JP2009270018A - Method for producing polymer particle and polymerization apparatus therefor - Google Patents

Method for producing polymer particle and polymerization apparatus therefor Download PDF

Info

Publication number
JP2009270018A
JP2009270018A JP2008122240A JP2008122240A JP2009270018A JP 2009270018 A JP2009270018 A JP 2009270018A JP 2008122240 A JP2008122240 A JP 2008122240A JP 2008122240 A JP2008122240 A JP 2008122240A JP 2009270018 A JP2009270018 A JP 2009270018A
Authority
JP
Japan
Prior art keywords
polymerization
monomer
polymerization rate
particle size
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008122240A
Other languages
Japanese (ja)
Other versions
JP5407041B2 (en
Inventor
Shinsuke Sugiura
紳介 杉浦
Koji Toyooka
孝司 豊岡
Tomoaki Monno
倫明 門野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2008122240A priority Critical patent/JP5407041B2/en
Publication of JP2009270018A publication Critical patent/JP2009270018A/en
Application granted granted Critical
Publication of JP5407041B2 publication Critical patent/JP5407041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for polymer particles capable of controlling a polymerization rate to regulate grain sizes of the polymer particles to desired ones before a monomer polymerization ratio reaches 40%, and while keeping the grain sizes of the polymer particles to the desired ones after the monomer polymerization ratio exceeds 40%, changing the polymerization rate freely without any increase in emulsifying agent concentration for controlling monomer polymerization completion time. <P>SOLUTION: Before the monomer polymerization ratio reaches 40%, the polymer grain sizes are controlled to a target ones by regulating the polymerization rate based on polymerization temperature, polymerization initiator concentration and the like. After the monomer polymerization ratio exceeds 40%, while maintaining the grain sizes of the polymer particles constant to keep the target ones regardless of the polymerization rate, the monomer polymerization completion time is controlled by freely changing the polymerization rate without increasing the emulsifying agent concentration. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は乳化重合によりポリマー粒子を生成するポリマー粒子製造方法に関する。   The present invention relates to a polymer particle production method for producing polymer particles by emulsion polymerization.

従来より、乳化重合法を使用して各種のポリマー粒子を製造する製造方法が提案されており、例えば、特開2001−294603号公報には、モノマー、触媒及び乳化剤の連続投入開始時点から一定時間経過後にその時点の反応熱を計測し、その反応熱から製品ポリマーの粒径を予測するとともに、製品ポリマーの予測粒径が所定の範囲にない場合には、ポリマー、触媒及び乳化剤の投入量を調整して製品ポリマーの最終粒径を目標値に近づける半回転式乳化重合プロセスにおけるポリマー粒子の製造方法が記載されている。
特開2001−294603号公報
Conventionally, a production method for producing various polymer particles using an emulsion polymerization method has been proposed. For example, JP 2001-294603 A discloses a certain time from the start of continuous addition of a monomer, a catalyst and an emulsifier. After the lapse of time, the reaction heat at that time is measured, and the particle size of the product polymer is predicted from the reaction heat. If the predicted particle size of the product polymer is not within the predetermined range, the input amounts of the polymer, catalyst and emulsifier are set. A method for producing polymer particles in a semi-rotational emulsion polymerization process is described that adjusts the final particle size of the product polymer to a target value.
JP 2001-294603 A

しかしながら、前記特許文献1に記載されたポリマー粒子の製造方法では、生成されるポリマー粒子の粒径を大きくする場合には、重合速度を遅くするため乳化剤濃度を低くするものであるが、逆にポリマー粒子の粒径を小さくする場合には、重合速度を早くするために乳化剤濃度を高くする必要がある。
このように、ポリマー粒子の粒径を小さくすべく乳化剤濃度を高くした場合には、乳化剤に起因して後々の不純物が含有されることとなり、この結果、製品ポリマーの特性に悪影響を及ぼす虞がある。
However, in the method for producing polymer particles described in Patent Document 1, when the particle size of the produced polymer particles is increased, the emulsifier concentration is decreased to slow down the polymerization rate. When reducing the particle size of the polymer particles, it is necessary to increase the emulsifier concentration in order to increase the polymerization rate.
As described above, when the emulsifier concentration is increased to reduce the particle size of the polymer particles, impurities afterwards are contained due to the emulsifier, and as a result, the properties of the product polymer may be adversely affected. is there.

本発明者等は、前記従来技術の問題点につき鋭意検討した結果、水、乳化剤、重合開始剤及びモノマーを混合した反応液を乳化分散させてモノマーの乳化重合を行う際に、モノマーの重合率が40%に至る前においては、重合速度を決定する重合条件(重合温度、重合開始剤濃度)と生成されるポリマー粒子の粒径との間に相関関係が存在するものの、モノマーの重合率が40%を超えた後にはポリマー粒子の粒径は重合条件とは関係なく略一定に維持されることを発見し、本発明をなすに至ったものである。
即ち、本発明は前記従来技術の問題点を解消するためになされたものであり、モノマーの重合率が40%に至る前に重合速度を制御してポリマー粒子の粒径を所望粒径に調整し、モノマーの重合率が40%を超えた後にポリマー粒子の粒径を所定粒径に維持しつつ、乳化剤濃度を高くすることなく重合速度を自在に変更してモノマーの重合完了時間を制御することが可能なポリマー粒子製造方法を提供することを目的とする。
As a result of intensive studies on the problems of the prior art, the present inventors have carried out the emulsion polymerization of a monomer by emulsion-dispersing a reaction solution in which water, an emulsifier, a polymerization initiator and a monomer are mixed, and the polymerization rate of the monomer. Before reaching 40%, although there is a correlation between the polymerization conditions (polymerization temperature, polymerization initiator concentration) that determine the polymerization rate and the particle size of the polymer particles produced, the polymerization rate of the monomer is After exceeding 40%, it was discovered that the particle size of the polymer particles was maintained substantially constant irrespective of the polymerization conditions, and the present invention was achieved.
That is, the present invention was made to solve the above-mentioned problems of the prior art, and adjust the particle size of the polymer particles to a desired particle size by controlling the polymerization rate before the polymerization rate of the monomer reaches 40%. Then, the polymerization completion time of the monomer is controlled by freely changing the polymerization rate without increasing the emulsifier concentration while maintaining the particle size of the polymer particle at a predetermined particle size after the polymerization rate of the monomer exceeds 40%. It is an object of the present invention to provide a method for producing polymer particles.

前記目的を達成するため請求項1に係るポリマー粒子製造方法は、水、乳化剤、重合開始剤及びモノマーを混合した反応液を乳化分散させるとともにモノマーの乳化重合を行ってポリマー粒子を製造するポリマー粒子製造方法において、前記モノマーの重合率が40%に至る前に、モノマーの重合速度を制御することにより前記ポリマー粒子のポリマー粒径を所定粒径にし、前記モノマーの重合率が40%を超えた後に、前記ポリマー粒径を所定粒径に維持しつつ、モノマーの重合完了時間を制御することを特徴とする。   In order to achieve the above object, a method for producing polymer particles according to claim 1 is a method for producing polymer particles by emulsifying and dispersing a reaction liquid in which water, an emulsifier, a polymerization initiator and a monomer are mixed and emulsion polymerization of the monomers. In the production method, before the polymerization rate of the monomer reaches 40%, the polymer particle size of the polymer particles is set to a predetermined particle size by controlling the polymerization rate of the monomer, and the polymerization rate of the monomer exceeds 40%. Thereafter, the polymerization completion time of the monomer is controlled while maintaining the polymer particle size at a predetermined particle size.

請求項2に係るポリマー粒子製造方法は、請求項1のポリマー粒子製造方法において、前記乳化重合の進行に伴って反応物の粘度を連続的に測定し、前記粘度の上昇が略停止して安定した時点で、前記モノマー重合率が40%を超えたものと判断することを特徴とする。   The polymer particle production method according to claim 2 is the polymer particle production method according to claim 1, wherein the viscosity of the reaction product is continuously measured as the emulsion polymerization proceeds, and the increase in the viscosity is substantially stopped and stabilized. At that time, it is judged that the monomer polymerization rate exceeds 40%.

請求項3に係る重合装置は、水、乳化剤、重合開始剤及びモノマーを混合した反応液を乳化分散させるとともにモノマーの乳化重合を行ってポリマー粒子を製造する重合装置において、第1重合速度及び第2重合速度を設定する重合速度設定手段と、前記反応液におけるモノマーの重合率を検出する重合率検出手段と、前記重合率検出手段により検出されるモノマーの重合率が40%に至る前には前記重合速度設定手段に設定された第1重合速度でモノマーの重合を行って前記ポリマー粒子のポリマー粒径を所定粒径にし、重合率検出手段により検出されるモノマーの重合率が40%を超えた後に第1重合速度から第2重合速度に切り換えてモノマーの重合を行ってポリマー粒径を所定粒径に維持しつつモノマーの重合完了時間を制御する制御手段とを備えたことを特徴とする。   A polymerization apparatus according to claim 3 is a polymerization apparatus for producing a polymer particle by emulsifying and dispersing a reaction liquid in which water, an emulsifier, a polymerization initiator and a monomer are mixed and performing emulsion polymerization of the monomer. 2 polymerization rate setting means for setting the polymerization rate, polymerization rate detection means for detecting the polymerization rate of the monomer in the reaction solution, and before the polymerization rate of the monomer detected by the polymerization rate detection means reaches 40% The monomer is polymerized at the first polymerization rate set in the polymerization rate setting means to set the polymer particle size of the polymer particles to a predetermined particle size, and the polymerization rate of the monomer detected by the polymerization rate detection means exceeds 40%. Thereafter, the monomer polymerization is performed by switching from the first polymerization rate to the second polymerization rate, and the polymerization completion time of the monomer is controlled while maintaining the polymer particle size at a predetermined particle size. Characterized by comprising a means.

