JP2015048378A - Acrylonitrile-based polymer particle and production method - Google Patents

Acrylonitrile-based polymer particle and production method Download PDF

Info

Publication number
JP2015048378A
JP2015048378A JP2013179584A JP2013179584A JP2015048378A JP 2015048378 A JP2015048378 A JP 2015048378A JP 2013179584 A JP2013179584 A JP 2013179584A JP 2013179584 A JP2013179584 A JP 2013179584A JP 2015048378 A JP2015048378 A JP 2015048378A
Authority
JP
Japan
Prior art keywords
acrylonitrile
polymer particles
reactor
based polymer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013179584A
Other languages
Japanese (ja)
Other versions
JP2015048378A5 (en
Inventor
青山 直樹
Naoki Aoyama
直樹 青山
廣田 憲史
Norifumi Hirota
憲史 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2013179584A priority Critical patent/JP2015048378A/en
Publication of JP2015048378A publication Critical patent/JP2015048378A/en
Publication of JP2015048378A5 publication Critical patent/JP2015048378A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an acrylonitrile-based polymer particle whose fluidity is improved to enhance the handleability by properly controlling the particle shape of the acrylonitrile-based polymer particle.SOLUTION: Provided is an acrylonitrile-based polymer particle having an angle of repose of 20 degrees or more and 42 degrees or less. Particularly the acrylonitrile-based polymer particle whose volume percentage of the particles having a particle size of 100 μm or more, is 2% or less. Further the acrylonitrile-based polymer particle whose standard deviation represented by the following formula 1 is 0 μm or more and 15 μm or less. Standard deviation=(D80%-D20%)/2---(1).

Description

本発明は、アクリロニトリル系繊維に適したアクリロニトリル系重合体粒子及び製造方法に関する。   The present invention relates to acrylonitrile-based polymer particles suitable for acrylonitrile-based fibers and a production method.

アクリル繊維の原料となるアクリロニトリル系重合体は、一般に水系析出重合又は溶液重合によって製造されている。特に水系析出重合方式は、溶液重合に比べて短い滞在時間で連続生産が可能で、しかも、簡便な反応器を使用するため非常に生産性に優れている。   The acrylonitrile polymer used as a raw material for acrylic fibers is generally produced by aqueous precipitation polymerization or solution polymerization. In particular, the aqueous precipitation polymerization method enables continuous production with a shorter residence time than solution polymerization, and is extremely excellent in productivity because it uses a simple reactor.

一般に水系析出重合により得られるアクリロニトリル系重合体粒子をアクリロニトリル系繊維として賦形する場合には、アクリロニトリル系重合体を溶剤に溶解して紡糸原液を得る工程が必要となる。しかし、アクリロニトリル系重合体粒子のハンドリングは工業的に難しく、アクリロニトリル系重合体粒子を均一な速度で溶剤に投入することは難しいため、紡糸原液の品質悪化を招いている。   In general, when acrylonitrile-based polymer particles obtained by aqueous precipitation polymerization are shaped as acrylonitrile-based fibers, a step of dissolving the acrylonitrile-based polymer in a solvent to obtain a spinning dope is necessary. However, handling of acrylonitrile-based polymer particles is industrially difficult, and it is difficult to introduce acrylonitrile-based polymer particles into a solvent at a uniform rate, which causes a deterioration in the quality of the spinning dope.

以上の問題の解決策として、特許文献1では、溶剤への分散性と溶解性の良いアクリロニトリル系重合体粒子の製造方法を開示している。   As a solution to the above problem, Patent Document 1 discloses a method for producing acrylonitrile-based polymer particles having good dispersibility and solubility in a solvent.

特開2009−185273号公報JP 2009-185273 A

しかしながら、特許文献1に記載の方法では、溶剤にアクリロニトリル系重合体粒子を分散した後の分散性が良好であっても、均一に溶剤に投入することができなければ、継粉が発生する可能性があった。   However, in the method described in Patent Document 1, even if the dispersibility after dispersing the acrylonitrile-based polymer particles in the solvent is good, if it cannot be uniformly charged into the solvent, spatter may be generated. There was sex.

本発明の課題は、アクリロニトリル系重合体粒子の粒子形状を適度に制御することで粒子の流動性を改善して、ハンドリング性を向上したアクリロニトリル系重合体粒子を提供することである。   The subject of this invention is providing the acrylonitrile polymer particle which improved the fluidity | liquidity of particle | grains by controlling the particle shape of an acrylonitrile polymer particle moderately, and improved handling property.

本発明のアクリロニトリル系重合体粒子は、安息角が20度以上42度以下であるアクリロニトリル系重合体粒子である。   The acrylonitrile polymer particles of the present invention are acrylonitrile polymer particles having an angle of repose of 20 degrees to 42 degrees.

本発明のアクリロニトリル系重合体粒子は、100μm以上の粒子径の体積割合が2%以下であることが好ましい。   The acrylonitrile-based polymer particles of the present invention preferably have a volume ratio of a particle diameter of 100 μm or more of 2% or less.

本発明のアクリロニトリル系重合体粒子は、以下の式1で表す標準偏差が0μm以上15μm以下であることが好ましい。
標準偏差=(D80%−D20%)/2・・・(1)
ただし、D80%:累積分布が80%となる点の粒子径(μm)、D20%:累積分布が20%となる点の粒子径(μm)
The acrylonitrile-based polymer particles of the present invention preferably have a standard deviation represented by the following formula 1 of 0 μm or more and 15 μm or less.
Standard deviation = (D80% −D20%) / 2 (1)
However, D80%: particle diameter at the point where the cumulative distribution becomes 80% (μm), D20%: particle diameter at the point where the cumulative distribution becomes 20% (μm)

本発明のアクリロニトリル系重合体粒子の製造方法は、反応器に単量体、重合開始剤及び脱イオン交換水を連続的に供給し、反応器から反応液を連続的に取り出すレドックス水系析出重合であって、攪拌動力(P)kW/mが供給する水/単量体の質量比(W/M比)によって以下の式2の範囲で表される製造方法である。
−1.3×(W/M比)+3.0≦攪拌動力≦−1.3×(W/M比)+6.5・・・(2)
ただし、攪拌動力は0kW/m以上
The method for producing acrylonitrile-based polymer particles of the present invention is a redox aqueous precipitation polymerization in which a monomer, a polymerization initiator, and deionized exchange water are continuously supplied to a reactor, and a reaction solution is continuously removed from the reactor. Thus, it is a production method represented by the following formula 2 by the water / monomer mass ratio (W / M ratio) supplied by the stirring power (P) kW / m 3 .
−1.3 × (W / M ratio) + 3.0 ≦ stirring power ≦ −1.3 × (W / M ratio) +6.5 (2)
However, stirring power is 0 kW / m 3 or more

本発明のアクリロニトリル系重合体粒子の製造方法は、反応器に単量体、重合開始剤及び脱イオン交換水を連続的に供給し、反応器から反応液を連続的に取り出すレドックス水系析出重合であって、100μm以上のアクリロニトリル系重合体粒子を分級することが好ましい。   The method for producing acrylonitrile-based polymer particles of the present invention is a redox aqueous precipitation polymerization in which a monomer, a polymerization initiator, and deionized exchange water are continuously supplied to a reactor, and a reaction solution is continuously removed from the reactor. Thus, it is preferable to classify acrylonitrile polymer particles having a size of 100 μm or more.

