JP2010174422A - Precursor for producing carbon fiber and method for producing the same - Google Patents

Precursor for producing carbon fiber and method for producing the same Download PDF

Info

Publication number
JP2010174422A
JP2010174422A JP2009020876A JP2009020876A JP2010174422A JP 2010174422 A JP2010174422 A JP 2010174422A JP 2009020876 A JP2009020876 A JP 2009020876A JP 2009020876 A JP2009020876 A JP 2009020876A JP 2010174422 A JP2010174422 A JP 2010174422A
Authority
JP
Japan
Prior art keywords
precursor
spinning
carbon fiber
producing
acrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009020876A
Other languages
Japanese (ja)
Inventor
Masanori Shigeta
征紀 重田
Takero Matsuyama
猛郎 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2009020876A priority Critical patent/JP2010174422A/en
Publication of JP2010174422A publication Critical patent/JP2010174422A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precursor for producing carbon fibers which produces high strength carbon fibers, has high product yield with little yarn breakages (number of yarns broken in a process) in steps for producing the carbon fibers. <P>SOLUTION: The precursor for producing carbon fibers is an acrylonitrile-based precursor having a weight average molecular weight of 100,000-1,000,000, and has an average pore diameter of 35 nm or less, which is calculated from a half pressure value of the total amount of mercury obtained from a mercury invasion curve when mercury is pressed into the precursor in measuring pore distribution by a mercury pressure step of the precursor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高強度の炭素繊維を製造するための、高分子量のポリマー溶液からなる紡糸原液が紡糸されてなるプリカーサであって、炭素繊維製造工程において糸切れが少なく、製品収率が高いプリカーサ及びその製造方法に関する。   The present invention relates to a precursor obtained by spinning a spinning stock solution composed of a high molecular weight polymer solution for producing high-strength carbon fiber, wherein the precursor has high yarn yield and low product breakage in the carbon fiber production process. And a manufacturing method thereof.

従来、炭素繊維製造用のプリカーサを原料として用い、これに耐炎化処理を施して耐炎化繊維を得ること、更にこの耐炎化繊維に炭素化処理を施して高性能炭素繊維を得ることは広く知られている。また、この方法は工業的にも実施されている。   Conventionally, it is widely known that a precursor for producing carbon fibers is used as a raw material, and flame-resistant treatment is performed on the precursor to obtain flame-resistant fibers, and further, the flame-resistant fiber is carbonized to obtain high-performance carbon fibers. It has been. This method is also practiced industrially.

一般に、炭素繊維製造用のプリカーサは、アクリロニトリル系ポリマーの塩化亜鉛水溶液や有機溶剤溶液からなる紡糸原液を紡糸してポリアクリロニトリル系(PAN系)の原料繊維を得、このPAN系原料繊維を水洗、オイル付与、乾燥後、スチーム延伸、必要に応じて熱固定や二次オイル付与等をして製造される。このプリカーサは200〜300℃の酸化性雰囲気下で延伸又は収縮を行いながら部分酸化する耐炎化処理がされた後、300℃以上、通常1000℃以上の不活性ガス雰囲気中で炭素化されて炭素繊維が製造される。   Generally, a precursor for carbon fiber production is obtained by spinning a spinning stock solution consisting of an aqueous solution of an acrylonitrile-based polymer zinc chloride or an organic solvent solution to obtain a polyacrylonitrile-based (PAN-based) raw fiber, and washing the PAN-based raw fiber with water. It is manufactured by applying oil, drying, steam stretching, and if necessary, heat setting or secondary oil application. This precursor is subjected to a flameproofing treatment in which partial oxidation is performed while stretching or shrinking in an oxidizing atmosphere of 200 to 300 ° C., and then carbonized in an inert gas atmosphere of 300 ° C. or higher, usually 1000 ° C. or higher. Fiber is produced.

炭素繊維の強度向上、炭素繊維製造工程の安定化のために、種々の工程について提案がなされている。種々の工程のうちでも、例えば特許文献1、2では紡糸工程での提案がなされている。   Various processes have been proposed for improving the strength of carbon fibers and stabilizing the carbon fiber production process. Among various processes, for example, Patent Documents 1 and 2 propose a spinning process.

特許文献1では、45℃における紡糸原液(PAN系重合体溶液)の粘度を300〜1000ポアズと規定することにより、紡糸原液の伸張時破断時間を延ばし、ひいては、この紡糸原液を用いて製造する炭素繊維の製造工程を安定化させることが提案されている。   In Patent Document 1, the spinning stock solution (PAN polymer solution) at 45 ° C. is specified to have a viscosity of 300 to 1000 poise, thereby extending the breaking time when the spinning stock solution is stretched. It has been proposed to stabilize the carbon fiber manufacturing process.

しかし、特許文献1の製造方法においては、紡糸原液の脱泡については触れていない。   However, the production method of Patent Document 1 does not mention defoaming of the spinning dope.

特許文献2では、プリカーサの緻密性について水銀圧入法によって測定される細孔半径を14nm以下、11nm以下と規定することにより、高強度、高弾性率の炭素繊維を製造することが提案されている。   In Patent Document 2, it is proposed to manufacture a carbon fiber having high strength and high elastic modulus by defining the pore radius measured by mercury porosimetry as 14 nm or less and 11 nm or less for the denseness of the precursor. .

しかし、特許文献2の製造方法で得られる炭素繊維は、紡糸原液の脱泡重要性に関する記載は無く、得られる炭素繊維の強度は4400MPa以下と低く、炭素繊維の強度向上を満足させることは不充分である。   However, the carbon fiber obtained by the production method of Patent Document 2 has no description regarding the importance of defoaming the spinning stock solution, and the strength of the obtained carbon fiber is as low as 4400 MPa or less, and it is not satisfactory to improve the strength of the carbon fiber. It is enough.

特開2008−38327号公報 (特許請求の範囲)JP 2008-38327 A (Claims) 特開平4−257313号公報 (特許請求の範囲)JP-A-4-257313 (Claims)

本発明者は、上記問題を解決するため検討を重ねているうちに、炭素繊維製造工程の安定性の向上には、紡糸原液の粘度ばかりでなく、紡糸原液に含まれるアクリロニトリル系ポリマーが、ゲル透過クロマトグラフィー(GPC)により測定される重量平均分子量で10万以上の高分子量であることが重要と考えた。なお、特許文献1で用いられるアクリロニトリル系ポリマーの重量平均分子量は、2万程度で、通常この程度の分子量のアクリロニトリル系ポリマーが従来プリカーサの製造に用いられている。   While the present inventor has repeatedly studied to solve the above problems, not only the viscosity of the spinning stock solution but also the acrylonitrile polymer contained in the spinning stock solution is used for improving the stability of the carbon fiber production process. It was considered important that the polymer had a weight average molecular weight of 100,000 or more as measured by transmission chromatography (GPC). The weight average molecular weight of the acrylonitrile polymer used in Patent Document 1 is about 20,000, and an acrylonitrile polymer having such a molecular weight is usually used for the production of a precursor.

また、炭素繊維の強度向上には、プリカーサが緻密であること、即ち、プリカーサ中に含まれるボイドが少ないこと又はボイドサイズが小さいことが重要と考えた。そのためには、紡糸原液の脱泡を充分に行う必要がある。   In addition, it was considered important for improving the strength of the carbon fiber that the precursor is dense, that is, the void contained in the precursor is small or the void size is small. For this purpose, it is necessary to sufficiently defoam the spinning solution.

しかし、高分子量のアクリロニトリル系ポリマーを含む紡糸原液は、粘度が高い。この高粘度紡糸原液は脱泡を充分行い難く、その結果、得られるプリカーサ中にはボイドが多量に含まれ、高強度の炭素繊維が得られない問題がある。   However, a spinning dope containing a high molecular weight acrylonitrile-based polymer has a high viscosity. This high-viscosity spinning stock solution is not easily defoamed. As a result, the precursor obtained contains a large amount of voids, and there is a problem that high-strength carbon fibers cannot be obtained.