請求項4に係る重合装置は、請求項3の重合装置において、前記重合率検出手段は、前記反応液中に浸漬されるとともに反応液の粘度を測定する粘度測定手段を含み、前記制御手段は、前記モノマーの重合が進行するに従って前記粘度測定手段を介して測定される反応液の粘度が上昇している間はモノマーの重合率が40%以下にあるものと判断し、粘度測定手段を介して測定される反応液の粘度の上昇が略停止して安定した時点でモノマーの重合率が40%を超えたものと判断することを特徴とする。   The polymerization apparatus according to a fourth aspect is the polymerization apparatus according to the third aspect, wherein the polymerization rate detection means includes a viscosity measurement means that measures the viscosity of the reaction liquid while being immersed in the reaction liquid, and the control means includes The polymerization rate of the monomer is determined to be 40% or less while the viscosity of the reaction liquid measured through the viscosity measuring means is increasing as the polymerization of the monomer proceeds, and the viscosity measuring means is used. When the increase in the viscosity of the reaction solution measured in this step is substantially stopped and stabilized, it is judged that the monomer polymerization rate exceeds 40%.

請求項1に係るポリマー粒子製造方法では、モノマーの重合率が40%に至る前において、重合速度を制御することよりポリマー粒子のポリマー粒径が所定粒径にされ、モノマーの重合率が40%を超えた後においては、ポリマー粒径は重合速度とは関係なく一定に維持されるので、モノマーの重合率が40%に至る前に重合速度を制御してポリマー粒子の粒径を所望粒径に調整しておけば、モノマーの重合率が40%を超えた後にポリマー粒子の粒径を所定粒径に維持しつつ、乳化剤濃度を高くすることなく重合速度を自在に変更してモノマーの重合完了時間を制御することが可能となる。   In the polymer particle manufacturing method according to claim 1, before the polymerization rate of the monomer reaches 40%, the polymer particle size of the polymer particle is set to a predetermined particle size by controlling the polymerization rate, and the polymerization rate of the monomer is 40%. Since the polymer particle size is kept constant regardless of the polymerization rate, the polymerization rate is controlled before the polymerization rate of the monomer reaches 40%. If the polymerization rate of the monomer exceeds 40%, the polymerization rate can be freely changed without increasing the emulsifier concentration while maintaining the particle size of the polymer particles at a predetermined particle size. It is possible to control the completion time.

また、請求項2に係るポリマー粒子製造方法では、乳化重合の進行に伴って反応物の粘度を連続的に測定し、粘度の上昇が略停止して安定した時点で、モノマー重合率が40%を超えたものと判断するので、モノマーの重合率が40%になる時点を反応液の粘度変化に基づき判断することが可能となる。   In the method for producing polymer particles according to claim 2, the viscosity of the reaction product is continuously measured as the emulsion polymerization proceeds, and when the increase in viscosity is substantially stopped and stabilized, the monomer polymerization rate is 40%. Therefore, it is possible to determine when the polymerization rate of the monomer reaches 40% based on the change in viscosity of the reaction solution.

請求項3に係る重合装置では、重合率検出手段により検出されるモノマーの重合率が40%に至る前には重合条件設定手段に設定された第1重合速度でモノマーの重合を行ってポリマー粒子のポリマー粒径が所定粒径にされ、重合率検出手段により検出されるモノマーの重合率が40%を超えた後においては、ポリマー粒径は重合速度とは関係なく一定に維持されるので、モノマーの重合率が40%に至る前に第1重合速度に制御してポリマー粒子の粒径を所望粒径に調整しておけば、モノマーの重合率が40%を超えた後にポリマー粒子の粒径を所定粒径に維持しつつ、乳化剤濃度を高くすることなく重合速度を第2重合速度に変更してモノマーの重合完了時間を制御することが可能となる。   In the polymerization apparatus according to claim 3, before the polymerization rate of the monomer detected by the polymerization rate detection unit reaches 40%, the monomer is polymerized at the first polymerization rate set by the polymerization condition setting unit. After the polymer particle size is set to a predetermined particle size and the polymerization rate of the monomer detected by the polymerization rate detection means exceeds 40%, the polymer particle size is kept constant regardless of the polymerization rate. If the particle size of the polymer particles is adjusted to the desired particle size by controlling to the first polymerization rate before the monomer polymerization rate reaches 40%, the particle size of the polymer particles is increased after the monomer polymerization rate exceeds 40%. While maintaining the diameter at a predetermined particle diameter, the polymerization completion time of the monomer can be controlled by changing the polymerization rate to the second polymerization rate without increasing the emulsifier concentration.

請求項4に係る重合装置では、制御手段を介して、モノマーの重合が進行するに従って粘度測定手段を介して測定される反応液の粘度が上昇している間はモノマーの重合率が40%以下にあるものと判断され、粘度測定手段を介して測定される反応液の粘度の上昇が略停止して安定した時点でモノマーの重合率が40%を超えたものと判断されるので、モノマーの重合率が40%になる時点を反応液の粘度変化に基づき判断することが可能となる。   In the polymerization apparatus according to claim 4, the polymerization rate of the monomer is 40% or less while the viscosity of the reaction liquid measured through the viscosity measurement unit is rising as the polymerization of the monomer proceeds through the control unit. It is determined that the polymerization rate of the monomer exceeds 40% when the increase in the viscosity of the reaction liquid measured through the viscosity measuring means is substantially stopped and stabilized. It becomes possible to judge the point of time when the polymerization rate reaches 40% based on the change in viscosity of the reaction solution.

以下、本発明に係るポリマー粒子製造方法について、本発明を具体化した実施形態に基づき説明する。
本実施形態にて使用される乳化重合系は、水、乳化剤、重合開始剤及びモノマーを混合してなる反応液から構成される。
ここに、乳化剤としては、ラウリル硫酸ナトリウムやラウリル硫酸アンモニウムが使用される。また、重合開始剤としては、過硫酸アンモニウム、カリウム、過酸化水素等の水溶性過酸化物、アミンの塩酸塩を水溶性セグメントとして有する水溶性アゾ化合物が使用される。
Hereinafter, the polymer particle manufacturing method according to the present invention will be described based on embodiments embodying the present invention.
The emulsion polymerization system used in the present embodiment is composed of a reaction liquid obtained by mixing water, an emulsifier, a polymerization initiator, and a monomer.
Here, sodium lauryl sulfate or ammonium lauryl sulfate is used as the emulsifier. As the polymerization initiator, a water-soluble peroxide such as ammonium persulfate, potassium or hydrogen peroxide, or a water-soluble azo compound having an amine hydrochloride as a water-soluble segment is used.

モノマーとしては、2−ヘキシルアクリレート及び/又はブチルアクリレートを50〜100重量部とアクリル酸を0〜50重量部とを加えて使用される。   As the monomer, 50 to 100 parts by weight of 2-hexyl acrylate and / or butyl acrylate and 0 to 50 parts by weight of acrylic acid are used.

前記した乳化重合系を構成する各化合物は、乳化分散混合機で乳化分散され、その得られた混合物の全量が反応容器に仕込まれる。そして、撹拌しながら窒素雰囲気下で重合開始剤によりモノマーの重合反応が行われる。   Each compound constituting the above-described emulsion polymerization system is emulsified and dispersed by an emulsification dispersion mixer, and the entire amount of the obtained mixture is charged into a reaction vessel. Then, the polymerization reaction of the monomer is performed with the polymerization initiator in a nitrogen atmosphere while stirring.

ここに、前記乳化重合系において、モノマーの重合率が0%から40%に至る範囲で、モノマーの重合速度を変化させた時に、モノマーの重合速度と重合されるポリマー粒子のポリマー粒径との関係について調べてみた。その結果が図1に示されている。図1はモノマーの重合率が0%〜40%の範囲におけるモノマーの重合速度(%/min)とポリマー粒径(メジアン径(μm))との関係を示すグラフである。   Here, in the emulsion polymerization system, when the polymerization rate of the monomer is changed in the range from 0% to 40%, the polymerization rate of the monomer and the polymer particle size of the polymer particles to be polymerized I examined the relationship. The result is shown in FIG. FIG. 1 is a graph showing the relationship between monomer polymerization rate (% / min) and polymer particle size (median diameter (μm)) when the monomer polymerization rate is in the range of 0% to 40%.

