JP2021105244A - High-performance fiber and dope used in manufacturing of the fiber - Google Patents

High-performance fiber and dope used in manufacturing of the fiber Download PDF

Info

Publication number
JP2021105244A
JP2021105244A JP2021063998A JP2021063998A JP2021105244A JP 2021105244 A JP2021105244 A JP 2021105244A JP 2021063998 A JP2021063998 A JP 2021063998A JP 2021063998 A JP2021063998 A JP 2021063998A JP 2021105244 A JP2021105244 A JP 2021105244A
Authority
JP
Japan
Prior art keywords
fiber
spinning
based polymer
fibers
ionic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021063998A
Other languages
Japanese (ja)
Other versions
JP7307873B2 (en
Inventor
光 中山
Hikaru Nakayama
光 中山
友義 山下
Tomoyoshi Yamashita
友義 山下
康夫 後藤
Yasuo Goto
康夫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Shinshu University NUC
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Shinshu University NUC
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Shinshu University NUC, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2021105244A publication Critical patent/JP2021105244A/en
Application granted granted Critical
Publication of JP7307873B2 publication Critical patent/JP7307873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

To provide a fiber having high physical properties of tensile strength and tensile elastic modulus without using ultrahigh-molecular-weight polymers.SOLUTION: A fiber 11 of the present invention is a fiber formed of a vinyl polymer with an intrinsic viscosity of 1.3-5.0 dL/g and having a crystal orientation degree of 96.6-98% as measured by wide-angle x-ray diffraction. Moreover, preferably, its tensile strength is 0.7-2.5 GPa and its tensile elastic modulus is 15-40 GPa. The fiber can be manufactured by using a spinning solution prepared by dissolving a vinyl polymer with an intrinsic viscosity of 1.3-4.0dL/g in an ionic liquid.SELECTED DRAWING: Figure 1

Description

本発明は、超高分子量でなく、工業的に利用可能な一般的な分子量のアクリル系重合体等のビニル系重合体から得られる力学的に高性能な高強度、高弾性率の繊維および該繊維の製造に用いられる紡糸原液に関する。 The present invention provides mechanically high-performance, high-strength, high-modulus fibers obtained from vinyl-based polymers such as acrylic-based polymers having a general molecular weight that can be industrially used instead of ultra-high molecular weight fibers. It relates to a spinning stock solution used in the production of fibers.

アクリル繊維はウールに近い風合いや、優れた弾性回復力、耐収縮性、耐薬品性等の特長を有し、また、抗菌、防臭、静電、発熱等様々な機能を付与することが可能であることから、機能性繊維としても近年注目を集めている。 Acrylic fiber has features similar to wool, excellent elastic resilience, shrinkage resistance, chemical resistance, etc., and can be given various functions such as antibacterial, deodorant, static electricity, and heat generation. For this reason, it has been attracting attention as a functional fiber in recent years.

また、様々な使用用途があり、繊維のさらなる引張強度、引張弾性率の高い物性が求められている。 In addition, there are various uses, and physical properties with higher tensile strength and tensile elastic modulus of the fiber are required.

アクリル繊維は一般的に、ポリアクリロニトリル重合体粉末をジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)等の有機溶媒や、硝酸、無機塩を溶解した水溶液等を用い溶解することで紡糸原液とし、紡糸、延伸、乾燥等の工程を経て成形することで製造される。 Acrylic fibers are generally prepared by dissolving polyacrylonitrile polymer powder using an organic solvent such as dimethylformamide (DMF), dimethylacetamide (DMAc), or dimethyl sulfoxide (DMSO), or an aqueous solution in which nitrate or an inorganic salt is dissolved. It is manufactured by making it into a spinning stock solution and molding it through steps such as spinning, stretching, and drying.

紡糸は湿式紡糸法や乾湿式紡糸法が一般的に用いられ、金型から吐出された紡糸原液は紡浴内凝固液を通過することで凝固やゲル化が進行し、繊維が形成される。紡浴内凝固液は一般的には紡糸原液に用いられる溶媒と水の混合液が用いられ、温度や濃度の調節によって、生産が安定で、かつ均一な繊維構造となるように製造する。 A wet spinning method or a dry wet spinning method is generally used for spinning, and the undiluted spinning solution discharged from the mold passes through the coagulating solution in the spinning bath to promote coagulation and gelation to form fibers. The coagulating liquid in the spinning bath is generally a mixture of the solvent and water used in the spinning stock solution, and is produced so that the production is stable and the fiber structure is uniform by adjusting the temperature and concentration.

しかし、従来の溶媒を用いた方法では、ノズルを出た直後の初期繊維と凝固浴との境界で急速な相互拡散、およびそれによる凝固形成により、均一な形態の繊維を得ることは容易ではなかった。特に、資材用途のアクリル繊維では基本的にはボイドレスで密な繊維構造が好ましいが、従来の方法では急激な凝固によってボイドが形成されやすいという欠点があった。また、大量の溶媒を回収するために膨大なコストがかかることや、環境汚染等の問題もあった。 However, with the conventional solvent-based method, it is not easy to obtain fibers having a uniform form due to rapid mutual diffusion at the boundary between the initial fibers immediately after exiting the nozzle and the coagulation bath, and the resulting coagulation formation. rice field. In particular, acrylic fibers used as materials are basically preferably voidless and have a dense fiber structure, but the conventional method has a drawback that voids are likely to be formed by rapid solidification. In addition, there are problems such as enormous cost for recovering a large amount of solvent and environmental pollution.

この問題に対して、特許文献1では、ポリアクリロニトリル重合体(PAN)とイオン液体とを混合し溶融紡糸をする解決手段を報告している。この方法はアクリル繊維を溶融紡糸するため、多量の溶媒を使わないため環境負荷低減が考えられるが、PANの分解温度に近い高い温度をかける必要があるため熱安定性が悪く、また工業的には従来の湿式および乾湿式紡糸法と比較して物性や生産性の低下という問題が残っていた。 To solve this problem, Patent Document 1 reports a solution for mixing a polyacrylonitrile polymer (PAN) and an ionic liquid and performing melt spinning. Since this method melts and spins acrylic fibers, it does not use a large amount of solvent, so it is possible to reduce the environmental load. Has the problem of reduced physical properties and productivity as compared with the conventional wet and dry wet spinning methods.

また、非特許文献1ではイオン液体を用いたアクリロニトリルの重合および乾湿式紡糸法を報告している。この報告も従来の湿式紡糸方法と比較して有機溶媒の使用が抑えられるため、環境負荷低減という面でのメリットが大きい。しかし、強度、伸度といった物性面では、従来の産業用アクリル繊維を上回る性能は得られていなかった。 In addition, Non-Patent Document 1 reports a polymerization of acrylonitrile and a dry-wet spinning method using an ionic liquid. This report also has a great merit in terms of reducing the environmental load because the use of organic solvent is suppressed as compared with the conventional wet spinning method. However, in terms of physical properties such as strength and elongation, performance superior to that of conventional industrial acrylic fibers has not been obtained.

また、非特許文献2では、分子量が230万である超高分子量のポリアクリロニトリル重合体をDMFに溶解しマイナス40℃の凝固浴に乾湿紡糸で押し出し、超延伸することで高物性なアクリル繊維を報告している。しかし、かかる方法はその分子量の高さから溶解が困難であり、紡糸原液中のポリマー濃度を下げなければならず、生産性に問題が残っていた。 Further, in Non-Patent Document 2, an ultra-high molecular weight polyacrylonitrile polymer having a molecular weight of 2.3 million is dissolved in DMF, extruded into a coagulation bath at -40 ° C by dry-wet spinning, and super-stretched to produce highly physical acrylic fibers. I am reporting. However, such a method is difficult to dissolve due to its high molecular weight, and the polymer concentration in the spinning stock solution must be lowered, which leaves a problem in productivity.

特表2012−522142号公報Special Table 2012-522142

「ポリマーズ・アドバンスド・テクノロジーズ」(Polym.Adv.Technol),2008年、第20巻,p.857〜862"Polymer's Advanced Technologies" (Polym.Adv.Technol), 2008, Vol. 20, p. 857-862 「ポリマー」(Polymer),2006年、第47巻,p.4445〜4453"Polymer", 2006, Vol. 47, p. 4445-4453

前記のように、一般的に湿式紡糸や乾湿式紡糸はその凝固形成過程において、初期繊維と凝固浴との境界で急速な相互拡散、およびそれによる凝固形成が起こり、この際にボイド等の欠陥が発生しやすい。また、これより、続く延伸工程にて高い延伸倍率がかけられなくなり、製品の力学的特性が低下してしまう問題がある。 As described above, in general, wet spinning and dry wet spinning cause rapid mutual diffusion at the boundary between the initial fiber and the coagulation bath and coagulation formation due to the coagulation formation process, and at this time, defects such as voids and the like occur. Is likely to occur. Further, there is a problem that a high draw ratio cannot be applied in the subsequent drawing step and the mechanical properties of the product are deteriorated.

凝固浴に溶剤を大量に用いることでボイドの発生を抑制する方法も一般的にとられるが、工業的に利用するには環境負荷問題が残される。 A method of suppressing the generation of voids by using a large amount of solvent in the coagulation bath is generally taken, but there remains an environmental load problem for industrial use.

また、高配向で高物性なアクリル繊維を得るためには超高分子量のポリマーを摂氏0℃以下の凝固浴の使用によりゲル紡糸する方法等も報告されているが、この方法は生産性および紡糸安定性に問題が残っている。 Further, in order to obtain acrylic fibers having high orientation and high physical characteristics, a method of gel-spinning an ultra-high molecular weight polymer by using a coagulation bath at 0 ° C. or lower has been reported, but this method is productive and spinning. Stability remains an issue.

本発明の課題は、超高分子量のポリマーを使用せずに、引張強度、引張弾性率の高い物性の繊維を提供することにある。 An object of the present invention is to provide a fiber having high physical properties such as high tensile strength and tensile elastic modulus without using an ultrahigh molecular weight polymer.

前記課題は本発明によって解決される。
本発明の繊維は、極限粘度が1.3〜5.0dL/gであるビニル系重合体より形成される繊維であって、広角X線回折を使用して測定された結晶配向度が96.6〜98%である繊維である。
The problem is solved by the present invention.
The fiber of the present invention is a fiber formed from a vinyl-based polymer having an ultimate viscosity of 1.3 to 5.0 dL / g, and has a crystal orientation degree of 96. It is a fiber that is 6 to 98%.

本発明の繊維は、広角X線回折を使用して測定された繊維の子午線方向の回折プロフィール中に観測される
2θ=36±1°内に頂点をもつ回折ピーク頂点の強度(I

2θ=40±1°内に頂点をもつ回折ピーク頂点の強度(I
との比(I/I)が0.8〜2.0であり、引張強度が0.7〜2.5GPaであり、引張弾性率が15〜40GPaであることが好ましい。
Fibers of the present invention, the intensity of the diffraction peak apex with an apex at 2θ = 36 ± 1 in ° observed in the diffraction profile of the meridian of measured fibers using a wide-angle X-ray diffraction (I A)
The 2 [Theta] = 40 the intensity of the diffraction peak apex with an apex at the ± 1 ° (I B)
The ratio of (I A / I B) is 0.8 to 2.0, the tensile strength is 0.7~2.5GPa, it is preferred tensile modulus of 15~40GPa.

本発明の繊維は、繊維の密度が1.14〜1.22g/cmであることが好ましい。
本発明の繊維は、前記ビニル系重合体がポリアクリロニトリル系重合体であり、前記ポリアクリロニトリル系重合体は、数平均分子量が10万〜80万であり、アクリロニトリルの共重合率が90モル%以上であることが好ましい。
The fibers of the present invention preferably have a fiber density of 1.14 to 1.22 g / cm 3.
In the fiber of the present invention, the vinyl-based polymer is a polyacrylonitrile-based polymer, the polyacrylonitrile-based polymer has a number average molecular weight of 100,000 to 800,000, and the copolymerization rate of acrylonitrile is 90 mol% or more. Is preferable.

本発明の繊維の製造に用いられる紡糸原液は、極限粘度が1.3〜4.0dL/gであるビニル系重合体をイオン液体により溶解した紡糸原液である。 The spinning stock solution used for producing the fiber of the present invention is a spinning stock solution in which a vinyl polymer having an ultimate viscosity of 1.3 to 4.0 dL / g is dissolved in an ionic liquid.