本発明のアクリロニトリル系重合体粒子の製造方法は、反応器に単量体、重合開始剤及び脱イオン交換水を連続的に供給し、反応器から反応液を連続的に取り出すレドックス水系析出重合であって、アクリロニトリル系重合体粒子が懸濁した液を分級することが好ましい。   The method for producing acrylonitrile-based polymer particles of the present invention is a redox aqueous precipitation polymerization in which a monomer, a polymerization initiator, and deionized exchange water are continuously supplied to a reactor, and a reaction solution is continuously removed from the reactor. Therefore, it is preferable to classify the liquid in which the acrylonitrile-based polymer particles are suspended.

本発明によれば、アクリロニトリル系重合体粒子の粒子形状を適度に制御することで粒子の流動性を改善して、ハンドリング性を向上したアクリロニトリル系重合体粒子が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the acrylonitrile-type polymer particle which improved the fluidity | liquidity of particle | grains by controlling the particle shape of an acrylonitrile-type polymer particle moderately, and improved handling property is provided.

以下に本発明の詳細を説明する。
安息角とは、粉体を積み上げたときに崩れることなく安定に保つことができる傾斜の角度のことで、一般に粉体の流動性を示す指標として知られている。つまり、安息角が小さいほど、粉体の流動性が良い傾向にある。
Details of the present invention will be described below.
The angle of repose is an angle of inclination that can be kept stable without collapsing when the powder is stacked, and is generally known as an index indicating the fluidity of the powder. That is, the smaller the angle of repose, the better the fluidity of the powder.

アクリロニトリル系重合体粒子を溶剤に溶解させて紡糸原液を得る工程で、ホッパーなどからアクリロニトリル系重合体粒子を一定速度で溶媒に投入することが、均質な紡糸原液を得る上で重要である。   In the step of obtaining a spinning dope by dissolving acrylonitrile polymer particles in a solvent, it is important to obtain the homogeneous spinning dope by introducing the acrylonitrile polymer particles into the solvent at a constant speed from a hopper or the like.

安息角は20度以上42度以下が好ましい。安息角が42度以下であれば、ホッパーなどからアクリロニトリル系重合体粒子を一定速度で溶媒に投入することができ、均質な紡糸原液を得ることができる。
また、水系析出重合において、安息角が20度以下となるアクリロニトリル系重合体粒子を得ることは技術的に難しい。
The angle of repose is preferably 20 degrees or more and 42 degrees or less. When the angle of repose is 42 degrees or less, acrylonitrile-based polymer particles can be charged into the solvent at a constant speed from a hopper or the like, and a homogeneous spinning dope can be obtained.
Moreover, in aqueous precipitation polymerization, it is technically difficult to obtain acrylonitrile-based polymer particles having an angle of repose of 20 degrees or less.

安息角は、セイシン企業性のMT−1001を使用して測定した。アクリロニトリル系重合体粒子を、710μm目開きの篩いをセットしたフィーダーに、VIBRATION SPINを0.2mmとして供給した。安息角は3箇所以上測定し、平均値を採用した。   The angle of repose was measured using Seishin Enterprise MT-1001. The acrylonitrile-based polymer particles were supplied at a VIBRATION SPIN of 0.2 mm to a feeder on which a sieve having an opening of 710 μm was set. The angle of repose was measured at three or more locations, and an average value was adopted.

本発明において、アクリロニトリル系重合体粒子とは、水系析出重合において水相に析出した粒子である。かかるアクリロニトリル系重合体粒子は、衝突による凝集と攪拌のせん断力による破壊のバランスが取れる粒子径で安定化する。すなわち、衝突頻度が高ければアクリロニトリル系重合体粒子同士の凝集が促進され粒子径が大きくなり、攪拌のせん断力が高ければアクリロニトリル系重合体粒子が破壊されて粒子径が小さくなる。   In the present invention, acrylonitrile-based polymer particles are particles precipitated in an aqueous phase in aqueous precipitation polymerization. Such acrylonitrile-based polymer particles are stabilized with a particle size that can balance agglomeration due to collision and fracture due to a shearing force of stirring. That is, if the collision frequency is high, the aggregation of acrylonitrile polymer particles is promoted to increase the particle size, and if the shearing force of stirring is high, the acrylonitrile polymer particles are broken to reduce the particle size.

また、水系析出重合において得られるアクリロニトリル系重合体粒子の粒子径は1μmから1000μm程度の分布をもつのが一般的である。様々な粒子径をもつアクリロニトリル系重合体粒子のうち、大粒子のものも小粒子のものも流動性を悪化させる要因となる。すなわち、大粒子のアクリロニトリル系重合体粒子は、多数のアクリロニトリル系重合体粒子が凝集した集合体であり、いびつな形状を取りやすく、他のアクリロニトリル系重合体粒子との接触面積が大きいため摩擦が大きく流動性が悪い。一方、微粒子のアクリロニトリル系重合体粒子は他のアクリロニトリル系重合体粒子との接触面積が大きいため摩擦が大きく流動性が悪い。   Further, the particle diameter of the acrylonitrile polymer particles obtained in the aqueous precipitation polymerization generally has a distribution of about 1 μm to 1000 μm. Among the acrylonitrile polymer particles having various particle sizes, both large particles and small particles cause deterioration of fluidity. In other words, large acrylonitrile polymer particles are aggregates of many acrylonitrile polymer particles, which are easy to take an irregular shape and have a large contact area with other acrylonitrile polymer particles. Big fluidity. On the other hand, fine acrylonitrile-based polymer particles have a large contact area with other acrylonitrile-based polymer particles, and therefore have high friction and poor fluidity.

本発明において、100μm以上の粒子径をもつアクリロニトリル系重合体粒子の体積割合は、2%以下であることが好ましい。
100μm以上の粒子径をもつアクリロニトリル系重合体粒子は形状がいびつなため流動性を悪化させるため少ないほど好ましい。
前記体積割合が2%以下であれば流動性が良好であり、1.5%以下であればより好ましい。
In the present invention, the volume ratio of acrylonitrile polymer particles having a particle diameter of 100 μm or more is preferably 2% or less.
Acrylonitrile-based polymer particles having a particle diameter of 100 μm or more are more preferable because they are distorted in shape and deteriorate in fluidity.
If the volume ratio is 2% or less, the fluidity is good, and if it is 1.5% or less, it is more preferable.

粒子径分布の標準偏差を表す数値は種々あるが、本発明においては、粒子径分布の累積分布により粒子径分布の標準偏差を表す。すなわち、累積分布が80%となる点の粒子径と累積分布が20%となる点の粒子径の差を2で割った数値を粒子径分布の標準偏差とする(式1)。
粒子径布の標準偏差=(D80%−D20%)/2・・・(1)
ただし、D80%:累積分布が80%となる点の粒子径(μm)、D20%:累積分布が20%となる点の粒子径(μm)
標準偏差が小さければ粒子径分布がシャープであり、大粒子、小粒子の割合が少なく流動性が良いことを表す。
There are various numerical values representing the standard deviation of the particle size distribution. In the present invention, the standard deviation of the particle size distribution is represented by the cumulative distribution of the particle size distribution. That is, a numerical value obtained by dividing the difference between the particle diameter at the point where the cumulative distribution is 80% and the particle diameter at the point where the cumulative distribution is 20% by 2 is defined as the standard deviation of the particle diameter distribution (Formula 1).
Standard deviation of particle size cloth = (D80% −D20%) / 2 (1)
However, D80%: particle diameter at the point where the cumulative distribution becomes 80% (μm), D20%: particle diameter at the point where the cumulative distribution becomes 20% (μm)
If the standard deviation is small, the particle size distribution is sharp, indicating that the ratio of large particles and small particles is small and the fluidity is good.

前記標準偏差は、0μm以上16μm以下が好ましい。
水系析出重合において、前記標準偏差が0μmアクリロニトリル系重合体粒子を得ることは技術的に難しい。前記標準偏差は5μm以上がより好ましく、8μm以上がさらに好ましい。前記標準偏差は、16μm以下であれば流動性が良好となるので好ましい。流動性の観点から、15μm以下がより好ましく、14μm以下がさらに好ましい。
The standard deviation is preferably 0 μm or more and 16 μm or less.
In aqueous precipitation polymerization, it is technically difficult to obtain acrylonitrile-based polymer particles having a standard deviation of 0 μm. The standard deviation is more preferably 5 μm or more, and further preferably 8 μm or more. The standard deviation is preferably 16 μm or less because fluidity is improved. From the viewpoint of fluidity, it is more preferably 15 μm or less, and further preferably 14 μm or less.

粒子径分布は、顕微鏡検査画像の画像解析、レーザー回折、又は集束ビーム反射率モードなどのレーザー散乱技術を用いて測定されるが、本発明においては、レーザー回折散乱法を原理としたHORIBA製LA−910の装置を用いて、屈折率1.141iにて測定した。   The particle size distribution is measured by using a laser scattering technique such as image analysis of a microscopic examination image, laser diffraction, or a focused beam reflectance mode. In the present invention, LA in the HORIBA based on the laser diffraction scattering method is used. Measurement was performed at a refractive index of 1.141i using an apparatus of −910.

本発明の重合体粒子の製造方法は、水系析出重合法により単量体を連続重合する方法を採用し、例えばあらかじめ反応器内に脱イオン交換水(重合媒体)を仕込んでおき、反応器に、アクリロニトリルを主成分とする単量体、重合開始剤及び脱イオン交換水を連続的に供給して単量体を重合させる。   The method for producing polymer particles of the present invention employs a method in which a monomer is continuously polymerized by an aqueous precipitation polymerization method. For example, deion exchange water (polymerization medium) is previously charged in a reactor, The monomer is polymerized by continuously supplying a monomer mainly composed of acrylonitrile, a polymerization initiator and deionized water.

本発明では、この単量体の重合を、レドックス開始剤を用いた水系析出重合により行うので、懸濁重合、溶液重合、乳化重合等の他の重合法と比較して生産性に優れ、かつ残留単量体等の不要成分の量を減少できる。   In the present invention, since the polymerization of this monomer is carried out by aqueous precipitation polymerization using a redox initiator, it is excellent in productivity as compared with other polymerization methods such as suspension polymerization, solution polymerization, emulsion polymerization, and the like. The amount of unnecessary components such as residual monomers can be reduced.

レドックス水系析出重合では、酸化剤として、一般的に、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の無機系酸化剤や、過酸化ベンゾイル、メチルエチルケトンパーオキサイド、t−ブチルヒドロパーオキサイド、ジ−t−ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド、ジ(2−エトキシエチル)パーオキシジカーボネート等の有機過酸化物などが用いられる。   In redox aqueous precipitation polymerization, as an oxidizing agent, generally, an inorganic oxidizing agent such as ammonium persulfate, potassium persulfate, sodium persulfate, benzoyl peroxide, methyl ethyl ketone peroxide, t-butyl hydroperoxide, di-t Organic peroxides such as butyl peroxide, cumene hydroperoxide, succinic acid peroxide, and di (2-ethoxyethyl) peroxydicarbonate are used.

また、還元剤としては一般的に、亜硫酸ナトリウム、亜硫酸アンモニウム、重亜硫酸ナトリウム、重亜硫酸アンモニウム、チオ硫酸ナトリウム、チオ硫酸アンモニウム、亜二チオン酸ナトリウム、ナトリウムホルムアルデヒドスルフォキシレート(SFS)、L−アルコルビン酸、デキストロ−ズ等が用いられる。   As the reducing agent, sodium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium thiosulfate, ammonium thiosulfate, sodium dithionite, sodium formaldehyde sulfoxylate (SFS), L-alcorbine Acid, dextros, etc. are used.

また、酸化剤、還元剤と共に、酸化還元系の助剤を用いることが好ましい。その助剤としては、例えば、硫酸第一鉄、硫酸銅が挙げられる。特に、過硫酸アンモニウム−亜硫酸水素アンモニウム−硫酸第一鉄を組合せて用いることが好ましい。   Moreover, it is preferable to use a redox-type auxiliary agent together with the oxidizing agent and the reducing agent. Examples of the auxiliary agent include ferrous sulfate and copper sulfate. In particular, it is preferable to use a combination of ammonium persulfate-ammonium hydrogen sulfite-ferrous sulfate.

アクリロニトリル系重合体を重合する場合は、アクリロニトリルと共重合可能な他のビニル単量体を含むことができる。共重合可能な他のビニル単量体としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類及びそれらの塩類、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル、(メタ)アリルスルホン酸ナトリウム、(メタ)アリルオキシベンゼンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸及びそれらの塩類などが挙げられる。   When the acrylonitrile-based polymer is polymerized, other vinyl monomers copolymerizable with acrylonitrile can be included. Examples of other copolymerizable vinyl monomers include (meth) acrylic acid such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth) acrylate. Esters, vinyl halides such as vinyl chloride, vinyl bromide, vinylidene chloride, acids such as (meth) acrylic acid, itaconic acid, crotonic acid and their salts, maleic imide, phenylmaleimide, (meth) acrylamide, Examples include styrene, α-methylstyrene, vinyl acetate, sodium (meth) allylsulfonate, sodium (meth) allyloxybenzenesulfonate, sodium styrenesulfonate, 2-acrylamido-2-methylpropanesulfonic acid and salts thereof. It is done.

本発明に用いる反応器は、例えば、反応器内の反応液を循環させる装置、各成分を供給する供給口、重合熱除去装置及び溢流口を有する装置である。循環装置としては、溶液中の各成分をすみやかに拡散させる点から、攪拌機が好適に用いられる。   The reactor used in the present invention is, for example, a device that circulates a reaction liquid in the reactor, a supply port that supplies each component, a polymerization heat removal device, and an overflow port. As the circulation device, a stirrer is preferably used from the viewpoint of promptly diffusing each component in the solution.

反応器内の反応液の温度は、単量体が重合可能な温度であれば特に限定されない。ただし、アクリロニトリルが蒸発して反応系外へ離散することを防ぐ点から、80℃以下が好ましく、60℃以下がより好ましい。また、重合体の分子量の安定化の点から、反応液の温度は一定に保つことが好ましい。   The temperature of the reaction liquid in the reactor is not particularly limited as long as the monomer can be polymerized. However, it is preferably 80 ° C. or less, more preferably 60 ° C. or less, from the viewpoint of preventing acrylonitrile from evaporating and being dispersed outside the reaction system. Moreover, it is preferable to keep the temperature of the reaction liquid constant from the viewpoint of stabilizing the molecular weight of the polymer.

反応器内の単量体の平均滞在時間は特に制限されず、従来よりアクリロニトリル系重合体を水系析出重合により製造する際に採用される時間でよい。この平均滞在時間は、生産性の点から200分以下が好ましく、重合を十分に完結させる点から20分以上が好ましい。   The average residence time of the monomer in the reactor is not particularly limited, and may be a time conventionally employed when producing an acrylonitrile-based polymer by aqueous precipitation polymerization. The average residence time is preferably 200 minutes or less from the viewpoint of productivity, and preferably 20 minutes or more from the viewpoint of sufficiently completing the polymerization.

反応器内での水素イオン濃度は、開始剤がすみやかに酸化・還元反応を起こすような濃度であればよく、pH2.0〜3.5の酸性領域が好ましい。   The hydrogen ion concentration in the reactor may be such that the initiator promptly causes an oxidation / reduction reaction, and an acidic range of pH 2.0 to 3.5 is preferable.

本発明においては、以上のようにして単量体を反応器内で重合させながら、その重合体粒子を含む反応液を例えば反応器の溢流口から連続的に取り出す。
そしてこの反応液に、例えば、脱イオン交換水に溶解させた重合停止剤を添加することにより重合を停止させる。
重合停止剤としては、従来よりアクリロニトリル系重合体を水系析出重合で製造する際使用される重合停止剤を制限無く使用できる。
In the present invention, while the monomer is polymerized in the reactor as described above, the reaction liquid containing the polymer particles is continuously taken out from, for example, the overflow port of the reactor.
The polymerization is stopped by adding, for example, a polymerization terminator dissolved in deionized exchange water to the reaction solution.
As the polymerization terminator, a polymerization terminator conventionally used when producing an acrylonitrile-based polymer by aqueous precipitation polymerization can be used without limitation.

続いて、重合体水溶液から未反応単量体の回収を行う。未反応単量体の回収方法としては、重合体水溶液を直接蒸留する方法、また一旦脱水し、未反応単量体を重合体と分離した後蒸留する方法があるが、本発明では、両方式とも採用可能である。後者の方法に用いる脱水洗浄機としては、通常公知の濾過脱水機を用いることができ、例えば、回転式真空濾過器、遠心脱水機等が使用することができる。これらの装置を用いて反応液から重合体を分離する際に、効率の観点から、硫酸アンモニウム、硫酸アルミニウム、硫酸ナトリウム等の凝集剤を添加することができ、さらに重合体の凝集を促進する観点から重合体水溶液を昇温する等の操作を行うこともできる。また、重合体中に残った水分は通常の乾燥方式によって取り除くことができる。   Subsequently, the unreacted monomer is recovered from the aqueous polymer solution. As a method for recovering the unreacted monomer, there is a method of directly distilling the polymer aqueous solution, or a method of once dehydrating and separating the unreacted monomer from the polymer, followed by distillation. Both can be adopted. As the dehydration washer used in the latter method, a generally known filter dehydrator can be used. For example, a rotary vacuum filter, a centrifugal dehydrator, or the like can be used. From the viewpoint of efficiency, a flocculant such as ammonium sulfate, aluminum sulfate, or sodium sulfate can be added when separating the polymer from the reaction solution using these apparatuses, and further from the viewpoint of promoting the aggregation of the polymer. Operations such as raising the temperature of the aqueous polymer solution can also be performed. Further, water remaining in the polymer can be removed by a normal drying method.

本発明の水系析出重合において、アクリロニトリル系重合体粒子の形状を制御する上で、水/単量体の質量比(W/M比)と、攪拌動力が重要となる。   In the aqueous precipitation polymerization of the present invention, the water / monomer mass ratio (W / M ratio) and the stirring power are important in controlling the shape of the acrylonitrile polymer particles.

W/M比を小さくすると、反応器に供給される単量体が増加し、反応器内で生成するアクリロニトリル系重合体粒子も増加する。したがって、アクリロニトリル系重合体同士の衝突頻度が高くなり、凝集が起こることで、アクリロニトリル系重合体の粒子径が大きくなる。   When the W / M ratio is reduced, the monomer supplied to the reactor increases, and the acrylonitrile polymer particles produced in the reactor also increase. Therefore, the collision frequency between acrylonitrile polymers increases and aggregation occurs, resulting in an increase in the particle diameter of the acrylonitrile polymers.

攪拌動力を高くすることにより、攪拌のせん断によるアクリロニトリル系重合体粒子の破壊が起こりやすくなるため、アクリロニトリル系重合体粒子の粒子径は小さくなる。しかし、攪拌動力を高くしすぎると、気相部の空気を巻き込んで、重合反応が不均一となり、異常な大粒子径のアクリロニトリル系重合体粒子を生成してしまう。   By increasing the stirring power, the acrylonitrile polymer particles are easily broken by shearing of stirring, so that the particle diameter of the acrylonitrile polymer particles is reduced. However, if the stirring power is too high, air in the gas phase is entrained, the polymerization reaction becomes non-uniform, and acrylonitrile-based polymer particles having an abnormally large particle size are generated.

従って、以下の式2で表される範囲にW/M比と攪拌動力を適度に選択することで、流動性の良好なアクリロニトリル系重合体粒子の粒子径に制御することができる。ただし、適度に攪拌を加えなければ、水と単量体が層分離を起こすため、攪拌動力は1.0kW/m以上である必要がある。 Therefore, by appropriately selecting the W / M ratio and the stirring power within the range represented by the following formula 2, the particle diameter of the acrylonitrile-based polymer particles having good fluidity can be controlled. However, if stirring is not performed appropriately, water and the monomer cause layer separation, so the stirring power needs to be 1.0 kW / m 3 or more.

−1.3×(W/M比)+3.0≦攪拌動力≦−1.3×(W/M比)+6.5・・・(2)   −1.3 × (W / M ratio) + 3.0 ≦ stirring power ≦ −1.3 × (W / M ratio) +6.5 (2)

また、重合条件によらずとも、例えば以下に記載する方法によってアクリロニトリル系重合体粒子の粒子径分布を制御することが可能である。   Regardless of the polymerization conditions, it is possible to control the particle size distribution of the acrylonitrile-based polymer particles, for example, by the method described below.

本名発明において、100μm以上の粒子径をもつアクリロニトリル系重合体粒子の含有量が少なければ流動性が良好であることが判明した。
水系析出重合から得られたアクリロニトリル系重合体粒子を分級して粒子径分布を制御する方法も有効である。
分級方式、装置は種々あるが、いずれの方法を用いても良い。中でも処理量の観点から、沈降分級機、水力分級機、機械分級機、遠心分離機、篩い分け機、慣性分級機、強制渦型遠心分離機、自由渦型遠心分離機が好ましい。
In the present invention, it has been found that the fluidity is good if the content of the acrylonitrile polymer particles having a particle diameter of 100 μm or more is small.
A method of classifying acrylonitrile polymer particles obtained from aqueous precipitation polymerization to control the particle size distribution is also effective.
There are various classification methods and apparatuses, and any method may be used. Among these, from the viewpoint of throughput, a sedimentation classifier, a hydraulic classifier, a mechanical classifier, a centrifuge, a sieving machine, an inertia classifier, a forced vortex centrifuge, and a free vortex centrifuge are preferable.

アクリロニトリル系重合体粒子を分級する場合は、アクリロニトリル系重合体粒子が懸濁した液を用いることが、静電気の発生を防止できるので好ましい。   When classifying acrylonitrile-based polymer particles, it is preferable to use a liquid in which acrylonitrile-based polymer particles are suspended because the generation of static electricity can be prevented.

(攪拌動力測定方法)
攪拌動力とは、反応器の内容物が攪拌により受けた正味の単位体積当たりの電力である。具体的には、反応器が空の状態で攪拌翼を一定の回転数で回転させた場合の攪拌翼を回転させるのに使用した電力値と、反応器内に水を満たした状態で攪拌翼を前記回転数と同じ回転数で回転させるのに使用した場合の電力値の差を求め、反応器内容量で割った数値を攪拌動力とする。反応器内容量は、反応器内に水を満たした状態の水の体積である。本発明においては、電力値を共立電気計器株式会社製のデジタルパワーメーター(MODEL6300)を用いて測定した。
(Measuring power measurement method)
Stirring power is the net power per unit volume that the reactor contents have undergone by stirring. Specifically, the power value used to rotate the stirring blade when the stirring blade is rotated at a constant rotation speed while the reactor is empty, and the stirring blade in a state where the reactor is filled with water Is used to rotate at the same rotational speed as the above rotational speed, the difference in power value is obtained, and the numerical value divided by the reactor internal volume is used as the stirring power. The reactor internal volume is the volume of water filled with water in the reactor. In the present invention, the power value was measured using a digital power meter (MODEL 6300) manufactured by Kyoritsu Electric Instruments Co., Ltd.

(昇圧度測定方法)
−15℃に冷却したジメチルホルムアミドに、重合体粒子を固形分23質量%で均一に分散させて分散液を得る。この分散液を、熱媒を循環可能なジャケット付きの内径5mmの配管に通過させ、滞在時間5分で110℃まで加熱して溶解させ、重合体溶液を得る。この重合体溶液を、90%捕集効率5μmの金属不織布のフィルター(日本精線製:NF−05S)に、0.0015m/sにて430g通過させた時の差圧上昇の値を昇圧度(MPa)として、重合体粒子の溶解性の指標とする。昇圧度はその値が小さいほどフィルターに捕捉される未溶解物が少なく溶解性に優れる。
(Pressure increase measurement method)
Polymer particles are uniformly dispersed at a solid content of 23% by mass in dimethylformamide cooled to −15 ° C. to obtain a dispersion. This dispersion is passed through a pipe with an inner diameter of 5 mm with a jacket through which the heat medium can be circulated, and heated to 110 ° C. and dissolved in a residence time of 5 minutes to obtain a polymer solution. When the polymer solution is passed through a metal nonwoven fabric filter (Nippon Seisen: NF-05S) with a 90% collection efficiency of 5 μm at a rate of 430 g at 0.0015 m / s, the value of the differential pressure increase is increased. (MPa) is used as an index of solubility of polymer particles. The smaller the value of the pressurization degree, the less the undissolved substance captured by the filter, and the better the solubility.

(実施例1)
容量76.5リットルのディスクタービン撹拌翼付きアルミ製反応器に、硫酸第一鉄0.000013質量%、過硫酸アンモニウム0.07質量%、亜硫酸水素アンモニウム0.11質量%を溶解した脱イオン交換水を満水になるまで仕込み、反応器内部温度を57℃まで昇温し、アクリロニトリル100質量部、メタクリル酸1.5質量部、脱イオン交換水242質量部、過硫酸アンモニウム0.72質量部、亜硫酸水素アンモニウム0.98質量部、硫酸第一鉄0.00000061質量部、硫酸0.064質量部を流体として連続的に供給した。
(Example 1)
Deionized exchange water in which 0.000013% by mass of ferrous sulfate, 0.07% by mass of ammonium persulfate, and 0.11% by mass of ammonium hydrogen sulfite are dissolved in a 76.5 liter aluminum reactor with a disc turbine stirring blade. Until the temperature of the reactor reaches 57 ° C., 100 parts by weight of acrylonitrile, 1.5 parts by weight of methacrylic acid, 242 parts by weight of deionized water, 0.72 parts by weight of ammonium persulfate, hydrogen sulfite 0.98 parts by mass of ammonium, 0.00000061 parts by mass of ferrous sulfate, and 0.064 parts by mass of sulfuric acid were continuously supplied as fluids.

反応器内の反応液は、pHが3.0になるように硫酸供給量で調節し、反応液温度を50℃に保ち、撹拌を行いながら連続的に重合反応を行い、単量体の平均滞在時間が77分になるように反応器溢流口より連続的に反応液を取り出した。反応液の単位体積あたりの攪拌動力が5.4kW/m、となる様に攪拌回転数を調整した。
取り出した反応液に、シュウ酸ナトリウム0.5質量%、重炭酸ナトリウム1.5質量%を脱イオン交換水に溶解した重合停止剤水溶液を、反応液のpHが5.5〜6.0になるように加えた。
The reaction solution in the reactor was adjusted with the sulfuric acid supply amount so that the pH was 3.0, the reaction solution temperature was kept at 50 ° C., and the polymerization reaction was continuously carried out while stirring, The reaction solution was continuously taken out from the reactor overflow so that the residence time was 77 minutes. The stirring rotation speed was adjusted so that the stirring power per unit volume of the reaction solution was 5.4 kW / m 3 .
A polymerization stopper aqueous solution in which 0.5% by mass of sodium oxalate and 1.5% by mass of sodium bicarbonate were dissolved in deionized water was added to the removed reaction solution, and the pH of the reaction solution was adjusted to 5.5 to 6.0. It was added to become.

得られたアクリロニトリル系重合体粒子の100μm以上の粒子径の体積割合、標準偏差、安息角、昇圧度を評価して表1に示した。
100μm以上の粒子径の体積割合が2%以下、標準偏差が15μm以下に抑えられたため安息角が38度となり、流動性の良いアクリロニトリル系重合体粒子が得られた。また、流動性が良好なため、溶剤に均一な速度でアクリロニトリル系重合体粒子を投入することができ、昇圧度は低く、品質の良い紡糸原液が得られた。
The volume ratio, standard deviation, angle of repose, and pressure increase degree of the particle diameter of 100 μm or more of the obtained acrylonitrile-based polymer particles were evaluated and shown in Table 1.
Since the volume ratio of the particle diameter of 100 μm or more was suppressed to 2% or less and the standard deviation was suppressed to 15 μm or less, the repose angle was 38 degrees, and acrylonitrile-based polymer particles having good fluidity were obtained. Further, since the fluidity was good, the acrylonitrile-based polymer particles could be charged into the solvent at a uniform rate, and the spinning stock solution with a low pressure increase and good quality was obtained.

(実施例2)
反応器に連続的に供給する流体の流量を表1の通り変更した以外は実施例1と同様にしてアクリロニトリル系重合体粒子を得た。評価結果を表1に示す。
100μm以上の粒子径の体積割合が2%以下、標準偏差が15μm以下に抑えられたため安息角が40度となり、流動性の良いアクリロニトリル系重合体粒子が得られた。また、流動性が良好なため、溶剤に均一な速度でアクリロニトリル系重合体粒子を投入することができ、昇圧度は低く、品質の良い紡糸原液が得られた。
(Example 2)
Acrylonitrile-based polymer particles were obtained in the same manner as in Example 1 except that the flow rate of the fluid continuously supplied to the reactor was changed as shown in Table 1. The evaluation results are shown in Table 1.
Since the volume ratio of the particle diameter of 100 μm or more was suppressed to 2% or less and the standard deviation was suppressed to 15 μm or less, the angle of repose was 40 degrees, and acrylonitrile polymer particles having good fluidity were obtained. Further, since the fluidity was good, the acrylonitrile-based polymer particles could be charged into the solvent at a uniform rate, and the spinning stock solution with a low pressure increase and good quality was obtained.

(比較例1)
反応器に連続的に供給する流体の流量と攪拌動力を表1の通り変更した以外は実施例1と同様にしてアクリロニトリル系重合体粒子を得た。評価結果を表1に示す。
100μm以上の粒子径の体積割合が2%以上、標準偏差が15μm以上になったため安息角が46度となり、流動性の悪いアクリロニトリル系重合体粒子が得られた。また、流動性が悪いため、溶剤にアクリロニトリル系重合体粒子を投入する速度が不均一となり、昇圧度は高く、品質の悪い紡糸原液となった。
(Comparative Example 1)
Acrylonitrile polymer particles were obtained in the same manner as in Example 1 except that the flow rate of the fluid continuously supplied to the reactor and the stirring power were changed as shown in Table 1. The evaluation results are shown in Table 1.
Since the volume ratio of the particle diameter of 100 μm or more was 2% or more and the standard deviation was 15 μm or more, the angle of repose was 46 degrees, and acrylonitrile polymer particles having poor fluidity were obtained. In addition, due to poor fluidity, the rate at which the acrylonitrile-based polymer particles were charged into the solvent became non-uniform, the pressurization degree was high, and the spinning solution was poor in quality.

(実施例3)
反応器に連続的に供給する流体の流量を表2の通り変更した以外は実施例1と同様にしてアクリロニトリル系重合体粒子を得た。評価結果を表2に示す。
100μm以上の粒子径の体積割合が2%以下、標準偏差が15μm以下に抑えられたため安息角が37度となり、流動性の良いアクリロニトリル系重合体粒子が得られた。
Example 3
Acrylonitrile-based polymer particles were obtained in the same manner as in Example 1 except that the flow rate of the fluid continuously supplied to the reactor was changed as shown in Table 2. The evaluation results are shown in Table 2.
Since the volume ratio of the particle diameter of 100 μm or more was suppressed to 2% or less and the standard deviation was suppressed to 15 μm or less, the angle of repose was 37 degrees, and acrylonitrile polymer particles having good fluidity were obtained.

(実施例4)
反応器に連続的に供給する流体の流量と攪拌動力を表2の通り変更した以外は実施例1と同様にしてアクリロニトリル系重合体粒子を得た。評価結果を表2に示す。
100μm以上の粒子径の体積割合が2%以下、標準偏差が15μm以下に抑えられたため安息角が40度となり、流動性の良いアクリロニトリル系重合体粒子が得られた。
Example 4
Acrylonitrile-based polymer particles were obtained in the same manner as in Example 1 except that the flow rate of the fluid continuously supplied to the reactor and the stirring power were changed as shown in Table 2. The evaluation results are shown in Table 2.
Since the volume ratio of the particle diameter of 100 μm or more was suppressed to 2% or less and the standard deviation was suppressed to 15 μm or less, the angle of repose was 40 degrees, and acrylonitrile polymer particles having good fluidity were obtained.

(比較例2)
反応器に連続的に供給する流体の流量と攪拌動力を表2の通り変更した以外は実施例1と同様にしてアクリロニトリル系重合体粒子を得た。評価結果を表2に示す。
100μm以上の粒子径の体積割合が2%以上、標準偏差が15μm以上になったため安息角が44度となり、流動性の悪いアクリロニトリル系重合体粒子が得られた。
(Comparative Example 2)
Acrylonitrile-based polymer particles were obtained in the same manner as in Example 1 except that the flow rate of the fluid continuously supplied to the reactor and the stirring power were changed as shown in Table 2. The evaluation results are shown in Table 2.
Since the volume ratio of the particle diameter of 100 μm or more was 2% or more and the standard deviation was 15 μm or more, the angle of repose was 44 degrees, and acrylonitrile polymer particles having poor fluidity were obtained.

(比較例3)
反応器に連続的に供給する流体の流量と攪拌動力を表2の通り変更した以外は実施例1と同様にしてアクリロニトリル系重合体粒子を得た。評価結果を表2に示す。
100μm以上の粒子径の体積割合が2%以上、標準偏差が15μm以上になったため安息角が46度となり、流動性の悪いアクリロニトリル系重合体粒子が得られた。
(Comparative Example 3)
Acrylonitrile-based polymer particles were obtained in the same manner as in Example 1 except that the flow rate of the fluid continuously supplied to the reactor and the stirring power were changed as shown in Table 2. The evaluation results are shown in Table 2.
Since the volume ratio of the particle diameter of 100 μm or more was 2% or more and the standard deviation was 15 μm or more, the angle of repose was 46 degrees, and acrylonitrile polymer particles having poor fluidity were obtained.

Claims (6)

安息角が20度以上42度以下であるアクリロニトリル系重合体粒子。   Acrylonitrile polymer particles having an angle of repose of 20 degrees to 42 degrees. 100μm以上の粒子径の体積割合が2%以下である請求項1記載のアクリロニトリル系重合体粒子。   2. The acrylonitrile-based polymer particle according to claim 1, wherein the volume ratio of the particle diameter of 100 μm or more is 2% or less. 以下の式1で表す標準偏差が0μm以上15μm以下である請求項1記載のアクリロニトリル系重合体粒子。
標準偏差=(D80%−D20%)/2・・・(1)
ただし、D80%:累積分布が80%となる点の粒子径(μm)、D20%:累積分布が20%となる点の粒子径(μm)
2. The acrylonitrile polymer particles according to claim 1, wherein a standard deviation represented by the following formula 1 is 0 μm or more and 15 μm or less.
Standard deviation = (D80% −D20%) / 2 (1)
However, D80%: particle diameter at the point where the cumulative distribution becomes 80% (μm), D20%: particle diameter at the point where the cumulative distribution becomes 20% (μm)
反応器に単量体、重合開始剤及び脱イオン交換水を連続的に供給し、反応器から反応液を連続的に取り出すレドックス水系析出重合であって、攪拌動力(P)kW/mが供給する水/単量体の質量比(W/M比)によって以下の式2の範囲で表される請求項1記載の重合体粒子を得る製造方法
−1.3×(W/M比)+3.0≦攪拌動力≦−1.3×(W/M比)+6.5・・・(2)
ただし、攪拌動力は1kW/m以上
A redox aqueous precipitation polymerization in which a monomer, a polymerization initiator and deionized exchange water are continuously supplied to a reactor, and a reaction liquid is continuously taken out from the reactor, and stirring power (P) kW / m 3 is The production method for obtaining polymer particles according to claim 1 represented by the range of the following formula 2 depending on the mass ratio (W / M ratio) of water / monomer to be supplied: -1.3 × (W / M ratio) + 3.0 ≦ stirring power ≦ −1.3 × (W / M ratio) +6.5 (2)
However, stirring power is 1 kW / m 3 or more
反応器に単量体、重合開始剤及び脱イオン交換水を連続的に供給し、反応器から反応液を連続的に取り出すレドックス水系析出重合であって、100μm以上のアクリロニトリル系重合体粒子を分級して請求項2記載の重合体粒子を得る製造方法   Monomer, polymerization initiator and deionized water are continuously supplied to the reactor, and redox aqueous precipitation polymerization in which the reaction solution is continuously taken out from the reactor, and classifies acrylonitrile polymer particles of 100 μm or more. A production method for obtaining the polymer particles according to claim 2 反応器に単量体、重合開始剤及び脱イオン交換水を連続的に供給し、反応器から反応液を連続的に取り出すレドックス水系析出重合であって、アクリロニトリル系重合体粒子が懸濁した液を分級して請求項2記載の重合体粒子を得る製造方法   A redox aqueous precipitation polymerization in which a monomer, a polymerization initiator and deionized water are continuously supplied to a reactor, and a reaction liquid is continuously taken out from the reactor, in which acrylonitrile polymer particles are suspended. A process for obtaining polymer particles according to claim 2 by classifying
JP2013179584A 2013-08-30 2013-08-30 Acrylonitrile-based polymer particle and production method Pending JP2015048378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013179584A JP2015048378A (en) 2013-08-30 2013-08-30 Acrylonitrile-based polymer particle and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013179584A JP2015048378A (en) 2013-08-30 2013-08-30 Acrylonitrile-based polymer particle and production method

Publications (2)

Publication Number Publication Date
JP2015048378A true JP2015048378A (en) 2015-03-16
JP2015048378A5 JP2015048378A5 (en) 2016-10-13

Family

ID=52698669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013179584A Pending JP2015048378A (en) 2013-08-30 2013-08-30 Acrylonitrile-based polymer particle and production method

Country Status (1)

Country Link
JP (1) JP2015048378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510384A (en) * 2015-04-02 2018-04-12 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ System and method for determining the angle of repose of an asymmetric lens
WO2019066342A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Method for preparing (meth)acrylonitrile-based polymer for manufacture of carbon fiber

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911338B1 (en) * 1970-12-25 1974-03-16
JPS4911337B1 (en) * 1970-12-30 1974-03-16
JPH02153901A (en) * 1988-08-08 1990-06-13 Kanebo Ltd Production of acrylonitrile-based fine particle polymer
JPH08311714A (en) * 1995-05-17 1996-11-26 Daicel Chem Ind Ltd Production of spinning dope
JPH09170115A (en) * 1995-10-18 1997-06-30 Kuraray Co Ltd Easily fibrillating fiber and its production
JP2007144270A (en) * 2005-11-25 2007-06-14 Fuji Xerox Co Ltd Method and apparatus for classification of fine particle
JP2008184602A (en) * 2007-01-31 2008-08-14 Kaneka Corp Vinyl chloride resin granules
JP2009095830A (en) * 2007-09-28 2009-05-07 Sanyo Chem Ind Ltd Bead-like polymer flocculant
JP2009275202A (en) * 2008-05-19 2009-11-26 Mitsubishi Rayon Co Ltd Acrylonitrile-based polymer powder and its production method, and acrylonitrile-based polymer solution and its production method
JP2011149022A (en) * 2009-12-25 2011-08-04 Asahi Kasei Chemicals Corp Method for producing acrylic resin, acrylic resin, and molding
JP2012201739A (en) * 2011-03-24 2012-10-22 Mitsubishi Rayon Co Ltd Polyacrylonitrile polymer particle and method for producing the same
WO2013125779A1 (en) * 2012-02-24 2013-08-29 (주)엘지하우시스 Eva sheet comprising microparticles for solar cell, and method for manufacturing same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911338B1 (en) * 1970-12-25 1974-03-16
JPS4911337B1 (en) * 1970-12-30 1974-03-16
JPH02153901A (en) * 1988-08-08 1990-06-13 Kanebo Ltd Production of acrylonitrile-based fine particle polymer
JPH08311714A (en) * 1995-05-17 1996-11-26 Daicel Chem Ind Ltd Production of spinning dope
JPH09170115A (en) * 1995-10-18 1997-06-30 Kuraray Co Ltd Easily fibrillating fiber and its production
JP2007144270A (en) * 2005-11-25 2007-06-14 Fuji Xerox Co Ltd Method and apparatus for classification of fine particle
JP2008184602A (en) * 2007-01-31 2008-08-14 Kaneka Corp Vinyl chloride resin granules
JP2009095830A (en) * 2007-09-28 2009-05-07 Sanyo Chem Ind Ltd Bead-like polymer flocculant
JP2009275202A (en) * 2008-05-19 2009-11-26 Mitsubishi Rayon Co Ltd Acrylonitrile-based polymer powder and its production method, and acrylonitrile-based polymer solution and its production method
JP2011149022A (en) * 2009-12-25 2011-08-04 Asahi Kasei Chemicals Corp Method for producing acrylic resin, acrylic resin, and molding
JP2012201739A (en) * 2011-03-24 2012-10-22 Mitsubishi Rayon Co Ltd Polyacrylonitrile polymer particle and method for producing the same
WO2013125779A1 (en) * 2012-02-24 2013-08-29 (주)엘지하우시스 Eva sheet comprising microparticles for solar cell, and method for manufacturing same
JP2015513217A (en) * 2012-02-24 2015-04-30 エルジー・ハウシス・リミテッドLg Hausys,Ltd. EVA sheet for solar cell containing fine particles and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510384A (en) * 2015-04-02 2018-04-12 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ System and method for determining the angle of repose of an asymmetric lens
WO2019066342A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Method for preparing (meth)acrylonitrile-based polymer for manufacture of carbon fiber
KR20190038321A (en) * 2017-09-29 2019-04-08 주식회사 엘지화학 Method for preparing (meth)acrylonitrile based polymer for preparing carbon fiber
CN110062773A (en) * 2017-09-29 2019-07-26 株式会社Lg化学 It is used to prepare the preparation method of (methyl) acrylonitrile polymers of carbon fiber
KR102169501B1 (en) 2017-09-29 2020-10-23 주식회사 엘지화학 Method for preparing (meth)acrylonitrile based polymer for preparing carbon fiber
CN110062773B (en) * 2017-09-29 2021-05-25 株式会社Lg化学 Method for producing (meth) acrylonitrile polymer for producing carbon fiber
US11046792B2 (en) 2017-09-29 2021-06-29 Lg Chem, Ltd. Method of preparing (meth)acrylonitrile-based polymer for preparing carbon fiber

Similar Documents

Publication Publication Date Title
JPH06199912A (en) Production of vinyl chloride-based polymer
US8461230B2 (en) Process for producing aqueous polytetrafluoroethylene dispersion for coagulation processing, and aqueous polytetrafluoroethylene dispersion for coagulation processing
JP2012092323A (en) Method for manufacturing fine polytetrafluoroethylene powder
JP2015048378A (en) Acrylonitrile-based polymer particle and production method
EP3124522B1 (en) Method for producing emulsion-polymerized latex aggregate particles, emulsion-polymerized latex aggregates, and emulsion-polymerized latex aggregate particles
JP2012201739A (en) Polyacrylonitrile polymer particle and method for producing the same
JP2015160953A (en) Method for producing acrylonitrile-based polymer
JPS59215344A (en) Fine polyvinyl chloride particle and production thereof
JP2005179427A (en) Method for producing methacrylic resin particle
JP6606387B2 (en) Dispersion aid for suspension polymerization, aqueous liquid thereof, and method for producing vinyl resin using them
JP2009242632A (en) Method for producing hydrophilic resin particle
CN109422988B (en) Polymethyl methacrylate-vinyl benzyl dimethyl dodecyl ammonium chloride-titanium dioxide composite material and preparation method thereof
JP5197169B2 (en) Method for producing acrylonitrile-based polymer particles
JP2015114272A (en) Polymerizable monomer and application thereof
JPH11158204A (en) Suspension polymerization
JP5207459B2 (en) Polymer particle for carbon fiber precursor acrylic fiber and carbon fiber precursor acrylic fiber
JP2014201728A (en) Acrylonitrile-based copolymer particle, and production method of the same
JP2014201600A (en) Method for producing acrylonitrile polymer
CN109422838B (en) Method for uniformly dispersing nanoparticles in polymer
JP5216235B2 (en) Method for producing metal-containing fine particles
JP2710665B2 (en) Method for producing short fibrous (meth) acrylonitrile-based polymer
JP2011213768A (en) Manufacturing apparatus of fine particle
JP6123156B2 (en) True spherical cross-linked polyacrylonitrile fine particles with large surface area
JP5207450B2 (en) Polyacrylonitrile-based polymer particles and method for producing the same
JP2014162842A (en) Production method of acrylonitrile-based polymer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180508