図1において、横軸は重合速度(%/min)、縦軸はポリマー粒子のメジアン径(μm)を示し、図1にて各プロットを外挿して得られるグラフG1から理解されるように、モノマーの重合率が0%〜40%の範囲においては、モノマーの重合速度が小さい程ポリマー粒径は大きくなり、一方、モノマーの重合速度が大きい程ポリマー粒径は小さくなる。このように、モノマーの重合率が0%〜40%の範囲では、モノマーの重合速度とポリマー粒径との間に明確な相関関係が存在する。   In FIG. 1, the horizontal axis indicates the polymerization rate (% / min), the vertical axis indicates the median diameter (μm) of the polymer particles, and as can be understood from the graph G1 obtained by extrapolating each plot in FIG. When the polymerization rate of the monomer is in the range of 0% to 40%, the smaller the monomer polymerization rate, the larger the polymer particle size. On the other hand, the higher the monomer polymerization rate, the smaller the polymer particle size. Thus, when the monomer polymerization rate is in the range of 0% to 40%, there is a clear correlation between the polymerization rate of the monomer and the polymer particle size.

また、モノマーの重合率(%)とポリマー粒径との関係について調べてみると、図2に示す結果が得られた。図2はモノマーの重合率が0%〜100%の範囲におけるモノマーの重合率(%)とポリマー粒径(メジアン径(μm))との関係を示すグラフである。   Further, when the relationship between the polymerization rate (%) of the monomer and the particle size of the polymer was examined, the result shown in FIG. 2 was obtained. FIG. 2 is a graph showing the relationship between the monomer polymerization rate (%) and the polymer particle size (median diameter (μm)) when the monomer polymerization rate is in the range of 0% to 100%.

図2において、横軸は重合率(%)、縦軸はポリマー粒子のメジアン径(μm)を示し、図2にて各プロットを外挿して得られるグラフG2に示されるように、ポリマー粒径は、モノマーの重合率が0%〜40%の範囲内では、重合率が増加するにつれて漸減していき、重合率が40%を超えた後においては、略一定の値となる。   In FIG. 2, the horizontal axis represents the polymerization rate (%), the vertical axis represents the median diameter (μm) of the polymer particles, and the polymer particle size is shown in graph G2 obtained by extrapolating each plot in FIG. When the polymerization rate of the monomer is in the range of 0% to 40%, it gradually decreases as the polymerization rate increases, and becomes a substantially constant value after the polymerization rate exceeds 40%.

更に、モノマーの重合率が40%を超えた後に、モノマーの重合速度を変化させ、その重合速度の変化がポリマー粒径に影響を与えるかどうかにつき調べた。その結果が図3、図4に示されている。図3はモノマーの重合率が40%を超えた後に、3つの重合速度で重合を行った時の重合率の変化状態を示すグラフ、図4は3つの重合速度に対応するポリマー粒径の変化を示すグラフである。   Furthermore, after the polymerization rate of the monomer exceeded 40%, the polymerization rate of the monomer was changed, and it was investigated whether the change in the polymerization rate would affect the polymer particle size. The results are shown in FIGS. FIG. 3 is a graph showing a change state of the polymerization rate when polymerization is performed at three polymerization rates after the polymerization rate of the monomer exceeds 40%, and FIG. 4 is a change in the polymer particle size corresponding to the three polymerization rates. It is a graph which shows.

図3において、横軸は時間(min)、縦軸は重合率(%)を示す。グラフG3は重合開始剤を0.07重量部投入して重合温度を50℃に保持した場合の重合率変化曲線であり、グラフG4は重合開始剤を0.07重量部投入して重合温度を45minの時点で50℃から48℃に低下させて重合速度を小さくした場合の重合率変化曲線であり、グラフG5は重合開始剤を0.07重量部投入して重合温度を45minの時点で50℃から40℃に低下させて重合速度を更に小さくした場合の重合率変化曲線である。
時間に対する重合率の上昇率は、最も重合温度が高く重合速度が大きいグラフG3で最も大きく、次いで、重合温度に基づく重合速度の大きい順に、グラフG4、グラフG5の順となっている。
In FIG. 3, the horizontal axis represents time (min), and the vertical axis represents the polymerization rate (%). Graph G3 is a polymerization rate change curve when 0.07 parts by weight of the polymerization initiator is added and the polymerization temperature is maintained at 50 ° C., and graph G4 is 0.07 parts by weight of the polymerization initiator and the polymerization temperature is It is a polymerization rate change curve when the polymerization rate is reduced by lowering from 50 ° C. to 48 ° C. at 45 min, and graph G5 shows a polymerization temperature of 50 at 45 min by adding 0.07 part by weight of a polymerization initiator. It is a polymerization rate change curve at the time of making it reduce from 40 degreeC to 40 degreeC, and making polymerization rate still smaller.
The rate of increase of the polymerization rate with respect to time is greatest in the graph G3 where the polymerization temperature is the highest and the polymerization rate is large, and then in the order of the graph G4 and the graph G5 in descending order of the polymerization rate based on the polymerization temperature.

図4において、横軸は頻度(%)、縦軸は粒径(μm)を示し、グラフG6はグラフG3に対応するポリマー粒径の変化、グラフG7はグラフG4に対応するポリマー粒径の変化、及び、グラフG8はグラフ5に対応するポリマー粒径の変化を示している。
各グラフG6、G7、G8は、いずれにおいてもポリマー粒径が略同様の分散状態を示し、その値も略一定値になることを示している。このことは、モノマーの重合率が40%を超えた後においては、重合速度を変化させた場合においても、ポリマー粒子のポリマー粒径は、略一定の値になることを意味している。従って、モノマーの重合率が40%に至る前までに、重合温度、重合開始剤濃度等に基づく重合速度を調整してポリマー粒径を制御しておけば、モノマーの重合率が40%を超えた後に重合速度を変化させてもポリマー粒径は略一定値に保持されることから、モノマーの重合率が40%を超えた後に自由に重合速度を調整することにより、トータルの重合時間をコントロールすることができる。
In FIG. 4, the horizontal axis represents frequency (%), the vertical axis represents particle size (μm), graph G6 represents a change in polymer particle size corresponding to graph G3, and graph G7 represents a change in polymer particle size corresponding to graph G4. Graph G8 shows the change in the polymer particle size corresponding to Graph 5.
Each of the graphs G6, G7, and G8 shows a dispersion state in which the polymer particle size is substantially the same, and the value thereof is also a substantially constant value. This means that after the polymerization rate of the monomer exceeds 40%, the polymer particle size of the polymer particles becomes a substantially constant value even when the polymerization rate is changed. Therefore, by adjusting the polymerization rate based on the polymerization temperature, the concentration of the polymerization initiator, etc. before the polymerization rate of the monomer reaches 40%, the polymerization rate of the monomer exceeds 40%. Even if the polymerization rate is changed after that, the polymer particle size is maintained at a substantially constant value. Therefore, the total polymerization time can be controlled by adjusting the polymerization rate freely after the monomer polymerization rate exceeds 40%. can do.

また、モノマーの重合率が40%を超える時点を把握すべく、モノマーの重合率と反応液の粘度との関係を調べた。その結果が図5に示されている。図5はモノマーの重合率と反応液の粘度との関係を示すグラフである。
図5にて各プロットを外挿して得られるグラフG9に示すように、モノマーの重合率が20%までの間は反応液の粘度は徐々に大きくなり、重合率が20%を超えると粘度は急激に上昇していく。そして、重合率が40%を超えた後80%に至るまでの間において粘度は、略一定値を示し、また、重合率が80%を超えた後に急激に上昇していく。
このように、重合率が40%を超えた時点で粘度の上昇が収まり、一定値を示すことから、反応液の粘度を連続的にモニタし、略一定値になった時点で重合率が40%に達したことを把握することができる。
Further, in order to grasp the point in time when the polymerization rate of the monomer exceeded 40%, the relationship between the polymerization rate of the monomer and the viscosity of the reaction solution was examined. The result is shown in FIG. FIG. 5 is a graph showing the relationship between the polymerization rate of the monomer and the viscosity of the reaction solution.
As shown in graph G9 obtained by extrapolating each plot in FIG. 5, the viscosity of the reaction solution gradually increases until the monomer polymerization rate is up to 20%, and when the polymerization rate exceeds 20%, the viscosity is It rises rapidly. The viscosity exhibits a substantially constant value after the polymerization rate exceeds 40% and reaches 80%, and increases rapidly after the polymerization rate exceeds 80%.
Thus, when the polymerization rate exceeds 40%, the increase in viscosity stops and shows a constant value. Therefore, the viscosity of the reaction solution is continuously monitored, and when the polymerization rate becomes substantially constant, the polymerization rate becomes 40%. % Can be grasped.