本発明の紡糸原液は、前記ビニル系重合体が数平均分子量が10万〜40万のポリアクリロニトリル系重合体であることが好ましい。
本発明の紡糸原液は、前記イオン液体のカチオン種がイミダゾリウム系であることが好ましい。
本発明の紡糸原液は、前記イオン液体のカチオン種が1,3−ジアルキルイミダゾリウム系であることが好ましい。
本発明の紡糸原液は、前記イオン液体のカチオン種が1−ブチル−3−メチルイミダゾリウム、1−エチル−3−メチルイミダゾリウムのいずれか1種以上であることが好ましい。
The spinning stock solution of the present invention is preferably a polyacrylonitrile-based polymer in which the vinyl-based polymer has a number average molecular weight of 100,000 to 400,000.
In the spinning stock solution of the present invention, it is preferable that the cation species of the ionic liquid is imidazolium-based.
In the spinning stock solution of the present invention, it is preferable that the cation species of the ionic liquid is a 1,3-dialkylimidazolium type.
In the spinning stock solution of the present invention, it is preferable that the cation species of the ionic liquid is one or more of 1-butyl-3-methylimidazolium and 1-ethyl-3-methylimidazolium.

本発明の紡糸原液は、前記イオン液体のアニオン種が塩素イオン、臭素イオン、ヨウ素イオンのいずれか1種以上からなることが好ましい。
本発明の紡糸原液は、前記イオン液体が1−ブチル−3−メチルイミダゾリウムクロリド、1−エチル−3−メチルイミダゾリウムクロリドのいずれか1種以上であることが好ましい。
In the spinning stock solution of the present invention, it is preferable that the anion species of the ionic liquid is one or more of chloride ion, bromine ion and iodide ion.
In the spinning stock solution of the present invention, the ionic liquid is preferably one or more of 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium chloride.

本発明の紡糸原液は、前記ビニル系重合体が、数平均分子量が10万〜80万のポリアクリロニトリル系重合体であり、前記ポリアクリロニトリル系重合体の含有量が、紡糸原液の質量に対して5〜30質量%であることが好ましい。 In the spinning stock solution of the present invention, the vinyl-based polymer is a polyacrylonitrile-based polymer having a number average molecular weight of 100,000 to 800,000, and the content of the polyacrylonitrile-based polymer is based on the mass of the spinning stock solution. It is preferably 5 to 30% by mass.

本発明では、極限粘度が1.3〜5.0dL/gである、工業的に利用可能な一般的な分子量のアクリル系重合体等のビニル系重合体を用いても、このビニル系重合体をイオン液体により溶解して紡糸原液を作製し、この紡糸原液を乾湿式紡糸法で室温に近い凝固液温度でゲル紡糸することにより、凝固による繊維形成速度を緩やかな速度に抑えることができ、均一な形態で、ボイドの少ない密な構造の繊維を得ることができる。また、凝固浴から引き取る際の張力を低減することができ、これより凝固浴内でのポリマー配向制御と延伸性の向上が可能となり、生産性を格段に上げることが出来る。紡糸初期にポリマー配向制御を行えることで、続く延伸工程でも無理なく延伸がかけられるようになる効果もある。 In the present invention, even if a vinyl-based polymer such as an acrylic polymer having a general molecular weight that can be industrially used and has an ultimate viscosity of 1.3 to 5.0 dL / g is used, this vinyl-based polymer is also used. Is dissolved in an ionic liquid to prepare a spinning stock solution, and the spinning stock solution is gel-spun at a coagulation liquid temperature close to room temperature by a dry-wet spinning method, so that the fiber formation rate due to coagulation can be suppressed to a moderate rate. It is possible to obtain fibers having a uniform structure and a dense structure with few voids. In addition, the tension at the time of taking from the coagulation bath can be reduced, which makes it possible to control the polymer orientation in the coagulation bath and improve the stretchability, and the productivity can be remarkably increased. By controlling the polymer orientation at the initial stage of spinning, there is also an effect that stretching can be applied reasonably even in the subsequent drawing step.

本発明は我々が鋭意検討した結果生み出された発明であり、この方法により、工業的に利用可能な一般的な分子量のアクリル系重合体等のビニル系重合体から、凝固浴内の凝固液の温度が室温に近いにもかかわらず力学的に高性能な高強度、高弾性率の繊維の製造が可能となる。 The present invention is an invention produced as a result of diligent studies by us, and by this method, a vinyl polymer such as an acrylic polymer having a general molecular weight that can be industrially used can be used as a coagulant in a coagulation bath. Although the temperature is close to room temperature, it is possible to produce fibers with mechanically high performance, high strength and high elastic modulus.

本発明において好適に用いることのできる乾湿式紡糸装置の概略図である。実施例1〜5、参考例1〜2、および比較例1〜2における紡糸工程ではこの装置を使用した。It is the schematic of the dry-wet spinning apparatus that can be suitably used in this invention. This apparatus was used in the spinning steps in Examples 1 to 5, Reference Examples 1 and 2, and Comparative Examples 1 and 2. 本発明において好適に用いることのできる加熱チャンバーの概略図である。実施例1〜5、参考例1〜3、および比較例1〜2における延伸工程ではこの装置を使用した。It is the schematic of the heating chamber which can be suitably used in this invention. This device was used in the stretching steps of Examples 1 to 5, Reference Examples 1 to 3, and Comparative Examples 1 and 2. 本発明において好適に用いることのできる乾湿式紡糸装置の概略図であり、特にジェットストレッチを大きくかける場合に適する。参考例3における紡糸工程ではこの装置を使用した。It is a schematic diagram of a dry-wet spinning apparatus that can be suitably used in the present invention, and is particularly suitable when a large amount of jet stretch is applied. This device was used in the spinning process in Reference Example 3.

本発明の繊維の製造では、好適には、図1又は図3に示すような乾湿式紡糸装置を用いて紡糸工程が行われ、図2に示すような加熱チャンバーを用いて延伸工程が行われる。 In the production of the fiber of the present invention, a spinning step is preferably performed using a dry-wet spinning apparatus as shown in FIG. 1 or 3, and a drawing step is preferably performed using a heating chamber as shown in FIG. ..

図1に示すような装置による紡糸工程は、後に記載する実施例1〜5、参考例1〜2、および、比較例1〜2で採用されており、図3に示すような装置による紡糸工程は、後に記載する参考例3で採用されている。また、図2に示すような装置による延伸工程は、後に記載する実施例1〜5、参考例1〜3、および比較例1〜2で採用されている。 The spinning process by the apparatus as shown in FIG. 1 is adopted in Examples 1 to 5, Reference Examples 1 and 2 and Comparative Examples 1 and 2 described later, and the spinning process by the apparatus as shown in FIG. Is adopted in Reference Example 3 described later. Further, the stretching step by the apparatus as shown in FIG. 2 is adopted in Examples 1 to 5, Reference Examples 1 to 3, and Comparative Examples 1 and 2 described later.

図1に示す乾湿式紡糸装置では、ヒーター1で適度の温度に加温した原液タンク2に貯えられた紡糸原液を、ノズル3を通して凝固浴5(凝固液の液面は10で示される)内に押出し、繊維状に凝固させる。ロール4Aを経て凝固浴5内を通過させた繊維11は、ロール4Bを経て第1洗浄槽6(洗浄液の液面は10で示される)内を通過し、ロール4Cを経て第2洗浄槽7(洗浄液の液面は10で示される)内を通過して洗浄され、ロール4Dを経て乾燥機8内を通過して乾燥された後、ワインダー9において巻き取られる。 In the dry-wet spinning apparatus shown in FIG. 1, the spinning stock solution stored in the stock solution tank 2 heated to an appropriate temperature by the heater 1 is passed through the nozzle 3 into the coagulation bath 5 (the liquid level of the coagulation liquid is indicated by 10). Extruded into a fibrous form. The fibers 11 that have passed through the coagulation bath 5 via the roll 4A pass through the first cleaning tank 6 (the liquid level of the cleaning liquid is indicated by 10) via the roll 4B, pass through the roll 4C, and pass through the second cleaning tank 7 (The liquid level of the washing liquid is indicated by 10), the washing liquid is washed, passed through the dryer 8 via the roll 4D, dried, and then wound up in the winder 9.

図3に示す乾湿式紡糸装置は、図1に示す乾湿式紡糸装置において、紡糸原液をノズル3の吐出孔から吐出した直後の段階で高速で巻き取り、高い延伸をかけるようにしたものである。凝固浴5で凝固させた繊維は、図1に示す乾湿式紡糸装置と同様に、第1洗浄槽6及び第2洗浄槽7内を通過して洗浄され、乾燥機8内を通過して乾燥された後、ワインダー9において巻き取られる。図2に示す装置では、繊維は、クリール12内のロール4Eを経て、加熱チャンバー13内へ供給され熱板で加熱されて、ワインダー9内のロール4Fに巻き取られるが、ロール4Fの回転速度をロール4Eの回転速度をより早くすることにより、繊維は加熱チャンバー13で延伸される。 The dry-wet spinning apparatus shown in FIG. 3 is a dry-wet spinning apparatus shown in FIG. 1 in which the undiluted spinning solution is wound at high speed immediately after being discharged from the discharge hole of the nozzle 3 and is subjected to high stretching. .. The fibers coagulated in the coagulation bath 5 pass through the first washing tank 6 and the second washing tank 7 to be washed, and pass through the dryer 8 to be dried, similarly to the dry-wet spinning apparatus shown in FIG. After being wound, it is wound up in the winder 9. In the apparatus shown in FIG. 2, the fibers are supplied into the heating chamber 13 via the roll 4E in the creel 12, heated by the hot plate, and wound on the roll 4F in the winder 9, but the rotation speed of the roll 4F. By increasing the rotation speed of the roll 4E, the fibers are stretched in the heating chamber 13.

[ビニル系重合体]
本発明においてビニル系重合体とは以下のモノマーを使用することができる。即ち、アクリロニトリル、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシプロピルなどに代表されるアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ウラリル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチルなどに代表されるメタクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン、フッ化ビニル、フッ化ビニリデンなどの不飽和モノマー類;p−スルホフェニルメタリルエーテル、メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、及びこれらのアルカリ金属塩などが例示できる。
[Vinyl polymer]
In the present invention, the following monomers can be used as the vinyl polymer. That is, acrylic acid esters typified by acrylonitrile, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate and the like; methacrylic acid. Represented by methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, uralyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, diethylaminoethyl methacrylate, etc. Methacrylic acid esters; acrylic acid, methacrylic acid, acrylamide itaconate, N-methylol acrylamide, diacetone acrylamide, styrene, vinyl toluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, fluoride Unsaturated monomers such as vinyl and vinylidene fluoride; p-sulfophenyl methacrylic acid, methacrylic sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, 2-acrylamide-2-methylpropane sulfonic acid, and alkali metal salts thereof, etc. Can be exemplified.

なかでも、ビニル系重合体を形成するモノマーとしてアクリロニトリルを用いたポリアクリロニトリル系重合体(以下、「PAN系重合体」と略する場合がある)は、繊維にした時の耐光性に優れているので好ましい。 Among them, a polyacrylonitrile-based polymer using acrylonitrile as a monomer for forming a vinyl-based polymer (hereinafter, may be abbreviated as “PAN-based polymer”) is excellent in light resistance when made into a fiber. Therefore, it is preferable.

[PAN系重合体]
本発明において、好適に使用できるPAN系重合体について説明する。
PAN系重合体としては、アクリロニトリル(AN)の単独重合体(PAN単独重合体)、又はANと他のモノマーとの共重合体(PAN系共重合体)を用いることができる(以下、PAN単独重合体とPAN系共重合体を合わせて、適宜「PAN系重合体」と略する)。
[PAN-based polymer]
A PAN-based polymer that can be preferably used in the present invention will be described.
As the PAN-based polymer, a homopolymer of acrylonitrile (AN) (PAN homopolymer) or a copolymer of AN and another monomer (PAN-based copolymer) can be used (hereinafter, PAN alone). The polymer and the PAN-based copolymer are collectively abbreviated as "PAN-based polymer").

紡糸安定性を高め、アクリル繊維、およびそれからなる耐炎繊維、炭素繊維の品位並びに性能を向上させるために、PAN系重合体は、AN由来の構造単位を90.0モル%以上含むことが好ましい。AN由来の構造単位が90.0モル%以上であれば高い紡糸安定性と延伸性を確保しやすい。AN由来の構造単位は94.0モル%以上がより好ましい。 The PAN-based polymer preferably contains 90.0 mol% or more of structural units derived from AN in order to improve spinning stability and improve the quality and performance of acrylic fibers and flame-resistant fibers and carbon fibers made of the acrylic fibers. When the structural unit derived from AN is 90.0 mol% or more, it is easy to secure high spinning stability and stretchability. The structural unit derived from AN is more preferably 94.0 mol% or more.

