1に記載のアクリロニトリル系重合体の製造方法。   The volume average particle size of the polymer particles contained in the reaction liquid overflowing from the reactor is 50 μm or less until 8 hours from the start of supplying the monomer to the reactor, and 30 μm or more and 40 μm or less from 8 hours. The method for producing an acrylonitrile-based polymer according to claim 1.
JP2012110534A 2012-05-14 2012-05-14 Method for producing acrylonitrile-based polymer Pending JP2013237746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012110534A JP2013237746A (en) 2012-05-14 2012-05-14 Method for producing acrylonitrile-based polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012110534A JP2013237746A (en) 2012-05-14 2012-05-14 Method for producing acrylonitrile-based polymer

Publications (1)

Publication Number Publication Date
JP2013237746A true JP2013237746A (en) 2013-11-28

Family

ID=49763060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012110534A Pending JP2013237746A (en) 2012-05-14 2012-05-14 Method for producing acrylonitrile-based polymer

Country Status (1)

Country Link
JP (1) JP2013237746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066342A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Method for preparing (meth)acrylonitrile-based polymer for manufacture of carbon fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066342A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Method for preparing (meth)acrylonitrile-based polymer for manufacture of carbon fiber
KR20190038321A (en) * 2017-09-29 2019-04-08 주식회사 엘지화학 Method for preparing (meth)acrylonitrile based polymer for preparing carbon fiber
CN110062773A (en) * 2017-09-29 2019-07-26 株式会社Lg化学 It is used to prepare the preparation method of (methyl) acrylonitrile polymers of carbon fiber
JP2020510120A (en) * 2017-09-29 2020-04-02 エルジー・ケム・リミテッド Method for producing (meth) acrylonitrile-based polymer for producing carbon fiber
KR102169501B1 (en) * 2017-09-29 2020-10-23 주식회사 엘지화학 Method for preparing (meth)acrylonitrile based polymer for preparing carbon fiber
CN110062773B (en) * 2017-09-29 2021-05-25 株式会社Lg化学 Method for producing (meth) acrylonitrile polymer for producing carbon fiber
US11046792B2 (en) 2017-09-29 2021-06-29 Lg Chem, Ltd. Method of preparing (meth)acrylonitrile-based polymer for preparing carbon fiber

Similar Documents

Publication Publication Date Title
US10865257B2 (en) Production methods for aqueous emulsion, fine powder and stretched porous body of modified polytetrafluoroethylene
CN104372445A (en) Preparation method of polyacrylonitrile carbon fiber with evenly distributed copolymerization sequence
JP7031679B2 (en) Method for producing modified polytetrafluoroethylene, molded product, stretched porous body
JPWO2019065644A1 (en) Method for producing modified polytetrafluoroethylene, molded product, stretched porous body
JPWO2019065638A1 (en) Method for producing modified polytetrafluoroethylene, method for producing modified polytetrafluoroethylene powder, method for producing stretched porous body
JP2013237746A (en) Method for producing acrylonitrile-based polymer
JP2012201739A (en) Polyacrylonitrile polymer particle and method for producing the same
JP2015048378A (en) Acrylonitrile-based polymer particle and production method
JPS59191704A (en) Production of high-molecular weight acrylonitrile polymer
JP2015160953A (en) Method for producing acrylonitrile-based polymer
JP3897020B2 (en) Method for producing methacrylic resin particles
KR20130011713A (en) Water soluble anionic polymer dispersion and preparing method therefor
JP2014201728A (en) Acrylonitrile-based copolymer particle, and production method of the same
JP4151419B2 (en) Vinyl chloride polymer latex for paste, method for producing the same, and method for producing vinyl chloride resin for paste processing comprising the same
JPH0867705A (en) Production of vinyl chloride polymer
JP6606387B2 (en) Dispersion aid for suspension polymerization, aqueous liquid thereof, and method for producing vinyl resin using them
JPH0419242B2 (en)
JP5197169B2 (en) Method for producing acrylonitrile-based polymer particles
JP2012193240A (en) Suspension polymerization method for acrylonitrile-containing polymer
JP4125561B2 (en) Method for producing polymer particles and polymer particles obtained thereby
JP2014201600A (en) Method for producing acrylonitrile polymer
JP2009270018A (en) Method for producing polymer particle and polymerization apparatus therefor
JP5207459B2 (en) Polymer particle for carbon fiber precursor acrylic fiber and carbon fiber precursor acrylic fiber
JP3982326B2 (en) Method for producing vinyl chloride polymer latex for paste processing
JP2010144079A (en) Method for producing acrylonitrile copolymer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140521