前記した事実を勘案すれば、乳化重合系において各種の重合制御を行うことができる。以下、例示として、2つの重合制御方法について図6乃至図9に基づき説明する。
先ず、モノマーの重合率が40%に至る前に、重合速度を制御してポリマー粒径を所望の値になるように重合を行い、重合率が40%を超えた後においては、重合速度を変化させてトータル重合時間をコントロールする場合について、図6、図7に基づき説明する。図6は2つの重合過程において時間に対する重合率の変化を示グラフ、図7は2つの重合過程におけるポリマー粒径の変化を示すグラフである。
Considering the facts described above, various polymerization controls can be performed in the emulsion polymerization system. Hereinafter, as an example, two polymerization control methods will be described with reference to FIGS.
First, before the polymerization rate of the monomer reaches 40%, the polymerization rate is controlled so that the polymer particle size becomes a desired value. After the polymerization rate exceeds 40%, the polymerization rate is increased. The case where the total polymerization time is controlled by changing will be described with reference to FIGS. FIG. 6 is a graph showing the change in the polymerization rate with respect to time in the two polymerization processes, and FIG. 7 is a graph showing the change in the polymer particle diameter in the two polymerization processes.

図6において、横軸は時間(min)、縦軸は重合率(%)を示し、グラフG10は、重合率40%に至る前に一定の重合速度でモノマーの重合反応を行い、重合率が40%を超えた後に重合温度を一定温度(例えば、50℃)を維持しつつ重合を行った場合の重合率の変化を示す。
また、グラフG11は、重合率40%に至る前にグラフG10の場合と同一の重合速度でモノマーの重合反応を行い、重合率が40%を超えた後に重合温度を一定温度(例えば、50℃)から低下させて重合速度を小さくした場合の重合率の変化を示す。
In FIG. 6, the horizontal axis represents time (min), the vertical axis represents the polymerization rate (%), and the graph G10 shows the polymerization rate of the monomer at a constant polymerization rate before reaching the polymerization rate of 40%. The change in the polymerization rate when the polymerization is carried out while maintaining the polymerization temperature at a constant temperature (for example, 50 ° C.) after exceeding 40% is shown.
Further, the graph G11 performs the polymerization reaction of the monomer at the same polymerization rate as in the graph G10 before reaching the polymerization rate of 40%, and after the polymerization rate exceeds 40%, the polymerization temperature is kept at a constant temperature (for example, 50 ° C. ), The change in the polymerization rate when the polymerization rate is reduced is shown.

ここに、グラフG10の場合には、重合開始から120min程度で重合反応は終了しているが、グラフG11の場合には、重合率が40%を超えた後に重合速度を低下させていることから、重合反応時間は190min程度を要している。   Here, in the case of graph G10, the polymerization reaction is completed in about 120 minutes from the start of polymerization, but in the case of graph G11, the polymerization rate is decreased after the polymerization rate exceeds 40%. The polymerization reaction time requires about 190 min.

また、図7において、横軸は粒径(μm)、縦軸は頻度(%)を示し、グラフG12はグラフG10に対応するポリマー粒径の変化、グラフG13はグラフG11に対応するポリマー粒径の変化を示している。
各グラフG12、G13は、いずれにおいてもポリマー粒径が略同様の分散状態を示し、その値も略一定値になることを示している。
In FIG. 7, the horizontal axis represents the particle size (μm), the vertical axis represents the frequency (%), the graph G12 represents a change in the polymer particle size corresponding to the graph G10, and the graph G13 represents the polymer particle size corresponding to the graph G11. Shows changes.
Each of the graphs G12 and G13 shows a dispersion state in which the polymer particle diameter is substantially the same, and the value thereof is also a substantially constant value.

前記したように、モノマーの重合率が40%に至る前までに、重合温度、重合開始剤濃度等に基づく重合速度を調整してポリマー粒径を制御しておけば、モノマーの重合率が40%を超えた後に重合速度を変化させてもポリマー粒径は略一定値に保持されることから、モノマーの重合率が40%を超えた後に自由に重合速度を調整することにより、トータルの重合時間をコントロールすることができる。   As described above, if the polymer particle size is controlled by adjusting the polymerization rate based on the polymerization temperature, the polymerization initiator concentration, etc. before the monomer polymerization rate reaches 40%, the monomer polymerization rate is 40%. Even if the polymerization rate is changed after exceeding 50%, the polymer particle size is maintained at a substantially constant value. Therefore, by adjusting the polymerization rate freely after the monomer polymerization rate exceeds 40%, the total polymerization is achieved. You can control the time.

次に、モノマーの重合率が40%に至る前に、重合速度を変化させてポリマー粒径を変化させるとともに所望の値になるように重合を行い、重合率が40%を超えた後においては、重合速度を一定にしてトータル重合時間を同一にコントロールする場合について、図8、図9に基づき説明する。図8は2つの重合過程において時間に対する重合率の変化を示グラフ、図9は2つの重合過程におけるポリマー粒径の変化を示すグラフである。   Next, before the polymerization rate of the monomer reaches 40%, the polymerization rate is changed to change the polymer particle size and the polymerization is performed to a desired value, and after the polymerization rate exceeds 40%, The case where the total polymerization time is controlled to be the same while keeping the polymerization rate constant will be described with reference to FIGS. FIG. 8 is a graph showing the change in the polymerization rate with respect to time in the two polymerization processes, and FIG. 9 is a graph showing the change in the polymer particle diameter in the two polymerization processes.

図8において、横軸は時間(hour)、縦軸は重合率(%)を示し、グラフG14は、溶存酸素濃度を低くし、一定の重合速度でモノマーの重合反応を行い、重合率が40%を超えた後に重合温度を一定温度(例えば、50℃)を維持しつつ重合を行った場合の重合率の変化を示す。
また、グラフG15は、溶存酸素濃度を高くし重合率が40%に至る前で30%になった後に重合開始剤濃度を追加投入してグラフG14の場合よりも小さい重合速度でモノマーの重合反応を行い、重合率が40%を超えた後に重合温度を一定温度(例えば、50℃)を維持しつつ重合を行った場合の重合率の変化を示す。
In FIG. 8, the horizontal axis represents time (hour), the vertical axis represents the polymerization rate (%), and the graph G14 lowers the dissolved oxygen concentration to carry out the monomer polymerization reaction at a constant polymerization rate. It shows the change in the polymerization rate when the polymerization is carried out while maintaining the polymerization temperature at a constant temperature (for example, 50 ° C.) after exceeding%.
Graph G15 shows the polymerization reaction of the monomer at a lower polymerization rate than in the case of graph G14 by adding the polymerization initiator concentration after increasing the dissolved oxygen concentration and reaching 30% before the polymerization rate reaches 40%. The change in the polymerization rate when the polymerization is carried out while maintaining the polymerization temperature at a constant temperature (for example, 50 ° C.) after the polymerization rate exceeds 40% is shown.

ここに、グラフG14の場合には、重合率が40%に至る前に一定の重合速度に対応するポリマー粒径が得られるが、グラフG15の場合には、重合率が40%に至る前における重合速度は小さいことから、グラフG14の場合よりも大きなポリマー粒径が得られる。そして、重合率が40%付近になった時点で、両者は略同一となり、この後は同一の重合速度で重合が行われていき、トータル重合時間は同一となる。   Here, in the case of the graph G14, a polymer particle size corresponding to a certain polymerization rate is obtained before the polymerization rate reaches 40%, but in the case of the graph G15, the polymerization rate before the polymerization rate reaches 40%. Since the polymerization rate is small, a polymer particle size larger than that in the case of graph G14 is obtained. When the polymerization rate reaches around 40%, the two become substantially the same. Thereafter, the polymerization is carried out at the same polymerization rate, and the total polymerization time becomes the same.

また、図9において、横軸は粒径(μm)、縦軸は頻度(%)を示し、グラフG16はグラフG14に対応するポリマー粒径の変化、グラフG17はグラフG15に対応するポリマー粒径の変化を示している。
グラフG16では、前記したように重合速度が大きいことからポリマー粒径は小さくなり、一方、グラフG17では、重合速度は小さいことからポリマー粒径は大きくなる。
このように、ポリマー粒径を変化させつつトータル重合時間が同一となるように制御することができる。
In FIG. 9, the horizontal axis represents the particle size (μm), the vertical axis represents the frequency (%), the graph G16 represents the change in the polymer particle size corresponding to the graph G14, and the graph G17 represents the polymer particle size corresponding to the graph G15. Shows changes.
In the graph G16, the polymer particle size is small because the polymerization rate is large as described above. On the other hand, in the graph G17, the polymer particle size is large because the polymerization rate is small.
Thus, the total polymerization time can be controlled to be the same while changing the polymer particle size.