共重合するモノマーとしては、ANと共重合可能なモノマーであれば特に制限されず、例えばアクリル酸メチル、アクリル酸エチル等のアクリル酸エステル類;メタクリル酸エチル等のメタクリル酸エステル類;アクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリルアミド等の不飽和モノマー類;メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸及びこれらのアルカリ金属類などが挙げられる。これら他のモノマーは1種単独又は2種以上を併用して使用することができる。 The monomer to be copolymerized is not particularly limited as long as it is a monomer copolymerizable with AN, and for example, acrylic acid esters such as methyl acrylate and ethyl acrylate; methacrylic acid esters such as ethyl methacrylate; acrylic acid, Unsaturated monomers such as methacrylic acid, maleic acid, itaconic acid, and acrylamide; examples thereof include metallicyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, and alkali metals thereof. These other monomers may be used alone or in combination of two or more.

[分子量(極限粘度、数平均分子量)]
本発明の繊維に使用するPAN系重合体などのビニル系重合体の極限粘度は、1.3〜5.0dL/gである。1.3dL/g以上であれば、後述する延伸工程にて高い延伸を達成しやすく、5.0dL/g以下であれば安定的な高い生産性を達成しやすい。前記観点から、極限粘度は1.4〜4.0dL/gがより好ましく、1.5〜3.0dL/gがさらに好ましい。
[Molecular weight (extreme viscosity, number average molecular weight)]
The ultimate viscosity of a vinyl polymer such as a PAN polymer used for the fiber of the present invention is 1.3 to 5.0 dL / g. If it is 1.3 dL / g or more, it is easy to achieve high stretching in the stretching step described later, and if it is 5.0 dL / g or less, it is easy to achieve stable high productivity. From the above viewpoint, the ultimate viscosity is more preferably 1.4 to 4.0 dL / g, further preferably 1.5 to 3.0 dL / g.

また、同様に本発明の繊維に使用するPAN系重合体などのビニル系重合体の数平均分子量(Mn)は、10万〜80万であることが好ましい。10万以上であると後述する延伸工程にて高い延伸を達成しやすく、また、80万以下であると安定的な高い生産性を達成しやすい。前記観点から、前記数平均分子量(Mn)は15万〜50万がより好ましく、17万〜40万がさらに好ましい。 Similarly, the number average molecular weight (Mn) of the vinyl polymer such as the PAN polymer used for the fiber of the present invention is preferably 100,000 to 800,000. If it is 100,000 or more, it is easy to achieve high stretching in the stretching step described later, and if it is 800,000 or less, it is easy to achieve stable high productivity. From the above viewpoint, the number average molecular weight (Mn) is more preferably 150,000 to 500,000, and even more preferably 170,000 to 400,000.

[重合方法]
PAN系重合体等のビニル系重合体を重合する方法は、特に限定されるものではなく、溶液重合法、懸濁重合法、乳化重合法等を用いることができる。
[Polymerization method]
The method for polymerizing a vinyl-based polymer such as a PAN-based polymer is not particularly limited, and a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, or the like can be used.

[イオン液体]
イオン液体は、100℃以下で液体状態となる、比較的分子サイズの大きな有機イオンなどからなる低温溶融塩の一種である。その特長として、例えば以下のようなことが挙げられる。
[Ionic liquid]
An ionic liquid is a kind of low-temperature molten salt composed of organic ions having a relatively large molecular size, which is in a liquid state at 100 ° C. or lower. Its features include, for example, the following.

(1)不燃性で蒸気圧が極めて低いため、爆発や火災の危険性が低い(2)蒸気圧が極めて低いため、肺への吸引の確率が極めて低い(3)化学的・熱的に安定であるので、リサイクル性が良い(4)アニオン・カチオンの組合せパターンが豊富で、親水疎性や粘度、融点等の特性をチューニングできる(5)様々な物質を溶解することができる(5)イオン液体種により、水と任意に混合・分離させることができる(6)過冷却状態で比較的安定な液体として使用できる。 (1) Non-flammable and extremely low vapor pressure reduces the risk of explosion and fire (2) Extremely low vapor pressure and extremely low probability of inhalation into the lung (3) Chemically and thermally stable Therefore, it has good recyclability (4) It has abundant combinations of anions and cations, and its properties such as hydrophilicity, viscosity, and melting point can be tuned (5) It can dissolve various substances (5) Ionics. Depending on the liquid type, it can be arbitrarily mixed and separated from water. (6) It can be used as a relatively stable liquid in a supercooled state.

これらの性質はアクリル繊維開発においても、有用となる。本発明では凝固浴の凝固液として水を用いた場合も急な凝固が起こらず、比較的ゆっくりとした相互拡散と、それと競合しておこるゲル化によりボイド形成を伴う急な凝固が抑制され、均一な繊維を達成している。このことから、従来よりも溶剤使用量を削減でき、また、環境面でも従来の生産方法のように有害な揮発性有機溶剤を吸引・排気することなく製造できるため、排気設備等のコスト低減効果がある。 These properties are also useful in the development of acrylic fibers. In the present invention, sudden coagulation does not occur even when water is used as the coagulation liquid in the coagulation bath, and sudden coagulation accompanied by void formation is suppressed by relatively slow mutual diffusion and gelation that occurs in competition with the coagulation liquid. Achieves uniform fiber. As a result, the amount of solvent used can be reduced compared to the conventional method, and in terms of the environment, it can be manufactured without sucking and exhausting harmful volatile organic solvents as in the conventional production method, which has the effect of reducing the cost of exhaust equipment, etc. There is.

本発明におけるイオン液体は、カチオン種としてはアンモニウム系、イミダゾリウム系、ピリジニウム系、ピロリジニウム系等が使用でき、また、アニオン系としてはハロゲン系、テトラフルオロボレート、ヘキサフルオロリン酸、ジシアナミド、ビストリフルオロメチルスルホニルイミド等を用いる事ができるが、これらに特に限定されることなく、これら以外のものであっても良い。その中でも、カチオン種ではイミダゾリウム系、特に1,3−ジアルキルイミダゾリウム系であることが熱安定性やコストの面から好ましい。
また、アニオン種はハロゲン系であることが親水性や融点の面から好ましく、さらには塩素イオンであることがコストの面からより好ましい。
As the ionic liquid in the present invention, ammonium-based, imidazolium-based, pyridinium-based, pyroridinium-based, etc. can be used as the cation species, and halogen-based, tetrafluoroborate, hexafluorophosphoric acid, disianamide, bistrifluoro, etc. Methylsulfonylimide and the like can be used, but the present invention is not particularly limited thereto, and other than these may be used. Among them, as the cationic species, an imidazolium type, particularly a 1,3-dialkylimidazolium type is preferable from the viewpoint of thermal stability and cost.
Further, the anion species is preferably halogen-based from the viewpoint of hydrophilicity and melting point, and more preferably chlorine ion from the viewpoint of cost.

カチオン種がイミダゾリウム系、アニオン種がハロゲン系であるものとして、例えば、1,3−ジアルキルイミダゾリウムクロリド、1,3−ジアルキルイミダゾリウムブロミド、1,3−ジアルキルイミダゾリウムヨージドなどが挙げられる。その中でも、1−ブチル−3−メチルイミダゾリウムクロリド、1−エチル−3−メチルイミダゾリウムクロリドやそれらの混合物は熱安定性、コスト面に加え、低い融点であること等から、最も好ましい。 Examples of the cation species having an imidazolium type and the anion species having a halogen type include 1,3-dialkylimidazolium chloride, 1,3-dialkylimidazolium bromide, and 1,3-dialkylimidazolium iodide. .. Among them, 1-butyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium chloride and mixtures thereof are most preferable because they have a low melting point in addition to thermal stability and cost.

[紡糸原液]
本発明において、紡糸原液は前記のPAN系重合体を、前記のイオン液体に溶解することにより得られる。溶解の方法は特に限定されないが、イオン液体の融点以上の溶融状態、もしくは過冷却液体状態においてPAN系重合体等のビニル系重合体を分散し、スラリーを作製し、その後、高温にすることで紡糸原液とすることが望ましい。
[Spinning stock solution]
In the present invention, the spinning stock solution is obtained by dissolving the PAN-based polymer in the ionic liquid. The melting method is not particularly limited, but a vinyl polymer such as a PAN polymer is dispersed in a molten state above the melting point of the ionic liquid or a supercooled liquid state to prepare a slurry, which is then heated to a high temperature. It is desirable to use a spinning stock solution.

少量であれば自転・公転ミキサー等を用いて溶解することもできる。特に減圧状態でミキサーを利用すると樹脂粉末間の空気を除去することが出来、PAN系重合体の分散が極めて容易となり、高効率である。また、場合によっては溶解時に生じる発熱を利用して重合体を溶解することも可能である。
イオン液体を用いた紡糸原液の作製において、その撹拌方法などは特に限定されない。
If it is a small amount, it can be dissolved using a rotation / revolution mixer or the like. In particular, when a mixer is used in a reduced pressure state, air between the resin powders can be removed, and dispersion of the PAN-based polymer becomes extremely easy, resulting in high efficiency. In some cases, it is also possible to dissolve the polymer by utilizing the heat generated during dissolution.
In the preparation of the spinning stock solution using an ionic liquid, the stirring method and the like are not particularly limited.

一般的に、有機溶媒(例えばジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)等)を用いてPAN系重合体等のビニル系重合体を溶解した紡糸原液よりも、同じポリマー濃度、同じ温度である場合は、イオン液体を用いた場合の方が粘度は高くなる。それゆえ、トルクのあるニーダー等で混合撹拌することが好ましい。また、紡糸原液中に気泡が存在する場合は、減圧脱泡処理等を施すことが、後述する紡糸工程での糸切れ抑制の観点から好ましい。また、少量である場合は、市販されている自転・公転ミキサー等を用いる事も、簡便性の観点から好ましい。 Generally, the same polymer as a spinning stock solution in which a vinyl polymer such as a PAN polymer is dissolved using an organic solvent (for example, dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), etc.) When the concentration and temperature are the same, the viscosity is higher when the ionic liquid is used. Therefore, it is preferable to mix and stir with a kneader or the like having torque. Further, when air bubbles are present in the spinning stock solution, it is preferable to perform decompression defoaming treatment or the like from the viewpoint of suppressing yarn breakage in the spinning step described later. In the case of a small amount, it is also preferable to use a commercially available rotation / revolution mixer or the like from the viewpoint of convenience.

紡糸原液の濃度は、5〜30質量%であることが好ましい。5質量%以上であると後述する延伸工程にて、高い延伸倍率を達成しやすく、また、30質量%以下であれば原液タンク内でのゲル化が進行しにくい。
前記観点から、紡糸原液の濃度は10〜20質量%がより好ましい。
The concentration of the spinning stock solution is preferably 5 to 30% by mass. If it is 5% by mass or more, it is easy to achieve a high stretching ratio in the stretching step described later, and if it is 30% by mass or less, gelation in the stock solution tank is unlikely to proceed.
From the above viewpoint, the concentration of the spinning stock solution is more preferably 10 to 20% by mass.

また、紡糸原液の温度は20〜150℃であることが好ましい。20℃以上であれば原液粘度の観点から扱いやすく、また、150℃以下であれば原液タンク内でのゲル化の進行を起こしにくい。
前記観点から、紡糸原液の温度は、60〜110℃がより好ましく、75〜100℃がさらに好ましい。
The temperature of the spinning stock solution is preferably 20 to 150 ° C. If it is 20 ° C. or higher, it is easy to handle from the viewpoint of the viscosity of the undiluted solution, and if it is 150 ° C. or lower, gelation in the undiluted solution tank is unlikely to proceed.
From the above viewpoint, the temperature of the spinning stock solution is more preferably 60 to 110 ° C, further preferably 75 to 100 ° C.

[紡糸手段]
本発明において、紡糸原液は金型(ノズルなど)から押し出され、凝固浴で凝固やゲル化形成が進行することで繊維形成される。紡糸方法は繊維の品質の面で有利な乾湿式紡糸法を採用できる。
[Spinning means]
In the present invention, the undiluted spinning solution is extruded from a mold (nozzle or the like), and the coagulation bath promotes coagulation and gelation to form fibers. As the spinning method, a dry-wet spinning method, which is advantageous in terms of fiber quality, can be adopted.