この問題について、更に検討を重ねているうちに、上記高分子量のアクリロニトリル系ポリマーを溶解する紡糸原液を、自公転式攪拌脱泡装置を使用して脱泡を行うと、得られるプリカーサは、特異的にボイドサイズが小さく且つボイドが少なくなることを本発明者は見出した。   While further studying this problem, when the spinning stock solution for dissolving the high molecular weight acrylonitrile-based polymer is defoamed using a self-revolving stirring and defoaming device, the resulting precursor is unique. The present inventors have found that the void size is small and the number of voids is reduced.

上記プリカーサを耐炎化、炭素化して得られる炭素繊維は高強度であり、その製造工程は安定化する。本発明は上記知見に基づき完成するに到った。   The carbon fiber obtained by making the precursor flame resistant and carbonized has high strength, and its production process is stabilized. The present invention has been completed based on the above findings.

よって、本発明の目的とするところは、上記問題を解決した炭素繊維製造用プリカーサ及びその製造方法を提供することにある。   Therefore, an object of the present invention is to provide a precursor for producing carbon fiber and a method for producing the same, which solve the above-mentioned problems.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 重量平均分子量が10万〜100万のアクリロニトリル系プリカーサであって、前記プリカーサの水銀圧入法による細孔分布の測定において、プリカーサに圧入した際の水銀侵入曲線から求められる、総水銀量の半分の圧力値から計算される平均細孔直径が35nm以下である炭素繊維製造用プリカーサ。   [1] An acrylonitrile-based precursor having a weight average molecular weight of 100,000 to 1,000,000, and the total amount of mercury obtained from a mercury intrusion curve when the precursor is injected into the precursor in the measurement of pore distribution by mercury intrusion method The precursor for carbon fiber manufacture whose average pore diameter calculated from the pressure value of the half of this is 35 nm or less.

〔2〕 重量平均分子量が10万〜100万のアクリロニトリル系プリカーサであって、前記プリカーサの窒素ガス吸着法による細孔分布の測定において、プリカーサに吸着した際の窒素ガス吸着曲線から求められる、総窒素ガス量の半分の吸着量から計算される平均細孔直径が30nm以下である炭素繊維製造用プリカーサ。   [2] An acrylonitrile-based precursor having a weight average molecular weight of 100,000 to 1,000,000, which is obtained from a nitrogen gas adsorption curve when adsorbed on the precursor in the pore distribution measurement by the nitrogen gas adsorption method of the precursor. A precursor for producing carbon fibers having an average pore diameter of 30 nm or less calculated from an adsorption amount that is half the amount of nitrogen gas.

〔3〕 重量平均分子量が10万〜100万であるアクリロニトリル系ポリマー溶液からなる紡糸原液を、軸傾斜自転式攪拌脱泡装置又は自公転式攪拌脱泡装置を使用して脱泡を行うことにより、25℃で13hPaの減圧下の10分間静置した場合発泡せず、且つ前記ポリマー溶液中に気泡を含まない紡糸原液を得、その後この紡糸原液を紡糸することを特徴とする炭素繊維製造用プリカーサの製造方法。   [3] By defoaming a spinning dope consisting of an acrylonitrile-based polymer solution having a weight average molecular weight of 100,000 to 1,000,000 using an axially inclined rotation type agitation deaerator or a revolutionary agitation deaerator For producing a carbon fiber, characterized by obtaining a spinning stock solution that does not foam when left standing at 25 ° C. under a reduced pressure of 13 hPa for 10 minutes and that does not contain bubbles in the polymer solution, and then spinning the spinning stock solution Precursor manufacturing method.

〔4〕 紡糸原液の45℃における粘度が2000〜4000ポアズである〔3〕に記載の炭素繊維製造用プリカーサの製造方法。   [4] The method for producing a precursor for carbon fiber production according to [3], wherein the spinning dope has a viscosity at 45 ° C. of 2000 to 4000 poise.

〔5〕 紡糸原液のポリマー濃度が7〜25質量%である〔3〕に記載の炭素繊維製造用プリカーサの製造方法。   [5] The method for producing a precursor for carbon fiber production according to [3], wherein the polymer concentration of the spinning dope is 7 to 25% by mass.

本発明の炭素繊維製造用プリカーサは、水銀圧入法又は窒素ガス吸着法による細孔分布の測定から求められる平均細孔直径が小さいので、繊維の強度に大きく影響する欠陥部分が少ない。このプリカーサを耐炎化、炭素化して得られる炭素繊維は高強度であり、その製造工程は安定化している。   Since the precursor for carbon fiber production of the present invention has a small average pore diameter determined from the measurement of pore distribution by the mercury intrusion method or the nitrogen gas adsorption method, there are few defect portions that greatly affect the strength of the fiber. The carbon fiber obtained by making the precursor flame resistant and carbonized has high strength, and its production process is stabilized.

本発明の炭素繊維製造用プリカーサの製造方法によれば、高分子量のアクリロニトリル系ポリマー溶液からなる紡糸原液を、自公転式攪拌脱泡装置を使用して脱泡するので効率良く脱泡でき、その結果、ボイドサイズが小さく且つボイドが少ないプリカーサを得ることができる。   According to the method for producing a precursor for producing carbon fiber of the present invention, a spinning stock solution comprising a high molecular weight acrylonitrile-based polymer solution is defoamed using a self-revolving stirring and defoaming device, so that defoaming can be efficiently performed. As a result, a precursor having a small void size and few voids can be obtained.

本発明のプリカーサを製造する際に用いる軸傾斜自転式攪拌脱泡装置の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the axially inclined autorotation type stirring deaerator used when manufacturing the precursor of this invention. 本発明のプリカーサを製造する際に用いる自公転式攪拌脱泡装置の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the self-revolving type stirring deaerator used when manufacturing the precursor of this invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の炭素繊維製造用プリカーサは、重量平均分子量が10万〜100万、好ましくは15万〜80万であるアクリロニトリル系ポリマーの塩化亜鉛水溶液又はジメチルホルムアミド等の溶媒溶液からなる紡糸原液を紡糸して得られる。アクリロニトリル系ポリマーの重量平均分子量が10万未満の場合は、得られる炭素繊維の強度は低下する。また、炭素繊維製造工程における糸切れ(工程断糸数)が多くなる。アクリロニトリル系ポリマーの重量平均分子量が100万を超える場合は、紡糸原液を紡糸しにくくなるので好ましくない。   The precursor for producing carbon fiber of the present invention is prepared by spinning a spinning stock solution comprising a solvent solution such as an aqueous solution of zinc chloride of acrylonitrile polymer having a weight average molecular weight of 100,000 to 1,000,000, preferably 150,000 to 800,000 or dimethylformamide. Obtained. When the weight average molecular weight of the acrylonitrile-based polymer is less than 100,000, the strength of the obtained carbon fiber is lowered. Further, yarn breakage (number of process breakage) in the carbon fiber production process increases. If the weight average molecular weight of the acrylonitrile-based polymer exceeds 1,000,000, it is difficult to spin the stock solution.

本発明の炭素繊維製造用プリカーサの水銀圧入法による細孔分布の測定においてプリカーサに圧入した際の水銀侵入曲線から求められる、総水銀量の半分の圧力値から計算される平均細孔直径(水銀細孔直径)は35nm以下、好ましくは11〜33nmである。窒素ガス吸着法による細孔分布の測定においてプリカーサに吸着した際の窒素ガス吸着曲線から求められる、総窒素ガス量の半分の吸着量から計算される平均細孔直径(窒素細孔直径)は30nm以下、好ましくは7〜27nmである。   The average pore diameter (mercury) calculated from the pressure value of half of the total mercury amount, which is obtained from the mercury intrusion curve at the time of intrusion into the precursor in the measurement of pore distribution by the mercury intrusion method of the precursor for carbon fiber production of the present invention. The pore diameter is 35 nm or less, preferably 11 to 33 nm. In the measurement of pore distribution by the nitrogen gas adsorption method, the average pore diameter (nitrogen pore diameter) calculated from the adsorption amount half of the total nitrogen gas amount obtained from the nitrogen gas adsorption curve when adsorbed on the precursor is 30 nm. Hereinafter, it is preferably 7 to 27 nm.