続いて、前記した乳化重合方法を自動的に行う重合装置について説明する。
先ず、重合装置の概略構成について図10に基づき説明する。図10は重合装置の概略構成を模式的に示す説明図である。
図10において、重合装置1は、水・乳化剤・重合開始剤・モノマーを混合してなるモノマー混合物(反応液)からポリマーを合成する撹拌槽2、供給装置3を介して撹拌槽2に投入される重合開始剤を貯留する開始剤貯留タンク4、ポリマー製造時における撹拌槽2内の温度・重合開始剤の投入量等の各種製造条件等を入力設定する操作部5、及び、操作部5にて入力設定された各種製造条件に基づき供給装置3を制御して撹拌槽2への重合開始剤投入量を制御したり、重合装置1全体を制御する制御部6を備えている。
Then, the superposition | polymerization apparatus which performs the above-mentioned emulsion polymerization method automatically is demonstrated.
First, a schematic configuration of the polymerization apparatus will be described with reference to FIG. FIG. 10 is an explanatory view schematically showing a schematic configuration of the polymerization apparatus.
In FIG. 10, a polymerization apparatus 1 is charged into a stirring tank 2 via a supply tank 3 and a stirring tank 2 for synthesizing a polymer from a monomer mixture (reaction liquid) formed by mixing water, an emulsifier, a polymerization initiator, and a monomer. Into the operation unit 5 for inputting and setting various production conditions such as the temperature in the stirring tank 2 at the time of polymer production, the input amount of the polymerization initiator, etc. The controller 3 is provided with a controller 6 that controls the supply device 3 based on the various manufacturing conditions input and set to control the amount of polymerization initiator charged into the agitation tank 2 and controls the entire polymerization device 1.

撹拌槽2内には、撹拌槽2内のモノマー混合物の温度を検出する温度センサ7及びモノマー混合物の粘度を常時検出する粘度センサ8が配設されている。温度センサ7及び粘度センサ8は、制御部6に接続されており、温度センサ7、粘度センサ8にて検出された温度データ及び粘度データは、制御部6にインプットされる。また、撹拌槽2内には、モータ9を介して回転軸10の回りに回転される撹拌翼11が配置されている。更に、撹拌槽2には、コンデンサ12が配設されている。
開始剤貯留タンク4には、予め実験により求められた所定量の重合開始剤が貯留されている。
In the stirring tank 2, a temperature sensor 7 for detecting the temperature of the monomer mixture in the stirring tank 2 and a viscosity sensor 8 for constantly detecting the viscosity of the monomer mixture are disposed. The temperature sensor 7 and the viscosity sensor 8 are connected to the control unit 6, and temperature data and viscosity data detected by the temperature sensor 7 and the viscosity sensor 8 are input to the control unit 6. A stirring blade 11 that is rotated around the rotation shaft 10 via a motor 9 is disposed in the stirring tank 2. Furthermore, a condenser 12 is disposed in the stirring tank 2.
The initiator storage tank 4 stores a predetermined amount of a polymerization initiator obtained in advance through experiments.

操作部5からは、後述するように、モノマーの重合率が40%以下の場合(以下、重合前期とする)における開始剤濃度とポリマー粒径との相関式、モノマーの重合率が40%を超えた場合(以下、重合後期とする)における重合速度式、基本重合条件(重合温度、開始剤濃度、モノマー仕込み量)、重合温度の上限及び下限値、目標ポリマー粒径、重合後期における目標重合速度(%/min)等の各種重合条件データが入力される。
また、操作部5から入力された各種の重合条件データは、制御部6に付設されているメモリに記憶される。
As will be described later, from the operation unit 5, when the polymerization rate of the monomer is 40% or less (hereinafter referred to as the first polymerization period), the correlation between the initiator concentration and the polymer particle size, the polymerization rate of the monomer is 40%. Polymerization rate formula when exceeding (hereinafter referred to as polymerization late), basic polymerization conditions (polymerization temperature, initiator concentration, monomer charge), upper and lower limits of polymerization temperature, target polymer particle size, target polymerization in late polymerization Various polymerization condition data such as speed (% / min) are input.
Various polymerization condition data input from the operation unit 5 is stored in a memory attached to the control unit 6.

また、撹拌槽2には、その外壁を被覆するようにジャケット13が取り付けられている。ジャケット13の下方に形成された入口には配管14が接続されており、かかる配管14には、入口側温度センサ15、熱交換器16、ポンプ17が介装されている。   Moreover, the jacket 13 is attached to the stirring tank 2 so that the outer wall may be coat | covered. A pipe 14 is connected to an inlet formed below the jacket 13, and an inlet side temperature sensor 15, a heat exchanger 16, and a pump 17 are interposed in the pipe 14.

ジャケット13の上方に形成された出口には配管18が接続されており、かかる配管18には、出口側温度センサ19、2つの電磁バルブ20、21が介装されている。電磁バルブ21は、配管25を介してポンプ17に接続されている。電磁バルブ21には、専用チラー22が接続されており、専用チラー22には供給管23を介して工場循環水が供給される。また、専用チラー22は、配管24を介してポンプ17に接続されている。
尚、入口側温度センサ15及び出口側温度センサ19は、共に制御部6に接続されており、入口側温度センサ15、出口側温度センサ19にて検出された温度データは、制御部6にインプットされる。
A pipe 18 is connected to an outlet formed above the jacket 13, and an outlet-side temperature sensor 19 and two electromagnetic valves 20 and 21 are interposed in the pipe 18. The electromagnetic valve 21 is connected to the pump 17 via a pipe 25. A dedicated chiller 22 is connected to the electromagnetic valve 21, and factory circulating water is supplied to the dedicated chiller 22 through a supply pipe 23. The dedicated chiller 22 is connected to the pump 17 via a pipe 24.
The inlet side temperature sensor 15 and the outlet side temperature sensor 19 are both connected to the control unit 6, and temperature data detected by the inlet side temperature sensor 15 and the outlet side temperature sensor 19 are input to the control unit 6. Is done.

供給管23から供給された工場循環水は、専用チラー22で冷却され、その冷却水は、配管24、ポンプ17、熱交換器16を介してジャケット13に供給される。撹拌槽2は、ジャケット13に供給された冷却水により冷却される。尚、ジャケット13に供給される冷却水の温度は、入口側温度センサ15を介して検出され、その検出温度データが制御部6にインプットされる。
ジャケット13に供給された冷却水は、配管18、電磁バルブ20、配管25、ポンプ17等を経由する循環路を介してジャケット13内を循環する。尚、循環される冷却水の温度は、出口側温度センサ19を介して検出され、その検出温度データは制御部6にインプットされる。
尚、冷却数の温度を上昇させる場合には熱交換器16が作動され、冷却水が昇温される。
The factory circulating water supplied from the supply pipe 23 is cooled by the dedicated chiller 22, and the cooling water is supplied to the jacket 13 through the pipe 24, the pump 17, and the heat exchanger 16. The stirring tank 2 is cooled by the cooling water supplied to the jacket 13. The temperature of the cooling water supplied to the jacket 13 is detected via the inlet side temperature sensor 15, and the detected temperature data is input to the control unit 6.
The cooling water supplied to the jacket 13 circulates in the jacket 13 through a circulation path that passes through the pipe 18, the electromagnetic valve 20, the pipe 25, the pump 17, and the like. The temperature of the circulating cooling water is detected via the outlet side temperature sensor 19, and the detected temperature data is input to the control unit 6.
In addition, when raising the temperature of the number of coolings, the heat exchanger 16 is actuated and the cooling water is heated.

ここで、重合前期における開始剤濃度とポリマー粒径との相関式について図11に基づき説明する。図11は開始剤濃度とポリマー粒径との相関を示すグラフである。
かかる相関式は、事前に実験を行い、実験により得られた開始剤濃度(wt%)とポリマー粒径(μm)との関係を図11に示すようにプロットし、各プロットを外挿して相関式を求める。このように求めた相関式によりポリマー粒径は、下記数1のように表される。

Figure 2009270018
このように得られた相関式は、制御部6のメモリに記憶される。 Here, a correlation equation between the initiator concentration and the polymer particle diameter in the first polymerization period will be described with reference to FIG. FIG. 11 is a graph showing the correlation between initiator concentration and polymer particle size.
Such a correlation equation is obtained by conducting an experiment in advance, plotting the relationship between the initiator concentration (wt%) and the polymer particle size (μm) obtained by the experiment as shown in FIG. 11, and extrapolating each plot to correlate. Find the formula. The particle diameter of the polymer is expressed by the following equation 1 using the correlation equation thus obtained.
Figure 2009270018
The correlation equation thus obtained is stored in the memory of the control unit 6.

次に、重合後期における重合速度式について図12に基づき説明する。図12はアレニウスプロットを行って求めた反応速度定数と温度との関係を示すグラフである。
先ず、乳化重合における重合後期の重合速度式は、Smith-Ewart理論に基づき、下記数2のように表される。

Figure 2009270018
Next, the polymerization rate equation in the latter stage of polymerization will be described with reference to FIG. FIG. 12 is a graph showing the relationship between the reaction rate constant and the temperature obtained by performing the Arrhenius plot.
First, the polymerization rate equation in the latter stage of the emulsion polymerization is represented by the following formula 2 based on the Smith-Ewart theory.
Figure 2009270018

前記数2についてアレニウスプロットを行い、反応速度定数と温度との関係を求めると、図12に示すように、lnk=−4810.7/T + 13.037、及び、k=exp(−4810.7/T + 13.037)となり、これより反応速度定数kについては、y=−4810.7x + 13.037と表される。   When the relationship between the reaction rate constant and the temperature is obtained by performing an Arrhenius plot for Equation 2, as shown in FIG. 12, lnk = −4810.7 / T + 13.037 and k = exp (−4810. 7 / T + 13.037). From this, the reaction rate constant k is expressed as y = −4810.7x + 13.037.