[凝固液面までの距離]
乾湿式紡糸法において、吐出孔から凝固液面までの距離は1〜100mmであることが好ましい。1mmより長いことで液面揺れした凝固液がノズルに当たりにくくなり、ノズル詰まり等のトラブルを回避できる。また、100mmより短いことで繊維の余計な揺れを回避でき、これは特にマルチフィラメントでの生産面では融着を防げるため有効となる。同様の理由から7〜20mmがより好ましい。
[Distance to coagulation liquid surface]
In the dry-wet spinning method, the distance from the discharge hole to the coagulating liquid surface is preferably 1 to 100 mm. If the length is longer than 1 mm, the coagulating liquid that sways on the liquid surface is less likely to hit the nozzle, and troubles such as nozzle clogging can be avoided. Further, when the length is shorter than 100 mm, it is possible to avoid unnecessary shaking of the fiber, which is effective because fusion can be prevented particularly in terms of production with a multifilament. For the same reason, 7 to 20 mm is more preferable.

[凝固浴]
凝固浴内の凝固液の組成は水、もしくは水とイオン液体の混合液であると良く、凝固の観点から、凝固液の水の組成が30〜100質量%であることが好ましい。30質量%以上であれば適度な凝固速度のもとで安定的な紡糸が可能となる。
[Coagulation bath]
The composition of the coagulation liquid in the coagulation bath is preferably water or a mixed liquid of water and an ionic liquid, and from the viewpoint of coagulation, the composition of water in the coagulation liquid is preferably 30 to 100% by mass. If it is 30% by mass or more, stable spinning is possible under an appropriate solidification rate.

ビニル系重合体が凝固する際にイオン液体が凝固浴に抽出し、凝固浴のイオン液体の濃度が増加するので、水を供給することにより、凝固液の水の組成を30質量%以上に保つことが好ましい。
前記凝固液の水の含有率は、60質量%以上が好ましく、80質量%以上がさらに好ましい。
When the vinyl-based polymer coagulates, the ionic liquid is extracted into the coagulation bath and the concentration of the ionic liquid in the coagulation bath increases. Therefore, by supplying water, the water composition of the coagulation liquid is maintained at 30% by mass or more. Is preferable.
The water content of the coagulation liquid is preferably 60% by mass or more, more preferably 80% by mass or more.

凝固浴内の凝固液の温度は0℃以上40℃以下であることが、凝固の観点から好ましい。0℃以上であることで、適度な凝固速度のもとで安定的な紡糸が可能となる。また、40℃以下であることで繊維中のボイドの発生を抑制することができる。 The temperature of the coagulating liquid in the coagulation bath is preferably 0 ° C. or higher and 40 ° C. or lower from the viewpoint of coagulation. When the temperature is 0 ° C. or higher, stable spinning is possible under an appropriate solidification rate. Further, when the temperature is 40 ° C. or lower, the generation of voids in the fiber can be suppressed.

凝固液の安定化の点で、前記温度は1℃以上が好ましく、5℃以上がさらに好ましい。また、繊維中のボイドの発生を抑制する観点から、前記温度は30℃以下がより好ましく、15℃以下がさらに好ましい。 From the viewpoint of stabilizing the coagulating liquid, the temperature is preferably 1 ° C. or higher, more preferably 5 ° C. or higher. Further, from the viewpoint of suppressing the generation of voids in the fiber, the temperature is more preferably 30 ° C. or lower, further preferably 15 ° C. or lower.

[洗浄と乾燥]
本発明では、紡糸工程に続く後工程として、洗浄槽における洗浄工程と乾燥機における乾燥工程を設ける。洗浄工程は、紡糸工程終了時に繊維内部に残存しているイオン液体を繊維外へ除外するために行われる。また、乾燥工程は洗浄工程で繊維に付着した水等を蒸発させるために行われる。
[Washing and drying]
In the present invention, a washing step in the washing tank and a drying step in the dryer are provided as post-steps following the spinning step. The washing step is performed to remove the ionic liquid remaining inside the fiber to the outside of the fiber at the end of the spinning step. Further, the drying step is performed to evaporate water or the like adhering to the fibers in the washing step.

洗浄槽内の凝固液としては、水の含有率が30〜100質量%である水単独又は水とイオン液体が混合した水溶液を用いることが、洗浄効率の観点から好ましい。水の組成が30質量%以上であることで効率的な洗浄が可能となる。また、洗浄液の温度は20℃以上100℃以下であることが、洗浄効率の観点から好ましい。20℃以上であることで効率的な洗浄が可能となる。また、100℃以下であれば洗浄時のボイドの発生を抑制できる。 As the coagulating liquid in the washing tank, it is preferable to use water alone or an aqueous solution in which water and an ionic liquid have a water content of 30 to 100% by mass from the viewpoint of washing efficiency. Efficient cleaning is possible when the composition of water is 30% by mass or more. Further, the temperature of the cleaning liquid is preferably 20 ° C. or higher and 100 ° C. or lower from the viewpoint of cleaning efficiency. Efficient cleaning is possible when the temperature is 20 ° C. or higher. Further, if the temperature is 100 ° C. or lower, the generation of voids during washing can be suppressed.

洗浄槽は1槽でも良いが、複数槽とし、脱溶媒力に傾斜をつけることで順々に凝固させることがボイドの発生を防ぐ面から好ましい。そのため、複数の洗浄槽における凝固液の温度は、順次高くすることが好ましい。隣り合う各凝固槽の凝固液の温度差は、10℃以上とすることが好ましく、20℃以上とすることがさらに好ましい。 The cleaning tank may be one tank, but it is preferable to use a plurality of washing tanks and to solidify them in order by inclining the desolvation force from the viewpoint of preventing the generation of voids. Therefore, it is preferable that the temperature of the coagulating liquid in the plurality of washing tanks is gradually increased. The temperature difference between the coagulating liquids in the adjacent coagulation tanks is preferably 10 ° C. or higher, more preferably 20 ° C. or higher.

乾燥炉の温度は40℃以上280℃以下であることが好ましい。40℃以上であると乾燥効率が良く、また、280℃以下であればPAN等のビニル系重合体の分解反応を回避できる。 The temperature of the drying oven is preferably 40 ° C. or higher and 280 ° C. or lower. When the temperature is 40 ° C. or higher, the drying efficiency is good, and when the temperature is 280 ° C. or lower, the decomposition reaction of a vinyl polymer such as PAN can be avoided.

[紡糸工程から延伸工程]
乾燥した繊維はそのまま続く延伸工程に連続して入れるでも良いし、一度ワインダー等で巻き取りプロセスを分離しても良い。また、巻き取った状態で更に乾燥を追加するなどをしても構わない。
[From spinning process to drawing process]
The dried fibers may be continuously added to the drawing process that continues as they are, or the winding process may be separated once with a winder or the like. Further, drying may be added in the wound state.

[熱板延伸]
本発明では、乾燥した繊維を加熱雰囲気下で延伸する工程を含む。加熱手段としては、各種加熱炉や熱板、蒸気延伸機等を用いることができる。特に、本発明では、紡糸工程においてイオン液体を有効に使用したことによって、繊維の延伸性が大幅に向上しているので、加熱チャンバーによる熱板延伸によっても十分に延伸することができる。繊維を熱板上で熱延伸することは、簡易な装置で行えるので、少ない設備投資と少ない原動費で繊維を高延伸できるというメリットがある。加熱温度は100℃以上280℃以下であることが、延伸安定性の面で好ましい。100℃以上であると延伸性が高く、安定な生産も可能となる。280℃以下であればPANの分解反応を回避できるため、糸切れも少なく安定的に延伸できる。なお、熱板延伸では繊維と接触式であるか非接触式であるかは特に限定されない。
[Hot plate stretching]
The present invention includes a step of stretching dried fibers in a heating atmosphere. As the heating means, various heating furnaces, hot plates, steam stretching machines and the like can be used. In particular, in the present invention, since the stretchability of the fiber is significantly improved by effectively using the ionic liquid in the spinning process, the fiber can be sufficiently stretched by hot plate stretching by a heating chamber. Since the fiber can be thermally stretched on the hot plate with a simple device, there is an advantage that the fiber can be highly stretched with a small capital investment and a small driving cost. The heating temperature is preferably 100 ° C. or higher and 280 ° C. or lower in terms of stretching stability. When the temperature is 100 ° C. or higher, the stretchability is high and stable production is possible. If the temperature is 280 ° C. or lower, the decomposition reaction of PAN can be avoided, so that the yarn can be drawn stably with less yarn breakage. The hot plate stretching is not particularly limited as to whether it is a contact type or a non-contact type with fibers.

[延伸倍率]
本発明における延伸倍率は、前記の凝固浴および洗浄槽で延伸するいわゆる紡糸工程での延伸倍率と、それを後で熱延伸する際の加熱チャンバーでの延伸倍率に分けられる。また、紡糸工程の延伸倍率と加熱チャンバーの延伸倍率をかけあわせて、総延伸倍率となる。これらの延伸倍率の用語の定義は実施例の項にて、さらに詳しく説明する。
[Stretching ratio]
The draw ratio in the present invention is divided into a draw ratio in the so-called spinning step of drawing in the coagulation bath and the washing tank and a draw ratio in a heating chamber when the heat is later drawn. Further, the draw ratio of the spinning process is multiplied by the draw ratio of the heating chamber to obtain the total draw ratio. Definitions of these draw ratio terms will be described in more detail in the Examples section.

[ジェットストレッチ(JS)紡糸]
本発明の紡糸方法はノズル吐出直後の段階で高速で巻き取り、高い延伸をかけることが可能である特徴もある。ノズル吐出部での線速度と、それを引き取る第一巻き取りロール(図1では4Aロールに該当。図3では4Gロールに該当。)との速度に起因する延伸倍率を一般的にはジェットストレッチ(JS)と呼び、(式1)によって定義される。

Figure 2021105244
なお、ノズル孔での吐出線速度とは、(式2)より算出することができる。
Figure 2021105244
[Jet Stretch (JS) Spinning]
The spinning method of the present invention is also characterized in that it can be wound at high speed and stretched at a high speed immediately after the nozzle is discharged. Generally, the stretch ratio due to the linear velocity at the nozzle discharge part and the velocity of the first take-up roll (corresponding to the 4A roll in FIG. 1; corresponding to the 4G roll in FIG. 3) is jet stretched. It is called (JS) and is defined by (Equation 1).
Figure 2021105244
The discharge line velocity at the nozzle hole can be calculated from (Equation 2).
Figure 2021105244

JSで高い延伸をかける場合は、第一巻き取りロールより延伸して採取した繊維でも力学物性的に十分なアクリル繊維として使用することが可能であり、特に衣料用途等では十分な物性が得られる。この場合の紡糸装置は図1及び図3のような多段の槽であっても良いが、凝固浴5、第1洗浄槽6及び第2洗浄槽7を一つの槽とした簡便な装置でも良い。 When high stretching is applied by JS, it is possible to use the fiber drawn by stretching from the first take-up roll as an acrylic fiber having sufficient mechanical properties, and in particular, sufficient physical properties can be obtained for clothing applications and the like. .. The spinning device in this case may be a multi-stage tank as shown in FIGS. 1 and 3, but a simple device in which the coagulation bath 5, the first washing tank 6 and the second washing tank 7 are combined into one tank may be used. ..

また、より高い力学物性が必要であれば、後に熱板延伸工程を設けても良い。JSで高い延伸がかかっている場合は、後に設置する熱板延伸工程は比較的小規模な装置でも済ませられるメリットがある。 Further, if higher mechanical properties are required, a hot plate stretching step may be provided later. When high stretching is applied in JS, there is an advantage that the hot plate stretching step to be installed later can be completed by a relatively small-scale device.

JSで高い延伸をかける場合は、400倍以下とすることが好ましい。400倍以下であれば水との摩擦の影響を受けにくく、糸切れが発生しにくい。また、乾湿式紡糸法の場合でも、400倍以下であれば凝固液の界面で液跳ねが起こりにくく、安定な生産が可能となる。前記観点から、JSは200倍以下がより好ましく、170倍以下がさらに好ましい。
この場合、その後の繊維の延伸倍率は、5倍以下で良い。
When high stretching is applied by JS, it is preferably 400 times or less. If it is 400 times or less, it is less likely to be affected by friction with water, and thread breakage is less likely to occur. Further, even in the case of the dry-wet spinning method, if it is 400 times or less, liquid splashing is unlikely to occur at the interface of the coagulating liquid, and stable production is possible. From the above viewpoint, JS is more preferably 200 times or less, and further preferably 170 times or less.
In this case, the subsequent draw ratio of the fiber may be 5 times or less.