水銀細孔直径が35nmを超える場合又は窒素細孔直径が30nmを超える場合は、紡糸されたプリカーサを耐炎化、炭素化して得られる炭素繊維の強度が低下し、また、工程断糸数が多くなるので好ましくない。水銀細孔直径が11nm未満の場合又は窒素細孔直径が7nm未満の場合は、炭素繊維の強度はあまり向上しなくなり、細孔直径をそれ以上減少させる意味はなくなる。加えて、細孔直径が小さすぎると、耐炎化工程で酸素透過性が低くなり、耐炎化速度が低下する。そのうえ、繊維芯部と繊維表面とで耐炎化状態が大きく異なり、繊維の強度低下に繋がる。   When the mercury pore diameter exceeds 35 nm or the nitrogen pore diameter exceeds 30 nm, the strength of the carbon fiber obtained by making the spun precursor flame resistant and carbonized decreases, and the number of process yarn breaks increases. Therefore, it is not preferable. When the mercury pore diameter is less than 11 nm or when the nitrogen pore diameter is less than 7 nm, the strength of the carbon fiber is not improved so much, and there is no point in further reducing the pore diameter. In addition, if the pore diameter is too small, the oxygen permeability becomes low in the flameproofing step, and the flameproofing speed decreases. In addition, the flameproof state differs greatly between the fiber core and the fiber surface, leading to a decrease in fiber strength.

本発明の炭素繊維製造用プリカーサ、並びに、このプリカーサを用いて得られる耐炎化繊維及び炭素繊維は、例えば、以下の方法により製造することができる。   The precursor for carbon fiber production of the present invention, and the flameproof fiber and carbon fiber obtained using this precursor can be produced, for example, by the following method.

<紡糸原液>
本発明の炭素繊維製造用プリカーサの製造に用いる紡糸原液は、アクリロニトリル系ポリマーの塩化亜鉛水溶液又はジメチルホルムアミドやジメチルスルホキシド等の非プロトン性溶媒溶液である。アクリロニトリル系ポリマーは、重量平均分子量が10万〜100万、好ましくは15万〜80万である。
<Spinning stock solution>
The spinning dope used for production of the precursor for producing carbon fiber of the present invention is an aqueous solution of an acrylonitrile-based polymer in zinc chloride or an aprotic solvent solution such as dimethylformamide or dimethyl sulfoxide. The acrylonitrile-based polymer has a weight average molecular weight of 100,000 to 1,000,000, preferably 150,000 to 800,000.

また、上記アクリロニトリル系ポリマーは、アクリロニトリルを90質量%以上、好ましくは95質量%以上含有する単量体を重合したものを用いることができる。共重合する単量体としては、アクリル酸メチル、イタコン酸、メタクリル酸などが例示される。   The acrylonitrile-based polymer may be obtained by polymerizing a monomer containing acrylonitrile at 90% by mass or more, preferably 95% by mass or more. Examples of the monomer to be copolymerized include methyl acrylate, itaconic acid, methacrylic acid and the like.

上述したように、本発明の炭素繊維製造用アクリロニトリル系ポリマーの分子量は、従来の通常用いられるアクリロニトリル系ポリマーの分子量よりも、高分子量である。そのため、このポリマーを含む紡糸原液は、2000〜4000ポアズと高粘度である。   As described above, the molecular weight of the acrylonitrile-based polymer for producing carbon fibers of the present invention is higher than the molecular weight of the conventionally used acrylonitrile-based polymer. Therefore, the spinning dope containing this polymer has a high viscosity of 2000 to 4000 poise.

なお、紡糸原液の粘度の制御を、より確実なものにするには、紡糸原液におけるアクリロニトリル系ポリマーの濃度を7〜25質量%とすることが好ましい。   In order to more reliably control the viscosity of the spinning dope, the concentration of the acrylonitrile polymer in the spinning dope is preferably 7 to 25% by mass.

この紡糸原液を、軸傾斜自転式攪拌脱泡装置、好ましくは自公転式攪拌脱泡装置を使用して脱泡を行う。   The spinning dope is defoamed using an axially inclined automatic stirring and defoaming device, preferably using an automatic revolution and stirring and defoaming device.

軸傾斜自転式攪拌脱泡装置とは、図1に示すように、容器2がX方向に自転すると共に、自転軸4の重力方向6に対する傾斜角θ1が40〜50度、好ましくは45度であり、減圧下に攪拌と脱泡を同時に短時間で行う装置8をいう。この装置8を用いることにより、高粘度の紡糸原液は、気泡を巻込むことなく充分攪拌されると共に効率的に脱泡が行える。 As shown in FIG. 1, the axially inclined autorotation type stirring and defoaming device rotates the container 2 in the X direction, and the inclination angle θ 1 of the autorotation shaft 4 with respect to the gravity direction 6 is 40 to 50 degrees, preferably 45 degrees. The device 8 that simultaneously performs stirring and defoaming in a short time under reduced pressure. By using this apparatus 8, the high-viscosity spinning dope can be sufficiently defoamed while being sufficiently stirred without entraining bubbles.

自公転式攪拌脱泡装置とは、図2に示すように、容器2がX方向に自転すると共に、自転軸4に対する傾斜角θ2が40〜50度、好ましくは45度の公転軸10をもってY方向に公転する機構を有し、減圧下に攪拌と脱泡を同時に短時間で行う装置12をいう。この装置12を用いることにより、高粘度の紡糸原液は、気泡を巻込むことなく充分攪拌されると共に軸傾斜自転式攪拌脱泡装置よりも更に効率的に脱泡が行える。公転軸10の方向は、装置に掛かる負荷を少なくするため、重力方向が好ましい。 As shown in FIG. 2, the revolution-revolution type agitation / deaeration apparatus has a revolution axis 10 in which the container 2 rotates in the X direction and the inclination angle θ 2 with respect to the rotation axis 4 is 40 to 50 degrees, preferably 45 degrees. An apparatus 12 having a mechanism that revolves in the Y direction and that simultaneously performs stirring and defoaming in a short time under reduced pressure. By using this apparatus 12, the high-viscosity spinning dope can be sufficiently agitated without entraining bubbles and can be degassed more efficiently than the axially inclined rotation type agitation and deaeration apparatus. The direction of the revolution shaft 10 is preferably the direction of gravity in order to reduce the load applied to the device.

このような機構を有する攪拌脱泡装置であれば、自転、公転の回転数等の条件は、紡糸原液の粘度等の性状、容器の大きさにより適宜調節すれば良く、特に限定されるものではないが、以下の条件にすることがが好ましい。   In the case of a stirring and defoaming apparatus having such a mechanism, conditions such as the number of rotations and revolutions may be appropriately adjusted depending on properties such as the viscosity of the spinning dope and the size of the container, and are not particularly limited. However, the following conditions are preferable.

図1に示す軸傾斜自転式攪拌脱泡装置を用いる場合は、自転の回転数は300〜1000rpmが好ましく、400〜800rpmがより好ましい。容器の直径は100〜800mmが好ましく、200〜600mmがより好ましい。減圧された容器内の圧力は4〜20kPaが好ましく、8〜16kPaがより好ましい。   In the case of using the axially inclined rotation type stirring and deaerator shown in FIG. 1, the rotation speed is preferably 300 to 1000 rpm, more preferably 400 to 800 rpm. The diameter of the container is preferably 100 to 800 mm, more preferably 200 to 600 mm. The pressure in the decompressed container is preferably 4 to 20 kPa, and more preferably 8 to 16 kPa.

この軸傾斜自転式攪拌脱泡装置で脱泡する場合、脱泡時間は通常30分以内で、5〜20分が好ましく、8〜15分がより好ましい。この脱泡操作により、紡糸原液を室温(25℃)で13hPa(10Torr)の減圧下に10分間静置した場合、液表面に気泡が発生する現象、及び原液中に気泡が発生する現象が目視で観察されない状態になる。   When defoaming with this axially inclined rotation type stirring and defoaming apparatus, the defoaming time is usually within 30 minutes, preferably 5 to 20 minutes, more preferably 8 to 15 minutes. By this defoaming operation, when the spinning stock solution is allowed to stand at room temperature (25 ° C.) under a reduced pressure of 13 hPa (10 Torr) for 10 minutes, the phenomenon that bubbles are generated on the liquid surface and the bubbles are generated in the stock solution is visually observed. It will not be observed in

また、上述したように、上記軸傾斜自転式攪拌脱泡装置を使用する紡糸原液の脱泡では、紡糸原液に含まれる未反応モノマーも除去(脱モノマー)される。   Further, as described above, in the defoaming of the spinning stock solution using the above-mentioned axially inclined rotation type stirring and defoaming apparatus, unreacted monomers contained in the spinning stock solution are also removed (demonomer).