また、開始剤濃度[I]は、時間t、温度T、初期開始剤濃度[I0]の関数として下記数3のように表される。

Figure 2009270018
また、半減期については下記数4のように表される。
Figure 2009270018
従って、前記した数2は、以下数5のように表される。
Figure 2009270018
Further, the initiator concentration [I] is expressed as the following equation 3 as a function of the time t, the temperature T, and the initial initiator concentration [I0].
Figure 2009270018
Further, the half-life is represented by the following formula 4.
Figure 2009270018
Therefore, the above-described Expression 2 is expressed as Expression 5 below.
Figure 2009270018

続いて、前記のように構成される重合装置1において、モノマーから自動的にポリマーの重合を行う手順について図13及び図14に基づき説明する。図13及び図14は重合装置にてポリマーの重合を行う際の重合制御手順のフローチャートである。   Next, a procedure for automatically polymerizing a polymer from a monomer in the polymerization apparatus 1 configured as described above will be described with reference to FIGS. 13 and 14. 13 and 14 are flowcharts of a polymerization control procedure when polymerizing a polymer in the polymerization apparatus.

先ず、ステップ(以下、Sと略記する)1において、重合温度の上限及び下限値の範囲、基本重合条件(重合温度、開始剤濃度、モノマー仕込み量)、及び、前記のように求められた重合前期における開始剤濃度とポリマー粒径との相関式(数1)、重合後期における重合速度式(数5)が操作部5を介して入力され、制御部6のメモリに記憶される。
ここに、重合前期における開始剤濃度とポリマー粒径については、前記数1、数2を求めた際のセンター値(本実施形態では、開始剤濃度:0.015[wt%]、重合温度:45℃)とされる。
また、重合温度の上限及び下限値の範囲については、前記数1、数2を求めるにつき使用した実験条件の上限値及び下限値、又は、製品特性と重合温度との関係が顕著な場合には、製品特性を満たすにつき要求される重合温度範囲が使用される。
First, in step (hereinafter abbreviated as S) 1, the upper and lower limits of the polymerization temperature, basic polymerization conditions (polymerization temperature, initiator concentration, monomer charge), and the polymerization determined as described above. The correlation equation (Equation 1) between the initiator concentration and the polymer particle diameter in the first period and the polymerization rate equation (Equation 5) in the latter polymerization period are input via the operation unit 5 and stored in the memory of the control unit 6.
Here, for the initiator concentration and the polymer particle diameter in the pre-polymerization period, the center values obtained when the above-mentioned formulas 1 and 2 were obtained (in this embodiment, the initiator concentration: 0.015 [wt%], the polymerization temperature: 45 ° C.).
In addition, regarding the range of the upper limit and the lower limit value of the polymerization temperature, the upper limit value and the lower limit value of the experimental conditions used for obtaining the above formulas 1 and 2, or when the relationship between the product characteristics and the polymerization temperature is remarkable The polymerization temperature range required to meet the product properties is used.

続くS2においては、操作部5を介して、作業者により目標ポリマー粒径、及び、重合後期における目標重合速度(%/min)が入力され、制御部6のメモリに記憶される。   In subsequent S <b> 2, the operator inputs the target polymer particle size and the target polymerization rate (% / min) in the later stage of polymerization via the operation unit 5 and stores them in the memory of the control unit 6.

S3では、数1で表される相関式から、目標ポリマー粒径を得るための初期開始剤濃度I0が算出される。また、S4では、基本重合条件に基づいて撹拌槽2内の反応液が45℃となるように、ジャケット13等を介して昇温が開始される。   In S3, the initial initiator concentration I0 for obtaining the target polymer particle size is calculated from the correlation equation represented by Equation 1. In S4, the temperature rise is started through the jacket 13 or the like so that the reaction liquid in the stirring tank 2 becomes 45 ° C. based on the basic polymerization conditions.

また、S5において、初期開始剤濃度I0を満たす開始剤量がモノマー仕込量から計算され、(I0×仕込量)が撹拌槽2に投入される。S6では、開始剤投入時において粘度センサ8を介して検出された反応液の初期粘度値μi及び開始剤投入時間tiがメモリに記録される。そして、重合反応中には、粘度センサ8を介して反応液の粘度がモニタされる。   In S5, the initiator amount satisfying the initial initiator concentration I0 is calculated from the monomer charge amount, and (I0 × charge amount) is charged into the stirring tank 2. In S6, the initial viscosity value μi of the reaction liquid detected through the viscosity sensor 8 when the initiator is charged and the initiator charging time ti are recorded in the memory. During the polymerization reaction, the viscosity of the reaction solution is monitored via the viscosity sensor 8.

そして、S7においては、検出粘度μが4×初期粘度値μi以上(μ≧4μi)となり、且つ、検出粘度μの値が安定(μの時間変化≒0)したかどうか判断される。具体的には、μ≧4μiとなり、且つ、1分前のμの値と比較してその差が5%以下になったかどうか判断される。μ≧4μiとなり、且つ、1分前のμの値と比較してその差が5%以下になった場合には、前記図5にて説明したように、モノマーの重合率が40%に到達したものと判断される。
S7における判断がNOの場合(S7:NO)には、前記条件が満足されるまで待機する。一方、S7における判断がYESとなった場合(S7:YES)には、開始剤投入時間をt1として記録するとともに、S9乃至S17における処理・判断により、重合後期における各種重合条件が設定される。
In S7, it is determined whether or not the detected viscosity μ is equal to or greater than 4 × the initial viscosity value μi (μ ≧ 4 μi), and the value of the detected viscosity μ is stable (time change of μ≈0). Specifically, it is determined whether μ ≧ 4 μi and whether the difference is 5% or less compared to the value of μ one minute ago. When μ ≧ 4 μi and the difference is 5% or less compared to the value of μ one minute ago, the monomer polymerization rate reaches 40% as described in FIG. It is judged that
If the determination in S7 is NO (S7: NO), the process waits until the condition is satisfied. On the other hand, when the determination in S7 is YES (S7: YES), the initiator charging time is recorded as t1, and various polymerization conditions in the late polymerization period are set by the processing and determination in S9 to S17.

重合後期における重合条件の設定するについて、図14に示すように、先ず、S8において、S7で判断がYESとなった時点における残存開始剤濃度[It]が数3、数4を使用して求められる。具体的には、時間tに(t1−ti)、温度Tに45℃、初期開始剤濃度に数1にて求められたI0を代入して求められる。   Regarding the setting of the polymerization conditions in the later stage of polymerization, as shown in FIG. 14, first, in S8, the residual initiator concentration [It] at the time when the determination in S7 is YES is obtained using Equations 3 and 4. It is done. Specifically, it is obtained by substituting I0 obtained in Equation 1 for the time t (t1-ti), the temperature T for 45 ° C., and the initial initiator concentration.

続くS9では、重合後期における重合速度式(数5)中における[I0]に[It]が代入され、S10では、−d[M]/dtに目標重合速度、[M]に残存モノマー濃度(重合率が40%であることから、全仕込みモノマーの60%が残存しているものとして算出される)を代入し、これらを満たす重合後期において要求される重合温度T1[K]が算出される。   In the subsequent S9, [It] is substituted for [I0] in the polymerization rate equation (Equation 5) in the latter stage of polymerization, and in S10, the target polymerization rate is assigned to -d [M] / dt, and the residual monomer concentration ( Since the polymerization rate is 40%, it is calculated that 60% of all charged monomers remain), and the polymerization temperature T1 [K] required in the later stage of polymerization that satisfies these is calculated. .

また、S11では、要求温度T1が重合温度の上限値及び下限値の範囲内であるかどうか判断される。その判断がYESである場合(S11:YES)には、S12にて重合後期に要求される要求温度T1として制御部6に出力される。この後S17に移行する。
これに対して、S11における判断がNOの場合(S11:NO)には、S13において、要求温度T1が許容上限温度以上であるかどうか判断される。S13における判断がNOの場合(S13:NO)には、S14にて許容下限温度が要求温度T1として制御部6に出力される。この後S17に移行する。
In S11, it is determined whether the required temperature T1 is within the range between the upper limit value and the lower limit value of the polymerization temperature. If the determination is YES (S11: YES), it is output to the control unit 6 as the required temperature T1 required in the later stage of polymerization in S12. Thereafter, the process proceeds to S17.
On the other hand, if the determination in S11 is NO (S11: NO), it is determined in S13 whether the required temperature T1 is equal to or higher than the allowable upper limit temperature. If the determination in S13 is NO (S13: NO), the allowable lower limit temperature is output to the control unit 6 as the required temperature T1 in S14. Thereafter, the process proceeds to S17.