もちろん、JSは控えめにし、続く延伸工程等で延伸をするのでも良い。その場合はJSは0.1〜49.9倍であることが好ましい。0.1倍以上であることで繊維が弛むことなく安定的な紡糸が可能となる。 Of course, JS may be conservative and may be stretched in a subsequent stretching step or the like. In that case, JS is preferably 0.1 to 49.9 times. When it is 0.1 times or more, stable spinning is possible without loosening the fibers.

この場合は、その後の繊維の延伸倍率は、凝固浴内の最初のロールから加熱チャンバー直前のロール間での延伸倍率を1.5〜5倍とし、雰囲気温度が130〜220℃の加熱チャンバー内で延伸倍率が5〜15倍で延伸することが好ましい。 In this case, the subsequent draw ratio of the fibers is 1.5 to 5 times the draw ratio between the first roll in the coagulation bath and the roll immediately before the heating chamber, and the atmosphere temperature is 130 to 220 ° C. in the heating chamber. It is preferable to stretch at a stretching ratio of 5 to 15 times.

繊維の延伸し易さの点で、加熱チャンバー内の雰囲気温度は140〜190℃がより好ましく、150〜170℃がさらに好ましく、繊維の延伸倍率は12倍以下がより好ましい。 From the viewpoint of ease of drawing the fibers, the atmospheric temperature in the heating chamber is more preferably 140 to 190 ° C., further preferably 150 to 170 ° C., and the fiber draw ratio is more preferably 12 times or less.

[繊維径、繊維長]
本発明の繊維は、その繊維径に特に制限はないが、繊維形成のし易さから繊維径は5〜50μmが好ましく、15〜40μmがより好ましく、20〜30μmがさらに好ましい。長繊維・短繊維といった形態は特に制限はない。
[Fiber diameter, fiber length]
The fiber diameter of the fiber of the present invention is not particularly limited, but the fiber diameter is preferably 5 to 50 μm, more preferably 15 to 40 μm, still more preferably 20 to 30 μm from the viewpoint of easy fiber formation. There are no particular restrictions on the forms such as long fibers and short fibers.

[結晶配向度]
本発明の繊維の結晶配向度は、96.6〜98%である。前記結晶配向度が90%以上であれば、結晶配向度は力学的に高物性な繊維を製造する上で基本的には高いことが好ましい。高い引張強度を得る観点から、前記結晶配向度は92%以上が好ましく、95%以上がさらに好ましい。
[Crystal orientation]
The crystal orientation of the fibers of the present invention is 96.6 to 98%. When the degree of crystal orientation is 90% or more, it is preferable that the degree of crystal orientation is basically high in producing fibers having mechanically high physical characteristics. From the viewpoint of obtaining high tensile strength, the degree of crystal orientation is preferably 92% or more, more preferably 95% or more.

特に、アクリル繊維においては、高い配向度は前記した分子量が230万以上の超高分子量PANのゲル紡糸などで達成されてきたが、工業的には問題があった。工業的に大量生産可能な例えば極限粘度1.3〜5.0dL/gのPAN系重合体においては、結晶配向度=93%程度に大きな壁があり、それを超えることは困難と考えられてきた。しかし本発明では我々の鋭意検討により、それを達成したのである。なお、使用した装置や測定方法等の詳細は実施例の項に記載した。 In particular, in acrylic fibers, a high degree of orientation has been achieved by gel spinning of an ultra-high molecular weight PAN having a molecular weight of 2.3 million or more, but there is an industrial problem. For example, in a PAN-based polymer having an ultimate viscosity of 1.3 to 5.0 dL / g, which can be mass-produced industrially, there is a large wall with a crystal orientation degree of about 93%, and it has been considered difficult to exceed it. rice field. However, in the present invention, this has been achieved through our diligent studies. Details of the apparatus used, the measurement method, and the like are described in the section of Examples.

[広角X線のI/I
本発明により製造した繊維は広角X線回折にて測定された子午線方向の回折プロフィール中に観測される
2θ=36±1°内に頂点をもつ回折ピーク頂点の強度(I

2θ=40±1°内に頂点をもつ回折ピーク頂点の強度(I
との比(I/I)に特徴がある。IおよびIが何を表しているかは未だに議論の余地があるが、例えば、非特許文献2ではIは平面ジグザグ構造をとっているポリマーの回折を、Iはα−へリックス構造をとっているポリマーの回折を示していると報告しており、これが一般的な認識であると考えられる。
[Wide-angle X-ray of I A / I B]
Fibers prepared according to the invention the intensity of the diffraction peak apex with an apex at 2θ = 36 ± 1 in ° observed in the diffraction profile of the measured meridian at the wide angle X-ray diffraction (I A)
The 2 [Theta] = 40 the intensity of the diffraction peak apex with an apex at the ± 1 ° (I B)
It is characterized by the ratio (I A / I B) with. Whether I A and I B is what represents is debatable still, but for example, the diffraction I A is in Non-Patent Document 2 adopts a planar zigzag structure polymer, I B is-helix structure α- It is reported that it shows the diffraction of the polymer, which is considered to be a general recognition.

本発明の繊維のI/Iは0.8〜2.0以上であることが物性、特に弾性率発現の面で好ましく、本発明のイオン液体を用いた紡糸法では容易にこれを達成することができる。前記観点から、本発明の繊維のI/Iは1.0以上がより好ましく、1.25以上がさらに好ましい。 I A / I B of the fibers of the present invention is preferably in terms of physical properties to be at 0.8 to 2.0 or more, particularly elastic modulus expressed readily achieve this by spinning method using an ionic liquid of the present invention can do. From the point of view, I A / I B of the fibers of the present invention is more preferably 1.0 or more, more preferably 1.25 or more.

[引張強度、引張弾性率]
本発明の繊維の引張強度は0.7〜2.5GPaであることが好ましい。引張強度が0.7以上であれば、加工工程の通過性や製品の使用上の問題が少なくなる。前記観点から、引張強度は0.9GPa以上がより好ましく、1.2GPa以上がさらに好ましい。
[Tensile strength, tensile elastic modulus]
The tensile strength of the fiber of the present invention is preferably 0.7 to 2.5 GPa. When the tensile strength is 0.7 or more, problems in passability in the processing process and use of the product are reduced. From the above viewpoint, the tensile strength is more preferably 0.9 GPa or more, and further preferably 1.2 GPa or more.

本発明の繊維の引張弾性率は15〜40GPaが好ましい。引張弾性率が15以上であれば、加工工程の通過性や製品の使用上の問題が少なくなる。前記観点から、引張弾性率は19GPa以上がより好ましく、22GPa以上がさらに好ましい。 The tensile elastic modulus of the fiber of the present invention is preferably 15 to 40 GPa. When the tensile elastic modulus is 15 or more, problems in passability in the processing process and use of the product are reduced. From the above viewpoint, the tensile elastic modulus is more preferably 19 GPa or more, and further preferably 22 GPa or more.

[繊維密度]
本発明の繊維はその密度に制限がないが、1.14〜1.22g/cmであることが好ましい。1.14g/cm以上であると繊維内部の構造が密であるため強度、弾性率等の物性発現に有利となる。また、1.22g/cm以下であれば伸度の極端な低下を防げる。
前記観点から、繊維密度は1.17〜1.20g/cmがより好ましく、1.18〜1.19g/cmがさらに好ましい。
[Fiber density]
The density of the fiber of the present invention is not limited, but is preferably 1.14 to 1.22 g / cm 3. When it is 1.14 g / cm 3 or more, the structure inside the fiber is dense, which is advantageous for expressing physical properties such as strength and elastic modulus. Further, if it is 1.22 g / cm 3 or less, an extreme decrease in elongation can be prevented.
From the point of view, the fiber density is more preferably 1.17~1.20g / cm 3, more preferably 1.18~1.19g / cm 3.

以下、実施例により本発明をより具体的に説明するが、本発明はこれらに限定されない。
実施例において、各物性値及び特性は以下の方法により測定した。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
In the examples, each physical property value and characteristic was measured by the following method.

<共重合体組成の測定>
1H−NMR法(日本電子GSX−400型超伝導FT−NMR)により測定した。
<Measurement of copolymer composition>
It was measured by 1H-NMR method (JEOL GSX-400 type superconducting FT-NMR).

<広角X線回折による結晶配向度の測定>
イメージングプレートシステムによるX線繊維図形は、リガク社製のRA−micro7エックス線発生装置を用いて測定した。出力電圧40kV、出力電流20mAでNiフィルターで単色化したCu−Kα線(波長0.15418nm)を用いて試料にX線を垂直入射させて所定時間露光することで撮影した。
<Measurement of crystal orientation by wide-angle X-ray diffraction>
The X-ray fiber graphic by the imaging plate system was measured using a RA-micro7 X-ray generator manufactured by Rigaku. The sample was photographed by vertically incident X-rays on the sample using Cu-Kα rays (wavelength 0.15418 nm) monochromaticized with a Ni filter at an output voltage of 40 kV and an output current of 20 mA and exposed for a predetermined time.

アクリル繊維束の赤道方向の回折角2θ=17°付近の回折につき、方位角方向の回折プロファイルを得て、曲線のフィッティングは2本の擬フォークト関数と1本のベースラインによって近似を行いピークの半価幅(°)の合計Wtotalより次式で計算した。
配向度=(360−Wtotal)/(360)
For the diffraction around the equatorial diffraction angle 2θ = 17 ° of the acrylic fiber bundle, the diffraction profile in the azimuth direction is obtained, and the curve fitting is approximated by two pseudo Voigt functions and one baseline to obtain the peak. It was calculated by the following formula from the total W total of the half price range (°).
Degree of orientation = (360-W total ) / (360)

<広角X線回折によるI/Iの決定>
理学電機(株)製のRU−200型X線発生装置を用い、線源はNiフィルターで単色化したCu−kα線(0.15418nm)を使用した(出力電圧40kV、電流150mA)測定には理学電機(株)製のゴニオメーターPMG−GAを用いた。測定は子午線方向についておこなった。子午線方向回折角2θ=36°、40°付近の回折にそれぞれIとIピークが観察された。回折角方向のプロファイルを得て、曲線のフィッティングは2本のガウス関数と1本のベースラインによって近似を行い、I/Iを決定した。
<Determination of I A / I B by wide angle X-ray diffraction>
A RU-200 type X-ray generator manufactured by Rigaku Denki Co., Ltd. was used, and a Cu-kα ray (0.1548 nm) monochromaticized with a Ni filter was used as the radiation source (output voltage 40 kV, current 150 mA) for measurement. A goniometer PMG-GA manufactured by Rigaku Denki Co., Ltd. was used. Measurements were made in the meridian direction. Meridian diffraction angle 2θ = 36 °, I A and I B peak each diffraction around 40 ° was observed. To obtain a diffraction angle direction of the profile, fitting of the curve performs approximated by two Gaussian functions and one of the baseline, was determined I A / I B.

<繊度測定>
測定はサーチ(株)製のDENICONDC−21を用いた。測定は恒温恒湿室(20℃,65%)で行った。測定試験長は2.5cmで、重りは0.4gである。
<Measurement of fineness>
For the measurement, DENICON DC-21 manufactured by Search Co., Ltd. was used. The measurement was performed in a constant temperature and humidity chamber (20 ° C., 65%). The measurement test length is 2.5 cm and the weight is 0.4 g.

<引張強度、引張弾性率、引張伸度>
引張特性の測定は、(株)島津製作所製の島津小型卓上試験機EZTestEZ−S引張り試験機を用いて、20℃,65%RHの標準状態で行った。試料は、試験前に24時間以上標準状態に保ったものを使用した。試験条件は50Nのロードセルを用い、初期試料長は20mm、引張速度は20mm/分で行った。得られた応力−歪曲線から破断強度、破断伸度、初期弾性率を求めた。
<Tensile strength, tensile elastic modulus, tensile elongation>
The tensile properties were measured using a Shimadzu small desktop tester EZTest EZ-S tensile tester manufactured by Shimadzu Corporation under standard conditions of 20 ° C. and 65% RH. The sample used was kept in the standard state for 24 hours or more before the test. The test conditions were a 50 N load cell, an initial sample length of 20 mm, and a tensile speed of 20 mm / min. The breaking strength, breaking elongation, and initial elastic modulus were obtained from the obtained stress-strain curve.

<極限粘度測定>
約10gの試料を雰囲気温度が80℃の乾燥機に120分保持して乾燥後、精秤し、DMFを加え室温で完全に溶解し、3〜4種類の濃度cのPAN/DMF溶液を調製する(本発明において、実施例1〜3、参考例1〜3および比較例1〜2に用いたポリアクリロニトリルは0.25g/dL、0.50g/dL、0.75g/dL、1.00g/dLの4種類を、実施例4〜5に用いたポリアクリロニトリルは0.17g/dL、0.33g/dL、0.50g/dLの3種類を調整した)。25℃にコントロールされた恒温槽中でウベローデ粘度計を使用して、ブランクDMF液と試料を溶解したサンプルDMF溶液の落下時間をそれぞれ測定する。それぞれ5回の測定値の平均値を求めた後、ブランクDMFの落下時間をt0、サンプルDMF溶液の落下速度をtとして比粘度ηspを式(1)で求める。続いて、各濃度のηsp/cと濃度cの関係をプロットし、ハギンズの式(2)に基づいて、c→0に外挿したときの切片から極限粘度[η]を求めた。
ηsp=(t/t0)−1 ・・・(1)
ηsp/c=[η]+k’[η]2c ・・・(2)
<Extreme viscosity measurement>
Approximately 10 g of the sample is held in a dryer with an ambient temperature of 80 ° C. for 120 minutes to dry, then precisely weighed, DMF is added and completely dissolved at room temperature to prepare PAN / DMF solutions having 3 to 4 concentrations of c. (In the present invention, the polyacrylonitrile used in Examples 1 to 3, Reference Examples 1 to 3 and Comparative Examples 1 to 2 is 0.25 g / dL, 0.50 g / dL, 0.75 g / dL, 1.00 g. The four types of / dL were used, and the polyacrylonitrile used in Examples 4 to 5 was adjusted to 0.17 g / dL, 0.33 g / dL, and 0.50 g / dL). Using an Ubbelohde viscometer in a constant temperature bath controlled at 25 ° C., the falling time of the blank DMF solution and the sample DMF solution in which the sample is dissolved is measured. After obtaining the average value of the measured values of each of the five times, the specific viscosity ηsp is calculated by the formula (1), where the falling time of the blank DMF is t0 and the falling speed of the sample DMF solution is t. Subsequently, the relationship between ηsp / c and the concentration c of each concentration was plotted, and the ultimate viscosity [η] was obtained from the intercept when extrapolated from c to 0 based on Huggins' equation (2).
ηsp = (t / t0) -1 ... (1)
ηsp / c = [η] + k'[η] 2c ・ ・ ・ (2)

<数平均分子量測定>
数平均分子量はゲル浸透クロマトグラフィー(GPC)により測定した値である。数平均分子量とはMiの分子量を持つ高分子がNi個存在する場合、以下の計算式
数平均分子量(Mn)=Σ(NiMi)/Σ(Ni)
で表される値である。数平均分子量はポリスチレン換算での相対値を用いる。
<Measurement of number average molecular weight>
The number average molecular weight is a value measured by gel permeation chromatography (GPC). What is the number average molecular weight? When there are Ni polymers with a molecular weight of Mi, the following formula is used. Number average molecular weight (Mn) = Σ (NiMi) / Σ (Ni)
It is a value represented by. For the number average molecular weight, use a relative value in terms of polystyrene.

<密度測定>
25℃、トルエン−四塩化炭素系にて浮沈法を用いて繊維の密度を測定した。
長さ5mmの繊維を1mg程度量りとり、繊維の大部分がガラス容器の中心付近で浮遊するようにトルエン−四塩化炭素混合液を調整し、そのときの液体密度を、ピクノメータを用いて、繊維の密度とした。
<Densitometry>
The fiber density was measured using the floating and sinking method in a toluene-carbon tetrachloride system at 25 ° C.
Weigh about 1 mg of 5 mm long fiber, adjust the toluene-carbon tetrachloride mixed solution so that most of the fiber floats near the center of the glass container, and measure the liquid density at that time using a pycnometer. The density was set to.

<紡糸工程での延伸倍率>
紡糸原液を巻き取る第一巻き取りロールのロール速度とワインダーの巻き取り速度との比(例として、図1では[4Dロール速度/4Aロール速度]に対応)を、紡糸工程での延伸倍率とした。
<Drawing ratio in spinning process>
The ratio of the roll speed of the first take-up roll that winds the spinning stock solution to the take-up speed of the winder (for example, in FIG. 1, corresponds to [4D roll speed / 4A roll speed]) is used as the draw ratio in the spinning process. did.

<加熱チャンバーでの延伸倍率>
加熱チャンバーへの供給するクリールの速度と加熱チャンバーを出た後のワインダーの速度の比(例として図2では[4Fロール速度/4Eロール速度]に対応)を、加熱チャンバーでの延伸倍率とした。
<Stretching ratio in the heating chamber>
The ratio of the speed of the creel supplied to the heating chamber and the speed of the winder after leaving the heating chamber (for example, corresponding to [4F roll speed / 4E roll speed] in FIG. 2) was taken as the stretching ratio in the heating chamber. ..

<総延伸倍率>
上記の紡糸工程での延伸倍率と、同じく上記の加熱チャンバーでの延伸倍率を掛け合わせることで総延伸倍率とした。それゆえ、ジェットストレッチの倍率は本発明では総延伸倍率に加味されない。
<Total draw ratio>
The total draw ratio was obtained by multiplying the draw ratio in the above spinning process by the draw ratio in the same heating chamber. Therefore, the jet stretch ratio is not added to the total stretch ratio in the present invention.

[実施例1]
まず、図1に示すような乾湿式紡糸装置により、紡糸工程を行った。
ポリアクリロニトリル(極限粘度=1.56dL/g、数平均分子量=190,000、AN組成≧99%)を1−ブチル−3−メチルイミダゾリウムクロリド(BmimCL)に溶解し、固形分濃度が15質量%のPAN系重合体含有溶液を調製した。該PAN系重合体含有溶液を90℃まで加温し、ヒーター1で同じく90℃に加温した原液タンク2に詰め、紡糸原液とした。紡糸原液は、ノズル3の直径0.52mmの1ホールの吐出孔から0.30g/分で定量吐出され、凝固浴5を通過させることで凝固させた。凝固直後のロール4Aの巻き取り速度を2.6m/minとして、ジェットストレッチによる延伸倍率を2.2倍とした。ノズル3の吐出孔から凝固浴5の液面10までは10mmのエアギャップを設けて、乾湿式紡糸とした。凝固浴5の凝固液は10℃の水とし、続く第1洗浄槽6の洗浄液は32℃の水、第2洗浄槽7の洗浄液は60℃の水として繊維を洗浄した。
[Example 1]
First, the spinning process was performed by a dry-wet spinning apparatus as shown in FIG.
Polyacrylonitrile (extreme viscosity = 1.56 dL / g, number average molecular weight = 190,000, AN composition ≥ 99%) was dissolved in 1-butyl-3-methylimidazolium chloride (BimCL), and the solid content concentration was 15 mass. % PAN-based polymer-containing solution was prepared. The PAN-based polymer-containing solution was heated to 90 ° C. and packed in a stock solution tank 2 which was also heated to 90 ° C. with a heater 1 to prepare a spinning stock solution. The spinning stock solution was quantitatively discharged at 0.30 g / min from a 1-hole discharge hole having a diameter of 0.52 mm of the nozzle 3, and was solidified by passing through a coagulation bath 5. The winding speed of the roll 4A immediately after solidification was 2.6 m / min, and the stretching ratio by jet stretching was 2.2 times. An air gap of 10 mm was provided from the discharge hole of the nozzle 3 to the liquid level 10 of the coagulation bath 5, and dry-wet spinning was performed. The coagulating liquid in the coagulation bath 5 was water at 10 ° C., the subsequent cleaning liquid in the first washing tank 6 was water at 32 ° C., and the cleaning liquid in the second washing tank 7 was water at 60 ° C. to wash the fibers.

凝固浴5に入った後も繊維内外でのBmimCLと水の相互拡散は遅く、凝固浴5内では繊維は透明で、顕微鏡観察からも透明均一な繊維形状が確認された。続く第1洗浄槽6及び第2洗浄槽7にて拡散が進み、BmimCLは繊維外へと完全に拡散する様子が確認された。 Even after entering the coagulation bath 5, mutual diffusion of BmimCL and water inside and outside the fiber was slow, the fiber was transparent in the coagulation bath 5, and a transparent and uniform fiber shape was confirmed by microscopic observation. It was confirmed that diffusion proceeded in the subsequent first cleaning tank 6 and second cleaning tank 7, and BmimCL completely diffused to the outside of the fiber.

第2洗浄槽7の後には、内部の雰囲気温度が60℃である乾燥機8を用意し、繊維を連続で乾燥させ、ワインダーにて巻き取った。凝固浴中のロール4Aと第2洗浄槽のロール4C間の紡糸工程の延伸倍率は3倍とした。 After the second washing tank 7, a dryer 8 having an internal atmospheric temperature of 60 ° C. was prepared, and the fibers were continuously dried and wound by a winder. The draw ratio of the spinning step between the roll 4A in the coagulation bath and the roll 4C in the second washing tank was set to 3 times.

次に、図2に示すような加熱チャンバーにより、延伸工程を行った。
巻き取った乾燥した繊維を、長さ2mの加熱チャンバー13内で延伸した。チャンバーの温度は160℃で、この工程での延伸倍率は10倍で安定的に紡糸でき、総延伸倍率30倍を達成した。
Next, a stretching step was performed in a heating chamber as shown in FIG.
The wound dried fibers were stretched in a heating chamber 13 having a length of 2 m. The temperature of the chamber was 160 ° C., the draw ratio in this step was 10 times, and stable spinning was possible, achieving a total draw ratio of 30 times.

このアクリル繊維の直径は26μm、引張強度は0.97GPa、弾性率は23.0GPa、伸度は11.0%、密度は1.19g/cm、結晶配向度は96.6%、子午線方向のX線回折強度比(I/I)は1.29であった。 The diameter of this acrylic fiber is 26 μm, the tensile strength is 0.97 GPa, the elastic modulus is 23.0 GPa, the elongation is 11.0%, the density is 1.19 g / cm 3 , the crystal orientation is 96.6%, and the meridional direction. X-ray diffraction intensity ratio of (I a / I B) was 1.29.

[実施例2]
加熱チャンバー内で延伸を9倍(総延伸倍率27倍)にした点以外は実施例1と同様の方法でアクリル繊維を得た。このアクリル繊維の直径は27μm、引張強度は1.11GPa、弾性率は23.0GPa、伸度は10.8%、密度は1.18g/cm、結晶配向度は96.8%、子午線方向のX線回折強度比(I/I)は1.33であった。
[Example 2]
Acrylic fibers were obtained in the same manner as in Example 1 except that the drawing was performed 9 times (total drawing ratio 27 times) in the heating chamber. The diameter of this acrylic fiber is 27 μm, the tensile strength is 1.11 GPa, the elastic modulus is 23.0 GPa, the elongation is 10.8%, the density is 1.18 g / cm 3 , the crystal orientation is 96.8%, and the meridional direction. X-ray diffraction intensity ratio of (I a / I B) was 1.33.

[参考例1]
溶媒を1−エチル−3−メチルイミダゾリウムクロリド(EmimCL)に変えた点以外は実施例1と同様の方法でアクリル繊維を得た。繊維の直径は33μm、引張強度は1.03GPa、弾性率は19.4GPa、伸度は10.3%、密度は1.20g/cm、結晶配向度は94.2%、子午線方向のX線回折強度比(I/I)は1.00であった。
[Reference example 1]
Acrylic fibers were obtained in the same manner as in Example 1 except that the solvent was changed to 1-ethyl-3-methylimidazolium chloride (EmimCL). Fiber diameter is 33 μm, tensile strength is 1.03 GPa, elastic modulus is 19.4 GPa, elongation is 10.3%, density is 1.20 g / cm 3 , crystal orientation is 94.2%, X in the meridian direction. ray diffraction intensity ratio (I a / I B) was 1.00.

[参考例2]
原液温度を95℃に、凝固浴の温度を30℃に、加熱チャンバーでの延伸倍率を6倍とし、総延伸倍率を18倍とした点以外は実施例1と同様の方法でアクリル繊維を得た。本方法では凝固浴中で繊維がわずかに白濁した。このアクリル繊維の直径は31μm、引張強度は1.03GPa、弾性率は21.6GPa、伸度は10.3%、密度は1.18g/cm、結晶配向度は92.9%、子午線方向のX線回折強度比(I/I)は1.19であった。
[Reference example 2]
Acrylic fibers are obtained by the same method as in Example 1 except that the undiluted solution temperature is 95 ° C., the coagulation bath temperature is 30 ° C., the draw ratio in the heating chamber is 6 times, and the total draw ratio is 18 times. rice field. In this method, the fibers became slightly cloudy in the coagulation bath. The diameter of this acrylic fiber is 31 μm, the tensile strength is 1.03 GPa, the elastic modulus is 21.6 GPa, the elongation is 10.3%, the density is 1.18 g / cm 3 , the crystal orientation is 92.9%, and the meridional direction. X-ray diffraction intensity ratio of (I a / I B) of 1.19.

[実施例3]
原液温度を95℃に、凝固浴の温度を2℃に、加熱チャンバーでの延伸倍率を8倍とし、総延伸倍率を24倍とした点以外は実施例1と同様の方法でアクリル繊維を得た。このアクリル繊維の直径は26μm、引張強度は1.45GPa、弾性率は25.2GPa、伸度は9.9%、密度は1.19g/cm、結晶配向度は96.6、子午線方向のX線回折強度比(I/I)は1.49であった。
[Example 3]
Acrylic fibers are obtained by the same method as in Example 1 except that the undiluted solution temperature is 95 ° C., the coagulation bath temperature is 2 ° C., the draw ratio in the heating chamber is 8 times, and the total draw ratio is 24 times. rice field. The diameter of this acrylic fiber is 26 μm, the tensile strength is 1.45 GPa, the elastic modulus is 25.2 GPa, the elongation is 9.9%, the density is 1.19 g / cm 3 , the crystal orientation is 96.6, and the meridional direction. X-ray diffraction intensity ratio (I a / I B) was 1.49.

[参考例3]
原液温度を95℃に、紡糸工程を、図1に示すような乾湿式紡糸装置に代えて図3に示すような乾湿式紡糸装置により行うようにして、凝固浴直後のロール4Gの巻き取り速度を193.0m/minに上げてジェットストレッチによる延伸倍率を160.8倍に変更し、紡糸工程での延伸は行わず、乾燥機8の内部雰囲気温度を60℃から25℃に変更し、加熱チャンバー13での延伸倍率を3倍とし、総延伸倍率を9倍とした点以外は実施例1と同様の方法でアクリル繊維を得た。このアクリル繊維の直径は9μm、引張強度は1.26GPa、弾性率は18.9GPa、伸度は11.9%、密度は1.18g/cmであった。なお、サンプル量が少量であったため、結晶配向度及び子午線方向のX線回折強度比(I/I)は測定しなかった。
[Reference example 3]
The undiluted solution temperature was set to 95 ° C., and the spinning process was performed by a dry-wet spinning device as shown in FIG. 3 instead of the dry-wet spinning device as shown in FIG. 1, and the winding speed of the roll 4G immediately after the coagulation bath was performed. Was increased to 193.0 m / min to change the draw ratio by jet stretching to 160.8 times, the internal atmosphere temperature of the dryer 8 was changed from 60 ° C to 25 ° C without stretching in the spinning process, and heating was performed. Acrylic fibers were obtained in the same manner as in Example 1 except that the draw ratio in the chamber 13 was set to 3 times and the total draw ratio was set to 9 times. The diameter of the acrylic fiber was 9 μm, the tensile strength was 1.26 GPa, the elastic modulus was 18.9 GPa, the elongation was 11.9%, and the density was 1.18 g / cm 3 . Since the sample volume was small amounts, X-rays diffraction intensity ratio of the crystal orientation and the meridian (I A / I B) was not measured.

[比較例1]
溶媒をジメチルホルムアミド(DMF)とし、エアギャップを5mmとし、第1洗浄槽の洗浄温度を35℃とし、加熱チャンバーでの延伸倍率を4倍とし、総延伸倍率を12倍とした点以外は実施例1と同様の方法でアクリル繊維を得た。凝固浴に入った瞬間に白濁した繊維が形成され、顕微鏡観察からは多数のボイドが見受けられた。加熱チャンバーでの延伸倍率4倍は最大延伸倍率であり、この倍率で糸が切れはじめたため、総延伸倍率は12倍が限界であった。
[Comparative Example 1]
Except for the fact that the solvent was dimethylformamide (DMF), the air gap was 5 mm, the cleaning temperature of the first cleaning tank was 35 ° C, the stretching ratio in the heating chamber was 4 times, and the total stretching ratio was 12 times. Acrylic fibers were obtained in the same manner as in Example 1. At the moment of entering the coagulation bath, cloudy fibers were formed, and a large number of voids were observed by microscopic observation. The draw ratio of 4 times in the heating chamber was the maximum draw ratio, and since the yarn started to break at this ratio, the total draw ratio was limited to 12 times.

このアクリル繊維の直径は38μm、引張強度は0.56GPa、弾性率は8.9GPa、伸度は13.0%、密度は1.13g/cm、結晶配向度は87.2%、子午線方向のX線回折強度比(I/I)は0.32であった。 The diameter of this acrylic fiber is 38 μm, the tensile strength is 0.56 GPa, the elastic modulus is 8.9 GPa, the elongation is 13.0%, the density is 1.13 g / cm 3 , the crystal orientation is 87.2%, and the meridional direction. X-ray diffraction intensity ratio of (I a / I B) was 0.32.

[比較例2]
溶媒をジメチルアセトアミド(DMAc)とし、エアギャップを5mmとし、第1洗浄槽の洗浄温度を35℃とし、加熱チャンバーでの延伸倍率を3倍とし、総延伸倍率を9倍とした点以外は実施例1と同様の方法でアクリル繊維を得た。凝固浴に入った瞬間に白濁した繊維が形成され、顕微鏡観察からは多数のボイドが見受けられた。加熱チャンバーでの延伸倍率3倍は最大延伸倍率であり、この倍率で糸が切れはじめたため、総延伸倍率は9倍が限界であった。
[Comparative Example 2]
Except for the fact that the solvent was dimethylacetamide (DMAc), the air gap was 5 mm, the cleaning temperature of the first cleaning tank was 35 ° C, the stretching ratio in the heating chamber was 3 times, and the total stretching ratio was 9 times. Acrylic fibers were obtained in the same manner as in Example 1. At the moment of entering the coagulation bath, cloudy fibers were formed, and a large number of voids were observed by microscopic observation. The draw ratio of 3 times in the heating chamber was the maximum draw ratio, and since the yarn started to break at this ratio, the total draw ratio was limited to 9 times.

このアクリル繊維の直径は40μm、引張強度は0.47GPa、弾性率は7.7GPa、伸度は16.0%、密度は1.13g/cm、結晶配向度は88.2%、子午線方向のX線回折強度比(I/I)は0.34であった。 The diameter of this acrylic fiber is 40 μm, the tensile strength is 0.47 GPa, the elastic modulus is 7.7 GPa, the elongation is 16.0%, the density is 1.13 g / cm 3 , the crystal orientation is 88.2%, and the meridional direction. X-ray diffraction intensity ratio of (I a / I B) was 0.34.

[実施例4]
まず、図1に示すような乾湿式紡糸装置により、紡糸工程を行った。
ポリアクリロニトリル(極限粘度=3.90dL/g、数平均分子量=380,000、AN組成≧99%)を1−ブチル−3−メチルイミダゾリウムクロリド(BmimCL)に溶解し、固形分濃度が10質量%のPAN系重合体含有溶液を調製した。該PAN系重合体含有溶液を100℃まで加温し、ヒーター1で同じく100℃に加温した原液タンク2に詰め、紡糸原液とした。紡糸原液は、ノズル3の直径0.52mmの1ホールの吐出孔から0.30g/分で定量吐出され、凝固浴5を通過させることで凝固させた。凝固直後のロール4Aの巻き取り速度を2.6m/minとして、ジェットストレッチによる延伸倍率を2.2倍とした。ノズル3の吐出孔から凝固浴5の液面10までは10mmのエアギャップを設けて、乾湿式紡糸とした。凝固浴5の凝固液は2℃の水とし、続く第1洗浄槽6の洗浄液は30℃の水、第2洗浄槽7の洗浄液は60℃の水として繊維を洗浄した。
[Example 4]
First, the spinning process was performed by a dry-wet spinning apparatus as shown in FIG.
Polyacrylonitrile (extreme viscosity = 3.90 dL / g, number average molecular weight = 380,000, AN composition ≥ 99%) was dissolved in 1-butyl-3-methylimidazolium chloride (BimCL), and the solid content concentration was 10 mass. % PAN-based polymer-containing solution was prepared. The PAN-based polymer-containing solution was heated to 100 ° C. and packed in a stock solution tank 2 which was also heated to 100 ° C. with a heater 1 to prepare a spinning stock solution. The spinning stock solution was quantitatively discharged at 0.30 g / min from a 1-hole discharge hole having a diameter of 0.52 mm of the nozzle 3, and was solidified by passing through a coagulation bath 5. The winding speed of the roll 4A immediately after solidification was 2.6 m / min, and the stretching ratio by jet stretching was 2.2 times. An air gap of 10 mm was provided from the discharge hole of the nozzle 3 to the liquid level 10 of the coagulation bath 5, and dry-wet spinning was performed. The coagulating liquid in the coagulation bath 5 was water at 2 ° C., the subsequent cleaning liquid in the first washing tank 6 was water at 30 ° C., and the cleaning liquid in the second washing tank 7 was water at 60 ° C. to wash the fibers.

凝固浴5に入った後も繊維内外でのBmimCLと水の相互拡散は遅く、凝固浴5内では繊維は透明で、顕微鏡観察からも透明均一な繊維形状が確認された。続く第1洗浄槽6及び第2洗浄槽7にて拡散が進み、BmimCLは繊維外へと完全に拡散する様子が確認された。 Even after entering the coagulation bath 5, mutual diffusion of BmimCL and water inside and outside the fiber was slow, the fiber was transparent in the coagulation bath 5, and a transparent and uniform fiber shape was confirmed by microscopic observation. It was confirmed that diffusion proceeded in the subsequent first cleaning tank 6 and second cleaning tank 7, and BmimCL completely diffused to the outside of the fiber.

第2洗浄槽7の後には、内部の雰囲気温度が60℃である乾燥機8を用意し、繊維を連続で乾燥させ、ワインダーにて巻き取った。凝固浴中のロール4Aと第2洗浄槽のロール4C間の紡糸工程の延伸倍率は3倍とした。 After the second washing tank 7, a dryer 8 having an internal atmospheric temperature of 60 ° C. was prepared, and the fibers were continuously dried and wound by a winder. The draw ratio of the spinning step between the roll 4A in the coagulation bath and the roll 4C in the second washing tank was set to 3 times.

次に、図2に示すような加熱チャンバーにより、延伸工程を行った。
巻き取った乾燥した繊維を、長さ2mの加熱チャンバー13内で延伸した。チャンバーの温度は185℃で、この工程での延伸倍率は9倍で安定的に紡糸でき、総延伸倍率27倍を達成した。
Next, a stretching step was performed in a heating chamber as shown in FIG.
The wound dried fibers were stretched in a heating chamber 13 having a length of 2 m. The temperature of the chamber was 185 ° C., the draw ratio in this step was 9 times, and stable spinning was possible, achieving a total draw ratio of 27 times.

このアクリル繊維の直径は20μm、引張強度は1.83GPa、弾性率は25.8GPa、伸度は13.6%、密度は1.18g/cm、結晶配向度は97.1%、子午線方向のX線回折強度比(I/I)は1.54であった。 The diameter of this acrylic fiber is 20 μm, the tensile strength is 1.83 GPa, the elastic modulus is 25.8 GPa, the elongation is 13.6%, the density is 1.18 g / cm 3 , the crystal orientation is 97.1%, and the meridional direction. X-ray diffraction intensity ratio of (I a / I B) was 1.54.

[実施例5]
固形分濃度を12質量%、原液温度を120℃、加熱チャンバーの温度を190℃に、加熱チャンバー内で延伸を10倍とし、総延伸倍率を30倍とした点以外は実施例4と同様の方法でアクリル繊維を得た。このアクリル繊維の直径は22μm、引張強度は1.88GPa、弾性率は25.8GPa、伸度は12.8%、密度は1.18g/cm、結晶配向度は97.0%、子午線方向のX線回折強度比(I/I)は1.50であった。
[Example 5]
The same as in Example 4 except that the solid content concentration was 12% by mass, the stock solution temperature was 120 ° C., the heating chamber temperature was 190 ° C., the stretching in the heating chamber was 10 times, and the total stretching ratio was 30 times. Acrylic fibers were obtained by the method. The diameter of this acrylic fiber is 22 μm, the tensile strength is 1.88 GPa, the elastic modulus is 25.8 GPa, the elongation is 12.8%, the density is 1.18 g / cm 3 , the crystal orientation is 97.0%, and the meridional direction. X-ray diffraction intensity ratio of (I a / I B) was 1.50.

Figure 2021105244
Figure 2021105244

Figure 2021105244
Figure 2021105244

1 ヒーター
2 原液タンク
3 ノズル
4A ロール(A速度)
4B ロール(B速度)
4C ロール(C速度)
4D ロール(D速度)
4E ロール(E速度)
4F ロール(F速度)
4G ロール(G速度)
5 凝固浴
6 第1洗浄槽
7 第2洗浄槽
8 乾燥機
9 ワインダー
10 凝固液または洗浄液の液面
11 繊維
12 クリール
13 加熱チャンバー
1 Heater 2 Stock solution tank 3 Nozzle 4 A roll (A speed)
4B roll (B speed)
4C roll (C speed)
4D roll (D speed)
4E roll (E speed)
4F roll (F speed)
4G roll (G speed)
5 Coagulation bath 6 1st cleaning tank 7 2nd cleaning tank 8 Dryer 9 Winder 10 Coagulant or cleaning liquid level 11 Fiber 12 Creel 13 Heating chamber

Claims (12)

ビニル系重合体より形成される繊維であって、前記ビニル系重合体の極限粘度が1.3〜5.0dL/gであり、広角X線回折を使用して測定された結晶配向度が96.6〜98%である繊維。 A fiber formed from a vinyl-based polymer, the vinyl-based polymer having an ultimate viscosity of 1.3 to 5.0 dL / g, and a crystal orientation degree of 96 measured using wide-angle X-ray diffraction. .6 to 98% fiber. 広角X線回折を使用して測定された繊維の子午線方向の回折プロフィール中に観測される
2θ=36±1°内に頂点をもつ回折ピーク頂点の強度(I

2θ=40±1°内に頂点をもつ回折ピーク頂点の強度(I
との比(I/I)が0.8〜2.0であり、引張強度が0.7〜2.5GPaであり、引張弾性率が15〜40GPaである請求項1に記載の繊維。
Intensity of the diffraction peak apex with an apex at 2θ = 36 ± 1 in ° observed in the diffraction profile of the meridian of measured fibers using a wide-angle X-ray diffraction (I A)
The 2 [Theta] = 40 the intensity of the diffraction peak apex with an apex at the ± 1 ° (I B)
The ratio of (I A / I B) is 0.8 to 2.0, the tensile strength is 0.7~2.5GPa, according to claim 1 tensile modulus of 15~40GPa fibers ..
繊維の密度が1.14〜1.22g/cmである請求項1または2に記載の繊維。 The fiber according to claim 1 or 2, wherein the fiber density is 1.14 to 1.22 g / cm 3. 前記ビニル系重合体がポリアクリロニトリル系重合体であり、
前記ポリアクリロニトリル系重合体は、数平均分子量が10万〜80万であり、アクリロニトリルの共重合率が90モル%以上である請求項1〜3のいずれかに記載の繊維。
The vinyl-based polymer is a polyacrylonitrile-based polymer.
The fiber according to any one of claims 1 to 3, wherein the polyacrylonitrile-based polymer has a number average molecular weight of 100,000 to 800,000 and a copolymerization rate of acrylonitrile of 90 mol% or more.
極限粘度が1.3〜4.0dL/gであるビニル系重合体をイオン液体により溶解したことを特徴とする請求項1〜4のいずれかに記載の繊維の製造に用いられる紡糸原液。 The spinning stock solution used for producing a fiber according to any one of claims 1 to 4, wherein a vinyl polymer having an ultimate viscosity of 1.3 to 4.0 dL / g is dissolved in an ionic liquid. 前記ビニル系重合体が、数平均分子量が10万〜40万のポリアクリロニトリル系重合体である請求項5に記載の紡糸原液。 The spinning stock solution according to claim 5, wherein the vinyl-based polymer is a polyacrylonitrile-based polymer having a number average molecular weight of 100,000 to 400,000. 前記イオン液体のカチオン種がイミダゾリウム系である請求項5または6に記載の紡糸原液。 The undiluted spinning solution according to claim 5 or 6, wherein the cation species of the ionic liquid is an imidazolium type. 前記イオン液体のカチオン種が1,3−ジアルキルイミダゾリウム系である請求項7に記載の紡糸原液。 The undiluted spinning solution according to claim 7, wherein the cation species of the ionic liquid is a 1,3-dialkylimidazolium type. 前記イオン液体のカチオン種が1−ブチル−3−メチルイミダゾリウム、1−エチル−3−メチルイミダゾリウムのいずれか1種以上である請求項8に記載の紡糸原液。 The undiluted spinning solution according to claim 8, wherein the cation species of the ionic liquid is one or more of 1-butyl-3-methylimidazolium and 1-ethyl-3-methylimidazolium. 前記イオン液体のアニオン種が塩素イオン、臭素イオン、ヨウ素イオンのいずれか1種以上からなる請求項5または6に記載の紡糸原液。 The undiluted spinning solution according to claim 5 or 6, wherein the anion species of the ionic liquid comprises one or more of chloride ion, bromine ion, and iodide ion. 前記イオン液体が1−ブチル−3−メチルイミダゾリウムクロリド、1−エチル−3−メチルイミダゾリウムクロリドのいずれか1種以上である請求項5〜10のいずれかに記載の紡糸原液。 The undiluted spinning solution according to any one of claims 5 to 10, wherein the ionic liquid is at least one of 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium chloride. 前記ポリアクリロニトリル系重合体の含有量が、紡糸原液の質量に対して5〜30質量%である請求項5〜11のいずれかに記載の紡糸原液。 The spinning stock solution according to any one of claims 5 to 11, wherein the content of the polyacrylonitrile-based polymer is 5 to 30% by mass with respect to the mass of the spinning stock solution.
JP2021063998A 2015-02-04 2021-04-05 High-performance fibers and spinning dope used in the production of said fibers Active JP7307873B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015020471 2015-02-04
JP2015020471 2015-02-04
JP2016017252A JP6909453B2 (en) 2015-02-04 2016-02-01 High-performance fiber manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016017252A Division JP6909453B2 (en) 2015-02-04 2016-02-01 High-performance fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2021105244A true JP2021105244A (en) 2021-07-26
JP7307873B2 JP7307873B2 (en) 2023-07-13

Family

ID=56686130

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016017252A Active JP6909453B2 (en) 2015-02-04 2016-02-01 High-performance fiber manufacturing method
JP2021063998A Active JP7307873B2 (en) 2015-02-04 2021-04-05 High-performance fibers and spinning dope used in the production of said fibers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016017252A Active JP6909453B2 (en) 2015-02-04 2016-02-01 High-performance fiber manufacturing method

Country Status (1)

Country Link
JP (2) JP6909453B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102501765B1 (en) * 2020-12-18 2023-02-21 재단법인 한국탄소산업진흥원 Manufacturing method of precursor for pan-based carbon fiber
CN114318565B (en) * 2021-12-20 2023-03-28 四川辉腾科技股份有限公司 Wet spinning and washing device and process for aramid fiber containing benzimidazole
CN114411276B (en) * 2022-03-04 2023-04-14 安徽迪惠新材料科技有限公司 Production equipment and method of bio-based fiber material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452811A (en) * 1986-07-28 1989-02-28 Mitsubishi Rayon Co Production of high-tenacity acrylic fiber
JPH04240220A (en) * 1991-01-21 1992-08-27 Mitsubishi Rayon Co Ltd Precursor for carbon fiber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718052B2 (en) * 1984-11-16 1995-03-01 東レ株式会社 Manufacturing method of high strength acrylic fiber
JPH1112856A (en) * 1997-06-23 1999-01-19 Toray Ind Inc Acrylic precursor fiber for carbon fiber and its production
JPH11241230A (en) * 1997-12-11 1999-09-07 Toray Ind Inc Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
CN101067214B (en) * 2007-06-12 2012-02-01 东华大学 Dry-jet wet-spinning technique for producing polyacrylonitrile fibre
JP5407080B2 (en) * 2009-03-31 2014-02-05 ドンファ ユニバーシティー Carbon fiber, its yarn, and preoxidized fiber manufacturing method
CN101597820B (en) * 2009-06-09 2011-04-27 东华大学 Preparation method of polyacrylonitrile carbon fiber
JP2012193468A (en) * 2011-03-16 2012-10-11 Mitsubishi Rayon Co Ltd Carbon fiber precursor fiber and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452811A (en) * 1986-07-28 1989-02-28 Mitsubishi Rayon Co Production of high-tenacity acrylic fiber
JPH04240220A (en) * 1991-01-21 1992-08-27 Mitsubishi Rayon Co Ltd Precursor for carbon fiber

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"イオン液体を溶媒とする高強度PAN繊維の作製", 繊維学会予稿集, vol. 70巻2号, JPN6019041304, 22 October 2015 (2015-10-22), JP, pages 43頁, ISSN: 0004953774 *
LI XIANG: "The plasticization mechanism of polyacrylonitrile/1-butyl-3-methylimidazolium chloride system", POLYMER, vol. 55, no. 22, JPN6019041305, 2014, pages 5773 - 5780, ISSN: 0004953775 *
ZHANG YUMEI: "Acrylic fibers processing with ionic liquid as solvent", POLYMERS FOR ADVANCED TECHNOLOGIES, vol. 20, no. 11, JPN6019041306, 2009, pages 857 - 862, XP007910008, ISSN: 0004953776, DOI: 10.1002/pat.1327 *

Also Published As

Publication number Publication date
JP7307873B2 (en) 2023-07-13
JP2016145441A (en) 2016-08-12
JP6909453B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP2021105244A (en) High-performance fiber and dope used in manufacturing of the fiber
KR101321621B1 (en) Polyacrylonitrile fiber manufacturing method and carbon fiber manufacturing method
CN102733009A (en) High strength polyacrylonitrile-base carbon fibers having structured surface grooves, and preparation method thereof
JP5169939B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
WO2010035834A1 (en) Easily dyeable meta-form wholly aromatic polyamide fiber
Tan et al. Gel‐spun polyacrylonitrile fiber from pregelled spinning solution
JP2010111979A (en) Process for producing precursor fiber for carbon fiber and carbon fiber
Liu et al. Spinnability of polyacrylonitrile gel dope in the mixed solvent of dimethyl sulfoxide/dimethylacetamide and characterization of the nascent fibers
CN105714411B (en) A kind of preparation method of poly- pyrrole throat/polyether sulfone/carbon nanometer pipe ternary composite material
Yi et al. Study on optimum coagulation conditions of high molecular weight PAN fiber in wet spinning by orthogonal experimental design
JP2002302828A (en) Acrylonitrile-based precursor filament bundle for carbon fiber and method for producing the same
WO2021255957A1 (en) Method for producing polyamide 4 fiber
JP4979478B2 (en) Acrylonitrile-based carbon fiber precursor fiber bundle, carbon fiber bundle using the same, and method for producing the same
Chen et al. Structure of PAN precursor in thermal‐induced gel spinning
JP2022527107A (en) Method for Producing a Uniform Solution of Polyacrylonitrile Polymer
JP2006348422A (en) Acrylonitrile based polymer solution for carbon fiber and method for producing the same
JP4957634B2 (en) Method for producing carbon fiber precursor fiber, carbon fiber bundle and method for producing the same
KR20230152714A (en) Process for producing polymer fibers and polymer fibers made therefrom
JP2019094589A (en) Production method of precursor fiber for carbon fiber
JP2016141911A (en) High performance fiber in wet spinning method and method for producing the same
JP2010174422A (en) Precursor for producing carbon fiber and method for producing the same
JPS6335820A (en) Production of polyacrylonitrile fiber having high tenacity
JP2010235794A (en) Manufacturing methods of polyacrylonitrile polymer solution, carbon fiber precursor fiber, and carbon fiber
JP2024043467A (en) Method for producing a flame-resistant fiber bundle, method for producing a carbon fiber bundle, and flame-resistant fiber bundle
JP2002161430A (en) Method for producing water-soluble polyvinyl alcohol- based fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230609

R150 Certificate of patent or registration of utility model

Ref document number: 7307873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150