図2に示す自公転式攪拌脱泡装置を用いる場合は、自転の回転数は300〜1000rpmが好ましく、400〜800rpmがより好ましい。容器の直径は100〜800mmが好ましく、200〜600mmがより好ましい。公転の回転数は500〜3000rpmが好ましく、1000〜2000rpmがより好ましい。公転の直径は500〜1500mmが好ましく、700〜1300mmがより好ましい。減圧された容器内の圧力は4〜20kPaが好ましく、8〜16kPaがより好ましい。   In the case of using the rotation and revolution type stirring and defoaming device shown in FIG. 2, the rotation speed is preferably 300 to 1000 rpm, more preferably 400 to 800 rpm. The diameter of the container is preferably 100 to 800 mm, more preferably 200 to 600 mm. The revolution speed is preferably 500 to 3000 rpm, more preferably 1000 to 2000 rpm. The revolution diameter is preferably 500 to 1500 mm, and more preferably 700 to 1300 mm. The pressure in the decompressed container is preferably 4 to 20 kPa, and more preferably 8 to 16 kPa.

この自公転式攪拌脱泡装置で脱泡する場合、脱泡時間は通常30分以内で、5〜20分が好ましく、8〜15分がより好ましい。この脱泡操作により、紡糸原液を室温(25℃)で13hPa(10Torr)の減圧下に10分間静置した場合、液表面に気泡が発生する現象、及び原液中に気泡が発生する現象が目視で観察されない状態になる。   When defoaming with this self-revolving type stirring and defoaming apparatus, the defoaming time is usually within 30 minutes, preferably 5 to 20 minutes, more preferably 8 to 15 minutes. By this defoaming operation, when the spinning stock solution is allowed to stand at room temperature (25 ° C.) under a reduced pressure of 13 hPa (10 Torr) for 10 minutes, the phenomenon that bubbles are generated on the liquid surface and the bubbles are generated in the stock solution is visually observed. It will not be observed in

また、上述したように、上記自公転式攪拌脱泡装置を使用する紡糸原液の脱泡でも、軸傾斜自転式攪拌脱泡装置と同様に、紡糸原液に含まれる未反応モノマーも除去(脱モノマー)される。   In addition, as described above, even in the defoaming of the spinning dope using the self-revolving stirring deaerator, the unreacted monomer contained in the spinning dope is also removed (demonomer) as in the case of the axially tilting stirring defoaming device. )

<紡糸>
この紡糸原液を、1つの紡糸口金に100〜48000、好ましくは3000〜24000の孔を有する紡糸口金から紡出する。この紡糸に際しては、低温に冷却した凝固液(紡糸する際の溶媒−水混合液)を入れた凝固浴中に直接紡出する湿式紡糸、又は、空気中にまず吐出させた後、0.5〜5mm程度の空間を有して凝固浴に投入し凝固させる乾湿式紡糸法を用いる。更に、乾式紡糸法も用いることができる。これらのうち、凝固浴水面の波立ちに対して炭素繊維の表面に形成される皺の深さの影響を受けない湿式紡糸法がより好ましい。更に、塩化亜鉛水溶液を用いる湿式紡糸法が特に好ましい。
<Spinning>
This spinning dope is spun from a spinneret having 100 to 48000, preferably 3000 to 24000 holes in one spinneret. In this spinning, wet spinning, in which spinning is performed directly in a coagulation bath containing a coagulating liquid cooled to a low temperature (solvent-water mixed solution at the time of spinning), or first discharged into air, then 0.5. A dry-wet spinning method is used in which a space of about 5 mm is introduced into a coagulation bath and coagulated. Furthermore, a dry spinning method can also be used. Of these, the wet spinning method is more preferable because it is not affected by the depth of wrinkles formed on the surface of the carbon fiber with respect to the undulation of the water surface of the coagulation bath. Furthermore, a wet spinning method using an aqueous zinc chloride solution is particularly preferable.

凝固した後の原料繊維は、水洗・乾燥することが好ましい。水洗中、乾燥中、及び/又は、乾燥後、2〜5倍、好ましくは2.5〜4.5倍にスチーム延伸してアクリロニトリル系粗プリカーサが得られる。   The coagulated raw fiber is preferably washed and dried. During the water washing, during drying, and / or after drying, the acrylonitrile-based crude precursor is obtained by steam stretching 2 to 5 times, preferably 2.5 to 4.5 times.

上記原料繊維には、水洗後、及び/又は、乾燥後、耐熱性向上や紡糸安定性を目的として、シリコーン系のオイル、例えば親水基を持つ浸透性油剤とアミノ変性シリコーン系油剤を組み合わせたオイルを付与しても良い。   For the raw fiber, after washing with water and / or drying, for the purpose of improving heat resistance and spinning stability, a silicone-based oil, for example, a combination of a permeable oil having a hydrophilic group and an amino-modified silicone-based oil May be given.

<プリカーサ>
以上の水洗・乾燥・スチーム延伸・オイル付与などの処理を施して、紡糸後の原料繊維は、アクリロニトリル系ポリマーが前述の重量平均分子量を有し、前述の平均細孔直径を有する炭素繊維製造用プリカーサになる。また、このプリカーサはボイドが少ない。プリカーサの直径は10〜30μmが好ましい。
<Precursor>
The raw fiber after spinning, drying, steam drawing, oil application, etc., as described above, is used for producing carbon fibers in which the acrylonitrile-based polymer has the aforementioned weight average molecular weight and the aforementioned average pore diameter. Become a precursor. Moreover, this precursor has few voids. The diameter of the precursor is preferably 10 to 30 μm.

<耐炎化処理>
上記プリカーサは、引き続き加熱空気中200〜280℃で10〜30分間加熱して部分酸化させる耐炎化処理がなされる。この耐炎化処理により、プリカーサはアクリロニトリル系繊維の場合、アクリロニトリル系繊維の環化反応を生じさせ、酸素結合量を増加させて不融化、難燃化させてアクリロニトリル系耐炎化繊維(OPF)を得る。
<Flame resistance treatment>
The precursor is subsequently subjected to a flameproofing treatment in which it is partially oxidized by heating in heated air at 200 to 280 ° C. for 10 to 30 minutes. By this flameproofing treatment, in the case of acrylonitrile fiber, the precursor causes cyclization reaction of acrylonitrile fiber and increases the amount of oxygen bond to make it infusible and flame retardant to obtain acrylonitrile flameproof fiber (OPF). .

この耐炎化処理は、一般的に、延伸倍率0.85〜1.30の範囲で延伸されるが、高強度・高弾性率の炭素繊維を得るためには、0.95以上がより好ましい。この耐炎化処理により、繊維密度1.3〜1.5g/cm3の耐炎化繊維が得られる。耐炎化時の張力は上記延伸倍率の範囲を超えない限り特に限定されない。 This flameproofing treatment is generally drawn in a draw ratio range of 0.85 to 1.30, but 0.95 or more is more preferable in order to obtain a carbon fiber with high strength and high elastic modulus. By this flameproofing treatment, a flameproof fiber having a fiber density of 1.3 to 1.5 g / cm 3 is obtained. The tension at the time of flame resistance is not particularly limited as long as it does not exceed the range of the draw ratio.

また、耐炎化処理の工程を安定化させるため、耐炎化処理に先立ち、炭素繊維製造用プリカーサに公知のプロセスオイルを付与することも有効である。   In order to stabilize the flameproofing process, it is also effective to apply a known process oil to the precursor for carbon fiber production prior to the flameproofing process.

<第一炭素化処理>
上記耐炎化繊維は、従来の公知の方法を採用して炭素化することができる。例えば、窒素雰囲気下300〜800℃で焼成炉(第一炭素化炉)で徐々に温度勾配をかけ、耐炎化繊維の張力を制御して緊張下で1段目の炭素化(第一炭素化)をする。
<First carbonization treatment>
The flame-resistant fiber can be carbonized by employing a conventionally known method. For example, a temperature gradient is gradually applied in a firing furnace (first carbonization furnace) at 300 to 800 ° C. in a nitrogen atmosphere, and the tension of the flame-resistant fiber is controlled so that the first carbonization (first carbonization) is performed under tension. )do.