これに対して、S13における判断がYESの場合(S13:YES)には、S15にて許容上限温度値及び要求温度T1が数5に代入され、重合後期に要求される開始剤濃度が算出される。この後S16において、重合後期に要求される開始剤濃度から既に消費された開始剤量([It]×モノマー仕込量)を差し引いた開始剤量を重合後期に追加すべき開始剤量とし、且つ、許容上限温度を重合後期に要求される要求温度T1として制御部6に出力される。これにより、要求温度が許容上限温度以上である場合の開始剤量の補正が行われる。この後S17に移行する。   On the other hand, if the determination in S13 is YES (S13: YES), the allowable upper limit temperature value and the required temperature T1 are substituted in Equation 5 in S15, and the initiator concentration required in the later stage of polymerization is calculated. The Thereafter, in S16, an initiator amount obtained by subtracting the amount of initiator already consumed ([It] × monomer charge amount) from the initiator concentration required in the later stage of polymerization is set as an initiator amount to be added in the later stage of polymerization, and The allowable upper limit temperature is output to the control unit 6 as the required temperature T1 required in the later stage of polymerization. Thereby, the amount of initiator is corrected when the required temperature is equal to or higher than the allowable upper limit temperature. Thereafter, the process proceeds to S17.

S17においては、前記にて求められた重合後期における要求温度に基づきジャケット13等を介して撹拌槽2が温調される。更に、S18にて、前記のように求められた重合後期における重合条件に従って、モノマーの重合反応が進行されていく。   In S17, the temperature of the stirring tank 2 is adjusted via the jacket 13 or the like based on the required temperature in the late polymerization stage obtained above. Furthermore, in S18, the polymerization reaction of the monomer proceeds in accordance with the polymerization conditions in the later stage of polymerization determined as described above.

以上詳細に説明した通り本実施形態に係るポリマー粒子製造方法では、モノマーの重合率が40%に至る前において、重合温度、重合開始剤濃度等に基づく重合速度を調整することによりポリマー粒径が目標粒径に制御され、モノマーの重合率が40%を超えた後においては、ポリマー粒径は重合速度とは関係なく一定に保持されるので、モノマーの重合率が40%に至る前に重合速度を制御してポリマー粒子の粒径を所望粒径に調整しておけば、モノマーの重合率が40%を超えた後にポリマー粒子の粒径を目標粒径に維持しつつ、乳化剤濃度を高くすることなく重合速度を自在に変更してモノマーの重合完了時間を制御することが可能となる。   As described above in detail, in the polymer particle production method according to the present embodiment, before the polymerization rate of the monomer reaches 40%, the polymer particle size is adjusted by adjusting the polymerization rate based on the polymerization temperature, the polymerization initiator concentration, and the like. After the target particle size is controlled and the polymerization rate of the monomer exceeds 40%, the polymer particle size is kept constant regardless of the polymerization rate, so the polymerization is performed before the polymerization rate of the monomer reaches 40%. If the particle size of the polymer particles is adjusted to the desired particle size by controlling the speed, the emulsifier concentration is increased while maintaining the particle size of the polymer particles at the target particle size after the polymerization rate of the monomer exceeds 40%. The polymerization completion time can be controlled by freely changing the polymerization rate without doing so.

また、乳化重合の進行に伴って反応物の粘度を連続的に測定し、粘度の上昇が略停止して安定した時点で、モノマー重合率が40%を超えたものと判断するので、モノマーの重合率が40%になる時点を反応液の粘度変化に基づき判断することが可能となる。   In addition, the viscosity of the reaction product is continuously measured as the emulsion polymerization progresses, and when the increase in viscosity is substantially stopped and stabilized, it is determined that the monomer polymerization rate exceeds 40%. It becomes possible to judge the point of time when the polymerization rate reaches 40% based on the change in viscosity of the reaction solution.

更に、本実施形態に係る重合装置1では、粘度センサ8を介して検出される反応液の粘度値が上昇している間はモノマーの重合率が40%以下にあるものと判断するとともに、各種の重合条件(S1乃至S4)により決定される重合速度でモノマーの重合を行ってポリマー粒子のポリマー粒径が目標粒径にされ、また、粘度センサ8を介して検出される反応液の粘度値の上昇が停止して安定した時点でモノマーの重合率が40%を超えたものと判断する(S7:YES)とともに、この後においてはポリマー粒径は重合速度とは関係なく一定に保持されるので、モノマーの重合率が40%に至る前に所望の重合速度に制御してポリマー粒子の粒径を目標粒径に調整しておけば、モノマーの重合率が40%を超えた後にポリマー粒子の粒径を目標粒径に維持しつつ、乳化剤濃度を高くすることなく重合速度を種々変更してモノマーの重合完了時間を制御することが可能となる。   Furthermore, in the polymerization apparatus 1 according to this embodiment, while the viscosity value of the reaction liquid detected through the viscosity sensor 8 is increasing, it is determined that the monomer polymerization rate is 40% or less, and various The monomer is polymerized at a polymerization rate determined by the polymerization conditions (S1 to S4), the polymer particle size of the polymer particles is set to the target particle size, and the viscosity value of the reaction liquid detected via the viscosity sensor 8 It is judged that the polymerization rate of the monomer has exceeded 40% at the time when the increase in the temperature is stable and stable (S7: YES), and thereafter, the polymer particle size is kept constant regardless of the polymerization rate. Therefore, if the polymer particle size is adjusted to the target particle size by controlling to a desired polymerization rate before the monomer polymerization rate reaches 40%, the polymer particle after the monomer polymerization rate exceeds 40%. The particle size of the eyes While maintaining the particle size, the rate of polymerization without increasing the emulsifier concentration was variously changed and it is possible to control the polymerization completion time of the monomer.

また、モノマーの重合が進行するに従って粘度センサ8を介して測定される反応液の粘度が上昇している間はモノマーの重合率が40%以下にあるものと判断され、粘度センサ8を介して測定される反応液の粘度の上昇が略停止して安定した時点でモノマーの重合率が40%を超えたものと判断されるので、モノマーの重合率が40%になる時点を反応液の粘度変化に基づき判断することが可能となる。   In addition, while the viscosity of the reaction liquid measured through the viscosity sensor 8 increases as the polymerization of the monomer proceeds, it is determined that the polymerization rate of the monomer is 40% or less. Since the polymerization rate of the monomer is determined to have exceeded 40% when the increase in the measured viscosity of the reaction solution is substantially stopped and stabilized, the viscosity of the reaction solution is determined when the polymerization rate of the monomer reaches 40%. Judgment can be made based on the change.

尚、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。   Note that the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the scope of the present invention.

モノマーの重合率が0%〜40%の範囲におけるモノマーの重合速度(%/min)とポリマー粒径(メジアン径(μm))との関係を示すグラフである。It is a graph which shows the relationship between the polymerization rate (% / min) of a monomer in the range whose polymerization rate of a monomer is 0%-40%, and a polymer particle size (median diameter (micrometer)). モノマーの重合率が0%〜100%の範囲におけるモノマーの重合率(%)とポリマー粒径(メジアン径(μm))との関係を示すグラフである。It is a graph which shows the relationship between the polymerization rate (%) of a monomer in the range of 0%-100% of a monomer, and a polymer particle size (median diameter (micrometer)). モノマーの重合率が40%を超えた後に、3つの重合速度で重合を行った時の重合率の変化状態を示すグラフである。It is a graph which shows the change state of the polymerization rate when superposing | polymerizing at three polymerization rates, after the polymerization rate of a monomer exceeds 40%. 3つの重合速度に対応するポリマー粒径の変化を示すグラフである。It is a graph which shows the change of the polymer particle size corresponding to three polymerization rates. モノマーの重合率と反応液の粘度との関係を示すグラフである。It is a graph which shows the relationship between the polymerization rate of a monomer, and the viscosity of a reaction liquid. 2つの重合過程において時間に対する重合率の変化を示グラフである。It is a graph which shows the change of the polymerization rate with respect to time in two polymerization processes. 2つの重合過程におけるポリマー粒径の変化を示すグラフである。It is a graph which shows the change of the polymer particle size in two polymerization processes. 2つの重合過程において時間に対する重合率の変化を示グラフである。It is a graph which shows the change of the polymerization rate with respect to time in two polymerization processes. 2つの重合過程におけるポリマー粒径の変化を示すグラフである。It is a graph which shows the change of the polymer particle size in two polymerization processes. 重合装置の概略構成を模式的に示す説明図である。It is explanatory drawing which shows typically schematic structure of a superposition | polymerization apparatus. 開始剤濃度とポリマー粒径との相関を示すグラフである。It is a graph which shows the correlation of an initiator density | concentration and a polymer particle size. アレニウスプロットを行って求めた反応速度定数と温度との関係を示すグラフである。It is a graph which shows the relationship between the reaction rate constant calculated | required by performing Arrhenius plot, and temperature. 重合装置にてポリマーの重合を行う際の重合制御手順のフローチャートである。It is a flowchart of the superposition | polymerization control procedure at the time of superposing | polymerizing a polymer with a superposition | polymerization apparatus. 重合装置にてポリマーの重合を行う際の重合制御手順のフローチャートである。It is a flowchart of the superposition | polymerization control procedure at the time of superposing | polymerizing a polymer with a superposition | polymerization apparatus.

符号の説明Explanation of symbols

1 重合装置
2 撹拌槽
4 開始剤貯留タンク
5 操作部
6 制御部
8 粘度センサ
13 ジャケット
DESCRIPTION OF SYMBOLS 1 Polymerization apparatus 2 Stirrer tank 4 Initiator storage tank 5 Operation part 6 Control part 8 Viscosity sensor 13 Jacket

Claims (4)

水、乳化剤、重合開始剤及びモノマーを混合した反応液を乳化分散させるとともにモノマーの乳化重合を行ってポリマー粒子を製造するポリマー粒子製造方法において、
前記モノマーの重合率が40%に至る前に、モノマーの重合速度を制御することにより前記ポリマー粒子のポリマー粒径を所定粒径にし、
前記モノマーの重合率が40%を超えた後に、前記ポリマー粒径を所定粒径に維持しつつ、モノマーの重合完了時間を制御することを特徴とするポリマー粒子製造方法。
In the polymer particle production method of producing a polymer particle by emulsifying and dispersing a reaction solution in which water, an emulsifier, a polymerization initiator and a monomer are mixed, and performing emulsion polymerization of the monomer,
Before the polymerization rate of the monomer reaches 40%, the polymer particle size of the polymer particles is set to a predetermined particle size by controlling the polymerization rate of the monomer,
After the polymerization rate of the monomer exceeds 40%, the polymerization completion time of the monomer is controlled while maintaining the polymer particle size at a predetermined particle size.
前記乳化重合の進行に伴って反応物の粘度を連続的に測定し、
前記粘度の上昇が略停止して安定した時点で、前記モノマー重合率が40%を超えたものと判断することを特徴とする請求項1に記載のポリマー粒子製造方法。
As the emulsion polymerization proceeds, the viscosity of the reactant is continuously measured,
2. The method for producing polymer particles according to claim 1, wherein the monomer polymerization rate is determined to have exceeded 40% when the increase in viscosity is substantially stopped and stabilized. 3.
水、乳化剤、重合開始剤及びモノマーを混合した反応液を乳化分散させるとともにモノマーの乳化重合を行ってポリマー粒子を製造する重合装置において、
第1重合速度及び第2重合速度を設定する重合速度設定手段と、
前記反応液におけるモノマーの重合率を検出する重合率検出手段と、
前記重合率検出手段により検出されるモノマーの重合率が40%に至る前には前記重合速度設定手段に設定された第1重合速度でモノマーの重合を行って前記ポリマー粒子のポリマー粒径を所定粒径にし、重合率検出手段により検出されるモノマーの重合率が40%を超えた後に第1重合速度から第2重合速度に切り換えてモノマーの重合を行ってポリマー粒径を所定粒径に維持しつつモノマーの重合完了時間を制御する制御手段とを備えたことを特徴とする重合装置。
In a polymerization apparatus for producing polymer particles by emulsifying and dispersing a reaction liquid in which water, an emulsifier, a polymerization initiator and a monomer are emulsified and dispersed,
A polymerization rate setting means for setting the first polymerization rate and the second polymerization rate;
A polymerization rate detection means for detecting the polymerization rate of the monomer in the reaction solution;
Before the polymerization rate of the monomer detected by the polymerization rate detection means reaches 40%, the monomer is polymerized at the first polymerization rate set by the polymerization rate setting means to determine the polymer particle size of the polymer particles. After the polymerization rate of the monomer detected by the polymerization rate detection means exceeds 40%, the monomer polymerization is performed by switching from the first polymerization rate to the second polymerization rate to maintain the polymer particle size at a predetermined particle size. And a control means for controlling the completion time of the polymerization of the monomer.
前記重合率検出手段は、前記反応液中に浸漬されるとともに反応液の粘度を測定する粘度測定手段を含み、
前記制御手段は、前記モノマーの重合が進行するに従って前記粘度測定手段を介して測定される反応液の粘度が上昇している間はモノマーの重合率が40%以下にあるものと判断し、粘度測定手段を介して測定される反応液の粘度の上昇が略停止して安定した時点でモノマーの重合率が40%を超えたものと判断することを特徴とする請求項3に記載の重合装置。
The polymerization rate detecting means includes a viscosity measuring means for measuring the viscosity of the reaction liquid while being immersed in the reaction liquid,
The control means determines that the polymerization rate of the monomer is 40% or less while the viscosity of the reaction liquid measured through the viscosity measurement means is increasing as the polymerization of the monomer proceeds, 4. The polymerization apparatus according to claim 3, wherein the polymerization rate of the monomer is determined to have exceeded 40% when the increase in the viscosity of the reaction solution measured through the measuring means is substantially stopped and stabilized. .
JP2008122240A 2008-05-08 2008-05-08 Polymer particle manufacturing method and polymerization apparatus thereof Expired - Fee Related JP5407041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008122240A JP5407041B2 (en) 2008-05-08 2008-05-08 Polymer particle manufacturing method and polymerization apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008122240A JP5407041B2 (en) 2008-05-08 2008-05-08 Polymer particle manufacturing method and polymerization apparatus thereof

Publications (2)

Publication Number Publication Date
JP2009270018A true JP2009270018A (en) 2009-11-19
JP5407041B2 JP5407041B2 (en) 2014-02-05

Family

ID=41436870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008122240A Expired - Fee Related JP5407041B2 (en) 2008-05-08 2008-05-08 Polymer particle manufacturing method and polymerization apparatus thereof

Country Status (1)

Country Link
JP (1) JP5407041B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121298A (en) * 2014-12-25 2016-07-07 花王株式会社 Method for producing latex
US11661536B2 (en) 2018-02-28 2023-05-30 3M Innovative Properties Company Adhesives comprising polymerized units of secondary hexyl (meth)acrylates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517508A (en) * 1991-07-16 1993-01-26 Asahi Chem Ind Co Ltd Production of copolymer latex with large particle size
JPH0665308A (en) * 1992-06-16 1994-03-08 Hitachi Chem Co Ltd Production of vinyl polymer particle and expandable vinyl polymer particle
JP2007002067A (en) * 2005-06-22 2007-01-11 Nitto Denko Corp Polymerization system and polymerization method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517508A (en) * 1991-07-16 1993-01-26 Asahi Chem Ind Co Ltd Production of copolymer latex with large particle size
JPH0665308A (en) * 1992-06-16 1994-03-08 Hitachi Chem Co Ltd Production of vinyl polymer particle and expandable vinyl polymer particle
JP2007002067A (en) * 2005-06-22 2007-01-11 Nitto Denko Corp Polymerization system and polymerization method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121298A (en) * 2014-12-25 2016-07-07 花王株式会社 Method for producing latex
US11661536B2 (en) 2018-02-28 2023-05-30 3M Innovative Properties Company Adhesives comprising polymerized units of secondary hexyl (meth)acrylates

Also Published As

Publication number Publication date
JP5407041B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
US8420751B2 (en) Method for producing a polymer
ZA200600545B (en) Polymerization process involving the dosing initiators
JP5407041B2 (en) Polymer particle manufacturing method and polymerization apparatus thereof
JP5554428B2 (en) Process for preparing latex from chlorinated vinyl polymers
JP4896709B2 (en) Polymerization reactor output increased by using specific initiator systems
MX2008012262A (en) Continuous process for the production of vinyl chloride (co)polymers.
JP4711806B2 (en) Polymer production method and apparatus thereof
RU2682173C1 (en) Method for carrying out of exothermal catalytic reaction polymerization in isothermal mode in gas-liquid phase semi-continuous mixture reactor
JP2012164206A (en) Temperature control system and temperature control method
RU2649039C1 (en) Method of automatic control of the reactor of suspension polymerization of styrene
JP3818375B2 (en) Polymerization temperature control method
EP0682043B1 (en) Processes for preparing vinyl chloride polymers
JP7363608B2 (en) Pressurized oxidation leaching method, analysis program and analysis equipment
JP5241051B2 (en) Polymerization reaction control method
JP2011038043A (en) Method for neutralizing polymer and method for producing polymer
JPH09157308A (en) Preparation of vinyl chloride polymer
RU2036203C1 (en) Method for controlling thermoelastoplastic rubber polymerization process
RU2046809C1 (en) Method of operation of simple polyester polymerization process
JP2013237746A (en) Method for producing acrylonitrile-based polymer
AU2013202404B2 (en) Method for producing a polymer
JP2010024309A (en) Method for producing aqueous emulsion polymer
JPH10212304A (en) Production of vinyl chloride polymer latex
JP2003335802A (en) Process for producing vinyl chloride-based polymer latex for paste processing
JPH07165803A (en) Production of vinyl chloride polymer
JPH08169904A (en) Method for controlling reaction temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131010

LAPS Cancellation because of no payment of annual fees