<第二炭素化処理>
より炭素化を進め且つグラファイト化(炭素の高結晶化)を進める為に、窒素等の不活性ガス雰囲気下で昇温し、焼成炉(第二炭素化炉)で徐々に温度勾配をかけ、第一炭素化繊維の張力を制御して弛緩条件で焼成する。
<Second carbonization treatment>
To further promote carbonization and graphitization (high crystallization of carbon), raise the temperature in an inert gas atmosphere such as nitrogen, gradually apply a temperature gradient in the firing furnace (second carbonization furnace), The first carbonized fiber is fired under relaxed conditions by controlling the tension.

焼成温度については、第二炭素化炉で温度勾配をかけていき、最高温度領域で、好ましくは800℃から2500℃、より好ましくは1200℃から2100℃がよい。   About a calcination temperature, a temperature gradient is applied in a 2nd carbonization furnace, Preferably it is 800 to 2500 degreeC in a maximum temperature range, More preferably, 1200 to 2100 degreeC is good.

炉内の高温部での滞留時間が長くなると、グラファイト化が進み過ぎ、脆性化した炭素繊維が得られることになるので好ましくない。   If the residence time in the high-temperature part in the furnace becomes long, graphitization proceeds too much, and brittle carbon fibers are obtained, which is not preferable.

<表面酸化処理>
上記第二炭素化処理繊維は、引き続き表面酸化処理を施す。表面酸化処理には気相、液相処理も用いることができるが、工程管理の簡便さと生産性を高める点から、液相処理が好ましい。液相処理のうちでも、液の安全性・安定性の面から、電解液を用いる電解処理が好ましい。電解酸化処理に用いられる電解液としては、硫酸、硝酸、塩酸等の無機酸や、水酸化ナトリウム、水酸化カリウムなどの無機水酸化物、硫酸アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機塩類などが挙げられる。
<Surface oxidation treatment>
The second carbonized fiber is subsequently subjected to surface oxidation treatment. A gas phase or liquid phase treatment can also be used for the surface oxidation treatment, but the liquid phase treatment is preferable from the viewpoint of easy process control and productivity. Among the liquid phase treatments, electrolytic treatment using an electrolytic solution is preferable from the viewpoint of liquid safety and stability. Examples of the electrolytic solution used for the electrolytic oxidation treatment include inorganic acids such as sulfuric acid, nitric acid, and hydrochloric acid, inorganic hydroxides such as sodium hydroxide and potassium hydroxide, and inorganic salts such as ammonium sulfate, sodium carbonate, and sodium bicarbonate. Can be mentioned.

<サイジング処理>
上記表面酸化処理後の繊維は、必要に応じ、引き続いてサイジング処理を施す。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥することが好ましい。
<Sizing process>
The fiber after the surface oxidation treatment is subsequently subjected to sizing treatment as necessary. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering.

以上の製造方法により得られる炭素繊維は、6200MPa以上の高強度である。   The carbon fiber obtained by the above manufacturing method has a high strength of 6200 MPa or more.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、各実施例及び比較例における凝固糸条、プリカーサ、耐炎化繊維及び炭素繊維の諸物性についての評価方法は、前述の方法又は以下の方法により実施した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, the evaluation method about the various physical properties of the coagulated yarn in each Example and a comparative example, a precursor, a flame-proof fiber, and carbon fiber was implemented by the above-mentioned method or the following methods.

<密度>
アルキメデス法により測定した。試料繊維はアセトン中にて脱気処理し測定した。
<Density>
Measured by Archimedes method. The sample fiber was degassed in acetone and measured.

<分子量>
アクリロニトリル系ポリマーの濃度が0.1質量%となるように、ジメチルホルムアミド(0.01N−塩化リチウム添加)に溶解し、検体溶液を得た。得られた検体溶液について、ゲル・パーミエーション・クロマトグラフィー(以下、単にGPCという)装置を用いて分子量を測定した。測定条件は下記
GPC装置:(株)島津製作所製CLASS−LC10
カラム:極性有機溶媒系GPC用カラム[東ソー(株)製TSK−GEL−α―M(×2)]
ジメチルホルムアミド及び塩化リチウム:和光純薬工業(株)製
流速:1ml/分
温度:40℃
試料濾過:メンブレンフィルター(ミリポアコーポレーション製0.5μ−FHLP FILTER)
注入量:0.1ml
検出器:示差屈折率検出器[(株)島津製作所製RID−10AV]
検量線作成用の単分散ポリスチレン:分子量184000、427000、791000、1300000のもの
の通りであり、測定したGPC曲線より、分子量分布曲線を求め、Mwを算出した。
<Molecular weight>
The sample solution was obtained by dissolving in dimethylformamide (0.01N-lithium chloride added) so that the concentration of the acrylonitrile polymer was 0.1% by mass. The obtained sample solution was measured for molecular weight using a gel permeation chromatography (hereinafter simply referred to as GPC) apparatus. The measurement conditions are the following GPC apparatus: CLASS-LC10 manufactured by Shimadzu Corporation
Column: Column for polar organic solvent GPC [TSK-GEL-α-M (× 2) manufactured by Tosoh Corporation]
Dimethylformamide and lithium chloride: Wako Pure Chemical Industries, Ltd. Flow rate: 1 ml / min Temperature: 40 ° C
Sample filtration: Membrane filter (0.5μ-FHLP FILTER manufactured by Millipore Corporation)
Injection volume: 0.1ml
Detector: differential refractive index detector [RID-10AV manufactured by Shimadzu Corporation]
Monodispersed polystyrene for preparing a calibration curve: as shown in molecular weights 184000, 427000, 791000, and 1300000. A molecular weight distribution curve was determined from the measured GPC curve, and Mw was calculated.

予め、分子量が異なる分子量既知の単分散ポリスチレンを少なくとも3種類用いて、溶出時間―分子量の検量線を作成した。該検量線上を用いて、該当する検体の溶出時間に対応する分子量を読み取った。共重合量は、共重合されているか否かに拘らず使用した量を用いた。   An elution time-molecular weight calibration curve was prepared in advance using at least three types of monodispersed polystyrenes having different molecular weights and known molecular weights. Using the calibration curve, the molecular weight corresponding to the elution time of the corresponding sample was read. As the copolymerization amount, the amount used was used regardless of whether or not the copolymerization was carried out.

<水銀圧入法による平均細孔直径(水銀細孔直径)>
エタノールと純水の混合液でエタノールの濃度を3段階に渡り濃くした溶液に順次浸漬し、繊維構造の変化がないように糸条内の液を全てエタノールに置換した。これを液体窒素に浸漬させ、完全に凝結させた後、周囲を冷却しながら24時間真空下(3Pa以下)で乾燥した。
<Average pore diameter by mercury porosimetry (mercury pore diameter)>
It was immersed in a solution in which the ethanol concentration was concentrated in three steps with a mixed solution of ethanol and pure water, and all the solution in the yarn was replaced with ethanol so that the fiber structure did not change. This was immersed in liquid nitrogen and completely condensed, and then dried under vacuum (3 Pa or less) for 24 hours while cooling the surroundings.

この乾燥試料を約0.2g精秤し、水銀圧入装置に入れ、容器内を真空(20Pa以下)にし、その後水銀を充填した。そして、細孔分布の測定を行った。圧力は最大420MPaまでかけた。細孔直径は下式
細孔直径d=−4σcosθ/p
σ:水銀の表面張力
θ:接触角(140゜)
p:圧力
により算出した。平均細孔直径は、圧入した際の水銀侵入曲線から求められる、総水銀量の半分の圧力値から計算される細孔直径とした。
About 0.2 g of this dried sample was precisely weighed and placed in a mercury intruder, the inside of the container was evacuated (20 Pa or less), and then filled with mercury. Then, the pore distribution was measured. The pressure was up to 420 MPa. The pore diameter is the following formula pore diameter d = −4σcos θ / p
σ: Surface tension of mercury θ: Contact angle (140 °)
p: Calculated by pressure. The average pore diameter was a pore diameter calculated from a pressure value that was half of the total mercury amount, which was obtained from a mercury intrusion curve at the time of press-fitting.

<窒素ガス吸着法による平均細孔直径(窒素細孔直径)>
ガス吸着による細孔直径も、前処理等は基本的に水銀細孔直径と同一である。ただ、ガス吸着の場合は、BJH法(公知の換算方法)によって、求められた分圧を細孔直径に変換した。
<Average pore diameter by nitrogen gas adsorption method (nitrogen pore diameter)>
The pore diameter by gas adsorption is basically the same as the mercury pore diameter in the pretreatment. However, in the case of gas adsorption, the obtained partial pressure was converted into a pore diameter by the BJH method (a known conversion method).

<炭素繊維の強度(CF強度)>
JIS R 7608に規定された方法により、炭素繊維の引張強度(CF強度)を測定した。
<Strength of carbon fiber (CF strength)>
The tensile strength (CF strength) of the carbon fiber was measured by the method specified in JIS R 7608.

<炭素繊維製造工程における断糸状況>
炭素繊維製造工程における断糸状況を下記
○ … 1日当たりの工程断糸数が2本/日未満
△ … 1日当たりの工程断糸数が2本/日以上6本/日未満
× … 1日当たりの工程断糸数が6本/日以上
の3段階で評価した。
<Thread breakage in the carbon fiber manufacturing process>
Thread breakage status in the carbon fiber manufacturing process is as follows: ○ The number of process breaks per day is less than 2 / day △… The number of process breaks per day is 2 / day or more and less than 6 / day ×… Process breaks per day The number of yarns was evaluated in three stages of 6 yarns / day or more.

実施例1
単量体としてアクリロニトリル95質量%、アクリル酸メチル4質量%、イタコン酸1質量%を精秤し、重合缶に塩化亜鉛水溶液とともに投入して、53℃に加温しつつ攪拌した。このときの単量体濃度は、8.5質量%であった。重合缶に、還元剤(亜硫酸水素ナトリウム)と酸化剤(過硫酸ナトリウム)を投入して重合させ、プリカーサの紡糸原液を得た。
Example 1
Acrylonitrile (95% by mass), methyl acrylate (4% by mass), and itaconic acid (1% by mass) were precisely weighed as monomers, charged into the polymerization vessel together with a zinc chloride aqueous solution, and stirred while warming to 53 ° C. The monomer concentration at this time was 8.5% by mass. A polymerization agent was charged with a reducing agent (sodium hydrogen sulfite) and an oxidizing agent (sodium persulfate) and polymerized to obtain a precursor spinning dope.

この紡糸原液を真空式の自公転式攪拌脱泡装置(シンキー社製ARV−5000:自転の回転数500rpm、容器の直径200mm、公転の回転数1000rpm、公転の直径700mm、自転軸に対する公転軸の傾斜角45度)に10分間かけ、脱モノマーと脱泡を同時に行った。脱泡させた紡糸原液を13hPa(10Torr)の真空中に10分間放置した。紡糸原液の表面から気泡が出て行く様子は見られなかった。また、紡糸原液中に気泡は無かった。この紡糸原液のポリマー濃度、紡糸原液の粘度を測定したところ、7.5質量%、2200ポアズであった。この紡糸原液中ポリマーの分子量は、表1に示すように、おおよそ20万であった。   This spinning dope is vacuum-revolved and stirred and degassed (ARV-5000 manufactured by Sinky Corporation: rotation speed 500 rpm, container diameter 200 mm, rotation speed 1000 rpm, rotation diameter 700 mm, rotation axis relative to rotation axis Degradation and defoaming were carried out simultaneously for 10 minutes at an inclination angle of 45 degrees. The defoamed spinning solution was left in a vacuum of 13 hPa (10 Torr) for 10 minutes. There was no appearance of bubbles emerging from the surface of the spinning dope. There were no bubbles in the spinning dope. The polymer concentration of the spinning dope and the viscosity of the spinning dope were measured and found to be 7.5% by mass and 2200 poise. As shown in Table 1, the molecular weight of the polymer in the spinning dope was approximately 200,000.

この紡糸原液を、1つの紡糸口金に3000の孔を有する紡糸口金を通して、2℃、25質量%の塩化亜鉛水溶液からなる凝固浴中に吐出して凝固・水洗し、さらにシリコン系のオイルを用い、原料繊維質量に対し0.06質量%塗布した後、水洗後の原料繊維を得た。   This spinning stock solution is discharged through a spinneret having 3000 holes in one spinneret into a coagulation bath made of a 25% by mass zinc chloride aqueous solution at 2 ° C., coagulated and washed with water, and then a silicon-based oil is used. After applying 0.06 mass% with respect to the mass of the raw material fiber, the raw material fiber after washing with water was obtained.

この水洗後の原料繊維をヒートローラに接触させて乾燥させ、直径20.5μmのPAN系粗プリカーサを得た。この粗プリカーサをスチーム延伸機に送り、延伸倍率3.2倍で延伸処理してプリカーサを得た。得られたプリカーサの繊度は1.27dtexであった。得られたプリカーサの水銀細孔直径、窒素細孔直径を表1に示す。   The washed raw fiber was brought into contact with a heat roller and dried to obtain a PAN-based rough precursor having a diameter of 20.5 μm. This crude precursor was sent to a steam drawing machine and drawn at a draw ratio of 3.2 to obtain a precursor. The fineness of the obtained precursor was 1.27 dtex. Table 1 shows the mercury pore diameter and nitrogen pore diameter of the obtained precursor.

このプリカーサに、プロセスオイルを0.03質量%塗布し、温度250℃に設定した熱風循環式耐炎化炉を用いて20分間耐炎化処理を行い、密度1.35g/cm3の耐炎化繊維を得た。 To this precursor, 0.03% by mass of process oil was applied and subjected to a flameproofing treatment for 20 minutes using a hot air circulation type flameproofing furnace set at a temperature of 250 ° C. to obtain a flameproofing fiber having a density of 1.35 g / cm 3. Obtained.

この耐炎化繊維を窒素雰囲気中、300〜600℃の温度域を通過させて第一炭素化処理を施した。   The flameproofed fiber was passed through a temperature range of 300 to 600 ° C. in a nitrogen atmosphere to perform a first carbonization treatment.

この第一炭素化処理繊維を窒素雰囲気中、600〜1500℃の温度域を通過させて第二炭素化処理を施した。   The first carbonized fiber was subjected to a second carbonization treatment by passing through a temperature range of 600 to 1500 ° C. in a nitrogen atmosphere.

次いで、この第二炭素化処理繊維を、硫酸アンモニウム水溶液を電解液として用い、炭素繊維1g当り30クーロンの電気量で表面処理を施した。   Next, this second carbonized fiber was subjected to a surface treatment using an aqueous ammonium sulfate solution as an electrolytic solution at an electric quantity of 30 coulomb per 1 g of carbon fiber.

引き続き公知の方法で、サイジング剤を施し、乾燥して、表1に示すCF強度の炭素繊維を得た。なお、炭素繊維製造工程における断糸は、少ないものであり、工程安定性は良好であった。   Subsequently, a sizing agent was applied by a known method and dried to obtain carbon fibers having CF strength shown in Table 1. In addition, the yarn breakage in the carbon fiber production process was small, and the process stability was good.

実施例2
実施例1で、還元剤と酸化剤を投入して重合させた後、重合度をあげるために同条件で12時間放置してプリカーサの紡糸原液を得た以外は、実施例1と同様にして紡糸原液を得た。この紡糸原液のポリマー濃度、紡糸原液の粘度を測定したところ、12質量%、3500ポアズであった。この紡糸原液中ポリマーの分子量は、表1に示すように、おおよそ50万であった。
Example 2
In Example 1, after introducing a reducing agent and an oxidizing agent and polymerizing, the same procedure as in Example 1 was conducted except that a precursor spinning stock solution was obtained by leaving it under the same conditions for 12 hours in order to increase the degree of polymerization. A spinning dope was obtained. The polymer concentration of the spinning dope and the viscosity of the spinning dope were measured and found to be 12% by mass and 3500 poise. As shown in Table 1, the molecular weight of the polymer in this spinning dope was approximately 500,000.

この紡糸原液を、2℃、25質量%の塩化亜鉛水溶液からなる凝固浴を用いて、2mmの空間を通して乾湿式紡糸を行った。続いて実施例1と同様に水洗後、シリコーン系油剤によって処理し、乾燥緻密化、延伸を行い、本例のプリカーサを得た。得られたプリカーサの繊度は1.16dtexであった。得られたプリカーサの水銀細孔直径、窒素細孔直径を表1に示す。   This spinning dope was subjected to dry and wet spinning through a space of 2 mm using a coagulation bath made of a 25% by mass zinc chloride aqueous solution at 2 ° C. Subsequently, after washing with water in the same manner as in Example 1, it was treated with a silicone-based oil agent, dried, densified, and stretched to obtain a precursor of this example. The fineness of the obtained precursor was 1.16 dtex. Table 1 shows the mercury pore diameter and nitrogen pore diameter of the obtained precursor.

このプリカーサを、実施例1と同様に、耐炎化処理、第一炭素化処理、第二炭素化処理、表面処理、サイジング剤処理、乾燥処理を施し、表1に示すCF強度の炭素繊維を得た。なお、炭素繊維製造工程における断糸は、少ないものであり、工程安定性は良好であった。   The precursor was subjected to flameproofing treatment, first carbonization treatment, second carbonization treatment, surface treatment, sizing agent treatment, and drying treatment in the same manner as in Example 1 to obtain CF fibers having CF strength shown in Table 1. It was. In addition, the yarn breakage in the carbon fiber production process was small, and the process stability was good.

比較例1
実施例1の原料を用いて、脱泡の工程でシンキー社製ARV−5000を用いる代わりに紡糸原液をジャケット温水付きのプールタンクに投入し、37℃に加温しつつ真空ポンプで6時間、真空に保ちながら静置状態で脱泡(静置+真空脱泡)させた。この脱泡させた紡糸原液を13hPa(10Torr)の真空中に10分間放置したところ、液表面から気泡が出て行く様子が見られ、紡糸原液中には泡が存在した。この紡糸原液中ポリマーの分子量は、表1に示すように、おおよそ20万であった。
Comparative Example 1
Using the raw material of Example 1, instead of using the ARV-5000 manufactured by Sinky in the defoaming step, the spinning dope was put into a pool tank with jacket warm water, and heated at 37 ° C. with a vacuum pump for 6 hours. Defoaming was performed while standing in a vacuum (standing + vacuum defoaming). When this defoamed spinning solution was left in a vacuum of 13 hPa (10 Torr) for 10 minutes, air bubbles emerged from the surface of the solution, and bubbles were present in the spinning solution. As shown in Table 1, the molecular weight of the polymer in the spinning dope was approximately 200,000.

この紡糸原液を、実施例1と同様に湿式紡糸を行った。続いて実施例1と同様に水洗後、シリコーン系油剤によって処理し、乾燥緻密化、延伸を行い、本例のプリカーサを得た。得られたプリカーサの繊度は1.22dtexであった。得られたプリカーサの水銀細孔直径、窒素細孔直径を表1に示す。   This spinning dope was subjected to wet spinning as in Example 1. Subsequently, after washing with water in the same manner as in Example 1, it was treated with a silicone-based oil agent, dried, densified, and stretched to obtain a precursor of this example. The fineness of the obtained precursor was 1.22 dtex. Table 1 shows the mercury pore diameter and nitrogen pore diameter of the obtained precursor.

このプリカーサを、実施例1と同様に、耐炎化処理、第一炭素化処理、第二炭素化処理、表面処理、サイジング剤処理、乾燥処理を施し、表1に示すCF強度の実施例1と同様にして炭素繊維を得た。   As in Example 1, this precursor was subjected to flameproofing treatment, first carbonization treatment, second carbonization treatment, surface treatment, sizing agent treatment, and drying treatment. Similarly, carbon fiber was obtained.

脱泡操作において充分脱泡されていなかったため、得られたプリカーサは、水銀細孔直径、窒素細孔直径が大きかった。このプリカーサを用いて炭素繊維を製造したが、高強度の炭素繊維を得ることはできなかった。なお、炭素繊維製造工程における断糸は、多いものであり、工程安定性は良好ではなかった。   Since the foam was not sufficiently defoamed in the defoaming operation, the obtained precursor had a large mercury pore diameter and a nitrogen pore diameter. Carbon fibers were produced using this precursor, but high-strength carbon fibers could not be obtained. In addition, the yarn breakage in the carbon fiber production process was large, and the process stability was not good.

比較例2
脱泡の工程で紡糸原液をジャケット温水付きのプールタンクに投入し、37℃に加温しつつ攪拌羽根を用いて30rpmで攪拌し、真空ポンプで6時間、13hPa(10Torr)の真空に保ちながら脱泡(攪拌+真空脱泡)した以外は実施例1と同様に操作した。比較例1と同様に、紡糸原液中に泡を巻込んでしまい、良好なプリカーサは得られなかった。このプリカーサを用いて製造した炭素繊維は強度が低かった。なお、炭素繊維製造工程における断糸は、多いものであり、工程安定性は良好ではなかった。
Comparative Example 2
In the defoaming step, the spinning solution is put into a pool tank with jacket warm water, stirred at 30 rpm using a stirring blade while being heated to 37 ° C., and kept at a vacuum of 13 hPa (10 Torr) for 6 hours with a vacuum pump. The same operation as in Example 1 was performed except that defoaming (stirring + vacuum defoaming) was performed. As in Comparative Example 1, bubbles were entrained in the spinning dope, and a good precursor could not be obtained. The carbon fiber produced using this precursor had low strength. In addition, the yarn breakage in the carbon fiber production process was large, and the process stability was not good.

比較例3
単量体としてアクリロニトリル95質量%、アクリル酸メチル4質量%、イタコン酸1質量%を精秤し、重合缶に塩化亜鉛水溶液とともに投入して、60℃に加温しつつ攪拌した。このときの単量体濃度は10質量%であった。重合缶に、還元剤(亜硫酸水素ナトリウム)と酸化剤(過硫酸ナトリウム)とを投入して重合させ、ポリマーを得た。濾紙でポリマー濾別して高分子量のポリマーを得た。
Comparative Example 3
Acrylonitrile (95% by mass), methyl acrylate (4% by mass), and itaconic acid (1% by mass) were precisely weighed as monomers, put into a polymerization can together with a zinc chloride aqueous solution, and stirred while heating to 60 ° C. The monomer concentration at this time was 10 mass%. A polymerization agent was charged with a reducing agent (sodium hydrogen sulfite) and an oxidizing agent (sodium persulfate) to polymerize the polymer. The polymer was filtered off with a filter paper to obtain a high molecular weight polymer.

これを塩化亜鉛水溶液に溶解させプリカーサの紡糸原液を得た以外は、実施例1と同様にして紡糸原液を得た。この紡糸原液のポリマー濃度、紡糸原液の粘度を測定したところ、15質量%、4300ポアズであった。この紡糸原液中ポリマーの分子量は、表1に示すように、おおよそ120万であった。   A spinning dope was obtained in the same manner as in Example 1 except that this was dissolved in an aqueous zinc chloride solution to obtain a precursor spinning dope. The polymer concentration of the spinning dope and the viscosity of the spinning dope were measured and found to be 15% by mass and 4300 poise. As shown in Table 1, the molecular weight of the polymer in the spinning dope was approximately 1,200,000.

この紡糸原液を、実施例1と同様に、1つの紡糸口金に3000の孔を有する紡糸口金を通して、2℃、25質量%の塩化亜鉛水溶液からなる凝固浴中に吐出した。しかし、粘度が高くて紡糸は不可であって、炭素繊維どころかプリカーサさえも得ることができなかった。   In the same manner as in Example 1, this stock solution for spinning was discharged through a spinneret having 3000 holes in one spinneret and into a coagulation bath composed of an aqueous zinc chloride solution at 2 ° C. and 25% by mass. However, the viscosity was so high that spinning was impossible, and even a precursor could not be obtained as well as carbon fiber.

比較例4
実施例1で用いた原料(単量体、塩化亜鉛水溶液、還元剤、酸化剤)を常圧下で40℃に加温しつつ攪拌した以外は、実施例1と同様にして紡糸原液を得た。この紡糸原液のポリマー濃度、紡糸原液の粘度を測定したところ、9質量%、1800ポアズであった。この紡糸原液中ポリマーの分子量は、表1に示すように、おおよそ8万と低いものであった。
Comparative Example 4
A spinning dope was obtained in the same manner as in Example 1, except that the raw materials (monomer, zinc chloride aqueous solution, reducing agent, oxidizing agent) used in Example 1 were stirred while being heated to 40 ° C. under normal pressure. . The polymer concentration of the spinning dope and the viscosity of the spinning dope were measured and found to be 9% by mass and 1800 poise. As shown in Table 1, the molecular weight of the polymer in this spinning dope was as low as about 80,000.

この紡糸原液を用いた以外は、実施例1と同様にして炭素繊維を得た。しかし、紡糸原液中ポリマーの分子量が低いため、高強度の炭素繊維を得ることはできなかった。なお、炭素繊維製造工程における断糸は、やや多いものであった。   Carbon fibers were obtained in the same manner as in Example 1 except that this spinning dope was used. However, due to the low molecular weight of the polymer in the spinning dope, high strength carbon fibers could not be obtained. In addition, the number of yarn breaks in the carbon fiber manufacturing process was rather large.

Figure 2010174422
Figure 2010174422

2 容器
4 自転軸
6 重力方向
8 軸傾斜自転式攪拌脱泡装置
10 公転軸
12 自公転式攪拌脱泡装置
θ1 自転軸の重力方向に対する傾斜角
θ2 自転軸の公転軸に対する傾斜角
X 自転方向
Y 公転方向
2 container 4 inclination angle X rotation relative to rotation axis 6 gravity direction 8 axis tilt rotation type stirrer degassing apparatus 10 revolution shaft 12 revolving stirrer deaerator theta 1 revolution axis of the tilt angle theta 2 rotation axis relative to the gravity direction of the rotation axis Direction Y Revolution direction

Claims (5)

重量平均分子量が10万〜100万のアクリロニトリル系プリカーサであって、前記プリカーサの水銀圧入法による細孔分布の測定において、プリカーサに圧入した際の水銀侵入曲線から求められる、総水銀量の半分の圧力値から計算される平均細孔直径が35nm以下である炭素繊維製造用プリカーサ。 An acrylonitrile-based precursor having a weight average molecular weight of 100,000 to 1,000,000, which is half of the total mercury amount obtained from a mercury intrusion curve when the precursor is pressed into the precursor in the measurement of pore distribution by mercury intrusion method. A precursor for producing carbon fibers having an average pore diameter calculated from a pressure value of 35 nm or less. 重量平均分子量が10万〜100万のアクリロニトリル系プリカーサであって、前記プリカーサの窒素ガス吸着法による細孔分布の測定において、プリカーサに吸着した際の窒素ガス吸着曲線から求められる、総窒素ガス量の半分の吸着量から計算される平均細孔直径が30nm以下である炭素繊維製造用プリカーサ。 Total amount of nitrogen gas, which is an acrylonitrile-based precursor having a weight average molecular weight of 100,000 to 1,000,000, obtained from a nitrogen gas adsorption curve when adsorbed on the precursor in the measurement of pore distribution by the nitrogen gas adsorption method of the precursor The precursor for carbon fiber manufacture whose average pore diameter calculated from the adsorption amount of the half is 30 nm or less. 重量平均分子量が10万〜100万であるアクリロニトリル系ポリマー溶液からなる紡糸原液を、軸傾斜自転式攪拌脱泡装置又は自公転式攪拌脱泡装置を使用して脱泡を行うことにより、25℃で13hPaの減圧下の10分間静置した場合発泡せず、且つ前記ポリマー溶液中に気泡を含まない紡糸原液を得、その後この紡糸原液を紡糸することを特徴とする炭素繊維製造用プリカーサの製造方法。 A spinning dope consisting of an acrylonitrile-based polymer solution having a weight average molecular weight of 100,000 to 1,000,000 is defoamed by using an axially inclined rotation type stirring and defoaming device or a self-revolving type stirring and defoaming device, and 25 ° C. A precursor for spinning a carbon fiber, which is not foamed when left standing for 10 minutes under a reduced pressure of 13 hPa and contains no bubbles in the polymer solution, and then spinning the spinning solution. Method. 紡糸原液の45℃における粘度が2000〜4000ポアズである請求項3に記載の炭素繊維製造用プリカーサの製造方法。 The method for producing a precursor for carbon fiber production according to claim 3, wherein the spinning solution has a viscosity at 45 ° C of 2000 to 4000 poise. 紡糸原液のポリマー濃度が7〜25質量%である請求項3に記載の炭素繊維製造用プリカーサの製造方法。 The method for producing a precursor for producing carbon fibers according to claim 3, wherein the polymer concentration of the spinning dope is 7 to 25% by mass.
JP2009020876A 2009-01-30 2009-01-30 Precursor for producing carbon fiber and method for producing the same Pending JP2010174422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020876A JP2010174422A (en) 2009-01-30 2009-01-30 Precursor for producing carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020876A JP2010174422A (en) 2009-01-30 2009-01-30 Precursor for producing carbon fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010174422A true JP2010174422A (en) 2010-08-12

Family

ID=42705653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020876A Pending JP2010174422A (en) 2009-01-30 2009-01-30 Precursor for producing carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010174422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144555A1 (en) * 2011-04-19 2012-10-26 三菱レイヨン株式会社 Method for dissolving and degassing polymer, and method for producing porous film
EP4141154A3 (en) * 2021-08-25 2023-05-03 Formosa Plastics Corporation Method for producing carbon fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144555A1 (en) * 2011-04-19 2012-10-26 三菱レイヨン株式会社 Method for dissolving and degassing polymer, and method for producing porous film
JP5655856B2 (en) * 2011-04-19 2015-01-21 三菱レイヨン株式会社 Method for dissolving and defoaming polymer and method for producing porous membrane
US9296886B2 (en) 2011-04-19 2016-03-29 Mitsubishi Rayon Co., Ltd. Method for dissolving and degassing polymer, and method for producing porous film
EP4141154A3 (en) * 2021-08-25 2023-05-03 Formosa Plastics Corporation Method for producing carbon fiber
US12006595B2 (en) 2021-08-25 2024-06-11 Formosa Plastics Corporation Method for producing carbon fiber

Similar Documents

Publication Publication Date Title
JP7225173B2 (en) Manufacture of intermediate modulus carbon fiber
JP5691366B2 (en) Carbon fiber manufacturing method
JP4910729B2 (en) Method for producing carbon fiber precursor fiber, carbon fiber and method for producing the same
JP2011006681A (en) Method for producing flame-resistant acrylonitrile polymer
JP2011046942A (en) Polyacrylonitrile copolymer, polyacrylonitrile precursor fiber for carbon fiber, and manufacturing method for carbon fiber
KR102157184B1 (en) Methode for preparing acrylonitrile based copolymer fiber
JP2010111979A (en) Process for producing precursor fiber for carbon fiber and carbon fiber
JP2010100970A (en) Method for producing carbon fiber
JP2010174422A (en) Precursor for producing carbon fiber and method for producing the same
JP2010053468A (en) Method for producing carbon fiber precursor fiber
KR101091415B1 (en) Polyacrylonitrile Based Precursor For Carbon Fiber And Its Preparation Method
JP4875238B2 (en) Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JP4887219B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
KR20140074136A (en) Precursor manufacturing device of carbon fiber
JP2011001653A (en) Method for producing polyacrylonitrile-based fiber
JP4983709B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JP5504678B2 (en) Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber
KR20100073760A (en) Method for preparing carbon fiber precursor
JP2010031418A (en) Method for producing precursor fiber for carbon fiber
KR101148708B1 (en) Preparation Method Of Polyacrylonitrile Based Precursor For Carbon Fiber
KR102197333B1 (en) Polyacrylonitrile-based STABILIZED FIBER, CARBON FIBER, AND PREPARATION METHOD THEREOF
JP2011213774A (en) Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber
JP2007332498A (en) Method for producing carbon fiber bundle
JP2011226028A (en) Meta-type wholly aromatic polyamide fiber
JP5141591B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber