JP2012200661A - Dehydration method using atmospheric pressure difference, and recovery apparatus for fresh water - Google Patents

Dehydration method using atmospheric pressure difference, and recovery apparatus for fresh water Download PDF

Info

Publication number
JP2012200661A
JP2012200661A JP2011066989A JP2011066989A JP2012200661A JP 2012200661 A JP2012200661 A JP 2012200661A JP 2011066989 A JP2011066989 A JP 2011066989A JP 2011066989 A JP2011066989 A JP 2011066989A JP 2012200661 A JP2012200661 A JP 2012200661A
Authority
JP
Japan
Prior art keywords
air
water
function
wind
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011066989A
Other languages
Japanese (ja)
Other versions
JP5699407B2 (en
Inventor
Masataka Murahara
村原正隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Hikari and Energy Laboratory Co Ltd
Original Assignee
M Hikari and Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Hikari and Energy Laboratory Co Ltd filed Critical M Hikari and Energy Laboratory Co Ltd
Priority to JP2011066989A priority Critical patent/JP5699407B2/en
Publication of JP2012200661A publication Critical patent/JP2012200661A/en
Application granted granted Critical
Publication of JP5699407B2 publication Critical patent/JP5699407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pressure-reduced dehydration method/water conversion method of easily generating domestic water or industrial water from seawater in a disaster or an emergency, or at ordinary times without using thermal energy so as to ensure security of water, the method including a second process of lowering atmospheric pressure of an atmosphere to generate unsaturated wet air from a water containing body, a third function for conversion into saturated wet air in a pressure-raised state, a fourth function of causing dew condensation to collect fresh water, and thereby eliminating the need for conventional thermal energy and eliminating a freezing process because of dew condensation.SOLUTION: The fresh water and a dehydration product are separated and collected by sequentially repeating a first function of placing a water containing sample in an air atmosphere, a second function of reducing the pressure of the air atmosphere using a wing-shaped body of an airplane or a compressor to generate the unsaturated wet air, the third function of raising the pressure for conversion into the saturated wet air, and the fourth function of carrying out dew condensation and liquefaction on a hydrophilic dew condensation surface as a nucleus.

Description

気圧差を利用して含水溶液から真水と脱水物を分離回収方法及び真水の回収装置に関する。 The present invention relates to a method for separating and recovering fresh water and dehydrated water from an aqueous solution using a pressure difference and a fresh water recovery device.

簡易型脱水装置があれば、海水から飲料水や工業用水を作ることができる。2011年3月11日東北・北関東を襲ったマグニチュード9.0の大地震と10メートルを越す大津波。東北地方の太平洋沿岸部を中心に、死者・行方不明者2万人以上、避難所生活を強いられている避難者35万人以上。700万世帯が停電、200万世帯以上が断水。最も復旧が遅れているライフラインは水だ。1週間後の3月16日になっても東北地方から関東にかけて160万世帯が断水に苦しんでいる。この水の供給不能に追い討ちをかけるようにして発生した福島第1原発の炉心溶融事故。原子炉冷却のために必要な真水も無く、代替として海水が使われた。
2001年9月11日ニューヨークが標的になった同時多発テロ、2003年8月14日のニューヨーク大停電。これらニューヨークを中心とした人為的大規模災害が契機と成って、大規模発電所やそれに付随した広域送電網をテロや事故から防衛する必要に迫られ、エネルギー供給源の分散化、すなわちエネルギー安全保障が論議され、その対策が採られ始めている。このエネルギー安全保障を脅かす人為的要因と対策には、テロによる原子力発電所の攻撃も視野に入れられていた。全てが人為的なエネルギーの安全保障を脅かす原因の排除であった。それら全てを網羅する以上の出来事が、東北地方太平洋沿岸に起こってしまった。人為的災害では無い自然災害である。自然災害は人為的なテロより恐ろしい。この自然災害によって、少なくとも日本の国土の半分に値するフォッサマグナ以北の地域で深刻な電力不足が続いている。国家的に見れば、エネルギー供給源の分散化を急がねば成らない。しかし、エネルギーの分散化だけでは済まされない。災害地域から見れば、復興は大切である。しかし、将来計画の前に今やらねば成らないことがある。それは生活用水の確保である。水の安全保障が重要である。若し、自治体や個人が、ポーターブル海水淡水化装置で海岸の海水から飲料水を製造できれば、飲料水は勿論のこと、トイレ、風呂水、病院用水など生活用水を供給する事ができる。
本願発明者は、非特許文献1「“風力よ”エタノール化からトウモロコシを救え<風力発電による海洋資源回収と洋上工場」の3章の冒頭に、2003年度の我が国の水使用量は約839億m3で、農業用水が66%、生活用水が19%、工業用水が14%を占め、1人当たりの生活用水使用量は1日当り313リトッルである。この生活用水が、今回の災害地では1リットル以下である。
我が国の大規模淡水化技術は進んでおり、中国や中東での工業用水不足解決に貢献している。更に世界では11億人が水不足に苦しんでいる。従来、海水の淡水化装置は船舶用造水装置として発達し、その後、離島や砂漠地帯を皮切りに、陸上における淡水供給にも利用されるようになってきた。海水淡水化の方法には、海水から塩分を残して水のみを取り出す蒸発法、冷凍法、逆浸透法と、逆に塩分を除去して淡水を残す、イオン交換透析膜法などがある。蒸発法は海水を加熱、蒸発させ、発生する水蒸気を凝縮させて淡水を得る方法で、単蒸留法は海水を加熱して、水だけを蒸発させ、その水蒸気を凝縮して純水を取り出す方法である。この単蒸留装置を10段に並べ、淡水化エネルギーは真水1トンあたり63 kWhである。この蒸発法で最も普及しているのは、多段フラッシュ蒸発法で、これを直列に多数連結して多段式とし、室内の圧力を順次低くすることにより、各段で蒸発せずに残った海水を次の室でフラッシュ蒸発させ、熱効率をあげるように工夫されている。この方法は大形装置に適しており、もっとも多く実用されている装置である。このプロセスに必要な電力エネルギーは真水1トンあたり42 kWhである。
冷凍法、水の融点は0℃であるが、海水は−1.9℃と僅かに海水の方が低いため、この性質を利用して、海水を徐々に冷やしていくと、真水の部分だけ凍り氷ができる。氷自身には塩分は含まれていないが、氷の表面に付着している塩分を洗浄後、その氷を融解して淡水を得る方法でいたって簡単な製造方法である。このプロセスに必要な電力エネルギーは真水1トンあたり10.6 kWhと低いのが特徴である。
現在、蒸発法に次いで普及しているのが逆浸透法である。この方法は、水は通すが塩分は通さない半透膜を使って真水を作る方法で、半透膜で仕切られた容器の一方に真水を、他方に海水を入れ、海水の側からおよそ25kg/cm2以上の圧力が加えられると、海水側から半透膜を通って真水が押し出される。この方法は、蒸着法や冷凍法と異なり淡水採取に相の変化を伴わないので、所要エネルギーが少なくてすむ。このプロセスに必要な電力エネルギーは真水1トンあたり0.69〜3.5kWhと低い。
イオン交換透析膜法は、陽イオン交換膜と陰イオン交換膜を交互に並べて多くの室にくぎった電気透析槽に海水を入れ、直流を通すと、陽イオンは陰極側に、陰イオンは陽極側へ移動する。我が国ではこの濃縮の働きを利用して製塩が行われており、実用膜の開発、透析技術などの点で世界のトップレベルにある。この方法では真水1トンあたり8kWhと電力エネルギー消費量が比較的少なくて済むが、樹脂が交換容量分のイオンを吸着し能力が劣化すると再生を行う必要があり、この際、塩酸や苛性ソーダなどを必要とする。
With a simple dehydrator, drinking water and industrial water can be made from seawater. On March 11, 2011, a magnitude 9.0 earthquake that struck Tohoku and Kita Kanto and a tsunami that exceeded 10 meters. Centered on the Pacific coast of the Tohoku region, there are more than 20,000 dead and missing people and more than 350,000 evacuees forced to live in shelters. Seven million households have blackouts and more than two million households have water outages. The lifeline that has been delayed the most is water. A week later, on March 16, 1.6 million households suffered water outages from the Tohoku region to the Kanto region. The core melting accident at the Fukushima Daiichi nuclear power plant that occurred as if it was trying to overcome the inability to supply water. There was no fresh water required for reactor cooling, and seawater was used as an alternative.
September 11, 2001 New York was the target of the terrorist attacks, August 14, 2003 New York catastrophe. These man-made large-scale disasters, mainly in New York, have triggered the need to protect large-scale power plants and the accompanying wide-area power grids from terrorism and accidents. Security is being discussed and measures are being taken. Anthropogenic factors and countermeasures that threaten energy security also included a terrorist attack on nuclear power plants. All was the elimination of causes that threatened human-made energy security. More than all of them happened on the Pacific coast of the Tohoku region. It is a natural disaster that is not a man-made disaster. Natural disasters are more frightening than artificial terrorism. This natural disaster continues to cause serious power shortages in areas north of Fossa Magna, which is at least half the land of Japan. From a national point of view, there is an urgent need to decentralize energy supply sources. However, energy decentralization is not enough. Reconstruction is important from the disaster area. However, there are things that must be done now before planning for the future. That is to secure water for daily use. Water security is important. If local governments and individuals can produce drinking water from coastal seawater using a portable seawater desalination system, they can supply not only drinking water but also water for daily use, such as toilets, bath water, and hospital water.
The inventor of the present application stated that at the beginning of Chapter 3 of Non-Patent Document 1 “Saving Corn from“ Wind Wind ”Ethanolization <Ocean Resource Recovery and Offshore Factory by Wind Power Generation”, Japan's water consumption in 2003 was about 83.9 billion in m 3, agricultural water 66%, domestic water 19%, industrial water 14%, domestic water consumption per capita per day 313 Ritorru. This domestic water is less than 1 liter in this disaster area.
Japan's large-scale desalination technology is advancing, contributing to the solution of industrial water shortages in China and the Middle East. In addition, 1.1 billion people worldwide suffer from water shortages. Conventionally, a seawater desalination apparatus has been developed as a marine desalination apparatus, and since then, it has been used for fresh water supply on land starting with remote islands and desert areas. Seawater desalination methods include evaporation, freezing, reverse osmosis, and the ion exchange dialysis membrane method, which removes salt and leaves fresh water. The evaporation method is a method in which seawater is heated and evaporated to condense the generated water vapor to obtain fresh water. The simple distillation method is a method in which seawater is heated to evaporate only the water, and the water vapor is condensed to extract pure water. It is. These simple distillation units are arranged in 10 stages, and the desalination energy is 63 kWh per ton of fresh water. The most widespread of this evaporation method is the multi-stage flash evaporation method, which is connected in series to form a multi-stage system. It has been devised to increase the heat efficiency by flash evaporation in the next chamber. This method is suitable for large-sized devices, and is the most widely used device. The power energy required for this process is 42 kWh per ton of fresh water.
The freezing method, the melting point of water is 0 ° C, but seawater is slightly lower at -1.9 ° C, so if you use this property and gradually cool the seawater, only the fresh water will freeze Can do. Although ice itself does not contain salt, it is a simple manufacturing method in which fresh water is obtained by melting the ice after washing the salt adhering to the ice surface. The power energy required for this process is low at 10.6 kWh per ton of fresh water.
At present, the reverse osmosis method is the most popular after the evaporation method. In this method, fresh water is made using a semipermeable membrane that allows water to pass through but does not allow salt to pass through. When pressure of more than / cm 2 is applied, fresh water is pushed out from the seawater side through the semipermeable membrane. Unlike the vapor deposition method or the freezing method, this method does not involve a phase change in fresh water collection, and therefore requires less energy. Electric power energy required for this process is as low as 0.69 to 3.5kWh per ton of fresh water.
In the ion exchange dialysis membrane method, when cation exchange membranes and anion exchange membranes are arranged alternately, seawater is placed in an electrodialysis tank that passes through many chambers, and when direct current is passed, cations are on the cathode side and anions are on the anode side. Move to the side. In Japan, salt production is carried out using this concentration function, and it is at the top level in the world in terms of development of practical membranes and dialysis technology. This method requires 8kWh per ton of fresh water and consumes relatively little power, but if the resin absorbs ions for the exchange capacity and the capacity deteriorates, it must be regenerated. In this case, hydrochloric acid or caustic soda is used. I need.

海水は約96%が水であり、その他に3.5%の塩と微量な金属から構成されている。本願発明者による非特許文献1「“風力よ”エタノール化からトウモロコシを救え<風力発電による海洋資源回収と洋上工場」の2章で述べているように、海水を淡水化した残渣である濃縮塩水からは石膏(CaSO4)、方解石(CaCO3)、食塩(NaCl)、硫酸マグネシウム(MgSO4)、塩化カリウム(KCl)、塩化マグネシウム(MgCl2)が析出する。我が、この海水から食塩を生産したのが天日製塩法であった。海岸の平坦な砂地に導入された海水は、太陽熱と風力とにより蒸発し、塩分だけが砂粒に付着する。これに再度海水を注ぎ、砂粒から分離した濾液を煮詰めて塩を析出させる入浜式塩田法や、海水が斜面を徐々に流下する間に水分が蒸発する方式でかん水を作り、このかん水を直接煮詰めて塩を抽出させる流下式塩田法などが古くから行われていた。これらの製塩法は全て塩田に引き込んだ海水の水分を太陽熱と風力とにより蒸発させて濃縮塩水(かん水)を作り、それを煮詰め、108℃内外で析出するカルシウム化合物結晶を除去し、約180℃で析出する食塩結晶を製品として回収し、残りの濾液(苦汁))からマグネシウム化合物を回収するものであった。しかし、近年になると、塩田を用いず、イオン交換樹脂を用いた電気分解法で濃縮かん水を製造するイオン交換樹脂法へと代わり、現在に至っている。
この濃縮塩水を洋上で得られた電力で電気分解して、これら洋上工場内で得られる送電ロスが無い電力と、その場で採取した深層水や表層水などの海水を洋上電解工場で電気分解して、ナトリウム、マグネシウム、苛性ソーダあるいは塩酸、硫酸、塩素、水素、酸素などを生産する。この金属ナトリウムは、電力消費地の火力発電所で水を注ぎ水素を発生させ、その燃焼エネルギーで蒸気タービン発電を行う。ここで副産物として得られる苛性ソーダは、従来のソーダ工業の最終製品である。この苛性ソーダを再度風力発電で電気分解すれば、金属ナトリウムを再生産する。これは文字通り、エンドレスな“水素燃料サイクル”である。さらに、金属ナトリウム製造工程で副産物として得られる硫酸、塩酸、金属マグネシウムは、これまで大電力を使って製造していた代物である。この主製造物の金属ナトリウムは、水よりも軽い電力貯蔵固体として、枯渇の心配が全く無く、CO2も出さず、放射能も出さない持続可能で再生可能な化石燃料の代替エネルギーとなることが、本願発明者により、特許文献1「オンサイト統合工場」(WO/2008/142995)及び非特許文献2「Climate Change and sustainable Development (Chapter 19)」Edited by Ruth A. Reck, Ph.D. , Linton Atlantic Books, Ltd. に開示されている。
Seawater is about 96% water, and 3.5% salt and trace metals. As described in Chapter 2 of Non-patent Document 1 “Saving corn from“ wind power ”ethanolization <Recovering marine resources by wind power generation and offshore factory” ”by the present inventor, concentrated salt water, which is a residue obtained by desalinating seawater From this, gypsum (CaSO 4 ), calcite (CaCO 3 ), sodium chloride (NaCl), magnesium sulfate (MgSO 4 ), potassium chloride (KCl), and magnesium chloride (MgCl 2 ) are precipitated. The salt production method produced salt from this seawater. Seawater introduced into the flat sandy area of the coast evaporates due to solar heat and wind power, and only the salt content adheres to the sand grains. Seawater is poured again, and the filtrate separated from the sand grains is boiled down to deposit salt, and the water is evaporated directly while the seawater gradually flows down the slope. The flow-down Shioda method, which boils and extracts salt, has been practiced for a long time. All of these salt making methods evaporate the water of the seawater drawn into the salt fields with solar heat and wind to make concentrated salt water (brine), boil it down, remove calcium compound crystals that precipitate inside and outside at 108 ° C, about 180 ° C Was recovered as a product, and the magnesium compound was recovered from the remaining filtrate (bitter juice). However, in recent years, instead of using salt fields, instead of using an ion exchange resin method in which concentrated brine is produced by an electrolysis method using an ion exchange resin, it has come to the present.
The concentrated salt water is electrolyzed with electric power obtained at the ocean, and the electric power without transmission loss obtained at these offshore plants and the seawater such as deep water and surface water collected at the site are electrolyzed at the offshore electrolysis plant. Thus, sodium, magnesium, caustic soda, hydrochloric acid, sulfuric acid, chlorine, hydrogen, oxygen and the like are produced. This metallic sodium pours water at a thermal power plant in a power consuming area to generate hydrogen, and steam turbine power generation is performed with the combustion energy. The caustic soda obtained here as a by-product is the final product of the conventional soda industry. If this caustic soda is electrolyzed again by wind power generation, metallic sodium is reproduced. This is literally an endless “hydrogen fuel cycle”. Furthermore, sulfuric acid, hydrochloric acid, and metallic magnesium obtained as by-products in the metallic sodium production process are products that have been produced using high power. This main product, metallic sodium, is an energy storage solid that is lighter than water and can be an alternative energy source for sustainable and renewable fossil fuels that have no fear of depletion, emit no CO2 and produce no radioactivity. Inventor of the present application, Patent Document 1 “Onsite Integrated Factory” (WO / 2008/142995) and Non-Patent Document 2 “Climate Change and sustainable Development (Chapter 19)” Edited by Ruth A. Reck, Ph.D. It is disclosed in Linton Atlantic Books, Ltd.

海水の淡水化法として広く用いられているのは、蒸発法、電気透析法、逆浸透膜法である。これらの利点と欠点を揚げて見ると、蒸発法は大量に真水を作ることができ海水の質を問わないが、多量の熱エネルギーを必要とし、石油の豊富な産油国や火力発電所や原子力発電所の廃熱を利用して採算ベースを考慮するところが多い。石油原産国のサウジアラビアでは石油よりも高い水を多数のプラントで製造している。カザフスタン共和国には、カスピ海の塩湖水の淡水化(日産12万トン)を目的として、高速増殖型原子炉(BN-350)が1973年運転を開始し、原発の廃熱で淡水化を行う予定であった。しかし、原子炉本体の老朽化のため1999年廃止されている。
電気透析法は、電力の消費量は少なく、廃液として出る濃縮塩が金属ナトリウムや金属ナトリウムの原料になる利点は大きい。しかし、イオン交換樹脂が交換容量分のイオンを吸着し、能力劣化が起こり、その再生に大量の塩酸や苛性ソーダが必要なため、淡水コストが高くなる欠点を有している。
逆浸透膜法は海水側に高圧をかけて真水を透過させる方式であり、投入エネルギーが少ないことが特徴である。ただ、海水中のけん濁物は半透膜に付着して水の透過性を悪くするため、海水の前処理が必要である。
The evaporation method, electrodialysis method, and reverse osmosis membrane method are widely used as seawater desalination methods. Looking at these advantages and disadvantages, the evaporation method can produce a large amount of fresh water regardless of the quality of the seawater, but it requires a large amount of thermal energy, and it is oil-rich oil producing countries, thermal power plants and nuclear power plants. In many cases, the profit base is taken into account using waste heat from power plants. In Saudi Arabia, the country of origin of oil, many plants produce water that is higher than oil. In the Republic of Kazakhstan, a fast breeder reactor (BN-350) started operation in 1973 for desalination of saltwater in the Caspian Sea (120,000 tons / day), and desalination with waste heat from the nuclear power plant. It was scheduled. However, it was abolished in 1999 due to the aging of the reactor body.
The electrodialysis method has a great advantage in that the consumption of electric power is small, and the concentrated salt produced as a waste liquid becomes a raw material for metallic sodium and metallic sodium. However, the ion exchange resin adsorbs ions corresponding to the exchange capacity, resulting in performance deterioration, and a large amount of hydrochloric acid or caustic soda is required for the regeneration thereof.
The reverse osmosis membrane method is a method in which fresh water is permeated by applying high pressure to the seawater side, and is characterized by low input energy. However, since the suspended matter in seawater adheres to a semipermeable membrane and deteriorates water permeability, pretreatment of seawater is necessary.

果実や野菜は水の貯蔵庫である。 海水中の水分は96%、胡瓜も同じく96%である。 メロン96%、スイカ93%、キャベツ92%、みかん90%、トマト90%、冬瓜90%、キューイ85%と殆どが水の貯蔵庫である。草についても同様で、90%内外の水分を含んでいる。したがって、これらを飲料水に転換することができる。とくに家畜の餌になるサイレージは原料草の乾燥が不十分のままサイロに収納されると、多量の排汁が発生し、窒素や有機物などの汚染物質のため環境汚染を引き起こす。このため水分量を70%以下にすることが好ましい。一般に乳酸発酵の適水分域は60〜70%であるため、良好なサイレージ発酵につながり、家畜の飼料として効果的である。このように脱水は多くの分野で必要である。とくに風力が強い酪農地帯、例えば南米のアルゼンチンやチリなどのパンパ地方、あるいは北海道において風力エネルギーで圧縮空気を作り、その空気で88%が水分である牛乳や果実などの酪農製品の脱水や家畜の餌になるサイレージの製造に利用することができると考える。このように、淡水化は海水だけの物ではなく、果実も野菜も淡水化の価値があると考える。ブラウン・ランドーン博士は「蒸留水を飲むことにより、細胞の老化物を定期的に洗い流し、蒸留水の最たるものは果物や野菜の水である」と非特許文献3「蒸留水と肉体の浄化」で述べている。
水溶液を濃縮する方法として、濃縮還元がある。これは果汁の水分をいったん蒸発させ、1/4〜1/6程度に濃縮する。この濃縮された果汁の状態でドラム缶に密封保存する。この方法は、果汁の重量、容積を大幅に減らして運ぶことが可能になり、輸送費の削減につながる。そして、出荷時に、蒸発させた分の水分を補い、元の搾汁の状態(果汁100%)に戻したものが、濃縮還元である。一般的にはこの濃縮果汁に水道水を加えて還元したものを天然果汁と称しているが、本願発明で得られる野菜や果実から回収した再蒸留水で還元することが望ましいと考える。
これら野菜、草、果実などの脱水濃縮にも、海水の淡水化同様、蒸発法、冷凍法、逆浸透法などがある。しかし、これら植物は温度を上げられないため、真空蒸発法や冷凍して氷を結晶化して水分を取り除く方法、あるいは半透膜を利用する方法などがあり、これらを組み合わせることもある。これらの脱水法は、その他にも生体物質の血液、アミノ酸、脂肪、タンパク質、糖類、炭水化物、牛乳などの濃縮、賞味期限が切れた清涼飲料水、ビタミン類、あるいは健康飲料水などから真水と栄養分との分離回収、酸、塩基あるいは重金属などの濃縮などに利用できる。
Fruits and vegetables are water reservoirs. Water in seawater is 96%, and pepper is also 96%. Melon 96%, watermelon 93%, cabbage 92%, mandarin orange 90%, tomato 90%, winter rice cake 90%, Qui 85% are mostly water storage. The same is true for grass, and it contains 90% of water. They can therefore be converted into drinking water. In particular, silage, which is used as feed for livestock, is stored in silos with insufficient dryness of raw grass, and a large amount of wastewater is generated, causing environmental pollution due to pollutants such as nitrogen and organic matter. For this reason, it is preferable that the water content be 70% or less. In general, the appropriate moisture range for lactic acid fermentation is 60 to 70%, which leads to good silage fermentation and is effective as a livestock feed. Thus, dehydration is necessary in many fields. Compressed air is produced with wind energy in dairy farms where wind power is particularly strong, for example, Pampa regions such as Argentina and Chile in South America, or Hokkaido, and dairy products such as milk and fruits that are 88% water are dehydrated and livestock It can be used for the production of silage to be used as food. In this way, desalination is not only about seawater, but also fruits and vegetables are considered worthy of desalination. Dr. Brown Randoon said, “By drinking distilled water, cell aging is regularly washed away, and the best of distilled water is fruit and vegetable water,” Non-Patent Document 3, “Purification of distilled water and body.” It is stated in.
As a method of concentrating the aqueous solution, there is concentration reduction. This evaporates the water in the juice once and concentrates it to about 1/4 to 1/6. The concentrated fruit juice is sealed and stored in a drum. This method makes it possible to carry the fruit juice by reducing its weight and volume significantly, leading to a reduction in transportation costs. Concentration and reduction are obtained by supplementing the evaporated water at the time of shipment and returning it to the original juice state (fruit juice 100%). Generally, a product obtained by adding tap water to this concentrated fruit juice and reducing it is referred to as a natural fruit juice. However, it is considered desirable to reduce it with double distilled water recovered from vegetables and fruits obtained in the present invention.
The dehydration concentration of these vegetables, grasses, fruits, etc. includes the evaporation method, the freezing method, the reverse osmosis method, etc., as well as the desalination of seawater. However, since these plants cannot raise the temperature, there are a vacuum evaporation method, a method of freezing to crystallize ice to remove moisture, a method of using a semipermeable membrane, and the like, and these may be combined. These dehydration methods also concentrate fresh water and nutrients from biological materials such as blood, amino acids, fats, proteins, sugars, carbohydrates, milk, and other soft drinks, vitamins, or health drinks that have expired. It can be used for separation / recovery and concentration of acid, base or heavy metal.

野菜、海産物、肉や果実は長期保存の為には乾燥や漬物などにするのが一般的である。長期保存するためには、塩漬が最も簡単であるが、塩漬けによる保存は塩分過剰摂取になり、高血圧、脳卒中や心筋梗塞につながる。乾燥させて食料を保存する利点は塩分過剰摂取にならず、さらに野菜に含まれるカリウムは食塩を体外に排出する効果がある。一般に、生鮮野菜や鮮魚は、賞味期間が短いため、輸送、冷蔵など経費がかかる。これを乾燥状態で消費地に送れば、含有水分が無い分だけ軽量化ができ輸送費が軽減され、かつ鮮度が落ちた食品の廃棄処分率も軽減できる。 Vegetables, marine products, meat and fruits are generally dried or pickled for long-term storage. For long-term storage, salting is the simplest, but storage with salting results in excessive intake of salt, leading to hypertension, stroke and myocardial infarction. The advantage of preserving food by drying is not excessive intake of salt, and potassium contained in vegetables has the effect of discharging salt out of the body. In general, fresh vegetables and fish have a short shelf life, and thus cost for transportation and refrigeration. If this is sent to the consumption area in a dry state, the weight can be reduced as much as there is no water content, the transportation cost can be reduced, and the disposal rate of foods with reduced freshness can be reduced.

従来、蒸留法や逆浸透膜法は、海水から飲料水を採取した残りの濃縮水は廃棄していた。他方、電気透析法は海水を濃縮して塩を採取するが主で、水は廃棄していた。ところが最近これらの手法を組み合わせて、真水と濃縮水を共に利用する報告が多くなってきた。蒸留法を基に、他の手法を組み合わせた方法として、旭化成ケミカルズ株式会社の山村は特許文献2「塩水の処理方法」(特許公開2008-223115)において、逆浸透膜法による淡水化により、廃棄物として発生する濃縮塩水を更に電気透析法により濃縮し、更にこれを蒸発法で濃縮して得られた塩結晶を電気分解処理する方法を開示している。本願発明者の村原らは特許文献3「海洋資源エネルギー抽出・生産海洋工場」(特許公開2007-331681)において逆浸透膜法や蒸発法で淡水化した真水と濃縮塩水(かん水)とに分離した後、かん水をイオン交換透析により更に濃縮した結晶を太陽炉と風力発電や海流発電による電力とで溶融塩電気分解してナトリウムやマグネシウムを製造することを開示している。東レ株式会社の小岩らは特許文献4「複合ナノろ過膜」(特許公開2010-137192)において、海水を蒸発法で処理した時の欠点であるスケールの発生を防止するために、複合ろ過膜を用い、淡水を高率で回収する方法を開示している。
電気透析法による海水の淡水化する過程で陰極側に発生する水素ガスによる起電力を取り出し、電気透析に必要な電力の一部とする方法が、三菱電機株会社の森口らにより特許文献5「淡水化方法及び装置」(特許公開平9-57258)に開示されている。
Conventionally, in the distillation method and reverse osmosis membrane method, the remaining concentrated water obtained by collecting drinking water from seawater has been discarded. On the other hand, the electrodialysis method mainly collects salt by concentrating seawater, and the water was discarded. Recently, however, there have been many reports of using both fresh water and concentrated water by combining these methods. As a method combining other methods based on the distillation method, Yamamura of Asahi Kasei Chemicals Co., Ltd. disposes of wastewater by desalination using the reverse osmosis membrane method in Patent Document 2 “Salt Water Treatment Method” (Patent Publication 2008-223115). A method of electrolyzing salt crystals obtained by further concentrating concentrated salt water generated as a product by electrodialysis and further concentrating it by evaporation is disclosed. Murahara et al., The inventor of the present application, separated into fresh water and concentrated salt water (brine water) desalinated by the reverse osmosis membrane method or evaporation method in Patent Document 3 “Ocean Resource Energy Extraction / Production Ocean Factory” (Patent Publication 2007-331681). After that, it is disclosed that sodium or magnesium is produced by electrolyzing molten salt with a solar furnace and wind power generation or ocean current power generation by further concentrating the brine by ion exchange dialysis. Koiwa et al. Of Toray Industries, Inc., in Patent Document 4 “Composite Nanofiltration Membrane” (Patent Publication 2010-137192), in order to prevent the generation of scale, which is a drawback when seawater is treated by the evaporation method, A method of using and recovering fresh water at a high rate is disclosed.
A method of taking out electromotive force due to hydrogen gas generated on the cathode side in the process of desalination of seawater by electrodialysis and using it as a part of electric power necessary for electrodialysis is disclosed in Patent Document 5 “Moriguchi et al. Desalination method and apparatus "(Patent Publication No. 9-57258).

「オンサイト統合工場」(WO/2008/142995)"Onsite integrated factory" (WO / 2008/142995) 「塩水の処理方法」(特許公開2008-223115)"Salt water treatment method" (Patent Publication 2008-223115) 「海洋資源エネルギー抽出・生産海洋工場」(特許公開2007-331681)"Ocean Resource Energy Extraction / Production Ocean Factory" (Patent Publication 2007-331681) 「複合ナノろ過膜」(特許公開2010-137192)"Composite nanofiltration membrane" (Patent Publication 2010-137192) 「淡水化方法及び装置」(特許公開平9-57258)"Desalination Method and Equipment" (Patent Publication 9-57258) 「海水淡水化装置」(特開平11−216459)"Seawater desalination system" (Japanese Patent Laid-Open No. 11-21659) 「レーザーによるフッ素樹脂の表面改質方法」(特許1858351)"Method for surface modification of fluororesin by laser" (Patent 1858351) 「固体材料表面改質方法および固体材料表面改質装置」(特許第3316069)"Solid material surface modification method and solid material surface modification device" (Patent No. 3316069) 「C-H結合を有するプラスチック材料の表面改質方法」(特許第3467508号)"Surface modification method for plastic materials with C-H bonds" (Patent No. 3467508) 「固体表面の改質方法および装置」(特許第3527969号)"Solid surface modification method and apparatus" (Patent No. 3527969) 「Solid Surface Modification Method and Apparatus」(米国特許:USP- 6117497)"Solid Surface Modification Method and Apparatus" (US Patent: USP-6117497) 「Solid Surface Modification Method and Apparatus」(欧州特許:EUP-0644227)"Solid Surface Modification Method and Apparatus" (European patent: EUP-0644227) 「Solid Surface Modification Method and Apparatus」(米国特許:USP-6689426)"Solid Surface Modification Method and Apparatus" (US Patent: USP-6689426) 「固体材料表面の光化学的改質方法」(特願2002-350311)"Method of photochemical modification of solid material surface" (Japanese Patent Application 2002-350311)

村原正隆・関和市 「“風力よ”エタノール化からトウモロコシを救え」パワー社出版(2007年12月発行)Masataka Murahara / Kanwa City “Wind, save corn from ethanolization” published by Power Company (December 2007) 「Climate Change and sustainable Development (Chapter 19)」Edited by Ruth A. Reck, Ph.D. , Linton Atlantic Books, Ltd.`` Climate Change and sustainable Development (Chapter 19) '' Edited by Ruth A. Reck, Ph.D., Linton Atlantic Books, Ltd. 「蒸留水と肉体の浄化」、ブラウン・ランドーン著、ブラウン・ランドーン協会編"Purification of distilled water and body", Brown Landoon, edited by Brown Landoon Association

海水の淡水化で最も需要で早急に実施しなければ成らないことは、水の安全保障である。大規模災害に対処できる、電力や石油などのエネルギー消費を最小限に抑えた、小型簡易型淡水化装置を開発することである。
本願発明の蒸発脱水方法は、海水の淡水化にも、野菜や果実に含有している水分の淡水化にも使え、かつ濃縮物の回収のも使える。しかし、従来、蒸発法を大気中で行なうには、水の蒸発温度(摂氏100度)近くにしなければならず、そのための石油の燃焼などの熱エネルギーが必要であった。一方真空雰囲気での蒸発は脱水には効果があるが、電力消費量が多い大型真空装置が必要であり、しかも脱水した水分の回収は難しい。ところが自然は見事に海水を淡水化している。海水は太陽熱によって蒸発し、水蒸気となって上昇するが、次第に温度が下がると水蒸気は凝縮して空気中の塵が核となって水滴に成り雲を作り雨になって地上に戻る。このように、水は常温で放置して置けば、絶えず気化して水蒸気となる。そして密閉容器の中では、水蒸気は一定圧力に成るまでは蒸発するが、それ以上は蒸発しない。この蒸発が停止する圧力を飽和蒸気圧という。この飽和蒸気圧は温度と気圧に関係し、海水の温度が上昇すると飽和蒸気圧値は大きくなるから水の蒸発量は大きくなる。同様に、温度が低ければ飽和水蒸気圧値は低いため、蒸発量は少ない。一方、雰囲気の気圧を下げると、飽和蒸気圧値が下がるため、水の沸点温度も下がり、海水の温度が低い場合でも水の蒸発量は大きくなる。このように、例え海水温度が低くても、気圧を下げれば、水蒸気蒸発が起こる。この現象を利用して脱水系に空気を投入させる手段が第1機能であり、海水を低気圧雰囲気で蒸発させて不飽和湿り空気を生成させる手段が第2機能であり、この不飽和湿り空気を昇圧して飽和湿り空気に変換する手段が第3機能である。更に飽和湿り空気を親水性処理された結露面で結露を誘起させて、あるいは、飽和湿り空気を更に圧縮して親水性処理された結露面で結露させる手段が第4処理である。この第1機能から第4機能を連続して行うことにより、従来の熱エネルギーの必要性を軽減又は無くすことが、本発明が解決しようとする課題である。
Water security is the most important demand for seawater desalination. The aim is to develop a small and simple desalination system that can cope with large-scale disasters and minimizes the consumption of energy such as electricity and oil.
The evaporative dehydration method of the present invention can be used for desalination of seawater, desalination of water contained in vegetables and fruits, and recovery of concentrate. However, conventionally, in order to carry out the evaporation method in the air, it has been necessary to bring the temperature close to the evaporation temperature of water (100 degrees Celsius), and thermal energy such as oil combustion has been required for that purpose. On the other hand, evaporation in a vacuum atmosphere is effective for dehydration, but requires a large-scale vacuum apparatus that consumes a large amount of power, and it is difficult to recover dehydrated water. However, nature has brilliantly desalinated seawater. Seawater evaporates due to solar heat and rises as water vapor, but as the temperature falls gradually, the water vapor condenses, dust in the air becomes nuclei, forming water droplets, forming clouds and returning to the ground. Thus, if water is left standing at room temperature, it will continuously evaporate and become water vapor. In the closed container, water vapor evaporates until a certain pressure is reached, but does not evaporate any more. The pressure at which this evaporation stops is called saturated vapor pressure. This saturated vapor pressure is related to temperature and atmospheric pressure, and when the temperature of seawater rises, the saturated vapor pressure value increases, so the amount of water evaporation increases. Similarly, since the saturated water vapor pressure value is low when the temperature is low, the amount of evaporation is small. On the other hand, when the atmospheric pressure is lowered, the saturated vapor pressure value is lowered, so that the boiling point temperature of water is also lowered, and the amount of water evaporation is increased even when the temperature of seawater is low. In this way, even if the seawater temperature is low, if the atmospheric pressure is lowered, water vapor evaporation occurs. Means for introducing air into the dehydration system using this phenomenon is the first function, and means for generating unsaturated moist air by evaporating seawater in a low-pressure atmosphere is the second function, and this unsaturated moist air. The third function is a means for increasing the pressure to convert it to saturated humid air. Furthermore, the fourth treatment is a means for inducing condensation on the saturated wet air on the dew-condensed surface, or for further condensing saturated wet air on the dew-condensed surface subjected to hydrophilic treatment. It is a problem to be solved by the present invention to reduce or eliminate the need for conventional heat energy by continuously performing the first function to the fourth function.

海水は温度が低くても、気圧を下げれば、水蒸気蒸発が起こる。この現象を利用して低圧雰囲気を形成させて海水を蒸発させることが第2機能であり、蒸発した水蒸気を真水に還元することが第3及び第4機能である。西芝電機株式会社及び株式会社東芝の田辺らは「海水淡水化装置」特許文献6(特開平11−216459)において海水を入れた減圧容器を真空ポンプで吸引し、飽和水蒸気以下にした水蒸気を凝縮器に入れて冷却凝縮させ淡水を得る方法を開示している。しかし、この発明では真空ポンプを用いて減圧容器室を飽和水蒸気以下にするため、凝縮過程では空気の介在はなく、水蒸気のみを冷却凝縮させていると考える。
一般に、減圧容器室の気圧を下げると、飽和蒸気圧値は下がる。このため、水の沸点温度も下がり、海水の温度が低くても真水の蒸発量は多くなり空気中の湿度が上がる。すなわち、空気中の水蒸気が飽和すると湿度は100%である。水の雰囲気温度が摂氏100度では全ての水が蒸発して湿度100%の気体に成る。この時の水蒸気の圧力は760mmHg(1気圧)であり、この760mmHgを飽和蒸気圧という。飽和蒸気圧は温度が低くなると下がり、摂氏70度では約220mmHg(0.3気圧)である。したがって、若し雰囲気気圧を220mmHgまで下げれば、水は摂氏70度で沸騰して湿度100%になる。このように、含水物の雰囲気気圧を下げれば、低い温度で水蒸気を発生させることができる。
したがって、本発明での、脱水条件は、第2機能では飽和水蒸気圧値に近づけることに努力し、かつ空気中の水蒸気を不飽和に保ち、不飽和湿り空気を生成することである。この不飽和湿り空気を生成させるためには、雰囲気気圧を低くし、更に、淡水の回収量を多くするために、空気中の水蒸気を飽和に達しさせないことである。このため、高速空気を大量に供給することが必要であり、かつ高速空気流で気圧を下げ、含水物から水分と空気とが混合した不飽和湿り空気を発生させる必要がある。この空気流の流れから低圧域を発生させる方法として、ベルヌイの定理を応用する。
一般の航空機の翼で揚力を発生させる原理は、翼の上面を流れる空気の流速が下面より速くなると、上面の圧力が大気圧より低くなる現象を利用したものである。このため、翼体の形状は、上面(凸面アッパーキャンバー)は高速気流が流れ、下面(ロワーキャンバー)では低速気流が流れるような形状を採用している。
この飛行中の航空機の翼体上面に生ずる気圧降下現象を利用して、航空機が上面に気圧の低い領域を作るが、本発明ではそれとは正反対の翼の下面側に気圧降下を起こさせている。すなわち、下面に高速流を流し、上面に低速流が流れるようにした。実際には、航空機翼体の上面(凸面アッパーキャンバー)と下面(ロワーキャンバー)形状を反転させて風洞の中に固定し、風洞に固定された翼形状の板の下側の低圧部位に海水若しくは含水物を置く。
更に、真水の回収に係る第2機能では不飽和湿り空気を飽和又はそれ以上にすることである。これを満たすために、凝縮室の気圧を上げ、水蒸気を飽和状態にし、かつ結露を誘導するために雰囲気温度を下げ、更に、湿り空気の衝突板を備える。更に好ましくは、空気衝突板の表面は濡れ性を高くする材料を用いるか又は親水性表面処理を施しておくことが望ましい。
この親水性処理又は撥水性処理については本願発明者の村原らによりプラスチックや金属あるいはセラミックスなどの材料表面に光化学的に水酸基又は撥水基を置換する方法が、特許文献7「レーザーによるフッ素樹脂の表面改質方法」(特許1858351)、特許文献8「固体材料表面改質方法および固体材料表面改質装置」(特許第3316069)、特許文献9「C-H結合を有するプラスチック材料の表面改質方法」(特許第3467508号)、特許文献10「固体表面の改質方法および装置」(特許第3527969号)、特許文献11「Solid Surface Modification Method and Apparatus」(米国特許:USP- 6117497)、特許文献12「Solid Surface Modification Method and Apparatus」(欧州特許:EUP-0644227)、特許文献13「Solid Surface Modification Method and Apparatus」(米国特許:USP-6689426)、特許文献14「固体材料表面の光化学的改質方法」(特願2002-350311)に開示されている。
とくに本発明において、特筆すべきことは凝縮室(結露)の気圧を上げることである。この現象は、自然現象(気象学)では起こらない。すなわち、気象学的には、上昇した水蒸気は上空では気圧は下がるのみで気圧の上昇はありえない。そして、気圧が下がれば下がるほど飽和蒸気圧値は小さくなり、原理的には、結露は難しくなる筈である。ところが、幸いにも、上空では温度が氷点下近くまで下がるため結露が起こる。もし、上空の気圧を局所的に高くすることが可能であれば、温度に関係なく結露が起こる。本発明では、気象現象では決して起こらない、水蒸気の凝縮雰囲気の気圧を1気圧近くまで上げることを実証している。即ち、第2機能では、高速空気により低圧部位を形成することにより水分を蒸発させて不飽和湿り空気を生成し、第3機能では、第2機能で蒸発した空気を1気圧近くまで上げることにより結露し易くしたものである。
Even if the temperature of seawater is low, if the air pressure is lowered, water vapor evaporation occurs. The second function is to form a low-pressure atmosphere by utilizing this phenomenon to evaporate seawater, and the third and fourth functions are to reduce the evaporated water vapor to fresh water. Nishishiba Electric Co., Ltd. and Toshiba Corporation Tanabe et al. In "Seawater Desalination Device" Patent Document 6 (Japanese Patent Laid-Open No. 11-216459) sucked a decompression vessel containing seawater with a vacuum pump to condense water vapor below saturated water vapor. Discloses a method of obtaining fresh water by cooling and condensing in a vessel. However, in the present invention, since the decompression chamber is made to be equal to or lower than saturated water vapor using a vacuum pump, it is considered that there is no air in the condensation process and only water vapor is cooled and condensed.
Generally, when the pressure in the decompression vessel chamber is lowered, the saturated vapor pressure value is lowered. For this reason, the boiling point of water also decreases, and even when the temperature of seawater is low, the amount of evaporation of fresh water increases and the humidity in the air increases. That is, the humidity is 100% when water vapor in the air is saturated. When the ambient temperature of water is 100 degrees Celsius, all the water evaporates and becomes a gas with 100% humidity. The water vapor pressure at this time is 760 mmHg (1 atm), and this 760 mmHg is called saturated vapor pressure. The saturated vapor pressure decreases as the temperature decreases and is approximately 220 mmHg (0.3 atm) at 70 degrees Celsius. Therefore, if the atmospheric pressure is lowered to 220 mmHg, the water will boil at 70 degrees Celsius and become 100% humidity. Thus, if the atmospheric pressure of the hydrated material is lowered, water vapor can be generated at a low temperature.
Accordingly, the dehydrating condition in the present invention is to make efforts to bring the water vapor pressure value close to the saturated water pressure value in the second function, and to keep the water vapor in the air unsaturated and generate unsaturated humid air. In order to generate this unsaturated moist air, the atmospheric pressure is lowered, and in order to increase the amount of fresh water recovered, water vapor in the air is not allowed to reach saturation. For this reason, it is necessary to supply a large amount of high-speed air, and it is necessary to reduce the atmospheric pressure with a high-speed air flow to generate unsaturated humid air in which moisture and air are mixed from the hydrated material. Bernoulli's theorem is applied as a method of generating a low pressure region from this air flow.
The principle of generating lift by the wing of a general aircraft utilizes the phenomenon that the pressure on the upper surface becomes lower than the atmospheric pressure when the flow velocity of the air flowing on the upper surface of the wing becomes faster than the lower surface. For this reason, the shape of the wing body is such that a high-speed airflow flows on the upper surface (convex upper camber) and a low-speed airflow flows on the lower surface (lower camber).
By utilizing the pressure drop phenomenon that occurs on the upper surface of the wing body of the aircraft in flight, the aircraft creates a low pressure area on the upper surface, but in the present invention, a pressure drop is caused on the lower surface side of the opposite wing. . That is, a high-speed flow was made to flow on the lower surface, and a low-speed flow was made to flow on the upper surface. Actually, the upper surface (convex upper camber) and the lower surface (lower camber) of the aircraft wing body are reversed and fixed in the wind tunnel, and seawater or low-pressure parts on the lower side of the wing-shaped plate fixed to the wind tunnel Put water content.
Further, the second function related to the recovery of fresh water is to make unsaturated humid air saturated or higher. In order to satisfy this, the pressure in the condensing chamber is raised, the water vapor is saturated, the atmospheric temperature is lowered to induce condensation, and a wet air impingement plate is further provided. More preferably, the surface of the air impingement plate is desirably made of a material that increases wettability or is subjected to a hydrophilic surface treatment.
Regarding this hydrophilic treatment or water repellency treatment, the method of photochemically substituting a hydroxyl group or a water repellency group on the surface of a material such as plastic, metal or ceramic by Murahara et al. Surface Modification Method ”(Patent 1858351), Patent Document 8“ Solid Material Surface Modification Method and Solid Material Surface Modification Device ”(Patent No. 3316069), Patent Document 9“ Surface Modification Method for Plastic Material Having CH Bonds ” (Patent No. 3467508), Patent Document 10 “Solid Surface Modification Method and Apparatus” (Patent No. 3527969), Patent Document 11 “Solid Surface Modification Method and Apparatus” (US Patent: USP-6117497), Patent Document 12 “Solid Surface Modification Method and Apparatus” (European Patent: EUP-0644227), Patent Document 13 “Solid Surface Modification Method and Apparatus” (USP: USP-6689426), Patent Document 14 “Solid Materials Photochemical method of modifying the surface "is disclosed in (Japanese Patent Application No. 2002-350311).
Particularly in the present invention, what should be noted is to increase the pressure in the condensing chamber (condensation). This phenomenon does not occur in natural phenomena (meteorology). In other words, meteorologically, the increased water vapor only lowers the atmospheric pressure above the sky, and the atmospheric pressure cannot increase. As the atmospheric pressure decreases, the saturated vapor pressure value decreases, and in principle, condensation should be difficult. Fortunately, however, the temperature drops to near freezing in the sky, causing condensation. If the atmospheric pressure in the sky can be increased locally, condensation occurs regardless of the temperature. In the present invention, it has been demonstrated that the pressure of the water vapor condensing atmosphere, which never occurs in a meteorological phenomenon, is increased to nearly 1 atm. That is, in the second function, the moisture is evaporated by forming a low pressure portion with high-speed air to generate unsaturated humid air, and in the third function, the air evaporated in the second function is increased to nearly 1 atm. Condensation is easy.

自然風の流れを物理的に高速にする第1機能と、海水や含水物質の雰囲気の気圧を低くする第2機能を発現させるためには、高風速が必要である。この高風速は、風力エネルギーで回転/圧縮変換して製造した圧縮空気をタワー内のボンベに貯えた後、風洞に直接供給するか、又は海風あるいは陸風などの自然風の通路を狭めることで幾何学的手法により低気圧域を形成することができる。一般に低気圧域を発生させるための風速は毎秒20メートルで1/50気圧、毎秒100メートルで0.5気圧である。しかし、この風速を実現するには大掛かりな風洞設備が必要になり、復旧を最優先にする災害地などでは使えない。一方、大気を封じ切った風洞の容積を2倍に拡大すれば、風洞内の圧力は0.5気圧になり、毎秒100メートルの風速を発生させたと同じ効果が発現し、簡便な装置が実現する。これにより即座に不飽和湿り空気を生成することができる。装置の構成は簡単で、圧縮ポンプ内の前室に海水又は脱水物を置き、空気を封じ切る第1機能と、その前室を拡大して断熱膨張を行う第2機能により不飽和湿り空気が発生する。この不飽和湿り空気を断熱圧縮して飽和湿り空気を生成させる第3機能と、更に飽和湿り空気を圧縮して第4機能である結露を誘起して真水を生成する。 装置は、第1から第4機能を連続して起動するピストン型又は回転型圧縮機である。この小型簡易型淡水化装置は、電力や石油などのエネルギー投入量を最小限に抑え、海水から又は汚濁水から真水を生成する大規模災害に適した装置である。 High wind speed is required to develop the first function of physically moving the natural wind at a high speed and the second function of lowering the atmospheric pressure of the seawater and water-containing substances. This high wind speed is achieved by storing compressed air produced by rotation / compression conversion with wind energy in a cylinder in the tower and then supplying it directly to the wind tunnel, or by narrowing the passage of natural wind such as sea or land. The low pressure region can be formed by a scientific method. Generally, the wind speed for generating a low pressure region is 1/50 atm at 20 meters per second and 0.5 atm at 100 meters per second. However, large wind tunnel facilities are required to achieve this wind speed, and it cannot be used in disaster areas where restoration is the top priority. On the other hand, if the volume of the wind tunnel that sealed off the atmosphere is doubled, the pressure in the wind tunnel will be 0.5 atm, and the same effect will be realized as if the wind speed of 100 meters per second was generated, and a simple device will be realized. Thereby, unsaturated humid air can be generated immediately. The structure of the device is simple. Unsaturated humid air is generated by the first function of placing seawater or dehydrated material in the anterior chamber of the compression pump and sealing the air, and the second function of expanding the anterior chamber and performing adiabatic expansion. appear. This unsaturated humid air is adiabatically compressed to generate saturated humid air, and the saturated humid air is further compressed to induce condensation, which is the fourth function, to generate fresh water. The device is a piston-type or rotary-type compressor that continuously activates the first to fourth functions. This small and simple desalination apparatus is an apparatus suitable for large-scale disasters in which fresh water is generated from seawater or polluted water while minimizing the amount of energy input such as electric power and oil.

請求項1に記載の発明は、気圧差を利用した脱水方法及び真水の回収方法であり、含水物に空気を送り込み、含水物と空気を共に減圧して不飽和湿り空気を発生させ、この不飽和湿り空気の雰囲気気圧を昇圧して、結露させて真水を回収する方法に関するものである。
海風、陸風、山谷風、フエーン、ボラ、颪、ビル風などの自然風を集風して高速風にしたり、自然風を風洞の入り口に設備したファンで圧縮空気にしたり、又は風力エネルギーで回転/圧縮変換して回収した圧縮空気をタワー内のボンベに貯えた後、風洞の入り口に送風させる。一般に、風洞の高速空気は、低速風洞や亜音速風洞あるいは遷音速風洞ではファン(圧縮比:1.1以下)又はブロワー(圧縮比:1.2〜2)により風を送り、超音速風洞ではコンプレッサー(圧縮比:2以上)を用いる。ただしコンプレッサーで作った圧縮空気をボンベに蓄圧した高圧圧縮空気を使うと、風洞入り口で圧縮空気が大気開放されるため、断熱膨張を起こし温度が急激に下がるため、一般的には、ボイラーで予め空気を暖める。
この風洞の開口部で大気開放された圧縮空気は、高速空気とし風洞に送り込まれる。
ここで風洞とは、人工的に周囲が壁で囲まれた風トンネルをさすが、本発明では屋外に於いて壁が無くても気圧差によって局所的に流れる風の通り道を「風道」と定義し、風洞(風道)構造体の床部に含水物試料容器と一体化した構造体若しくは設置自在とした試料容器に該含水物であり、水分のみを蒸発させる含水物の内含水溶液としては、ミネラルを含む海水、塩水、塩湖水、温泉水、鉱泉水などの天然水、又は酸水溶液、塩基水溶液、無機物水溶液、色素水溶液などの化学薬品水溶液、又は果汁、牛乳、有機物(砂糖水) 健康飲料水)などの飲料用液体、及びアミノ酸、脂肪、蛋白質、糖類、炭水化物などの生体物質水溶液、あるいはビタミン類や汚染水であり、固体状含水物としては木、草、野菜、果物などの植物あるいは肉類や魚介類であり、水の飽和蒸気圧より高い液体状の含水物の場合はアルコール水である。これら含水物試料を試料容器内に置き、含水物を脱水して真水を回収する。このための手段として、第1機能として含水物試料が入れられた風洞(風道)構造体内に自然風又は圧縮空気あるいは自然風をファンで圧縮して生成した圧縮空気をいれ、第2機能において、水の飽和蒸気圧より高い含水物試料又は飽和蒸気圧が水と等しいか又は水より低い液体を減圧状態に保持し、順次不飽和湿り空気を発生させる。更に、第3機能において、不飽和湿り空気を大気圧まで昇圧し、若しくは断熱圧縮により大気圧以上に昇圧して飽和湿り空気に転換する。ここで第4機能により該飽和湿り空気を更に圧縮及び/又は親水性結露面で液化を誘起させて真水分を回収する。これを順次起動することにより、液体状又は固体状の含水物試料から真水(又は高濃度アルコール)を回収し、含水物試料容器の中に残留する被脱水物(脱アルコールされた水)を回収する。
一般に各物質の飽和蒸気圧値は温度によって変化し、温度が高いほど飽和蒸気圧値は高くなる。一方、気圧を下げれば、飽和蒸気圧値は降下させた気圧に等しいので、温度は低くなる。これは地上での水の沸点が摂氏100度であるのに対し、富士山(3776m)では、気圧が480Hg(640hPa、0.63気圧)であるから、沸点は摂氏88度である。しかるに、富士山頂では飽和蒸気圧値は480mmHgである。すなわち、摂氏88度で水は100%蒸発して湿度100%になる。とは言え、脱水だけを考えると、湿度を100%にする必要は無い。洗濯物を干しておくと自然に乾く。勿論富士山頂では洗濯物の乾きは更に早い。この乾燥現象は空気中の水蒸気が飽和に達していないからである。したがって、含水物を速い速度で脱水するには、雰囲気の気圧を下げても、あるいは雰囲気温度を上げても、何れか一方又は両方でも湿度100%は簡単に達成する。そこで本発明では気圧を下げる方法を採用する。しかし、注意しなければ成らないことは、湿度を100%にしてしまっては、それ以上の蒸発は起こらない。そこで空気が静止した状態では湿度が100%になるように設定した後、空気中の水蒸気が飽和蒸気圧に達しないように、大量の空気を流す。
本願発明では含アルコール溶液の濃縮もできる。一般に醸造酒のアルコール濃度は20%以下であるが、焼酎、ウイスキー、ブランデーあるいはウオッカなどは蒸留脱水して濃度を30%から40%にしている。一方、水の飽和蒸気圧は100℃で760 mmHg、80℃で340 mmHg、50℃で100 mmHgであるが、アルコールの飽和蒸気圧は高く、エタノールでは80℃で800 mmHg、50℃で210 mmHgである。したがってアルコール水溶液の濃縮はアルコール水溶液が入った容器中のエタノールを蒸発させて飽和湿りアルコール空気を結露させて回収し、最後に、容器の中に残た液体が真水である。
例えばバイオエタノールは本願発明者村原による非特許文献1「“風力よ”エタノール化からトウモロコシを救え<風力発電による海洋資源回収と洋上工場」の5章で述べているように、アルコール発酵の酵母菌は酸素が少ない状態でのみアルコール発酵が進み、かつアルコール濃度が18〜20%を超えないことが発酵条件である。これを95%の濃度に濃縮し、更に脱水して100%の燃料用アルコールは完成する。しかるに、95%までの脱水に本願発明の方法が使用できる。
The invention described in claim 1 is a dehydration method and a fresh water recovery method using a pressure difference, and air is fed into the hydrated material, and the hydrated material and air are decompressed together to generate unsaturated humid air. The present invention relates to a method for collecting fresh water by increasing the atmospheric pressure of saturated humid air to cause condensation.
Natural winds such as sea breeze, land breeze, mountain valley breeze, vane, mullet, reed, and building breeze are collected to make high-speed breeze, natural breeze is compressed with a fan installed at the entrance of the wind tunnel, or rotated by wind energy / Compressed air recovered by compression conversion is stored in a cylinder in the tower and then blown to the entrance of the wind tunnel. In general, high-speed air in a wind tunnel sends wind by a fan (compression ratio: 1.1 or less) or blower (compression ratio: 1.2-2) in a low-speed wind tunnel, subsonic wind tunnel, or transonic wind tunnel, and a compressor (compression ratio) in a supersonic wind tunnel. : 2 or more). However, using high-pressure compressed air in which compressed air produced by a compressor is stored in a cylinder will cause the compressed air to be released to the atmosphere at the wind tunnel entrance, causing adiabatic expansion and causing the temperature to drop sharply. Warm the air.
The compressed air released to the atmosphere at the opening of the wind tunnel is sent to the wind tunnel as high-speed air.
Here, a wind tunnel refers to a wind tunnel that is artificially surrounded by a wall, but in the present invention, a wind path that locally flows due to a pressure difference is defined as “wind path” even if there is no wall outdoors. As an aqueous solution containing a hydrated material that evaporates only water, the hydrated sample container is a structure integrated with a hydrated sample container on the floor of a wind tunnel (wind channel) structure, or a sample container that can be installed freely. Natural water such as mineral water, salt water, salt lake water, hot spring water, mineral spring water, etc., or chemical aqueous solutions such as acid aqueous solution, base aqueous solution, inorganic aqueous solution, dye aqueous solution, fruit juice, milk, organic matter (sugar water) Drinking liquids such as drinking water) and aqueous solutions of biological substances such as amino acids, fats, proteins, sugars and carbohydrates, or vitamins and contaminated water. Solid hydrates include plants such as trees, grasses, vegetables and fruits. Or meat and seafood In the case of a liquid hydrate containing water higher than the saturated vapor pressure of water, it is alcohol water. These hydrated samples are placed in a sample container, the hydrated matter is dehydrated and fresh water is recovered. As a means for this purpose, natural air or compressed air or compressed air generated by compressing natural wind with a fan is placed in the wind tunnel (wind channel) structure containing the hydrated sample as the first function. A water-containing sample higher than the saturated vapor pressure of water or a liquid whose saturated vapor pressure is equal to or lower than water is maintained in a reduced pressure state, and unsaturated humid air is sequentially generated. Further, in the third function, the unsaturated humid air is increased to atmospheric pressure, or is increased to atmospheric pressure or higher by adiabatic compression and converted to saturated humid air. Here, by the fourth function, the saturated humid air is further compressed and / or liquefaction is induced on the hydrophilic dew condensation surface to recover the true moisture. By starting this sequentially, fresh water (or high-concentration alcohol) is recovered from the liquid or solid hydrated sample, and the dehydrated material (dealcoholized water) remaining in the hydrated sample container is recovered. To do.
In general, the saturated vapor pressure value of each substance varies with temperature, and the higher the temperature, the higher the saturated vapor pressure value. On the other hand, if the atmospheric pressure is lowered, the saturated vapor pressure value is equal to the lowered atmospheric pressure, so the temperature becomes lower. This is because the boiling point of water on the ground is 100 degrees Celsius, but at Mt. Fuji (3776 m), the atmospheric pressure is 480 Hg (640 hPa, 0.63 atmospheres), so the boiling point is 88 degrees Celsius. However, the saturated vapor pressure value is 480mmHg at the summit of Mt. Fuji. That is, at 88 degrees Celsius, the water evaporates 100% to a humidity of 100%. However, considering only dehydration, it is not necessary to set the humidity to 100%. Drying the laundry will dry naturally. Of course, at the top of Mt. Fuji, the laundry dries faster. This is because the water vapor in the air does not reach saturation. Therefore, in order to dehydrate the hydrated material at a high speed, the humidity of 100% is easily achieved by either or both of the atmospheric pressure and the atmospheric temperature. Therefore, the present invention employs a method for lowering the atmospheric pressure. However, it must be noted that if the humidity is 100%, no further evaporation will occur. Therefore, after setting the humidity to be 100% when the air is stationary, a large amount of air is allowed to flow so that the water vapor in the air does not reach the saturated vapor pressure.
In the present invention, the alcohol-containing solution can also be concentrated. Generally, the alcohol concentration of brewed liquor is 20% or less, but shochu, whiskey, brandy or vodka is distilled and dehydrated to a concentration of 30% to 40%. On the other hand, the saturated vapor pressure of water is 760 mmHg at 100 ° C, 340 mmHg at 80 ° C, and 100 mmHg at 50 ° C, but the saturated vapor pressure of alcohol is high, with ethanol being 800 mmHg at 80 ° C and 210 mmHg at 50 ° C. It is. Therefore, the concentration of the alcohol aqueous solution is performed by evaporating ethanol in the container containing the alcohol aqueous solution to condense and collect the saturated wet alcohol air, and finally, the liquid remaining in the container is fresh water.
For example, bioethanol is a yeast for alcoholic fermentation as described in Chapter 5 of Non-Patent Document 1 “Morning wind from ethanol” by the present inventor Murahara. Bacteria are fermented under the condition that alcohol fermentation proceeds only in a state where oxygen is low, and the alcohol concentration does not exceed 18 to 20%. This is concentrated to 95% concentration and dehydrated to complete 100% fuel alcohol. However, the method of the present invention can be used for dehydration up to 95%.

請求項2に記載の発明は、含水物試料近傍に存在する空気を減圧するための3方法を効果的に引き出すための前工程、すなわち風洞又は風道に空気を挿入する第1機能に関するものである。
流れがある空気(風)雰囲気では、とくに、海上、湖上、河川上、渓谷、岸壁、山肌、山頂、絶壁など強風地域に於いては自然風を直接高速空気流として利用する風道利用、あるいは自然風をホーン型集風装置で集めて増速した後、風洞(人工トンネル)構造体の入り口部分に導入する風洞利用、あるいは風力エネルギーで回転/圧縮変換して製造した圧縮空気や風洞入り口部分に取り付けたファンによる圧縮空気を導入する風洞利用、又は空気の流れのない雰囲気では、圧縮機内部に備えた空気溜め兼含水物試料容器格納室を予め空気で密閉するための空気を挿入させる第1機能であり、第2機能に属する含水物試料近傍の空気を減圧して不飽和湿り空気を生成させる手段に連動させる方法である。
強風ではない自然風を風洞(人工トンネル)構造体の入り口に効率よく集風させるために、風洞構造体先端部(入り口部分)には風上側が末広がりに拡開するホーン形状開口部としたものである。地球上では太陽エネルギー分布の違いで高気圧・低気圧が生まれ、高気圧から低気圧へと流れる空気流が風である。地球の中緯度地域の偏西風、熱帯地域の貿易風、南極や北極地域の極東風。大陸の辺縁部のモンスーン。海岸付近では日中の海風、夜間の陸風、夜間放射冷却によって山肌が冷やされ、山の斜面に沿って下降する冷たい山風、日中山肌が温められて山の斜面に沿って上昇する暖かい谷風。湿った風が山を登るときに起こる、断熱膨張による冷却と、山を下る時に起こる断熱圧縮による昇温により空気に含まれる水分が減少した乾いた風のことをフエーン。ヨーロッパ中部から東部に居座る大陸性の冷たい気団がアルプス山脈を越えて東西方向に吹き降ろす風速が40m/秒にも達する風のことをボラ。冬季に山から吹き降ろす風のことを颪。大きな建物の周囲の狭い範囲で発生する風がビル風である。これら、海風、陸風、山谷風、フエーン、ボラ、颪、ビル風などの自然風を集風するために、大口径の御椀状の風上側が末広がりに拡開するホーン形状構造体を風洞の先端部に取り付けたホーン型集風装置である。
The invention described in claim 2 relates to a first step for effectively extracting three methods for depressurizing air existing in the vicinity of a hydrated sample, that is, a first function of inserting air into a wind tunnel or a wind passage. is there.
In an air (wind) atmosphere with flow, especially in high wind areas such as sea, lake, river, valley, quay, mountain surface, mountain top, cliff, use of wind path that uses natural wind directly as high-speed air flow, or After collecting natural wind with a horn-type air collector and increasing the speed, use the wind tunnel to be introduced into the entrance of the wind tunnel (artificial tunnel) structure, or use the compressed air or wind tunnel entrance produced by rotating / compression conversion with wind energy In the use of a wind tunnel for introducing compressed air by a fan attached to the air or in an atmosphere without air flow, air for pre-sealing the air reservoir / hydrated sample container storage chamber provided in the compressor is inserted. This is a function that is linked to a means for generating unsaturated moist air by reducing the pressure of air near the hydrated sample belonging to the second function.
In order to efficiently collect natural wind, which is not strong wind, at the entrance of the wind tunnel (artificial tunnel) structure, the wind tunnel structure tip (entrance part) has a horn-shaped opening that widens the windward side It is. High pressure and low pressure are born on the earth due to the difference in solar energy distribution, and the airflow flowing from high pressure to low pressure is wind. Westerly winds in the mid-latitude regions of the earth, trade winds in the tropical regions, and far-east winds in the Antarctic and Arctic regions. Monsoon on the edge of the continent. In the vicinity of the coast, daytime sea breeze, nighttime land breeze, night radiant cooling cools the mountain surface, a cold mountain breeze descending along the mountain slope, and a daytime mountain surface warmed and a warm valley wind rising along the mountain slope. A fan is a dry wind whose moisture content is reduced by cooling due to adiabatic expansion that occurs when a damp wind climbs a mountain and a temperature rise by adiabatic compression that occurs when it descends a mountain. A continental cold air mass residing in central to eastern Europe blows down the Alps to the east-west direction, and the wind speed reaches 40m / sec. The wind blows down from the mountain in winter. A wind generated in a narrow area around a large building is a building wind. In order to collect natural winds such as sea breeze, land breeze, mountain valley breeze, vane, mullet, reed, building wind, etc. It is a horn type air collector attached to the tip.

請求項3に記載の発明は、風洞(人工トンネル)の中央部で気圧降下域を発現するために通風路の段面積を狭窄して括れ構造にした第2機能に関するものである。
風洞(人工トンネル)構造体内部の入り口部分(風上)から中央部の気圧降下域までの間に含水物試料容器の試料を置き、この含水物試料に接して流れる自然風及び/又は圧縮空気通過部位の断面積が狭まるに連れて、高速流空気と成り、風洞入り口近くの空気圧と括れ構造部との間に気圧差が生じ、減圧された狭窄部位近傍の含水物試料から順次不飽和湿り空気を発生(第2機能)させた後、該風洞の断面積が風下側に進むに連れて順次大きく成り大気開放される。この狭窄部位以降の気圧上昇を利用して、不飽和湿り空気を順次飽和湿り空気に転換させ(第3機能)、かつ狭窄部から広い部位に開放される断熱膨張は雰囲気温度を降下させる効果も手伝って飽和湿り空気発生が助長され、大気開放部位には親水性処理された結露面を備える(第4機能)ことにより真水を回収する。
The invention described in claim 3 relates to a second function in which the step area of the air passage is narrowed to form a constricted structure in order to develop a pressure drop region at the center of the wind tunnel (artificial tunnel).
Natural wind and / or compressed air that flows in contact with the hydrated material sample by placing the sample in the hydrated sample container between the entrance (windward) inside the wind tunnel (artificial tunnel) structure and the pressure drop area in the center. As the cross-sectional area of the passage area narrows, it becomes high-speed flowing air, and a pressure difference occurs between the air pressure near the wind tunnel entrance and the constricted structure, and the unsaturated moisture from the hydrated sample near the reduced stenosis area sequentially. After air is generated (second function), the cross-sectional area of the wind tunnel gradually increases as the wind tunnel moves toward the leeward side, and is released into the atmosphere. Using the pressure increase after the stenosis part, the unsaturated humid air is sequentially converted to saturated moist air (third function), and the adiabatic expansion that is opened from the stenosis part to a wide part has the effect of lowering the ambient temperature. The generation of saturated humid air is facilitated by the help, and fresh water is recovered by providing a dew condensation surface that has been subjected to a hydrophilic treatment in the atmosphere release portion (fourth function).

請求項4に記載の発明は、風洞(人工トンネル)内の含水物試料容器の試料と接して流れる自然風及び/又は圧縮空気通過部位で気圧降下域を発現するために通風路内に流速を増速させる形状物を配して、高速流と低速流を分離させ、減圧域を発現させる方法、若しくは圧縮機を用いて断熱膨張させて減圧域を発現させる第2機能に関するものである。 In the invention according to claim 4, in order to develop a pressure drop region in the natural wind and / or compressed air passage region flowing in contact with the sample of the hydrated sample container in the wind tunnel (artificial tunnel), the flow velocity is increased in the ventilation path. The present invention relates to a method of arranging a shape to be accelerated and separating a high-speed flow and a low-speed flow to develop a reduced pressure region, or a second function of adiabatically expanding using a compressor to develop a reduced pressure region.

請求項5に記載の発明は、不飽和湿り空気を飽和湿り空気に変換する第3機能に関するものである。
風洞(人工トンネル)又は風道(自然風)あるいは空気圧縮機構造体内部の含水物試料容器の試料を減圧する第2機能から得られた不飽和湿り空気を昇圧、断熱圧縮させ飽和湿り空気に転換する第3機能の手段が、風洞(風道)構造体の出口方向に拡開する末広がり状ホーン形状構造体を構成する。これにより、ホーン形状構造体内部は外気の大気圧(1気圧)に近づくと同時に、ホーン形状構造体に拡開した高速空気は断熱膨張して雰囲気温度を下げる働きもする。このため 不飽和湿り空気は、末広がり状ホーン形状構造体内では気圧が上がり、かつ温度が下がるため、湿度が100%の飽和湿り空気となる。そこで、ホーン形状構造体の任意の位置の風下側に、飽和湿り空気の衝突角度を調整可能とし、かつ風の流れが閉塞又は過度に抑制されないようにした(大気開放面積は確保)、複数枚の結露面を単層又は多重層に配設する。そして、結露面の開度を自在に調整する機構により、垂直真下方向に結露面に結露した結露水を自重落下させて真水を回収するドレン容器を配設させる。

あるいは機械的圧縮機としてのピストン式レシプロ圧縮機、多段式ターボ圧縮機又はベーン式圧縮機と連動させることにより、大気圧以上まで断熱圧縮し、圧縮されて生じた飽和湿り空気を更に圧縮、液化を誘起させることができる。一般に断熱圧縮すると雰囲気温度が上がり、飽和蒸気圧値が100℃付近まで上がってしまうことが懸念される。しかし、スクリュー型ロータリーコンプレッサーを採用すれば空気の排気温度も60℃内外に抑えられるので、真水の回収は比較的楽である。更に、このスクリュー型ロータリーコンプレッサーの回転軸と風洞(矩形又は円形)の開口部の吸入空気ファンの回転軸を同一軸としてモーターで回転させるターボファン・エンジン型風洞を構成すると構造を簡略化することができる。このターボファン・エンジン型風洞を用い、含水物からの蒸発気体と高速空気の混合した不飽和湿り空気とした後、第3機能のコンプレッサー内部で圧縮されて生じた飽和湿り空気を、更に圧縮・液化させ、水として回収することが可能である。
The invention according to claim 5 relates to a third function for converting unsaturated humid air into saturated humid air.
Unsaturated humid air obtained from the second function to depressurize the sample in the wind tunnel (artificial tunnel) or wind path (natural wind) or the hydrated sample container inside the air compressor structure is pressurized and adiabatically compressed to obtain saturated humid air. The means of the third function to be converted constitutes a divergent horn-shaped structure that expands in the direction of the exit of the wind tunnel structure. As a result, the inside of the horn-shaped structure approaches the atmospheric pressure (1 atm) of the outside air, and at the same time, the high-speed air expanded to the horn-shaped structure functions to adiabatically expand and lower the ambient temperature. For this reason, the unsaturated moist air becomes a saturated moist air with a humidity of 100% because the atmospheric pressure rises and the temperature decreases in the end-spread horn-shaped structure. Therefore, the collision angle of saturated humid air can be adjusted to the leeward side of the horn-shaped structure at an arbitrary position, and the flow of the wind is not blocked or excessively suppressed (the open air area is ensured). The dew condensation surface is disposed in a single layer or multiple layers. Then, a drain container for collecting the fresh water by dropping the condensed water condensed on the dew condensation surface in the vertical direction by its own weight is provided by a mechanism that freely adjusts the opening degree of the dew condensation surface.

Alternatively, it is adiabatically compressed to above atmospheric pressure by interlocking with a piston-type reciprocating compressor, a multistage turbo compressor or a vane compressor as a mechanical compressor, and further compresses and liquefies the saturated humid air generated by the compression. Can be induced. In general, when adiabatic compression is performed, the ambient temperature increases, and there is a concern that the saturated vapor pressure value increases to around 100 ° C. However, if a screw-type rotary compressor is used, the exhaust temperature of the air can be kept within and below 60 ° C, so it is relatively easy to collect fresh water. Furthermore, the structure can be simplified if a turbo fan / engine type wind tunnel is configured to be rotated by a motor with the rotation axis of the screw type rotary compressor and the rotation axis of the intake air fan at the opening of the wind tunnel (rectangular or circular) as the same axis. Can do. Using this turbofan / engine type wind tunnel, the saturated humid air generated by compressing inside the compressor of the third function is further compressed, It can be liquefied and recovered as water.

請求項6に記載の発明は、飽和湿り空気を液化させて真水を回収する第4機能に関するものである。
第3機能で発生させた飽和湿り空気を更に圧縮・液化を誘起させて真水を回収する第4機能の手段が、該風洞(風道)構造体内部の末端部である風下に、飽和湿り空気の衝突角度を自在に調整可能とする親水性に処理された複数枚の結露面を配備し、該結露面の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を回収容器に自重落下させて真水を回収する手ことである。
一般に気象学では、上昇気流によって空気が上空に上がり、断熱膨張により温度が下がり、空気中の塵が核と成って水滴が成長し、雲になり、降水に至ると説明されている。問題なのはこの核である。若し大気中に塵が存在し無かったら、水滴の表面張力が強いため、空気中の水分子は凝縮できない。もし、この水滴の表面張力を小さくすることができれば、結露は容易になる。この表面張力を小さくすることは、水と被結露剤(塵、結露面)の濡れ性を高くする(接触角を小さくする)ことである。本発明者は材料表面の所望の場所に光化学的手法で親水基(-OH)を置換する方法を、特許文献8、特許文献9、特許文献10、特許文献11、特許文献12、特許文献13に開示している。とくに特許文献14では、全てのプラスチック、金属、セラミックなどの固体材料の被改質表面に、予め1〜3分ぐらいの弱いプラズマ前処理を施した後、被改質表面に水を塗布し水の薄液層を形成させ、193nm以下の波長の紫外線を照射すると恒久的な親水性が維持されることを開示している。このような親水性処理面は大面積の結露面を形成でき、塵が核と成って雲を作る現象よりも、大量の水滴を直接生成させるため効果的である。この結露面をホーン形状構造体の任意の位置の風下側に複数枚配置し、大気開放される空気の出口が閉塞されず、かつ乾燥空気となって大気開放されるように注意を払い、飽和湿り空気流が結露面に接触する際の衝突角度を調整可能とするブラインド状結露面を複数枚単層又は複数層に並べた結露装置を構成する。
ここで結露面は結露を誘引するために、濡れ性の高い材料あるいは結露面表面を親水性に表面改質処理(親水基(-OH)を置換)することが望ましい。
The invention according to claim 6 relates to a fourth function of recovering fresh water by liquefying saturated humid air.
The fourth function means for recovering fresh water by further inducing the compression and liquefaction of the saturated humid air generated by the third function is the saturated humid air in the leeward end of the wind tunnel (wind channel) structure. A plurality of dew condensation surfaces that have been treated to be hydrophilic so that the collision angle of the dew can be freely adjusted, and the dew condensation water condensed on the dew condensation surface in the direction vertically below according to the collision angle of the dew condensation surface is placed in the collection container. It is a way to collect fresh water by dropping its own weight.
In general, in meteorology, it is explained that air rises by the updraft, the temperature drops by adiabatic expansion, dust in the air becomes a nucleus, water droplets grow, become clouds, and precipitation. It is this core that matters. If there is no dust in the atmosphere, the water molecules in the air cannot condense because the surface tension of the water droplets is strong. If the surface tension of the water droplet can be reduced, dew condensation is facilitated. Reducing the surface tension means increasing the wettability of water and the dew condensation agent (dust, dew condensation surface) (reducing the contact angle). The inventor conducted a method of substituting a hydrophilic group (—OH) by a photochemical method at a desired location on the surface of a material. Patent Document 8, Patent Document 9, Patent Document 10, Patent Document 11, Patent Document 12, Patent Document 13 Is disclosed. In particular, in Patent Document 14, after applying a weak plasma pretreatment for about 1 to 3 minutes in advance to the surface to be reformed of solid materials such as plastics, metals and ceramics, water is applied to the surface to be reformed. It is disclosed that permanent hydrophilicity is maintained when a thin liquid layer is formed and irradiated with ultraviolet rays having a wavelength of 193 nm or less. Such a hydrophilic treatment surface can form a dew condensation surface with a large area, and is more effective for directly generating a large amount of water droplets than a phenomenon in which dust forms a nucleus and forms a cloud. Place multiple condensation surfaces on the leeward side of the horn-shaped structure at any position, pay attention so that the outlet of the air released to the atmosphere is not obstructed and is released to the atmosphere as dry air. A dew condensation apparatus in which a plurality of blind dew condensation surfaces that can adjust the collision angle when the humid air flow contacts the dew condensation surface is arranged in a single layer or a plurality of layers is configured.
Here, in order to induce dew condensation on the dew condensation surface, it is desirable that the material having high wettability or the surface of the dew condensation surface be subjected to surface modification treatment (substitution of hydrophilic groups (—OH)).

請求項7に記載の発明は、含水物試料容器の試料上面に航空機の翼体形状を逆さに取り付けて気圧を下げる方法に関するものである。
自然風及び/又は圧縮空気を送風させる風洞(風道)構造体が筒型構造体であり、該風洞(風道)構造体内に自然風及び/又は圧縮空気を入れる第1機能を有する手段と、筒型構造体中央部位に設けた狭窄部位により気圧降下域である低圧部を形成、保持させる第2機能が、航空機翼体形状の上面(アッパーキャンバー)と下面(ローワーキャンパー)形状を反転させた形状物又は平面構造体形状翼或いは含水試料容器の試料上面が凸平面形状でありその裏面が平面あるいは凹平面構造体形状翼を成し、含水物試料容器の試料上面とで間隙を設けた位置に、仰角を翼体の重心部となる固定軸を介して可動可能な構造体として、配備させる手段と、蒸発した不飽和湿り空気を大気圧まで昇圧させて飽和湿り空気に転換させる第3機能の手段が、風洞(風道)構造体内部の気圧降下域である航空機翼体形状のアッパーキャンバー又は風上に比べて風下が含水試料容器に接近した平板あるいは含水試料上面が凸平面形状である構造体形状翼を通過した不飽和湿り空気と、航空機翼体のロワーキャンバー又は風下側が含水試料容器側に下がった平板あるいは凹平面構造体を通過してきた気流とが合流して昇圧された不飽和湿り空気を、さらに出口方向に拡開する末広がりホーン形状内部を通過させた後、該風洞(風道)構造体内部の末端部である風下には、飽和湿り空気の衝突角度を自在に調整可能とする親水性に処理された複数枚の結露面を配備し、該結露面の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を回収容器に自重落下させて真水を回収する第4機能を有する手段を有している。
一般に、航空機翼体の翼型の上弦をアッパーキャンバー、下弦をロワーキャンバーと言い、風上側を前縁、風下側を後縁と言う。本発明では、上面(凸面アッパーキャンバー)と下面(ロワーキャンバー)形状を反転させた形状の上下逆向き翼の真下には、筒型風洞構造体と一体化させた海水若しくは含水物試料容器を配設して、筒型風洞構造体の開口部から圧縮空気を送風する。ここで航空機の翼体が平板であっても、風上を持ち上げ風下側を下げれば、平板の下側の流速は上側の平面より速くなり、気圧降下は発現する。メニスカス形状の曲平板であっても下面が凸平であれば下面の流速が速まり気圧降下は発現する。このような形状で発現させた低気圧域は、含水物試料容器中の含水物から発生した水蒸気は不飽和湿り空気となって、真水の回収に係る第3機能及び第4機能に送られる。反転させた翼体の迎え角及び含水物試料容器との距離を調整するために、翼体の重心部となる軸が筒型風洞構造体の両壁面で固定され、かつ、該軸が上下及び翼体角度を自在に調整、変位可能とするハンドル機構を備えている。重心部となる軸が筒型風洞構造体の両壁面で固定された翼体が風上から風を受けると、空気の流れが速くなると、速さの2乗に比例して抵抗が大きくなる。この抵抗で最も大きいのが圧力抵抗である。若し空気の流がスムーズに翼の後方まで流れれば、流れの剥離が起きない。このため翼型を流線型にする。さらに前縁と後縁を結んだ線を翼弦線と言う。この翼弦線と風の流れとの角度を迎え角と言う。この角度が生じた時に、航空機の翼では上面(アッパーキャンバー)を流れる空気の流れは、下面(ロワーキャンバー)を流れる空気の流れより速くなる。この高速流が気圧を下げる。この結果として揚力が発生する。ここで翼を流線型ではなく平板にしても上面と下面では空気の流れの差が生じ、同様に揚力は発生する。しかし、平板では圧力抵抗が大きいので、翼は流線形形状を採用し、かつ上面(アッパーキャンバー)を凸面にし、高速流を起こし易くして、低圧部を形成する。本発明では、この気流が作る低圧部を利用して含水物から水分を蒸発させる。
The invention described in claim 7 relates to a method of lowering the atmospheric pressure by attaching an aircraft wing shape upside down on the upper surface of the sample of the hydrated sample container.
The wind tunnel (wind path) structure for blowing natural wind and / or compressed air is a cylindrical structure, and means having a first function of putting natural wind and / or compressed air into the wind tunnel (wind path) structure; The second function to form and hold the low pressure part, which is the pressure drop region, by the constriction part provided in the central part of the cylindrical structure, reverses the upper (upper camber) and lower (lower camper) shapes of the aircraft wing shape. The upper surface of the sample in the shape or plane structure shape wing or the water-containing sample container has a convex plane shape, and the back surface forms a plane or concave plane structure shape wing, and a gap is provided between the sample upper surface of the hydrated sample container Means for deploying as a structure movable at a position through a fixed shaft serving as the center of gravity of the wing body, and a third means for raising the evaporated unsaturated humid air to atmospheric pressure and converting it to saturated humid air. The function means is a wind tunnel structure. Unsaturation that has passed through an aircraft wing-shaped upper camber that is the pressure drop region inside the structure or a flat plate that is closer to the water-containing sample container than the windward or a structure-shaped wing that has a convex flat top surface. Unsaturated humid air that has been pressurized by the combination of the humid air and the airflow that has passed through the flat camber or concave plane structure whose lower camber or leeward side of the aircraft wing body has been lowered toward the water-containing sample container is further expanded in the exit direction. After passing through the inside of the widening horn shape that opens, the leeward, which is the end part inside the wind tunnel (wind channel) structure, is treated with hydrophilicity so that the collision angle of saturated humid air can be freely adjusted. A means having a fourth function of disposing the condensing surface of the sheet and recovering the fresh water by dropping the condensed water condensed on the condensing surface in the vertical direction according to the collision angle of the condensing surface onto the collection container by its own weight. ing.
In general, the upper chord of an aircraft wing is called the upper camber, the lower chord is called the lower camber, the windward side is called the leading edge, and the leeward side is called the trailing edge. In the present invention, seawater or a hydrated substance sample container integrated with a cylindrical wind tunnel structure is arranged directly below the upside down wings of the shape obtained by inverting the shape of the upper surface (convex upper camber) and the lower surface (lower camber). The compressed air is blown from the opening of the cylindrical wind tunnel structure. Even if the wing body of the aircraft is a flat plate, if the windward is raised and the leeward side is lowered, the flow velocity on the lower side of the flat plate becomes faster than the upper plane, and a pressure drop appears. Even if it is a meniscus curved flat plate, if the lower surface is flat, the flow velocity on the lower surface increases and a pressure drop appears. In the low pressure region expressed in such a shape, water vapor generated from the hydrated material in the hydrated sample container becomes unsaturated moist air, and is sent to the third function and the fourth function related to the recovery of fresh water. In order to adjust the angle of attack of the inverted wing body and the distance from the hydrated sample container, the shaft serving as the center of gravity of the wing body is fixed on both wall surfaces of the cylindrical wind tunnel structure, and the shaft is vertically and vertically It has a handle mechanism that can adjust and displace the wing angle freely. When the wing body in which the shaft serving as the center of gravity is fixed on both wall surfaces of the cylindrical wind tunnel structure receives wind from the windward side, the resistance increases in proportion to the square of the speed when the air flow increases. The largest of these resistances is the pressure resistance. If the air flow smoothly flows to the rear of the wing, the flow separation does not occur. For this reason, the airfoil is streamlined. The line connecting the leading and trailing edges is called the chord line. The angle between the chord line and the wind flow is called the angle of attack. When this angle occurs, the airflow on the upper surface (upper camber) is faster on the aircraft wing than the airflow on the lower surface (lower camber). This high-speed flow lowers the atmospheric pressure. As a result, lift is generated. Here, even if the wings are flat rather than streamlined, a difference in air flow occurs between the upper surface and the lower surface, and lift is also generated. However, since the flat plate has high pressure resistance, the blades adopt a streamlined shape, and the upper surface (upper camber) has a convex surface to facilitate high-speed flow and form a low-pressure portion. In the present invention, moisture is evaporated from the water-containing material using the low-pressure part created by the airflow.

請求項8に記載の発明は、含水物試料容器の試料上面に航空機の翼体形状の上面(アッパーキャンバー)同士を対向させた位置に垂直に配備して気圧を下げる方法に関するものである。
含水物試料容器内を満たし、若しくは含水物試料容器内に静置させた液体状又は固体状の含水物から該風洞(風道)構造体内部の中央部位に設けた狭窄部位により気圧降下域を生成させ、飽和蒸気圧が低い気体(液体)から順次不飽和湿り空気を発生させる第2機能を有する手段が、上面(アッパーキャンバー)と下面(ローワーキャンパー)形状を有する2つの航空機翼体形状物の上面(アッパーキャンバー)同士を対向させた位置に垂直に含水物試料容器上に配備させ、通過する自然風及び/又は圧縮空気が含水物試料用容器の試料と接して流れる通過部位に減圧状態を保持し、気圧降下域を生成させ、不飽和湿り空気を発生する。
2つの航空機翼体形状物の上面(アッパーキャンバー)同士を対向させた位置に垂直に立たせることにより、対向した面の気圧は2倍低く成り、下面にある含水物から蒸発して発生した不飽和湿り空気は、2つの航空機翼体の上面(アッパーキャンバー)間の間隙で発生した不飽和湿り空気が大気圧まで昇圧され飽和湿り空気に転換する前記第3機能が、気圧降下域を通過した不飽和湿り空気の出口方向に拡開する末広がりホーン形状内部を通過し、大気圧まで昇圧される手段と断熱膨張による冷却効果及び2つの航空機翼体の下面(ロワーキャンバー)を通過した気流と不飽和湿り空気との混合による雰囲気気圧の上昇の競合作用により飽和湿り空気への転換を促進し、かつ風洞(風道)構造体内部の末端部である風下には、飽和湿り空気の衝突角度を自在に調整可能とする親水性に処理された複数枚の結露面を配備し、該結露面の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を回収容器に自重落下させる。
The invention according to claim 8 relates to a method of lowering the atmospheric pressure by disposing the aircraft wing-shaped upper surface (upper camber) vertically to the sample upper surface of the hydrated sample container.
The pressure drop area is reduced by a constricted part provided in the central part inside the wind tunnel (airway) structure from the liquid or solid hydrated substance that fills the hydrated substance container or is left in the hydrated substance container. Two aircraft wings that have a top surface (upper camber) and a bottom surface (lower camper) are the means that have the second function to generate and generate unsaturated moist air in sequence from a gas (liquid) with a low saturated vapor pressure. Placed on the hydrated sample container perpendicularly to the position where the upper surfaces (upper cambers) of each other face each other, and the natural wind and / or compressed air passing through is in a reduced pressure state at the passage site where it flows in contact with the sample in the hydrated sample container To generate an atmospheric pressure drop and generate unsaturated humid air.
By placing the upper surfaces (upper cambers) of the two aircraft wing-shaped objects perpendicularly to each other, the air pressures on the opposed surfaces are reduced by a factor of two, resulting from the evaporation from the water-containing material on the lower surface. Saturated humid air has passed through the pressure drop region, as the third function in which unsaturated humid air generated in the gap between the upper surfaces (upper cambers) of two aircraft wings is pressurized to atmospheric pressure and converted to saturated humid air. Passing through the inside of the horn shape that spreads in the direction of the outlet of the unsaturated humid air, the pressure is increased to atmospheric pressure, the cooling effect by adiabatic expansion, and the airflow and the air that have passed through the lower surfaces of the two aircraft wings (lower camber) The collision effect of the saturated humid air is promoted by the competitive action of the increase in atmospheric pressure by mixing with the saturated humid air, and the transition to saturated humid air is promoted. Freely deployed adjustable and a plurality of condensation surface treated hydrophilic to, to free-fall the condensed water condensed on said binding dew plane perpendicular beneath a direction corresponding to the angle of impingement said binding dew surface collection container.

請求項9に記載の発明は、第2機能である気圧降下域で発生した不飽和湿り空気を昇圧、断熱圧縮させて飽和湿り空気に転換させる第3機能の手段が、ピストン式レシプロ圧縮機、多段式ターボ圧縮機又はベーン式圧縮機であり、夫々の圧縮機の断熱膨張域により不飽和湿り空気を発生させ、かつ、断熱圧縮領域において飽和湿り空気に転換し、圧縮されて生じた飽和湿り空気を更に圧縮、かつ親水性結露面に液化を誘起させる断熱圧縮して飽和湿り空気に転換する装置に関するものである。 The invention according to claim 9 is a piston-type reciprocating compressor, wherein the third function means for boosting and adiabatically compressing the unsaturated humid air generated in the atmospheric pressure drop region, which is the second function, to convert it into saturated humid air, Multistage turbo compressor or vane compressor, which generates saturated wet air by the adiabatic expansion area of each compressor, and converts to saturated wet air in the adiabatic compression area, resulting in compressed wet humidity The present invention relates to an apparatus that further compresses air and adiabatically compresses it to induce liquefaction on the hydrophilic condensation surface and converts it into saturated humid air.

請求項10に記載の発明は、本願発明装置により脱水させる処理対象物に関するものである。
処理対象物が、水の飽和蒸気圧より低い液体状の含水物の場合は、ミネラルを含む海水、塩水、塩湖水、温泉水、鉱泉水などの天然水、又は酸水溶液、塩基水溶液、無機物水溶液、色素水溶液などの化学薬品水溶液、又は果汁、牛乳、有機物(砂糖水) 健康飲料水)などの飲料用液体、及びアミノ酸、脂肪、蛋白質、糖類、炭水化物などの生体物質水溶液、あるいはビタミン類や汚染水であり、固体状含水物としては木、草、野菜、果物などの植物あるいは肉類や魚介類であり、水の飽和蒸気圧より高い液体状の含水物の場合はアルコール水である。これら含水物を試料容器内に置き、含水物を脱水して真水を回収する。
本発明で最も重要な処理対象物は海水の淡水化であるが、真水を回収するだけが目的ではない。アルコール水からは高濃度アルコールを回収し、海水からは石油の代替エネルギーが期待される金属ナトリウムや硫酸などが回収できる。温泉水からは稀少金属が回収できる。草や植物は真水を回収後の脱水物は燃料になり、草は脱水量を制御すればサイレージとして牧草が供給できる。このように、飲用に供する真水の回収と同時に、脱水された濃縮物を鉱物資源、工業薬品、長期保存食料、長期保存飼料などを分離回収できる。海水は真水と濃縮水から金属ナトリウム、金属マグネシウム、塩酸、硫酸を回収するために使われる。南米のアタカマ塩湖、ウニュー塩湖、ボリビア塩湖、アルゼンチン・オラロス塩湖、チベット塩湖などの塩湖はリチウムの埋蔵量が多い。その多くが塩田において天日と風を利用して濃縮している。その期間は半年以上である。飲料水採取を目的にしているのはカスピ海・塩湖である。源泉の温度が摂氏25度以上を温泉と呼び、それ以下を鉱泉と呼ぶ。温泉水は海水に比べて金属成分が多く、水溶液の温度が高いため、蒸留には都合が良い。有馬温泉はリチウムが多く、玉川温泉はアルミニウムが多い。塩酸や硫酸は海水の電気透析中に生成するが、これらは濃度が低いため、脱水し濃度を高めることができる。果汁は水分をいったん蒸発させ、1/4〜1/6程度に濃縮する。この濃縮された果汁の状態でドラム缶に密封保存する。消費地で製品化する時、この濃縮果汁を原料として蒸発させた分の水分を補い、元の搾汁の状態(果汁100%)に戻したものが、濃縮還元ジュースであり、輸送費の削減や長期保存に長けている。牛乳も88.7%が水のため、濃縮牛乳は、果汁同様輸送費の削減や長期保存に長けている。発酵アルコールの濃度は18〜20%である。これを蒸留濃縮して25%〜35%が焼酎で、50%から70%がウイスキー、ブランデー、中国酒、コニャック、ウオッカなどである。燃料用バイオエタノールは100%が必要であるため、本発明の方法で95%まで濃縮する。更に脱水して100%の燃料用アルコールは完成する。ただし、エタノールの1気圧における沸点は摂氏78度だから、水よりも早く蒸発する。したがってアルコール水溶液の濃縮はアルコール水溶液が入った容器中のエタノールを蒸発させて飽和湿りアルコール空気を結露させて回収し、容器の中に残った液体が真水である。色素を乾燥させ保存する時に脱水が必要である。生体物質(アミノ酸、脂肪、タンパク質、糖類、炭水化物)、あるいは血液などを濃縮して長期保存を行なう。
固体の含水物としての果実や野菜は水の貯蔵庫である。 海水中の水分は96%、胡瓜も同じく96%である。 メロン96%、スイカ93%、キャベツ92%、みかん90%、トマト90%、冬瓜90%、キューイ85%と殆どが水の貯蔵庫である。草についても同様で、90%内外の水分を含んでいる。野菜のレタスも96%の水分を含む。地下茎のジャガイモ中の水分は83%澱粉12.1%、ごぼう中の水分78.6%。熱帯地方で生育する椰子。海岸の砂地でも育ち、1個の椰子のみの中には1リットルもの水が含まれている。この水も淡水である。これら植物は土壌から水分を汲みあげ、葉や、実や茎に貯えている。それらの水が全て蒸留水である。海水や湖水あるいは河川から蒸発した水分が、雨となって地上に降注ぐ。正しくこれも蒸留水である筈である。しかし大気汚染の影響をもろに受け、純粋な蒸留水とは言い難い。ところが植物が保存する水は紛れも無く蒸留水である。硬い皮で被われた椰子、比較的長期間水を貯蔵できるイモ類は除き、その他の果実や野菜は収穫後直ぐに大気中に水を発散し腐敗する。水を保持している期間は極短い。虫が食っているとか鮮度が落ちたからと言って、廃棄される野菜や果実も多い。これら蒸留水を回収し飲料として供給すれば、飲用に適さない水を飲んでいる水不足の国々の人々を救うことになる。肉類の供給源で欠かせないのは動物への飼料供給である。牧草が常時採取できるところ以外は、冬季の飼料を確保しておく必要がある。その際たる物がサイレージである。秋口になると、家畜の餌になるサイレージは原料草の乾燥が不十分のままサイロに収納されることが多い。ところが不十分の乾燥は、結果として、多量の排汁が発生し、窒素や有機物などの汚染物質のため環境汚染を引き起こす。このため水分量を70%以下にすることが好ましい。一般に乳酸発酵の適水分域は60〜70%であるため、良好なサイレージ発酵につながり、冬季の家畜の飼料として効果的である。さらにサイレージ製造中の30%の水分を飲料水に転用できる。とくに肉や魚は鮮度が要求されるため冷凍は欠かせない。しかし冷凍は冷凍時、保存期間及び解凍のために電力を消費する。もし乾燥肉や乾燥魚類の調理法が更に進めば長期保存が可能になり、塩を母体とした長期保存から塩を使わない保存法として、本発明が、世界の飢えと水不足を救う手段になると考える。
更に、本発明による脱水を目的とする処理対象物として、生ごみの脱水による嵩の縮小、鮮度を保持させる目的で食品を乾燥状態にした状態での輸送、干物作り、洗濯物の乾燥等日常生活に適用できる。
The invention described in claim 10 relates to an object to be dehydrated by the device of the present invention.
In the case where the object to be treated is a liquid hydrate containing lower than the saturated vapor pressure of water, natural water such as seawater, salt water, salt lake water, hot spring water, mineral spring water, etc. containing minerals, acid aqueous solution, base aqueous solution, inorganic aqueous solution , Aqueous solutions of chemicals such as aqueous dyes, or liquids for beverages such as fruit juice, milk, organic substances (sugar water), and drinking water such as amino acids, fats, proteins, sugars, and carbohydrates, or vitamins and contamination It is water, and the solid hydrate is a plant such as wood, grass, vegetable, fruit, or meat or fish and shellfish. These hydrated substances are placed in a sample container, and the hydrated substances are dehydrated to recover fresh water.
The most important object to be treated in the present invention is seawater desalination, but it is not the only purpose to recover fresh water. High-concentration alcohol can be recovered from alcohol water, and metallic sodium and sulfuric acid, which are expected to be an alternative energy for petroleum, can be recovered from seawater. Rare metals can be recovered from hot spring water. Grass and plants can be supplied as silage by dehydration after collecting fresh water, and grass can be supplied as silage by controlling the amount of dehydration. As described above, mineral resources, industrial chemicals, long-term preservation foods, long-term preservation feeds and the like can be separated and recovered from the dehydrated concentrate simultaneously with the collection of fresh water for drinking. Seawater is used to recover metallic sodium, metallic magnesium, hydrochloric acid and sulfuric acid from fresh and concentrated water. Salt lakes such as Atacama Salt Lake, Unu Salt Lake, Bolivian Salt Lake, Argentina's Oralus Salt Lake, and Tibet Salt Lake in South America have large reserves of lithium. Many of them are concentrated in the salt fields using sunlight and wind. The period is more than half a year. The purpose of collecting drinking water is the Caspian Sea and Salt Lake. A hot spring with a source temperature of 25 degrees Celsius or higher is called a hot spring, and a lower temperature is called a mineral spring. Hot spring water is convenient for distillation because it contains more metal components than seawater and the temperature of the aqueous solution is high. Arima Onsen has a lot of lithium, and Tamagawa Onsen has a lot of aluminum. Hydrochloric acid and sulfuric acid are produced during electrodialysis of seawater, but since these are low in concentration, they can be dehydrated to increase the concentration. The juice once evaporates the water and concentrates to about 1/4 to 1/6. The concentrated fruit juice is sealed and stored in a drum. Concentrated and reduced juice is obtained by supplementing the water that has been evaporated from this concentrated fruit juice as a raw material and returning it to its original juice state (100% fruit juice). And good at long-term storage. Since 88.7% of milk is water, concentrated milk, like fruit juice, is good at reducing transportation costs and long-term storage. The concentration of fermented alcohol is 18-20%. This is concentrated by distillation, and 25% to 35% is shochu, and 50% to 70% is whiskey, brandy, Chinese liquor, cognac, vodka and the like. Since 100% of bioethanol for fuel is necessary, it is concentrated to 95% by the method of the present invention. Further dehydration will complete 100% fuel alcohol. However, since the boiling point of ethanol at 1 atm is 78 degrees Celsius, it evaporates faster than water. Therefore, the alcohol aqueous solution is concentrated by evaporating ethanol in the container containing the alcohol aqueous solution to condense and collect the saturated wet alcohol air, and the liquid remaining in the container is fresh water. Dehydration is required when the dye is dried and stored. Concentrate biological materials (amino acids, fats, proteins, sugars, carbohydrates) or blood for long-term storage.
Fruits and vegetables as solid hydrates are water reservoirs. Water in seawater is 96%, and pepper is also 96%. Melon 96%, watermelon 93%, cabbage 92%, mandarin orange 90%, tomato 90%, winter rice cake 90%, Qui 85% are mostly water storage. The same is true for grass, and it contains 90% of water. Vegetable lettuce also contains 96% water. The water content in the potatoes in the rhizome is 83% starch, 12.1%, and the moisture content in burdock is 78.6%. An eggplant growing in the tropics. It grows up on the sandy beach, and only one lion contains 1 liter of water. This water is also fresh water. These plants draw water from the soil and store them in leaves, fruits and stems. All of these waters are distilled water. Water evaporated from seawater, lake water or rivers is rained and falls to the ground. Correctly this should also be distilled water. However, it is hard to say pure distilled water due to the influence of air pollution. However, the water stored by plants is undoubtedly distilled water. With the exception of cocoons covered with hard skin and potatoes that can store water for a relatively long period of time, other fruits and vegetables shed water and rot in the atmosphere immediately after harvest. The period of holding water is very short. Many vegetables and fruits are discarded just because insects are eating or because the freshness has dropped. Collecting these distilled water and supplying them as beverages will save people in water-deficient countries who are drinking unsuitable water. An essential source of meat is the supply of feed to animals. It is necessary to secure winter feed except where grass can be collected at all times. At that time, silage is silage. At the beginning of autumn, silage, which is used as livestock feed, is often stored in silos with insufficient drying of the grass. However, inadequate drying results in a large amount of drainage and environmental pollution due to pollutants such as nitrogen and organic matter. For this reason, it is preferable that the water content be 70% or less. In general, the appropriate moisture range for lactic acid fermentation is 60 to 70%, which leads to good silage fermentation and is effective as a feed for livestock in winter. Furthermore, 30% of the water during silage production can be diverted to drinking water. In particular, meat and fish require freshness, so freezing is essential. However, refrigeration consumes power for freezing, storage and thawing. If the cooking method of dried meat and dried fish further advances, long-term storage will be possible, and the present invention will be a means to save the world's hunger and water shortage as a storage method that does not use salt from long-term storage based on salt. Think.
Furthermore, as a processing object for the purpose of dehydration according to the present invention, daily waste such as food reduction, food drying, laundry drying, etc. for the purpose of reducing the bulk of food waste by dehydration and maintaining freshness Applicable to life.

請求項11に記載の発明は、洋上に係留した双胴船において航空機の逆向き翼体を海面と平行に設置して、自然風のみにより海水から真水を回収する方法に関するものである。
洋上は障害物の影響が少ないため、強く安定した風吹いている。しかも双胴船の船首を船形にして舫いすれば常に風上を向く性質がある。さらに真水の原料は真下の海水である。そこで海風を送風させる矩形型風洞構造体の左右両面は双胴船の両舷を壁に見立て、下面は原料である海水面の試料容器と見立て、かつ、上面を航空機翼体形状物の上面(アツパーキャンバー)と見立てる。更に、双胴船の両舷には固定軸を介して翼体形状物を取り付け、海水から真水を得る際に、低圧部位を形成する第2機能が航空機翼体形状の上面(アッパーキャンバー)と下面(ローワーキャンパー)形状を反転させた形状物を翼体の重心部となる固定軸を介して可動可能な構造とし、海面上に間隙部を設けて該筒型風洞構造体内部に設置させ、海面と翼体上面(アッパーキャンバー)の間隙部を通過する自然風(海風)を受風することにより翼体上面(アッパーキャンバー)と海面間との間隙部に気圧降下域を生成させる。この航空機翼体を反転した構造は、ロワーキャンバーを通過する空気の速度が遅く成り、海面側に比べて気圧が高くなる。しかも翼の面積が大きいため翼を海面側に押し付ける力が増大し、船は沈む。これを防止するために双胴船の浮力体を大きくして、海水面と翼面の距離を維持するために浮力体の内部に海水を挿入してバランスを取る構造である。そこで、この海面と翼体の間隙に強風が通過すると気圧が下がり不飽和水蒸気が真水製造室の出口方向に拡開する末広がりホーン形状内部を通過させた後、該風洞(風道)構造体内部の末端部である風下には、飽和湿り空気の衝突角度を自在に調整可能とする親水性に処理された複数枚の結露面を配備し、結露面の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を回収容器に自重落下させて真水を回収する第4機能を有する手段を有している。この双胴船の海面位置に容器を備え、海水を注入する構造にすれば脱水後の濃縮塩を回収できることもできる。
The invention according to claim 11 relates to a method of collecting fresh water from seawater only by natural wind by installing a reverse wing body of an aircraft parallel to the sea surface in a catamaran moored on the ocean.
Offshore is less affected by obstacles, so the wind is strong and stable. Moreover, if the bow of the catamaran is shaped like a ship, it has the property of always facing upwind. Furthermore, the raw material of fresh water is the sea water below. Therefore, the left and right sides of the rectangular wind tunnel structure that blows the sea breeze are regarded as both sides of the catamaran on the wall, the lower surface is regarded as a sample container of the sea surface of the raw material, and the upper surface is the upper surface of the aircraft wing body ( Think of it as Upper Camber). In addition, a wing body shape object is attached to both sides of the catamaran via a fixed shaft, and when obtaining fresh water from seawater, the second function of forming a low pressure part is the upper surface (upper camber) of the aircraft wing body shape. A structure in which the shape of the lower surface (lower camper) is reversed is movable through a fixed shaft that becomes the center of gravity of the wing body, and a gap is provided on the sea surface to be installed inside the cylindrical wind tunnel structure. By receiving natural wind (sea breeze) passing through the gap between the sea surface and the upper surface of the wing body (upper camber), a pressure drop region is generated in the gap between the upper surface of the wing body (upper camber) and the sea surface. In the structure obtained by inverting the aircraft wing body, the speed of the air passing through the lower camber becomes slow, and the atmospheric pressure becomes higher than that on the sea surface side. Moreover, since the area of the wing is large, the force that pushes the wing toward the sea surface increases, and the ship sinks. In order to prevent this, the buoyancy body of the catamaran is enlarged, and in order to maintain the distance between the sea surface and the wing surface, sea water is inserted into the buoyancy body to achieve a balance. Therefore, after a strong wind passes through the gap between the sea surface and the wing body, the atmospheric pressure decreases and the unsaturated water vapor spreads in the direction of the outlet of the fresh water production room, and then passes through the end-spreading horn shape, then inside the wind tunnel (windway) structure A plurality of dew condensation surfaces treated with hydrophilicity that allow the collision angle of saturated humid air to be freely adjusted are arranged on the leeward side that is the end portion of the mist, and the vertical detent direction according to the collision angle of the dew condensation surface is provided. Means having a fourth function of collecting fresh water by dropping the condensed water condensed on the dew condensation surface into a collection container by its own weight is provided. By providing a container at the sea level position of the catamaran and injecting seawater, the concentrated salt after dehydration can be recovered.

請求項12に記載の発明は、洋上に係留した双胴船において航空機の翼体形状のアッパーキャンバー同士を対向させた位置に垂直に配備して、自然風のみにより海水から真水を回収する方法に関するものである。
洋上は障害物の影響が少ないため、強く安定した風吹いている。しかも双胴船の船首を船形にして舫いすれば常に風上を向く性質がある。さらに真水の原料は真下の海水である。そこで海風を送風させる矩形型風洞構造体の上面と見立てる天板で翼体の重心を固定し、左右両面をアッパーキャンバー同士が対向した2翼の航空機翼体形状物を両壁と見立て、上面に2つの翼体の重心を固定する働きを兼ね備えた天板を備え、下面は原料である海水面の試料容器と見立てる。そこで、海水から真水を得る際に、前記低圧部位を形成する第2機能が、曲面形状を有する該2翼の航空機翼体形状物上面(アッパーキャンバー)同士の間隙に受風される自然風(海風)により気圧降下域を生成させ、不飽和湿り空気を発生させ、そこで、この海面と翼体の間隙に強風が通過すると気圧が下がり不飽和水蒸気が真水製造室の出口方向に拡開する末広がりホーン形状内部を通過させた後、該風洞(風道)構造体内部の末端部である風下には、飽和湿り空気の衝突角度を自在に調整可能とする親水性に処理された複数枚の結露面を配備し、結露面の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を回収容器に自重落下させて真水を回収する第4機能を有する手段を有している。この双胴船の海面位置に容器を備え、海水を注入する構造にすれば脱水後の濃縮塩を回収できることもできる。
The invention according to claim 12 relates to a method of recovering fresh water from seawater only by natural wind by vertically arranging a wing-shaped upper camber of aircraft in a catamaran moored offshore. Is.
Offshore is less affected by obstacles, so the wind is strong and stable. Moreover, if the bow of the catamaran is shaped like a ship, it has the property of always facing upwind. Furthermore, the raw material of fresh water is the sea water below. Therefore, the center of gravity of the wing body is fixed with a top plate that is considered to be the upper surface of a rectangular wind tunnel structure that blows sea breeze, and the two wing aircraft wing shape objects with the upper cambers facing each other on both sides are regarded as both walls. It is equipped with a top plate that has the function of fixing the center of gravity of the two wing bodies, and the lower surface is regarded as a sample container for the seawater surface as a raw material. Therefore, when obtaining fresh water from seawater, the second function of forming the low pressure portion is a natural wind received by the gap between the upper surfaces (upper cambers) of the two wing aircraft wing bodies having a curved shape ( (Sea breeze) generates a pressure drop area and generates unsaturated humid air, where when strong wind passes through the gap between the sea surface and the wing body, the atmospheric pressure decreases and the unsaturated water vapor expands toward the outlet of the fresh water production room After passing through the inside of the horn shape, a plurality of dew condensations that are hydrophilically processed so that the collision angle of saturated humid air can be freely adjusted on the leeward end of the wind tunnel (wind channel) structure. A surface having a fourth function of collecting fresh water by dropping the condensed water condensed on the dew condensation surface onto the collection container by its own weight in the vertical downward direction according to the collision angle of the dew condensation surface is provided. By providing a container at the sea level position of the catamaran and injecting seawater, the concentrated salt after dehydration can be recovered.

請求項13に記載の発明は、真水回収用圧縮機の構造に関するものである。
ピストン式レシプロ圧縮機、多段式ターボ圧縮機又はベーン式圧縮機などの圧縮機のシリンダーを小型風洞に見立て、小型風洞(シリンダー)内部に空気と含水物試料とを密閉するための格納室を設け、該格納室には含水物試料の投入口と被脱水物の廃棄口及び空気の入気口と排気口兼真水回収口を備え、第1機能として、含水物試料が入った該格納室に空気を入れて一時的に弁で閉塞させ、封じ切った空気の状態にし、第2機能として、格納室とシリンダーを連通させ、該シリンダーのピストン又はベーンでシリンダーの容積を拡張して内部を減圧(断熱膨張)にして不飽和湿り空気を発生させ(第3機能)、該不飽和湿り空気を圧縮に転じさせて(断熱圧縮)昇圧し、飽和湿り空気に転換して(第3機能)、更に圧縮して親水性結露面で結露を誘起して液化させ、真水と排気空気の兼用弁から真水を回収し、同時に空気を排気する(第4機能)。
The invention described in claim 13 relates to the structure of the fresh water recovery compressor.
A cylinder of a compressor such as a piston-type reciprocating compressor, multi-stage turbo compressor or vane compressor is regarded as a small wind tunnel, and a storage chamber is provided inside the small wind tunnel (cylinder) to seal air and hydrated samples. The containment chamber has an inlet for containing a hydrated sample, a disposal port for dehydrated material, an air inlet, an exhaust port and a fresh water collecting port. As a first function, Put air in and temporarily close it with a valve to make it in a sealed air state. As a second function, let the containment chamber communicate with the cylinder, expand the volume of the cylinder with the piston or vane of the cylinder, and reduce the inside. (Adiabatic expansion) to generate unsaturated moist air (third function), turn the unsaturated moist air into compression (adiabatic compression), pressurize, convert to saturated moist air (third function), Compress further, and with hydrophilic condensation Dew induced to thereby liquefy, fresh water recovered from combined valve fresh water and exhaust air, at the same time exhausts the air (fourth function).

請求項14に記載の発明は、ピストン式レシプロ圧縮機を用いた真水製造装置に関するものである。
ピストン式レシプロ圧縮機のシリンダー内部に空気と含水物試料とを密閉するための格納室を設け、該格納室には含水物試料の投入口と被脱水物の廃棄口及び空気の入気口とを備え、ピストン式レシプロ圧縮機のコンロッドを引くとピストンの吸入行程で空気孔の弁が閉じ、同時に該格納室とシリンダーを結ぶ弁が開き、これに連動してシリンダー内の容積が拡張すると断熱膨張による減圧によりシリンダー内は不飽和湿り空気が充満(第2機能)する。ここでピストンの運動方向を逆にするとシリンダー内は圧縮状態に転じ、同時に、ピストンの圧縮行程で該格納室とシリンダーを結ぶ弁が閉じ、不飽和湿り空気は圧縮されて飽和湿り空気に転換され(第3機能)、更に飽和湿り空気を圧縮すると親水性結露面で結露が誘起され、圧縮された空気はリリーフ弁から結露水と共に排出され、圧縮空気は大気開放され、結露水は真水としてドレン容器で回収される。
The invention described in claim 14 relates to a fresh water producing apparatus using a piston type reciprocating compressor.
A storage chamber is provided inside the cylinder of the piston-type reciprocating compressor to seal the air and the hydrated sample. When the connecting rod of the piston-type reciprocating compressor is pulled, the valve of the air hole is closed during the intake stroke of the piston, and at the same time, the valve that connects the storage chamber and the cylinder is opened. The cylinder is filled with unsaturated humid air (second function) due to decompression due to expansion. If the direction of movement of the piston is reversed, the inside of the cylinder is compressed, and at the same time, the valve connecting the storage chamber and the cylinder is closed during the compression stroke of the piston, and the unsaturated humid air is compressed and converted to saturated humid air. (Third function) Further, when saturated humid air is compressed, condensation is induced on the hydrophilic condensation surface, the compressed air is discharged from the relief valve together with the condensed water, the compressed air is released to the atmosphere, and the condensed water is drained as fresh water. Collected in a container.

請求項15に記載の発明は、ベーン式圧縮機のシリンダーの中心軸とベーンを固定するローターの回転軸とが同一軸構造である真水回収装置に関するものである。
円筒式シリンダー底部に含水物試料容器を設置し、ローターには3枚の蝶番式ベーンを設け、夫々のベーンに時間差により作動するシーケンス制御を持たせて一方向に順次回転運動をさせ、互いに隣り合った先行するベーンと後行するベーンとの容積変化により、大気の封じ切り(第1機能)、断熱膨張(第2機能)、断熱圧縮(第3機能)、結露(第4機能)成る手段を連続的に繰り返し行う、真水回収装置であり、結露を誘起させるために、3枚のベーンの回転方向の背面(飽和湿り空気の受圧側の面)が親水性部材又は親水性処理が施された面である事が結露を誘起させるための条件である。
The invention described in claim 15 relates to a fresh water recovery apparatus in which a central axis of a cylinder of a vane compressor and a rotary shaft of a rotor for fixing the vane have the same shaft structure.
A hydrated sample container is installed at the bottom of the cylindrical cylinder, and the rotor is provided with three hinge vanes. Each vane has a sequence control that operates according to the time difference, and sequentially rotates in one direction. Means for sealing the atmosphere (first function), adiabatic expansion (second function), adiabatic compression (third function), and dew condensation (fourth function) by changing the volume of the preceding and succeeding vanes. In order to induce dew condensation, the back surface in the rotational direction of the three vanes (the surface on the pressure receiving side of saturated humid air) is subjected to a hydrophilic member or a hydrophilic treatment. That surface is the condition for inducing condensation.

請求項16に記載の発明は、ベーン式圧縮機のシリンダー内を120度間隔で取り付けられた3枚の抜け差し自在ベーンの夫々がシリンダー内を偏芯回転する構造である真水回収装置に関するものである。
本願発明では、シリンダー内壁に接触して偏芯回転する120度間隔でローターに取り付けられた3枚のベーンと同じくシリンダー内壁とローターの間に接触して設置された1個の親水性面を有する円筒又は海鼠形をなす弾力性材料からなる弁の役割は、空気挿入室(第1機能)、不飽和湿り空気発生室(第2機能)、飽和湿り空気発現室(第3機能)を存在させることであり、かつ飽和湿り空気を更に圧縮して結露を誘起して真水取り出し口と空気孔を遮断する弁(第4機能)の機能を兼ね備えている事である。
The invention described in claim 16 relates to a fresh water recovery device having a structure in which each of the three removable vanes attached to the inside of the cylinder of the vane compressor at an interval of 120 degrees rotates eccentrically inside the cylinder. is there.
In this invention, it has one hydrophilic surface installed in contact between the inner wall of the cylinder and the rotor as well as three vanes attached to the rotor at intervals of 120 degrees rotating in contact with the inner wall of the cylinder. The role of a valve made of a resilient material in the shape of a cylinder or ridge is to have an air insertion chamber (first function), an unsaturated humid air generation chamber (second function), and a saturated humid air expression chamber (third function). In addition, it has a function of a valve (fourth function) that further compresses saturated humid air to induce condensation to block the fresh water outlet and the air hole.

請求項17に記載の発明は、地面に根を下ろしている植物や切り取られた植物を袋で被い、袋内をピストン式レシプロ圧縮機で減圧して真水を回収する装置に関するものである。
ビニルやポリエチレンなどの袋で草木類を空気と一緒に被い、これをホースでピストン式レシプロ圧縮機に接続し、ピストンがシリンダー内を往復運動することにより植物から真水を回収する方法である。本発明で使用するピストン式レシプロ圧縮機の特徴は、両端が閉じられたシリンダー内でピストンの往復運動を行い、ピストンで2分割されたシリンダーの2つの室の内一方が断熱膨張の時は他方は断熱圧縮であり、2つの室は独立的に交互に断熱膨張及び断熱圧縮を繰り返し、断熱膨張時は、減圧行程により不飽和湿り空気が生成され、断熱圧縮時には、圧縮行程で断熱圧縮域から飽和湿り空気がシリンダー内の上死点部位及び下死点部位に嵌合させた飽和湿り空気の受圧面(シリンダーの両端面)が親水性部材からなる結露面に結露した結露水を、リリーフ(結露弁)からドレン容器で真水として回収する。
The invention described in claim 17 relates to an apparatus for collecting fresh water by covering a plant having a root on the ground or a cut plant with a bag, and reducing the pressure in the bag with a piston-type reciprocating compressor.
This is a method of collecting fresh water from plants by covering plants with air with a bag of vinyl or polyethylene, connecting it to a piston type reciprocating compressor with a hose, and reciprocating the piston in the cylinder. The piston type reciprocating compressor used in the present invention is characterized by the reciprocating motion of the piston in a cylinder closed at both ends. When one of the two chambers of the cylinder divided by the piston is adiabatically expanded, the other is Is adiabatic compression, and the two chambers independently repeat adiabatic expansion and adiabatic compression, and during the adiabatic expansion, unsaturated humid air is generated by the decompression process. Relieve the condensed water in which saturated wet air is fitted to the top dead center and bottom dead center in the cylinder. Collect as fresh water from the condensation valve) in a drain container.

上記のように、本発明によれば、海水又は含水物質から熱エネルギーを一切使わず、空気圧を下げるのみで真水を取り出すことができる。
空気の流れが有る場合は(自然風)、風洞型脱水装置の中央部に上下を逆にして取り付けた航空機用翼とその翼の真下に備えた海水または含水物を、高速空気流により発生する低気圧により、含水物から発生する水蒸気と空気の混合体である不飽和湿り空気発生させ、通路を徐々に拡大させて大気圧に戻し、飽和湿り空気に変換した後、親水性を有する結露板を核として結露・液化させて真水を回収する。
空気の流れが無い場合には、圧縮機のシリンダーを小型風洞に見立て、予めシリンダー内部に密閉し含水物と空気の容積を拡張する断熱膨張により不飽和湿り空気を発生させ、これを断熱圧縮して飽和湿り空気に変換した後、シリンダー内に備えた親水性を有する結露面を核として結露・液化させて真水を回収する。
この真水は、災害地での生活用水を海水から緊急造水する手段に使える他、飲用に適さない水を飲んでいる世界中の水不足で苦しむ人々を救うことになる。また家畜の飼料であるサイレージの製造に使えば冬季の家畜の飼料として効果的である。さらにサイレージ製造中の30%の水分を飲料水に転用できる。このように食にまつわる栄養不足や水不足を解消し、かつ脱水によって副産物として、海水の濃縮物から得られる金属ナトリウムは石油の代替エネルギーとして世界のエネルギー経済あるいは食料生産の活性化に優れた効果が得られる。
As described above, according to the present invention, fresh water can be taken out from seawater or water-containing substances without using any thermal energy and simply lowering the air pressure.
When there is an air flow (natural wind), high-speed air flow generates aircraft wings installed upside down in the center of the wind tunnel dehydrator and seawater or hydrated material immediately below the wings Unsaturated moist air, which is a mixture of water vapor and air generated from water-containing materials, is generated by low pressure, and the passage is gradually expanded to return to atmospheric pressure, and then converted to saturated moist air. Fresh water is recovered by condensation and liquefaction with the core.
When there is no air flow, the compressor cylinder is regarded as a small wind tunnel, and unsaturated humid air is generated by adiabatic expansion that expands the volume of hydrated matter and air in advance by sealing inside the cylinder and compressing it adiabatically. After conversion to saturated humid air, the fresh water is recovered by condensation and liquefaction using the hydrophilic condensation surface provided in the cylinder as a core.
This fresh water can be used as a means of emergency water production from seawater in disaster areas, and will save people suffering from water shortages around the world who are drinking unfit water. In addition, it can be effectively used as a livestock feed in winter if it is used for the production of silage, a livestock feed. Furthermore, 30% of the water during silage production can be diverted to drinking water. In this way, nutritional deficiencies and water shortages associated with food are eliminated, and metallic sodium obtained from seawater concentrate as a by-product of dehydration has an excellent effect on the global energy economy or the activation of food production as an alternative energy to petroleum. It is done.

気圧差を利用した含水物の脱水方法及び真水の回収方法フローチャートである (請求項1の説明図)。FIG. 3 is a flowchart of a method for dehydrating a hydrated material using a pressure difference and a method for collecting fresh water (an explanatory diagram of claim 1). 含水物試料近傍に存在する空気を減圧するための3方法に関するフローチャートである(請求項2の説明図)。It is a flowchart regarding three methods for decompressing the air which exists in the vicinity of a hydrated material sample (explanatory drawing of claim 2). 風洞中央部の断面積を狭めた風洞構造体の概略図である(請求項3の説明図)。矩形筒型風洞構造体の内部に低圧部位を形成させる位置に、上下を反転させた形状の航空機翼体(上下逆向き翼)を取り付け、かつ矩形筒型風洞構造体開口部に自然風を集風するフード(請求項3)を取り付けた概念図である(請求項1、請求項2、請求項3、請求項4の説明図)。It is the schematic of the wind tunnel structure which narrowed the cross-sectional area of the wind tunnel center part (description figure of Claim 3). At the position where the low-pressure part is formed inside the rectangular tubular wind tunnel structure, an upside down aircraft wing (upside down wing) is attached, and natural wind is collected at the opening of the rectangular tubular wind tunnel structure. FIG. 3 is a conceptual diagram in which a wind hood (Claim 3) is attached (an explanatory diagram of Claims 1, 2, 3, and 4). 風洞又は圧縮機内に不飽和湿り空気及び飽和湿り空気を発生させ結露・液化を誘起させるための装置の構造原理図である(請求項4,5,6,7,8、9,13,16の説明図)。(A)は含水物試料容器の試料上面に航空機の翼体形状を逆さに取り付けて気圧を下げて脱水装置構造原理図(請求項4,5,6,7の説明図)。 (B)は気圧降下域で生成した不飽和湿り空気を水蒸気を含水物試料容器の試料上面に2枚の航空機の翼体形状体を互いが凸面で向かい合わせて取り付けて発生させた不飽和湿り空気をスクリュー型ロータリーコンプレッサー(ターボ式)で断熱圧縮して結露させる脱水装置構造原理図である(請求項4,5,6,8,9の説明図)。FIG. 6 is a structural principle diagram of an apparatus for generating unsaturated moist air and saturated moist air in a wind tunnel or a compressor to induce condensation and liquefaction (claims 4, 5, 6, 7, 8, 9, 13, 16). Illustration). (A) is a structural view of a dehydrator by attaching the aircraft wing shape upside down to the top surface of the sample of the hydrated sample container and lowering the atmospheric pressure. (B) Unsaturated moist air generated in the atmospheric pressure drop region. Unsaturated wet air generated by attaching two aircraft wings facing each other on the upper surface of the sample of water-containing sample container. FIG. 4 is a diagram illustrating the principle of the structure of a dehydrating device that adiabatically compresses and condenses air with a screw-type rotary compressor (turbo type). (C)は第ピストン式レシプロ圧縮機内で断熱膨張と断熱圧縮を起こして真水を製造する装置構造原理図(請求項4,5,9,13)。(D)はシリンダー内を自在ベーンが偏芯回転するベーン式圧縮機内で断熱膨張と断熱圧縮を起こして真水を製造する装置構造原理図(請求項4,5,9、16の説明図)。(C) is an apparatus structural principle diagram for producing fresh water by causing adiabatic expansion and adiabatic compression in a first piston type reciprocating compressor (claims 4, 5, 9, and 13). (D) is an apparatus structure principle diagram for producing fresh water by causing adiabatic expansion and adiabatic compression in a vane compressor in which a free vane rotates eccentrically in a cylinder (an explanatory diagram of claims 4, 5, 9, and 16). 含水物試料容器の試料上面に航空機の翼体形状の上面(アッパーキャンバー)同士を対向させた位置に垂直に配備して気圧を下げ飽和湿り空気を発生させ結露・液化を誘起させるための装置の構造原理図である(請求項8の説明図)。A device for inducing condensation and liquefaction by lowering atmospheric pressure and generating saturated moist air by vertically deploying the aircraft wing-shaped upper surface (upper camber) to the upper surface of the sample of the hydrated sample container It is a structure principle figure (description figure of Claim 8). 洋上に係留した双胴船に航空機の逆向き翼体を海面と平行に設置して、自然風のみにより海水から真水を回収する方法で、飽和湿り空気を発生させ結露・液化を誘起させるための方法の構造原理図である(請求項11の説明図)。A method of collecting fresh water from seawater only by natural wind by installing a reverse wing body of an aircraft on a catamaran moored offshore, parallel to the sea surface, to induce condensation and liquefaction by generating saturated humid air It is a structure principle figure of a method (description figure of Claim 11). 洋上に係留した双胴船に航空機の翼体のアッパーキャンバー同士を対向させた位置で海面に垂直に配備して、自然風のみにより海水から真水を回収する方法発生させ結露・液化を誘起させるための方法の構造原理図である(請求項12の説明図)。In order to induce dew condensation and liquefaction by deploying a method of collecting fresh water from seawater only by natural wind by deploying vertically on the sea surface at a position where the upper cambers of the aircraft wings face each other on a catamaran moored offshore It is a structural principle figure of this method (Explanatory drawing of Claim 12). ピストン式レシプロ圧縮機を用いた真水製造装置の構造原理図である(請求項14の説明図)。It is a structure principle figure of the fresh water manufacturing apparatus using a piston type reciprocating compressor (description figure of Claim 14). ベーン式圧縮機のシリンダーの中心軸とベーンを固定するローターの回転軸とが同一軸構造である真水回収装置である(請求項15の説明図)。(A)は 蝶番型ベーンの構造図。(B)は空気封入前の状態図。 (C)は空気封入時の第1機能状態図。 (D)は断熱膨張時の第2機能状態図。 (E)は断熱圧縮時の第3機能能状態図。 (F)は結露・液化時の第4機能状態図。(請求項15の説明図)。A fresh water recovery apparatus in which a central axis of a cylinder of a vane compressor and a rotary shaft of a rotor for fixing the vane have the same shaft structure (an explanatory diagram of claim 15). (A) is a structural diagram of a hinge type vane. (B) is a state diagram before air filling. (C) is a first functional state diagram at the time of air filling. (D) is a second functional state diagram during adiabatic expansion. (E) is a 3rd functional capability state figure at the time of adiabatic compression. (F) is the fourth functional state diagram during condensation and liquefaction. (Explanatory diagram of claim 15). 路地植え植物や切り取られた植物を袋で被い、袋内をピストン式レシプロ圧縮機で減圧して真水を回収する装置の構造原理図である(請求項17の説明図)。It is a structural principle figure of the apparatus which covers an alley planting plant and the cut-out plant with a bag, and decompresses the inside of a bag with a piston type reciprocating compressor, and collects fresh water (Explanatory drawing of Claim 17). 真水の回収に係る第4機能に、冷却水が流れフィン付ラジエーターを複数本配置する概念図である。FIG. 10 is a conceptual diagram in which cooling water flows and a plurality of finned radiators are arranged in a fourth function related to the collection of fresh water.

以下、本発明の効果的な実施の形態を図1〜図11に基づいて詳細に説明する。 Hereinafter, an effective embodiment of the present invention will be described in detail with reference to FIGS.

図1は気圧差を利用した含水物の脱水方法及び真水の回収方法フローチャートである (請求項1の説明図)。
本願発明は含水物より飽和蒸気圧の高い物質から先に蒸発させて分離回収するため、水の蒸気圧は100℃で1気圧(760 mmHg)であるから、水に混合している物質では、1気圧の蒸気圧が100℃以下の物質から先に蒸発する。例えばエタノールは78.32℃、アセトン 56.12℃、メタノール 64.51℃などである。しかるに、アルコール水を同一温度で蒸発させるとアルコール類から先に蒸発開始し、後から水が蒸発する。他方、水より飽和水上気圧が低い含水物の場合は被含水物中に残留するので、本願発明では、水の飽和蒸気圧を基準として高いものをアルコール類、飽和蒸気圧が水と等しいか又は水より飽和蒸気圧が低い気体(液体)は水と分類している。従って、ミネラルを含む海水、塩水、塩湖水、温泉水、鉱泉水などの天然水、又は酸水溶液、塩基水溶液、無機物水溶液、色素水溶液などの化学薬品水溶液、又は果汁、牛乳、有機物(砂糖水) 健康飲料水、酒類)などの飲料用液体、及びアミノ酸、脂肪、蛋白質、糖類、炭水化物などの生体物質水溶液、あるいはビタミン類や汚染水などが含水溶液であり、固体状含水物としては木、草、野菜、果物などの植物あるいは肉類や魚介類が固体状含水物であり、水の飽和蒸気圧より高い液体状の含水物の場合はアルコール類がアルコール水である。これら含水物を試料容器内に置き、含水物を脱水して真水を回収する。
これら含水物試料を脱水して真水と被脱水物(残留物)あるいはアルコール類と水を分離回収するためには、第1機能から第4機能までの行程が必要である。第1機能は風洞構造体(周囲に壁を有する人工トンネル)又は風道構造体(周囲に壁を持たない強い風の流れで境界面に周囲と気圧差を持って流れる風束と本願発明では「風道」と定義する)の中に含水物試料を設置するか、又は含水物試料面を風洞(風道)の少なくとも1つの壁面として、該風洞(風道)内に自然風、自然風を集風した高速風、圧縮空気又は空気を入気する。これに引き続いて、第2機能においては、含水物試料とその雰囲気の空気とを減圧して不飽和湿り空気を発生させる。ここで、水の飽和蒸気圧より高いアルコール含水物試料からはアルコールが気化した不飽和湿り空気が発生し、飽和蒸気圧が水と等しいか又は水より低い液体からは水が気化した不飽和湿り空気が発生させる。更に、第3機能において、不飽和湿り空気を大気圧まで昇圧し、若しくは断熱圧縮により大気圧以上に昇圧して飽和湿り空気に転換する。ここで第4機能により該飽和湿り空気を更に圧縮及び/又は親水性結露面で液化を誘起させて真水分を回収する。これを順次起動することにより、液体状又は固体状の含水物から真水(又は高濃度アルコール)を回収し、含水物資料容器の中に残留する被脱水物(脱アルコールされた水)を回収する。
FIG. 1 is a flowchart of a method for dehydrating a hydrous material using a pressure difference and a method for recovering fresh water (an explanatory diagram of claim 1).
In the present invention, since a substance having a higher saturated vapor pressure than water-containing material is first evaporated and separated and recovered, the vapor pressure of water is 1 atm (760 mmHg) at 100 ° C. Therefore, in a substance mixed with water, A substance with a vapor pressure of 1 atm or less evaporates first from a substance having a vapor pressure of 100 ° C. or lower. For example, ethanol is 78.32 ° C, acetone 56.12 ° C, methanol 64.51 ° C, etc. However, if the alcohol water is evaporated at the same temperature, the alcohol starts to evaporate first, and then the water evaporates. On the other hand, in the case of a water-containing material whose saturated water pressure is lower than that of water, it remains in the water-containing material. A gas (liquid) with a saturated vapor pressure lower than that of water is classified as water. Therefore, natural water such as sea water, salt water, salt lake water, hot spring water, mineral spring water, etc., or chemical aqueous solution such as acid aqueous solution, base aqueous solution, inorganic aqueous solution, dye aqueous solution, fruit juice, milk, organic matter (sugar water) (Liquid drinks such as health drinks and alcoholic beverages) and aqueous solutions of biological substances such as amino acids, fats, proteins, sugars, and carbohydrates, or vitamins and contaminated water. Plants such as vegetables and fruits, or meat and seafood are solid hydrates, and in the case of liquid hydrates higher than the saturated vapor pressure of water, the alcohol is alcohol water. These hydrated substances are placed in a sample container, and the hydrated substances are dehydrated to recover fresh water.
In order to dehydrate these hydrated samples and separate and recover fresh water and dehydrated substances (residues) or alcohols and water, steps from the first function to the fourth function are required. The first function is a wind tunnel structure (artificial tunnel having a wall around it) or an airway structure (a strong wind flow without a wall around the wind flux flowing around the boundary surface with a pressure difference between the surroundings and the present invention. A hydrated sample is installed in the wind tunnel), or the surface of the hydrated sample is used as at least one wall surface of the wind tunnel (wind passage), and natural wind, The high-speed wind, compressed air, or air that has collected the air is introduced. Subsequently, in the second function, the moisture sample and the air in the atmosphere are decompressed to generate unsaturated humid air. Here, an unsaturated wet air in which alcohol is vaporized is generated from an alcohol-containing sample having a higher vapor saturation pressure than water, and an unsaturated moisture in which water is vaporized from a liquid having a saturated vapor pressure equal to or lower than water. Air is generated. Further, in the third function, the unsaturated humid air is increased to atmospheric pressure, or is increased to atmospheric pressure or higher by adiabatic compression and converted to saturated humid air. Here, by the fourth function, the saturated humid air is further compressed and / or liquefaction is induced on the hydrophilic dew condensation surface to recover the true moisture. By starting this sequentially, fresh water (or high-concentration alcohol) is recovered from the liquid or solid water-containing material, and the dehydrated material (dealcoholized water) remaining in the water-containing material container is recovered. .

図2は含水物試料近傍に存在する空気を減圧するための3方法に関するフローチャートである(請求項2の説明図)。
不飽和湿り空気を発生させるためには含水物試料雰囲気には空気が必要である。もし空気の流れが存在する時は、航空機翼体形状物により低速流と高速流を形成することができ、あるいは気流中に括れを挟むことにより高速流をつくることができる。あるいは圧縮空気をボンベに溜めこれを風洞内に大気開放しても高速流を作ることができる。もし、空気の流れが無い時は、含水物試料雰囲気の空気溜め(含水物資料容器格納庫)を空気で密閉し、を封じ込め、これを圧縮機で断熱膨張させれば減圧状態に発現でき、何れも含水物試料近傍の空気を減圧できる。
FIG. 2 is a flow chart relating to three methods for depressurizing air existing in the vicinity of a hydrated material sample (an explanatory diagram of claim 2).
In order to generate unsaturated humid air, air is required for the hydrated sample atmosphere. If there is an air flow, a low-speed flow and a high-speed flow can be formed by the aircraft wing body shape, or a high-speed flow can be created by sandwiching a constriction in the air flow. Alternatively, a high-speed flow can be created even if compressed air is stored in a cylinder and opened in the wind tunnel. If there is no air flow, the air reservoir (hydrated material container hangar) in the hydrated sample atmosphere is sealed with air, sealed, and adiabatically expanded with a compressor. Can also depressurize the air near the hydrated sample.

図3は風洞中央部の断面積を狭めた風洞構造体の概略図である(請求項3の説明図)。
風洞1の開口部(風上)2 から中央部の気圧降下域(狭窄部位/括れ構造)3 までの間に含水物試料容器4 を置き、この中の含水物試料5に接して流れる自然風及び/又は圧縮空気6 (第1機能7)の通過部位の断面積が狭まるに連れて、高速流空気と成り、風洞入り口近くの開口部2 の空気圧と気圧降下域(括れ構造部)3 との間に気圧差が生じ、減圧された狭窄部位近傍3 の含水物試料か5から順次不飽和湿り空気8 を発生(第2機能9 )させた後、該風洞の断面積が風下側に進むに連れて順次大きく成り大気開放10 される。この狭窄部位以降の気圧上昇を利用して、不飽和湿り空気を順次飽和湿り空気11 に変換させ(第3機能12)、かつ狭窄部から広い部位に開放される断熱膨張は雰囲気温度を降下させる効果も手伝って飽和湿り空気11の発生が助長され、大気開放部位10には親水性処理された結露板(面)13 を備える(第4機能14)ことにより真水(ドレン容器)15を回収する。
FIG. 3 is a schematic view of a wind tunnel structure with a reduced cross-sectional area at the center of the wind tunnel (an explanatory diagram of claim 3).
Place a hydrated sample container 4 between the opening (windward) 2 of the wind tunnel 1 and the pressure drop area (constriction / constricted structure) 3 in the center, and the natural wind flowing in contact with the hydrated sample 5 And / or as the cross-sectional area of the passage of compressed air 6 (first function 7) narrows, it becomes high-speed flow air, and the air pressure and pressure drop area (constriction structure) 3 of the opening 2 near the wind tunnel entrance and An atmospheric pressure difference is generated between the sample and the hydrated sample in the vicinity of the reduced stenosis part 3 or 5 to generate unsaturated humid air 8 (second function 9), and then the cross-sectional area of the wind tunnel advances to the leeward side. As it grows, it gradually increases and is opened to the atmosphere. Using the pressure increase after the stenosis, unsaturated humid air is sequentially converted to saturated moist air 11 (third function 12), and adiabatic expansion that is opened from the stenosis to a wide site lowers the ambient temperature. The generation of saturated moist air 11 is promoted with the help of the effect, and fresh water (drain container) 15 is recovered by providing a dew condensation plate (surface) 13 that has been subjected to hydrophilic treatment in the atmosphere release portion 10 (fourth function 14). .

図4は風洞又は圧縮機内に不飽和湿り空気及び飽和湿り空気を発生させ結露・液化を誘起させるための装置の構造原理図である。
図4-1(A)は含水物試料容器の試料上面に航空機の翼体形状を逆さに取り付けて気圧を下げて脱水装置構造原理図である(請求項4,5,6,7,9の説明図)。
自然風及び/又は圧縮空気6を送風させる風洞(風道)構造体1が筒型構造体であり、該風洞(風道)構造体内1に自然風及び/又は圧縮空気6を入れる第1機能7を有する手段と、風洞構造体1の中央部位に設けた狭窄部位により気圧降下域3である低圧部を形成、保持させる第2機能9が、航空機翼体形状の上面(アッパーキャンバー)16と航空機翼体形状の下面(ローワーキャンパー)17の形状を反転させた形状物(上下逆向き翼)18 又は平面構造体形状翼或いは含水試料容器4の試料上面が凸平面形状でありその裏面が平面あるいは凹平面構造体形状翼を成し、含水物試料容器の試料上面とで間隙を設けた位置に、仰角19を翼体の重心部となる固定軸20を介して可動可能な構造体として、配備させる手段と、蒸発した不飽和湿り空気を大気圧まで昇圧させて飽和湿り空気11に転換させる第3機能12の手段が、風洞(風道)構造体1の内部の気圧降下域3である航空機翼体形状のアッパーキャンバー16又は風上に比べて風下が含水試料容器に接近した平板あるいは含水試料上面が凸平面形状である構造体形状翼を通過した不飽和湿り空気8と、航空機翼体のロワーキャンバー17又は風下側が含水試料容器4側に下がった平板あるいは凹平面構造体を通過してきた気流とが合流して昇圧された不飽和湿り空気8を、さらに出口方向に拡開する末広がりホーン形状構造物21の内部を通過させた後、該風洞(風道)構造体内部の末端部である風下には、飽和湿り空気の衝突角度を自在に調整可能とする親水性に処理された複数枚の結露板22を配備し、該結露面の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を真水(ドレーン容器)15に自重落下させて真水を回収する第4機能14を有する手段を有している。
図4-1(B)は気圧降下域で生成した不飽和湿り空気を水蒸気を含水物試料容器の試料上面に2枚の航空機の翼体形状体を互いが凸面で向かい合わせて取り付けて発生させた不飽和湿り空気をスクリュー型ロータリーコンプレッサー(ターボ式)で断熱圧縮して結露させる脱水装置構造原理図である(請求項4,5,6,8,9の説明図)。
含水物試料容器4内に含水物試料を満たし、若しくは含水物試料容器内に静置させた液体状又は固体状の含水物から該風洞(風道)構造体1内部の中央部位に設けた狭窄部位により気圧降下域3を生成させ、飽和蒸気圧が低い気体(液体)から順次不飽和湿り空気3を発生させる第2機能9を有する手段が、上面(アッパーキャンバー)16と下面(ローワーキャンバー)17形状を有する2つの航空機上下逆向き翼18形状物の上面(アッパーキャンバー)16同士を対向させた位置に垂直に含水物試料容器4上に配備させ、スクリュー型ロータリーコンプレッサー23のモーター24の回転軸と連動したファン25で自然風26を圧縮空気27にした後、含水物試料用容器の試料と接して流れる通過部位に減圧状態を保持し、気圧降下域3を生成させ、不飽和湿り空気3を発生させる。この不飽和湿り空気3をスクリュー型ロータリーコンプレッサー23により断熱圧縮28されて生じた飽和湿り空気11を、更に親水性処理した結露面29雰囲気で圧縮・液化させて真水15として回収し、真水と分離された空気はスクリュー型ロータリーコンプレッサー23のモーター24の回転軸と連動した排気ファン30で乾燥空気31として大気に放出される。ここで、スクリュー型ロータリーコンプレッサーを採用する理由は空気の排気温度を60℃内外に抑えることができるためである。
図4-2(C)は第ピストン式レシプロ圧縮機内で断熱膨張と断熱圧縮を起こして真水を製造する装置構造原理図である(請求項4,5,9,13の説明図)。
圧縮機のシリンダー32内部に空気と含水物試料容器4中の含水物とを密閉するための格納室33を設け、該格納室33には含水物試料の投入口と被脱水物の廃棄口及び空気の入気口と排気口兼真水回収口を備え、第1機能7として、含水物試料が入った該格納室33に空気を入れて一時的に空気孔弁34で閉塞させ、封じ切った空気の状態にし、第2機能9に移行するために、コンロッド35を引いて断熱圧縮を開始する。この吸引により開閉弁36が開き、格納室33とシリンダー32を連通させ、該シリンダー32のピストン48でシリンダーの容積を拡張して内部を減圧(断熱膨張)9を行い不飽和湿り空気を発生させる(第2機能9)。この時点でコンロッド35を断熱圧縮12に転じさせる。この圧縮によってシリンダー内の空気圧は高く成り、開閉弁36は押されて閉じる。これにより断熱圧縮12は強くなり、不飽和湿り空気は飽和湿り空気に転換し(第3機能12)、更に圧縮して親水性処理が施された結露面29で結露を誘起して液化させ、真水と排気空気の兼用のリリース弁37から真水15を回収し、同時に空気をリリース弁37から排気する(第4機能14)。ここでリリース弁37の役割は断熱圧縮12で液化最適圧力の設定値以上に成るとリリース弁37が開き真水と排気空気が排出され真水はドレン容器15に溜まり排出空気は大気開放される。
図4-2(D)はシリンダー内を自在ベーンが偏芯回転するベーン式圧縮機内で断熱膨張と断熱圧縮を起こして真水を製造する装置構造原理図である(請求項4,5,9、16の説明図)。
本願発明では、シリンダー32の内壁に接触して偏芯回転する120度間隔でローター38に取り付けられた3枚のベーン39と該シリンダー32の内壁とローター38の間に接触して設置された1個の親水性面を有する円筒又は海鼠形をなす弾力性材料からなる弁40の役割は、空気格納室33(第1機能7)、不飽和湿り空気発生室41(第2機能9)、飽和湿り空気転換室42(第3機能12)を存在させることであり、かつ飽和湿り空気を更に圧縮して結露を誘起して真水取り出し口と空気孔を遮蔽する弁40(第4機能14)の機能を兼ね備えている事である。
FIG. 4 is a structural principle diagram of an apparatus for generating unsaturated moist air and saturated moist air in a wind tunnel or a compressor to induce condensation and liquefaction.
Fig. 4-1 (A) is a diagram showing the structure of the dehydrator by attaching the aircraft wing shape upside down to the upper surface of the sample of the hydrated sample container and lowering the air pressure (claims 4, 5, 6, 7, 9). Illustration).
The wind tunnel (wind path) structure 1 for blowing natural wind and / or compressed air 6 is a cylindrical structure, and the first function of putting the natural wind and / or compressed air 6 into the wind tunnel (wind path) structure 1 7 and the second function 9 for forming and maintaining the low-pressure part which is the pressure drop region 3 by the constriction part provided in the central part of the wind tunnel structure 1 are the upper surface (upper camber) 16 of the aircraft wing body shape, An aircraft wing-shaped lower surface (lower camper) 17 shaped object (upside down wing) 18 or a plane structure-shaped wing or water-containing sample container 4 whose sample upper surface is a convex planar shape and whose rear surface is flat Alternatively, a concave planar structure-shaped wing is formed, and at a position where a gap is provided with the sample upper surface of the hydrated sample container, the elevation angle 19 is a structure that can be moved via the fixed shaft 20 that is the center of gravity of the wing body, Measures to deploy and evaporate unsaturated humid air to atmospheric pressure and saturate The third function 12 for converting to the humid air 11 is an aircraft wing-shaped upper camber 16 which is the pressure drop region 3 inside the wind tunnel (windway) structure 1 or the leeward sample container containing the leeward wind. A flat plate or a wet plane that has passed through a structure-shaped wing whose upper surface is a convex plane, and a flat plate or a concave plane in which the lower camber 17 or the leeward side of the aircraft wing body is lowered to the water-containing sample container 4 side Unsaturated humid air 8 that has been pressurized with the airflow that has passed through the structure is further passed through the interior of the horn-shaped structure 21 that widens toward the exit, and then the wind tunnel (windway) structure. A plurality of dew condensation plates 22 that are hydrophilically processed so that the collision angle of saturated humid air can be freely adjusted are arranged on the leeward side that is the terminal part inside the body, and the vertical direction corresponding to the collision angle of the dew condensation surface is provided. Condensed water that has condensed on the condensation surface in the downward direction By free-fall to the drain container) 15 has means having a fourth function 14 for collecting the fresh water.
Figure 4-1 (B) shows the generation of unsaturated moist air generated in the pressure drop region by attaching water vapor to the top of the sample in the hydrated sample container with two aircraft wings facing each other with convex surfaces facing each other. FIG. 5 is a diagram illustrating the principle of the structure of a dehydrating apparatus that adiabatically compresses and dehydrates unsaturated wet air using a screw-type rotary compressor (turbo type) (explanatory diagram of claims 4, 5, 6, 8, and 9).
A stenosis provided in a central part inside the wind tunnel (airway) structure 1 from a liquid or solid hydrate containing a hydrate sample in the hydrate sample container 4 or being left in the hydrate sample container A means having a second function 9 that generates an atmospheric pressure drop region 3 depending on a part and generates unsaturated moist air 3 sequentially from a gas (liquid) having a low saturated vapor pressure is an upper surface (upper camber) 16 and a lower surface (lower camber). Rotating the motor 24 of the screw-type rotary compressor 23 by placing two aircraft upside down wings 18 having 17 shapes on the hydrated sample container 4 vertically on the upper surface (upper camber) 16 of the shaped object facing each other After the natural air 26 is compressed into compressed air 27 by the fan 25 linked to the shaft, the decompressed state is maintained in the passing portion that flows in contact with the sample of the hydrated sample container, and the pressure drop region 3 is generated, and the unsaturated humid air Generate 3 The saturated humid air 11 produced by adiabatic compression 28 of the unsaturated humid air 3 by the screw type rotary compressor 23 is compressed and liquefied in a condensing surface 29 atmosphere further treated with hydrophilic treatment and recovered as fresh water 15 and separated from fresh water. The air thus discharged is discharged into the atmosphere as dry air 31 by an exhaust fan 30 that is linked to the rotating shaft of the motor 24 of the screw type rotary compressor 23. Here, the reason why the screw-type rotary compressor is employed is that the exhaust temperature of the air can be suppressed to 60 ° C. or outside.
FIG. 4-2 (C) is an apparatus structural principle diagram for producing fresh water by causing adiabatic expansion and adiabatic compression in the first piston type reciprocating compressor (an explanatory diagram of claims 4, 5, 9, and 13).
A storage chamber 33 is provided in the compressor cylinder 32 for sealing the air and the hydrated material in the hydrated sample container 4, and the storage chamber 33 has a hydrated sample inlet, a dehydrated material disposal port, Equipped with an air inlet / exhaust port and fresh water recovery port. As the first function 7, air is introduced into the storage chamber 33 containing the hydrated sample and temporarily closed by the air hole valve 34 and sealed. In order to change to the second function 9 in the air state, the connecting rod 35 is pulled and adiabatic compression is started. By this suction, the opening / closing valve 36 is opened, the storage chamber 33 and the cylinder 32 are communicated, the volume of the cylinder is expanded by the piston 48 of the cylinder 32, and the inside is decompressed (adiabatic expansion) 9 to generate unsaturated humid air. (Second function 9). At this time, the connecting rod 35 is turned to the adiabatic compression 12. This compression increases the air pressure in the cylinder, and the on-off valve 36 is pushed and closed. As a result, the adiabatic compression 12 becomes stronger, the unsaturated humid air is converted to saturated humid air (third function 12), and condensation is induced on the condensation surface 29 that has been further compressed and subjected to hydrophilic treatment to liquefy. Fresh water 15 is collected from a release valve 37 that is used both as fresh water and exhaust air, and at the same time, air is exhausted from the release valve 37 (fourth function 14). Here, when the release valve 37 plays a role of adiabatic compression 12 and exceeds the set value of the optimum pressure for liquefaction, the release valve 37 is opened, fresh water and exhaust air are discharged, fresh water is accumulated in the drain vessel 15, and the discharged air is released to the atmosphere.
FIG. 4-2 (D) is a diagram showing the principle of the structure of an apparatus for producing fresh water by causing adiabatic expansion and adiabatic compression in a vane compressor in which a free vane rotates eccentrically in a cylinder (claims 4, 5, 9). 16 explanatory drawing).
In the present invention, three vanes 39 attached to the rotor 38 at an interval of 120 degrees rotating in contact with the inner wall of the cylinder 32 and the inner wall of the cylinder 32 and the rotor 38 are installed in contact with each other. The valve 40 made of elastic material in the form of a cylinder or ridge with a hydrophilic surface is the air storage chamber 33 (first function 7), the unsaturated humid air generation chamber 41 (second function 9), saturation The humid air conversion chamber 42 (third function 12) is present, and the saturated humid air is further compressed to induce condensation, thereby blocking the fresh water outlet and the air hole of the valve 40 (fourth function 14). It has a function.

図5は含水物試料容器の試料上面に航空機の翼体形状の上面(アッパーキャンバー)同士を対向させた位置に垂直に配備して気圧を下げ飽和湿り空気を発生させ結露・液化を誘起させるための装置の構造原理図である(請求項8の説明図)。
含水物試料容器4内を含水物試料5で満たし、若しくは含水物試料容器4内に静置させた液体状又は固体状の含水物から該風洞(風道)構造体1内部の中央部位に設けた狭窄部位により気圧降下域を生成させ、飽和蒸気圧が低い気体(液体)から順次不飽和湿り空気を発生させる第2機能9を有する手段が、上面(アッパーキャンバー)16と下面(ローワーキャンパー)17形状を有する2つの航空機翼体の上下逆向き翼18の上面(アッパーキャンバー)16同士を対向させた位置に垂直に含水物試料容器4上に配備させ、通過する自然風及び/又は圧縮空気6が含水物試料用容器4の含水物試料5と接して流れる通過部位に減圧状態を保持し、気圧降下域を生成させ、不飽和湿り空気43を発生させる。
2つの航空機の上下逆向き翼18の上面(アッパーキャンバー)16同士を対向させた位置に垂直に立たせることにより、対向した面の気圧は2倍低く成り、下面にある含水物から蒸発して発生した不飽和湿り空気43は、2つの航空機翼体の上面(アッパーキャンバー)16間の間隙で発生した不飽和湿り空気43が大気圧まで昇圧され飽和湿り空気44に転換する第3機能12が、気圧降下域を通過した不飽和湿り空気43の出口方向に拡開する末広がりホーン形状構造体21内部を通過し、大気圧まで昇圧される手段と断熱膨張による冷却効果及び2つの航空機翼体の下面(ロワーキャンバー)17を通過した気流と不飽和湿り空気43との混合による雰囲気気圧の上昇の競合作用により飽和湿り空気44への転換を促進し、かつ風洞(風道)構造体1内部の末端部である風下には、飽和湿り空気44の衝突角度を自在に調整可能とする親水性に処理された複数枚の結露板22を配備し、該結露面の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を真水ドレン容器15に自重落下させ真水を回収する。
FIG. 5 shows the arrangement of the aircraft wing-shaped upper surface (upper camber) facing the sample upper surface of the hydrated sample container perpendicularly to lower the atmospheric pressure and generate saturated humid air to induce condensation and liquefaction. FIG. 9 is a structural principle diagram of the apparatus of (No. 8).
Provided in the central part inside the wind tunnel (windway) structure 1 from the liquid or solid hydrate containing the hydrated sample container 4 filled with the hydrated sample 5 or standing in the hydrated sample container 4. The means with the second function 9 that generates an atmospheric pressure drop region by the constricted part and generates unsaturated moist air sequentially from the gas (liquid) with a low saturated vapor pressure is the upper surface (upper camber) 16 and the lower surface (lower camper) Natural wind and / or compressed air that passes through the upper surface (upper camber) 16 of the upside down wings 18 of two aircraft wing bodies having 17 shapes vertically on the hydrated sample container 4 at a position facing each other. A reduced pressure state is maintained in the passage portion 6 flows in contact with the hydrated sample 5 of the hydrated sample container 4 to generate a pressure drop region, and the unsaturated humid air 43 is generated.
By vertically standing the upper surface (upper camber) 16 of the two upside down wings 18 of the two aircrafts, the air pressure on the opposed surfaces is reduced by a factor of two, evaporating from the water content on the lower surface. The generated unsaturated moist air 43 has a third function 12 in which the unsaturated moist air 43 generated in the gap between the upper surfaces (upper cambers) 16 of the two aircraft wings is pressurized to atmospheric pressure and converted to saturated moist air 44. , A means for increasing the pressure to atmospheric pressure, the cooling effect by adiabatic expansion, and the two aircraft wings. Conversion to saturated moist air 44 is promoted by the competitive action of the increase in atmospheric pressure by mixing the airflow passing through the lower surface (lower camber) 17 and the unsaturated moist air 43, and the inside of the wind tunnel structure 1 On the leeward end In addition, a plurality of dew condensation plates 22 that have been treated to be hydrophilic so that the collision angle of saturated humid air 44 can be freely adjusted are provided, and dew condensation occurs on the dew condensation surface in a direction directly below according to the collision angle of the dew condensation surface. The condensed water is dropped by its own weight into the fresh water drain container 15 to collect fresh water.

図6は洋上に係留した双胴船に航空機の逆向き翼体を海面と平行に設置して、自然風のみにより海水から真水を回収する方法発生させ結露・液化を誘起させるための方法の構造原理図である(請求項11の説明図)。
自然風(海風)26を送風させる矩形型風洞構造体の左右両面は双胴船45の両舷を壁に見立て、下面は原料である海水(含水物試料)5を試料容器と見立て、かつ、上面を航空機翼体形状物(上下逆向き翼)18の上面(アツパーキャンバー)16と見立てる。更に、双胴船45の両舷には翼体の重心部となる固定軸20を介して翼体形状物(上下逆向き翼)18を取り付け、海水から真水を得る際に、低圧部位を形成する第2機能9が航空機翼体形状の上面(アッパーキャンバー)16と下面(ローワーキャンパー)17形状を反転させた形状物を翼体の重心部となる固定軸20を介して可動可能な構造とし、海面上に間隙部を設けて該筒型風洞構造体内部に設置させ、海面(海水)5と翼体上面(アッパーキャンバー)16の間隙部を通過する自然風(海風)26を受風することにより翼体上面(アッパーキャンバー)16と海面間との間隙部に気圧降下域を生成させる。この航空機翼体を反転した構造は、ロワーキャンバー17を通過する空気の速度が遅く成り、海面側に比べて気圧が高くなる。しかも翼の面積が大きいため翼を海面側に押し付ける力が増大し、船は沈む。これを防止するために双胴船45の浮力体45を大きくして、海水面と翼面の距離を維持するために浮力体の内部に海水を挿入してバランスを取る構造である。そこで、この海面と翼体の間隙に強風が通過すると気圧が下がり不飽和湿り空気43が真水製造室46の出口方向に拡開する末広がりホーン形状構造体21内部を通過させた後、該風洞(風道)構造体内部の末端部である風下には、飽和湿り空気42の衝突角度を自在に調整可能とする親水性に処理された複数枚の結露板22を配備し、結露板22の衝突角度に応じた垂直真下方向に該結露板22に結露した結露水を回収容器に自重落下させて真水をドレン容器15に回収する第4機能14を有する手段を有している。
Fig. 6 shows the structure of a method for inducing condensation and liquefaction by installing a reverse wing body of an aircraft parallel to the sea surface on a catamaran moored offshore and collecting fresh water from seawater using only natural wind. It is a principle figure (explanatory drawing of claim 11).
Both sides of the rectangular wind tunnel structure that blows natural wind (sea breeze) 26 are regarded as both sides of catamaran 45 as walls, and the bottom is regarded as raw material seawater (hydrated sample) 5 as a sample container, and The upper surface is regarded as the upper surface (upper camber) 16 of the aircraft wing body shaped object (upside down wing) 18. In addition, a wing body shaped object (upside down wing) 18 is attached to both sides of the catamaran 45 via a fixed shaft 20 that is the center of gravity of the wing body, forming a low pressure region when obtaining fresh water from seawater. The second function 9 is a structure in which the top surface (upper camber) 16 and the bottom surface (lower camper) 17 of the aircraft wing body shape are inverted and movable through the fixed shaft 20 that is the center of gravity of the wing body. The natural wind (sea breeze) 26 passing through the gap between the sea surface (seawater) 5 and the wing body upper surface (upper camber) 16 is received by providing a gap on the sea surface and installed inside the cylindrical wind tunnel structure. As a result, a pressure drop region is generated in the gap between the upper surface of the wing body (upper camber) 16 and the sea surface. In the structure obtained by inverting the aircraft wing body, the speed of the air passing through the lower camber 17 becomes slow, and the atmospheric pressure becomes higher than that on the sea surface side. Moreover, since the area of the wing is large, the force that pushes the wing toward the sea surface increases, and the ship sinks. In order to prevent this, the buoyancy body 45 of the catamaran 45 is enlarged, and in order to maintain the distance between the sea surface and the wing surface, sea water is inserted into the buoyancy body to achieve a balance. Therefore, after a strong wind passes through the gap between the sea surface and the wing body, the atmospheric pressure decreases and the unsaturated humid air 43 spreads in the direction toward the outlet of the fresh water production chamber 46 and then passes through the inside of the horn-shaped structure 21 that is widened. On the lee, which is the terminal part inside the structure, a plurality of dew condensation plates 22 that have been treated with hydrophilicity so that the collision angle of saturated humid air 42 can be freely adjusted are arranged, and the dew plate 22 collides. Means having a fourth function 14 for collecting the dew condensation water condensed on the dew condensation plate 22 in the vertical direction corresponding to the angle by dropping into the collection container by its own weight is provided.

図7は洋上に係留した双胴船に航空機の翼体のアッパーキャンバー同士を対向させた位置で海面に垂直に配備して、自然風のみにより海水から真水を回収する方法発生させ結露・液化を誘起させるための方法の構造原理図である(請求項12の説明図)。
自然風(海風)26を送風させる矩形型風洞構造体の上面と見立てる天板47で2枚の翼体の重心部となる固定軸20を固定し、左右両面をアッパーキャンバー16同士が対向した2翼の航空機翼体形状物(上下逆向き翼)18を両壁と見立て、上面に2つの翼体の重心を固定する働きを兼ね備えた天板47を備え、下面は原料である海水面の試料容器と見立てる。そこで、海水から真水を得る際に、前記低圧部位を形成する第2機能9が、曲面形状を有する該2翼の航空機翼体形状物上面(アッパーキャンバー)16同士の間隙に受風される自然風(海風)26により気圧降下域を生成させ、不飽和湿り空気43を発生させ、そこで、この海面と翼体の間隙に強風が通過すると気圧が下がり不飽和湿り空気43が真水製造室46の出口方向に拡開する末広がりホーン形状構造体21内部を通過させた後、該風洞(風道)構造体内部の末端部である風下には、飽和湿り空気42の衝突角度を自在に調整可能とする親水性に処理された複数枚の結露板22を配備し、結露板の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を回収容器に自重落下させて真水をドレン容器15に回収する第4機能14を有する手段を有している。
Fig. 7 shows a method of collecting fresh water from seawater using only natural winds by deploying vertically on the sea surface in a position where the upper cambers of the aircraft wings face each other on a catamaran moored offshore. It is a structural principle figure of the method for inducing (Explanatory drawing of Claim 12).
The fixed shaft 20 that is the center of gravity of the two wing bodies is fixed by a top plate 47 that is regarded as the upper surface of a rectangular wind tunnel structure that blows natural wind (sea breeze) 26, and the upper cambers 16 face each other on both sides A wing aircraft wing shaped object (upside down wing) 18 is regarded as both walls, and a top plate 47 having the function of fixing the center of gravity of the two wing bodies is provided on the upper surface, and the lower surface is a sample of the seawater surface that is the raw material Think of it as a container. Therefore, when obtaining fresh water from seawater, the second function 9 that forms the low-pressure portion is naturally received by the gap between the upper surfaces (upper camber) 16 of the two-wing aircraft wing body having a curved shape. Wind (sea breeze) 26 generates a pressure drop region and generates unsaturated damp air 43, where when strong wind passes through the gap between the sea surface and the wing body, the air pressure decreases and the unsaturated damp air 43 becomes fresh water production chamber 46 After passing through the end-spreading horn-shaped structure 21 that expands in the outlet direction, the collision angle of the saturated humid air 42 can be freely adjusted to the leeward, which is the end part inside the wind tunnel (windway) structure. A plurality of dew condensation plates 22 treated to be hydrophilic are arranged, and dew condensation condensed on the dew condensing surface in the vertical downward direction according to the collision angle of the dew condensation plate is dropped by its own weight into the recovery container, and the fresh water is drained by the container 15 Means having a fourth function 14 for recovery.

図8はピストン式レシプロ圧縮機を用いた真水製造装置の構造原理図である(請求項14の説明図)。
ピストン式レシプロ圧縮機のシリンダー32内部に空気と含水物試料5とを密閉するための格納室33を設け、該格納室33には含水物試料5の投入口と被脱水物の廃棄口及び空気の入気口とを備え、ピストン式レシプロ圧縮機のコンロッド35を引くとピストン48の吸入行程で空気孔弁34が閉じ、同時に該格納室33とシリンダー32を結ぶ開閉弁36が開き、これに連動してシリンダー内の容積が拡張すると断熱膨張による減圧によりシリンダー内は不飽和湿り空気が充満(第2機能9)する。ここでピストン48の運動方向をコンロッド35で逆にするとシリンダー内は圧縮状態に転じ、同時に、ピストンの圧縮行程で該格納室33とシリンダー32を結ぶ開閉弁36が閉じ、不飽和湿り空気は圧縮されて飽和湿り空気に転換され(第3機能12)、更に飽和湿り空気を圧縮すると親水性結露面で結露が誘起され、圧縮された空気はリリーフ弁37から結露水と共に排出され、圧縮空気は大気開放され、結露水は真水としてドレン容器15で回収される。
FIG. 8 is a structural principle diagram of a fresh water producing apparatus using a piston type reciprocating compressor (an explanatory diagram of claim 14).
A storage chamber 33 is provided inside the cylinder 32 of the piston-type reciprocating compressor to seal the air and the hydrated material sample 5. The storage chamber 33 has an inlet for the hydrated material 5 and a waste outlet for the dehydrated material and air. When the connecting rod 35 of the piston type reciprocating compressor is pulled, the air hole valve 34 is closed by the intake stroke of the piston 48, and at the same time, the opening / closing valve 36 connecting the storage chamber 33 and the cylinder 32 is opened. When the volume in the cylinder expands in conjunction, the cylinder is filled with unsaturated humid air (second function 9) due to the adiabatic decompression. Here, when the direction of movement of the piston 48 is reversed by the connecting rod 35, the inside of the cylinder is compressed, and at the same time, the opening / closing valve 36 connecting the storage chamber 33 and the cylinder 32 is closed during the compression stroke of the piston, and the unsaturated humid air is compressed. When the saturated humid air is further compressed, condensation is induced on the hydrophilic condensation surface, and the compressed air is discharged from the relief valve 37 together with the condensed water. The air is released to the atmosphere, and the condensed water is collected in the drain container 15 as fresh water.

図9はベーン式圧縮機のシリンダーの中心軸とベーンを固定するローターの回転軸とが同一軸構造である真水回収装置である(請求項15の説明図)。(A)は 蝶番型ベーンの構造図。(B)は空気封入前の状態図。 (C)は空気封入時の第1機能状態図。 (D)は断熱膨張時の第2機能状態図。 (E)は断熱圧縮時の第3機能能状態図。 (F)は結露・液化時の第4機能状態図。(請求項15の説明図)。
図9(A)はシリンダー32の中心軸と3枚の蝶板ベーン50 の a,b,c を取り付けたローターの回転軸38が同一軸であり、シリンダー32の内壁を這うようにして3枚の蝶板ベーン50がa→b→cの順序で回転し、隣り合い、かつ向き合っている2枚のベーンが夫々時間差により作動するシーケンス回路を持たせ、互いに隣り合った先行するベーンと後行するベーンとの容積変化により、空気の挿入(第1機能)→断熱膨張(第2機能)→断熱圧縮(第3機能)→結露・液化(第4機能)と一連の仕事を行い、シリンダーを一周して完了する。これを繰り返し行うことにより連続して真水の製造を行う。本願発明の特徴は3枚のベーン50の回転軸を同一とし、各ベーンの回転駆動力は、中央のベーンが軸から、他の2枚のベーンは夫々左右の側面から得る構造になっている。ここで説明のために便宜上ベーンにa,b,cとする。
図9(B)シリンダー32に沿って先ずベーン(a)がシリンダー32 底部の含水物試料5の手前を僅かに越した位置で止まる。
図9(C)空気孔弁34が開きベーン(a)とベーン(b)が作る空気格納して33の空気を満たす(第1機能7)。ここでベーン(b)は空気を遮断している。
図9(D)ベーン(a)は断熱膨張を行いながら回転しリリース弁37を通過した時点で止まる(第2機能9)。
図9(E)ベーン(b)がシリンダー32 底部の含水物試料5の手前を僅かに越した位置を通過して断熱圧縮を行いながらベーン(a)を追いかける(第3機能12)。
図9(F)更にベーン(b)はベーン(a)を圧縮し、ベーン(a)の回転方向と反対側の面には親水性処理された結露面(板)29 であるために結露・液化が起こる。ここでリリース弁37が設定空気圧以上に成ると、結露水と空気排気するため、真水派ドレイン15 に回収し、空気は大気開放する。
FIG. 9 shows a fresh water recovery apparatus in which the central axis of the cylinder of the vane compressor and the rotating shaft of the rotor for fixing the vane have the same shaft structure. (A) is a structural diagram of a hinge type vane. (B) is a state diagram before air filling. (C) is a first functional state diagram at the time of air filling. (D) is a second functional state diagram during adiabatic expansion. (E) is a 3rd functional capability state figure at the time of adiabatic compression. (F) is the fourth functional state diagram during condensation and liquefaction. (Explanatory diagram of claim 15).
In FIG. 9A, the central axis of the cylinder 32 and the rotating shaft 38 of the rotor to which the a, b, and c of the three butterfly vanes 50 are attached are the same axis, and the three are arranged so as to crawl the inner wall of the cylinder 32. The butterfly vane 50 rotates in the order of a → b → c, and the adjacent and facing two vanes have a sequence circuit that operates according to the time difference, and the preceding vane and the succeeding vane adjacent to each other. Depending on the volume change with the vane, the air is inserted (first function) → adiabatic expansion (second function) → adiabatic compression (third function) → dew condensation / liquefaction (fourth function). Complete one round. By repeating this, fresh water is continuously produced. The feature of the present invention is that the rotational axes of the three vanes 50 are the same, and the rotational driving force of each vane is obtained from the central vane from the shaft and the other two vanes from the left and right side surfaces, respectively. . For convenience of explanation, vanes are denoted as a, b, and c for convenience.
9B, the vane (a) first stops at a position slightly beyond the front of the water-containing sample 5 at the bottom of the cylinder 32 along the cylinder 32. FIG.
In FIG. 9C, the air hole valve 34 is opened and the air produced by the vanes (a) and (b) is stored to fill 33 air (first function 7). Here, the vane (b) blocks air.
The vane (a) in FIG. 9D rotates while performing adiabatic expansion and stops when it passes through the release valve 37 (second function 9).
FIG. 9 (E) The vane (b) passes the position slightly over the water sample 5 at the bottom of the cylinder 32 and follows the vane (a) while performing adiabatic compression (third function 12).
Fig. 9 (F) Furthermore, the vane (b) compresses the vane (a), and the surface opposite to the rotation direction of the vane (a) is a dew condensation surface (plate) 29 that has been subjected to hydrophilic treatment. Liquefaction occurs. Here, when the release valve 37 becomes equal to or higher than the set air pressure, the condensed water and air are exhausted.

図10は、路地に植え植物や切り取られた植物を袋で被い、袋内をピストン式レシプロ圧縮機で減圧して真水を回収する装置の構造原理図である(請求項17の説明図)。
ビニルやポリエチレンなどの袋51で植物(雑草、牧草、葉)52を空気と一緒に被い、これをホース53で不飽和湿り空気入気弁56を介してピストン式レシプロ圧縮機54に接続し、ピストン48がシリンダー32内をコンロッド35で往復運動させることにより植物51から真水15を回収する。本発明で使用するピストン式レシプロ圧縮機54の特徴は、両端が閉じられたシリンダー32内でピストン32の往復運動を行い、ピストン32で2分割されたシリンダーの2つの室の内一方が断熱膨張の時は他方は断熱圧縮であり、2つの室は独立的に交互に断熱膨張及び断熱圧縮を繰り返し、断熱膨張時は、減圧行程により不飽和湿り空気が生成され、断熱圧縮時には、圧縮行程で断熱圧縮域から飽和湿り空気がシリンダー内の上死点部位及び下死点部位に嵌合させた飽和湿り空気の受圧面(シリンダーの両端面)が親水性部材からなる結露面29に結露した結露水を、リリース弁(結露弁)37からドレン容器15で真水として回収する。液化を促進する目的でリリース弁37の前段のパイプを冷却水57で冷却することもできる。
FIG. 10 is a structural principle diagram of an apparatus for covering a planted plant or cut plant in an alley with a bag, and decompressing the inside of the bag with a piston-type reciprocating compressor to recover fresh water (Explanatory diagram of claim 17). .
A plant 51 (weed, grass, leaves) 52 is covered with air in a bag 51 such as vinyl or polyethylene, and this is connected to a piston-type reciprocating compressor 54 via an unsaturated humid air inlet valve 56 with a hose 53. The fresh water 15 is recovered from the plant 51 by the piston 48 reciprocatingly moving in the cylinder 32 with the connecting rod 35. The feature of the piston-type reciprocating compressor 54 used in the present invention is that the piston 32 reciprocates in the cylinder 32 closed at both ends, and one of the two chambers of the cylinder divided by the piston 32 is adiabatically expanded. In this case, the other is adiabatic compression, and the two chambers alternately repeat adiabatic expansion and adiabatic compression alternately. During adiabatic expansion, unsaturated humid air is generated by the decompression process, and during the adiabatic compression, Condensation in which saturated wet air from the adiabatic compression area is fitted to the top dead center and bottom dead center in the cylinder, and the pressure receiving surface (both ends of the cylinder) of the saturated wet air is condensed on the condensation surface 29 made of a hydrophilic material. Water is collected from the release valve (condensation valve) 37 as fresh water in the drain container 15. For the purpose of promoting liquefaction, the pipe at the front stage of the release valve 37 can be cooled with the cooling water 57.

図11は真水の回収に係る第4機能に、冷却水が流れフィン付ラジエーターを複数本配置する概念図である。一般に、結露量は低温の方が多い。そこで、空気の流れる方向と平行な向きに冷却水57が流れフィン付ラジエーター58 を設備し、フィンは金属製結露板13で、その金属板製フィン59 は親水性処理が施され、複数枚等間隔配置する。この方法は結露雰囲気温度が低くなり、結露板の間を空気が流れるため、空気の流れが阻害されず、しかも大気開放される空気は乾燥空気となるので効果的である。
FIG. 11 is a conceptual diagram in which cooling water flows and a plurality of finned radiators are arranged in the fourth function related to the collection of fresh water. In general, the amount of condensation is higher at lower temperatures. Therefore, cooling water 57 flows in a direction parallel to the air flow direction, and a finned radiator 58 is installed.The fin is a metal dew condensation plate 13, and the metal plate fin 59 is subjected to hydrophilic treatment, and a plurality of sheets are provided. Spaced. This method is effective because the temperature of the dew condensation atmosphere is lowered and air flows between the dew condensation plates, so that the air flow is not obstructed and the air released to the atmosphere is dry air.

海水は96%が水であり、4%が塩類である。水は飲料水として、塩類の中で最も多いのがナトリウムである。本発明は海水又は含水物質から熱エネルギーを一切使わず、空気圧を下げるのみで真水を取り出すことができる。高速風の流れが作る低圧域、又は圧縮機が断熱膨張したときに生じる低圧域を利用して含水物試料から不飽和湿り空気を発生させた後、昇圧により飽和湿り空気に変換して親水性面に結露・液化させる気圧差を利用した本願発明は、海水を淡水化し、脱水された濃縮物はエネルギー資源にする。この海水の淡水化と濃縮は、海水に止まらず、塩湖水、温泉水、鉱泉水、酸、塩基、塩、果汁、牛乳、有機物(砂糖水)、無機物、アルコール、色素、生体物質(アミノ酸、脂肪、タンパク質、糖類、炭水化物)、健康飲料水、酒類及びビタミン類や薬品、果実、野菜、肉、魚貝類など多くの含水物から蒸留水の形で飲料水を回収し、濃縮物は資源の再利用につながるため、産業のみならず、食料不足や水不足解決の手段として利用が広がるものと考える。本発明は、世界的資源の枯渇と資源高騰あるいはこれに伴う資源供給国の新規台頭や国際社会に影響力を拡大させている現況を沈静化させることは勿論のこと、無尽蔵にある海洋資源及びクリーンで再生可能な自然エネルギーを使って、化石燃料の代替エネルギー源を確保することは、四面を海に囲まれた我が国の産業にとっても地球環境上、更には経済的にも重要な手段になり得ると考える。更に災害時の非常用ポーターブル簡易海水淡水化装置としても役立たせることができる。
Seawater is 96% water and 4% salt. As drinking water, sodium is the most common salt. The present invention can extract fresh water from seawater or water-containing substances without using any heat energy and simply lowering the air pressure. Unsaturated humid air is generated from the water-containing sample using the low pressure region created by the flow of high-speed wind or the low pressure region generated when the compressor adiabatically expands, and then converted to saturated humid air by pressurization to make it hydrophilic. The invention of the present application using the pressure difference that causes condensation or liquefaction on the surface desalinates seawater, and uses the dehydrated concentrate as an energy resource. This desalination and concentration of seawater is not limited to seawater, but saltwater, hot spring water, mineral spring water, acid, base, salt, fruit juice, milk, organic matter (sugar water), inorganic matter, alcohol, pigments, biological substances (amino acids, Fats, proteins, sugars, carbohydrates), healthy drinking water, alcoholic beverages and vitamins, medicines, fruits, vegetables, meat, shellfish, etc. Because it leads to reuse, it will be used not only in industries but also as a means of solving food shortages and water shortages. The present invention not only calms the current situation of global resources depletion and resource soaring, or the emergence of new resource supply countries and the increasing influence on the international community, but also inexhaustible marine resources and Securing alternative energy sources for fossil fuels using clean and renewable natural energy is an important tool for the Japanese environment, which is surrounded on all sides by the sea, as well as in the global environment and economically. Think to get. Furthermore, it can be used as an emergency portable simple seawater desalination device in the event of a disaster.

1 風洞
2 開口部(風上)
3 気圧降下域(狭窄部位/括れ構造)
4 含水物試料容器
5 含水物試料
6 自然風及び/又は圧縮空気
7 第1機能
8 不飽和湿り空気
9 第2機能
10 大気開放
11 飽和湿り空気
12 第3機能
13 結露板(面)
14 第4機能
15 真水(ドレン容器)
16 航空機翼体形状の上面(アッパーキャンバー)
17 航空機翼体形状の下面(ロワーキャンパー)
18 上下逆向き翼
19 仰角
20 翼体の重心部となる固定軸
21 末広がりホーン形状構造物
22 結露板
23 スクリュー型ロータリーコンプレッサー
24 モーター
25 ファン
26 自然風
27 圧縮空気
28 断熱圧縮
29 結露面
30 排気ファン
31 乾燥空気
32 シリンダー
33 格納室
34 空気孔弁
35 コンロッド
36 開閉弁(格納室とシリンダーを連通)
37 リリース弁
38 ローター
39 ベーン
40 弁(結露面兼空気孔遮蔽/親水性)
41 不飽和湿り空気発生室
42 飽和湿り空気転換室
43 不飽和湿り空気
44 飽和湿り空気
45 双胴船
46 真水製造室
47 天板(風洞上面壁)
48 ピストン
49 ベーン型圧縮機
50 蝶番型ベーン
51 袋(ビニール、ポリ等)
52 植物(雑草、牧草、葉)
53 ホース
54 ピストン式レシプロ圧縮機
55 地面
56 不飽和湿り空気入気弁
57 冷却水
58 冷却水が流れフィン付ラジエーター
59 金属製フィン


















1 Wind tunnel 2 Opening (windward)
3 Atmospheric pressure drop (stenosis / constricted structure)
4 Water-containing sample container 5 Water-containing sample 6 Natural wind and / or compressed air 7 First function 8 Unsaturated humid air 9 Second function 10 Open air 11 Saturated humid air 12 Third function 13 Condensation plate (surface)
14 Fourth function 15 Fresh water (drain container)
16 Aircraft wing shape upper surface (upper camber)
17 Lower surface of aircraft wing shape (lower camper)
18 Vertically inverted blades 19 Elevation angle 20 Fixed shaft 21 that is the center of gravity of the wing body End-spreading horn-shaped structure 22 Condensation plate 23 Screw-type rotary compressor 24 Motor 25 Fan 26 Natural air 27 Compressed air 28 Adiabatic compression 29 Condensation surface 30 Exhaust fan 31 Dry air 32 Cylinder 33 Storage chamber 34 Air hole valve 35 Connecting rod 36 Open / close valve (Communication between storage chamber and cylinder)
37 Release valve 38 Rotor 39 Vane 40 Valve (condensation surface and air hole shielding / hydrophilicity)
41 Unsaturated humid air generation chamber 42 Saturated humid air conversion chamber 43 Unsaturated humid air 44 Saturated humid air 45 Catamaran 46 Fresh water production chamber 47 Top plate (top wall of wind tunnel)
48 piston 49 vane compressor
50 Hinge type vane 51 Bag (vinyl, poly, etc.)
52 plants (weeds, pastures, leaves)
53 Hose 54 Piston-type reciprocating compressor 55 Ground 56 Unsaturated humid air inlet valve 57 Cooling water 58 Cooling water flows and radiator 59 with fins Metal fin


















Claims (17)

自然風及び/又は圧縮空気を送風させる風洞(風道)構造体の床部に試料容器と一体化した構造体若しくは設置自在とした含水物試料容器に該含水物である液体状試料を満たし、又は固体状試料を静置させ、該含水物から脱水、真水を回収するに際し、該風洞(風道)構造体内に自然風及び/又は圧縮空気を入れる第1機能を有する手段と、水の飽和蒸気圧より高い含水物試料又は飽和蒸気圧が水と等しいか又は水より飽和蒸気圧が低い気体(液体)を減圧状態に保持し、順次不飽和湿り空気を発生させる第2機能を有する手段と、該不飽和湿り空気を大気圧まで若しくは大気圧以上に断熱圧縮により昇圧して飽和湿り空気に転換する第3機能を有する手段と、該飽和湿り空気を更に圧縮及び/又は親水性結露板で液化を誘起させて真水分を回収する第4機能を有する手段とを順次起動することにより、液体状又は固体状の含水物試料から脱水及び真水を回収することを特徴とする気圧差を利用した脱水方法及び真水の回収方法。 Fill the liquid sample, which is the hydrated material, into the structure or the hydrated sample container that can be installed on the floor of the wind tunnel (wind channel) structure that blows natural wind and / or compressed air. Alternatively, when a solid sample is allowed to stand, and when dehydrated and fresh water is recovered from the water-containing material, means having a first function of putting natural wind and / or compressed air into the wind tunnel (wind channel) structure and water saturation Means having a second function of maintaining a moisture-containing sample higher than the vapor pressure or a gas (liquid) having a saturated vapor pressure equal to or lower than that of water in a reduced pressure state and successively generating unsaturated humid air; A means having a third function of increasing the pressure of the unsaturated humid air to atmospheric pressure or higher by adiabatic compression to atmospheric pressure and converting it into saturated humid air; and further compressing and / or hydrophilic dew plate with the saturated humid air Invoke liquefaction to recover true moisture Fourth by sequentially activated and means having a function, a liquid or solid dehydration process and fresh water collection methods utilizing air pressure difference and recovering the dewatered and fresh water from the hydrate sample. 前記風洞(風道)構造体内部の含水物試料容器雰囲気の空気を減圧させる第2機能と連動させ、自然風及び/又は圧縮空気を送風させる第1機能が、空気の流れのある雰囲気では、自然風又は圧縮空気を風洞(風道)構造体の入口部分に集風させる機能を有し、空気の流れのない雰囲気では、空気溜めである含水物試料容器格納室を予め空気で密閉し、該密閉空気を圧縮機で断熱膨張させることにより空気を前記風洞(風道)構造体内部に挿入させることを特徴とする請求項1記載の液体状又は固体状の含水物試料から気圧差を利用した脱水方法。 In conjunction with the second function of depressurizing the air of the hydrated sample container atmosphere inside the wind tunnel (wind channel) structure, the first function of blowing natural wind and / or compressed air is in an atmosphere with air flow, It has the function of collecting natural wind or compressed air at the entrance of the wind tunnel (wind channel) structure, and in an atmosphere where there is no air flow, the hydrated sample container storage chamber that is an air reservoir is sealed in advance with air, 2. The pressure difference is utilized from a liquid or solid hydrated sample according to claim 1, wherein the air is inserted into the wind tunnel structure by adiabatic expansion of the sealed air with a compressor. Dehydration method. 前記風洞(風道)構造体内部の含水物試料容器の試料と接して流れる自然風及び/又は圧縮空気通過部位を減圧状態に保持し、気圧降下域を生成させて飽和蒸気圧が高い気体(液体)から順次不飽和湿り空気を発生させる第2機能を有する手段が、風洞(風道)構造体内部に括れ構造により狭窄部位を形成させ、該狭窄部位より風上側に含水物試料容器を設置させることを特徴とする請求項1記載の液体状又は固体状の含水物試料から気圧差を利用した脱水方法。 The natural wind and / or compressed air passage site flowing in contact with the sample of the hydrated sample container inside the wind tunnel (wind channel) structure is maintained in a reduced pressure state, and a gas having a high saturated vapor pressure is generated by generating a pressure drop region ( The means having the second function of generating unsaturated moist air sequentially from the liquid) forms a constricted part inside the wind tunnel (wind channel) structure by a constricted structure, and installs a hydrated sample container on the windward side from the constricted part 2. The dehydration method using a pressure difference from a liquid or solid water-containing sample according to claim 1, 前記風洞(風道)構造体内部の含水物試料容器の試料と接して流れる自然風及び/又は圧縮空気通過部位を減圧状態に保持し、気圧降下域を生成させて飽和蒸気圧が高い気体(液体)から順次不飽和湿り空気を発生させる第2機能を得る手段が、通路内に自然風及び/又は圧縮空気の流速を増速させる形状物を配して減圧させるか若しくは封じ込めた空気を断熱膨張させて減圧する手段であることを特徴とする請求項1記載の液体状又は固体状の含水物試料から気圧差を利用した脱水方法。 The natural wind and / or compressed air passage site flowing in contact with the sample of the hydrated sample container inside the wind tunnel (wind channel) structure is maintained in a reduced pressure state, and a gas having a high saturated vapor pressure is generated by generating a pressure drop region ( The means for obtaining the second function of successively generating unsaturated humid air from the liquid) arranges a shape that increases the flow rate of the natural wind and / or compressed air in the passage to reduce the pressure or to insulate the enclosed air 2. The dehydration method using a pressure difference from a liquid or solid water-containing sample according to claim 1, wherein the dehydration is performed by expanding and reducing the pressure. 風洞(風道)構造体内部で前記第2機能から得られた不飽和湿り空気を昇圧、断熱圧縮させ飽和湿り空気に転換する第3機能の手段が、風洞(風道)構造体の出口方向に拡開する末広がりホーン形状部位を通過させ温度を下げて大気圧まで昇圧するか若しくはピストン式レシプロ圧縮機、多段式ターボ圧縮機又はベーン式圧縮機と連動させることにより、大気圧以上に断熱圧縮し、圧縮されて生じた飽和湿り空気を更に圧縮、液化を誘起させる手段であることを特徴とする請求項1記載の液体状又は固体状の含水物試料から気圧差を利用した脱水方法。 The third function means for boosting, adiabatically compressing, and compressing the unsaturated humid air obtained from the second function inside the wind tunnel (wind channel) structure into saturated humid air is the exit direction of the wind tunnel (wind channel) structure. Adiabatic compression above atmospheric pressure by passing through a horn-shaped part that spreads to the outside and increasing the pressure to atmospheric pressure by lowering the temperature, or by interlocking with a piston-type reciprocating compressor, multistage turbo compressor, or vane-type compressor 2. The dehydration method using a pressure difference from a liquid or solid hydrated sample according to claim 1, characterized in that the saturated moist air generated by the compression is a means for further compressing and inducing liquefaction. 前記飽和湿り空気を更に圧縮、液化を誘起させて真水を回収する第4機能の手段が、該風洞(風道)構造体内部の末端部である風下に、飽和湿り空気の衝突角度を自在に調整可能とする複数枚の結露板の結露面が親水性に処理され、該結露板の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を回収容器に自重落下させて真水を回収する手段からなることを特徴とする請求項1記載の液体状又は固体状の含水物試料から気圧差を利用した脱水方法及び真水の回収方法。 The fourth function means for collecting the fresh water by further compressing the saturated humid air and inducing liquefaction allows the collision angle of the saturated humid air to be freely adjusted at the leeward end of the wind tunnel (wind channel) structure. The dew condensation surfaces of a plurality of dew condensation plates that can be adjusted are treated to be hydrophilic, and the dew condensation condensed on the dew condensation surfaces in the vertical downward direction according to the collision angle of the dew condensation plates is dropped by its own weight into the collection container to remove fresh water. 2. The dehydration method and fresh water recovery method using a pressure difference from a liquid or solid hydrated sample according to claim 1, characterized by comprising means for recovering. 自然風及び/又は圧縮空気を送風させる風洞(風道)構造体が筒型構造体であり、該風洞(風道)構造体内に自然風及び/又は圧縮空気を入れる第1機能を有する手段と、筒型構造体中央部位に設けた狭窄部位により気圧降下域である低圧部を形成、保持させる第2機能が、航空機翼体形状の上面(アッパーキャンバー)と下面(ローワーキャンパー)形状を反転させた形状物又は曲面構造体形状物を含水物試料容器の試料上面とで間隙を設けた位置に、仰角を翼体の重心部となる固定軸を介して可動可能な構造体として配備させる手段と、
蒸発した不飽和湿り空気を温度を下げ大気圧まで昇圧させて飽和湿り空気に転換させる前記第3機能の手段が、風洞(風道)構造体内部の気圧降下域を通過した不飽和湿り空気を出口方向に拡開する末広がりホーン形状内部を通過させ、大気圧まで昇圧される手段を有し、該風洞(風道)構造体内部の末端部である風下には、飽和湿り空気の衝突角度を自在に調整可能とする結露面が親水性に処理された複数枚の結露板を配備し、該結露板の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を回収容器に自重落下させて真水を回収する第4機能を有する手段からなることを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5及び請求項6記載の液体状又は固体状の含水物試料から脱水及び真水を回収することを特徴とする気圧差を利用した脱水装置及び脱水した真水の回収装置。
The wind tunnel (wind path) structure for blowing natural wind and / or compressed air is a cylindrical structure, and means having a first function of putting natural wind and / or compressed air into the wind tunnel (wind path) structure; The second function to form and hold the low pressure part, which is the pressure drop region, by the constriction part provided in the central part of the cylindrical structure, reverses the upper (upper camber) and lower (lower camper) shapes of the aircraft wing shape. Means for deploying a shaped object or a curved structure shaped object as a structure movable at a position where a gap is provided between the upper surface of the sample of the hydrated sample container and an elevation angle via a fixed shaft serving as the center of gravity of the wing body; ,
The third function means for converting the evaporated unsaturated humid air to a saturated humid air by lowering the temperature to atmospheric pressure and converting it into the saturated humid air is a method of removing the unsaturated humid air that has passed through the pressure drop region inside the wind tunnel structure. It has a means to pass the inside of the horn shape that spreads in the direction of the exit and pressurize to atmospheric pressure, and the leeward which is the end part inside the wind tunnel (wind channel) structure has a collision angle of saturated humid air. A plurality of dew condensation plates with hydrophilic dew condensation surfaces that can be freely adjusted are provided, and dew condensation condensed on the dew condensation surfaces in the vertical direction according to the collision angle of the dew condensation plates 7. The liquid or solid state according to claim 1, 2, 3, 4, 5, or 6, characterized by comprising means having a fourth function of collecting fresh water by dropping. Characterized by recovering dehydrated and fresh water from hydrated samples Using dehydrator and dehydrated fresh water recovery device.
前記含水物試料容器内を満たし、若しくは含水物試料容器内に静置させた液体状又は固体状の含水物試料から該風洞(風道)構造体内部の中央部位に設けた狭窄部位により気圧降下域を生成させ、飽和蒸気圧が低い気体(液体)から順次不飽和湿り空気を発生させる第2機能を有する手段が、上面(アッパーキャンバー)と下面(ローワーキャンパー)形状を有する2つの航空機翼体形状物の上面(アッパーキャンバー)同士を対向させた位置に垂直に含水物試料容器上に配備させ、該風洞(風道)構造体内部を通過する自然風及び/又は圧縮空気が含水物試料容器の試料と接して流れる通過部位に減圧状態を保持し、気圧降下域を生成させ、不飽和湿り空気を発生する手段と、
蒸発した水蒸気の凝縮雰囲気が2つの航空機翼体形状物の上面(アッパーキャンバー)間の間隙で発生した不飽和湿り空気が大気圧まで昇圧され飽和湿り空気に転換する前記第3機能が、気圧降下域を通過した不飽和湿り空気の出口方向に拡開する末広がりホーン形状内部を通過し、大気圧まで昇圧される手段を有し、該風洞(風道)構造体内部の末端部である風下には、飽和湿り空気の衝突角度を自在に調整可能とする結露面が親水性に処理された複数枚の結露板を配備し、該結露板の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を回収容器に自重落下させ、真水を回収する前記第4機能を有する手段からなることを特徴とする請求項7記載の液体状又は固体状の含水物試料から脱水及び真水を回収することを特徴とする気圧差を利用した脱水装置及び真水の回収装置。
Air pressure drop due to a constricted part provided in the central part inside the wind tunnel (airway) structure from a liquid or solid hydrated sample filled in the hydrated sample container or allowed to stand in the hydrated sample container Two aircraft wings that have a top surface (upper camber) and a bottom surface (lower camper) are the means that have the second function of generating a zone and generating unsaturated moist air in sequence from a gas (liquid) with a low saturated vapor pressure. A natural sample and / or compressed air passing through the inside of the wind tunnel (wind channel) structure is disposed on a hydrated sample container perpendicularly to a position where the upper surfaces (upper cambers) of the shaped object are opposed to each other. Means for maintaining a reduced pressure state at a passing portion that flows in contact with the sample of the sample, generating a pressure drop region, and generating unsaturated humid air;
The third function that the unsaturated moist air generated in the gap between the upper surfaces (upper cambers) of the two aircraft wings is pressurized to atmospheric pressure and converted to saturated moist air is the atmospheric pressure drop. Passing through the inside of the horn-shaped horn that expands in the direction of the outlet of the unsaturated moist air that has passed through the zone, it has a means to increase the pressure to atmospheric pressure, and it is on the lee that is the end part inside the wind tunnel (wind channel) structure Is provided with a plurality of dew condensation plates whose dew condensation surfaces are treated to be hydrophilic so that the collision angle of saturated humid air can be freely adjusted, and the dew condensation surfaces are vertically oriented according to the collision angle of the dew condensation plates. 8. The dehydrated and fresh water is recovered from the liquid or solid water-containing sample according to claim 7, comprising means having the fourth function of dropping condensed water by its own weight into a recovery container and recovering fresh water. Pressure difference, characterized by Use the dehydrator and fresh water recovery device.
前記第2機能である気圧降下域で発生した不飽和湿り空気を昇圧、断熱圧縮させて飽和湿り空気に転換させる第3機能の手段が、ピストン式レシプロ圧縮機、多段式ターボ圧縮機又はベーン式圧縮機を採用し、夫々の圧縮機の断熱膨張域により不飽和湿り空気を発生させ、かつ、断熱圧縮領域において飽和湿り空気に転換し、圧縮されて生じた飽和湿り空気を更に圧縮、液化を誘起させることを特徴とする請求項5記載の不飽和湿り空気を昇圧、断熱圧縮して飽和湿り空気に転換する装置。 The third function means for boosting and adiabatically compressing unsaturated humid air generated in the pressure drop region, which is the second function, and converting it into saturated humid air is a piston-type reciprocating compressor, a multistage turbo compressor, or a vane type. Compressors are used to generate unsaturated moist air in the adiabatic expansion area of each compressor, and in the adiabatic compression area, it is converted to saturated moist air, and the compressed moist air is further compressed and liquefied. 6. The apparatus according to claim 5, wherein the unsaturated humid air is pressurized and adiabatically compressed to convert to saturated humid air. 自然風及び/又は圧縮空気を送風させる風洞(風道)構造体の床部に含水物試料容器と一体化した構造体若しくは設置自在とした試料容器で用いられる試料が、水の飽和蒸気圧より低い液体状の含水物の場合は、ミネラルを含む天然水(海水、塩水、塩湖水、温泉水、鉱泉水)、化学薬品水溶液(酸水溶液、塩基水溶液、無機物水溶液、色素水溶液)、飲料用(果汁、牛乳、有機物(砂糖水) 健康飲料水、酒類)、生体物質水溶液(アミノ酸、脂肪、蛋白質、糖類、炭水化物)、ビタミン類、汚染水であり、
水の飽和蒸気圧より高い液体状の含水物の場合はアルコール水であり、更に、固体状含水物として、植物(木、草、野菜、果物)、肉類、魚介類であることを特徴とする気圧差を利用した請求項1、請求項2、請求項3、請求項4、請求項5、請求項6記載の脱水方法及び真水の回収方法及び請求項7、請求項8記載の脱水装置及び真水の回収装置で用いられる含水物試料。
Samples used in a structure that is integrated with a hydrated sample container or a sample container that can be installed on the floor of a wind tunnel structure that blows natural wind and / or compressed air, is based on the saturated vapor pressure of water. In the case of low liquid water content, natural water containing minerals (seawater, salt water, salt lake water, hot spring water, mineral spring water), chemical aqueous solution (acid aqueous solution, base aqueous solution, inorganic aqueous solution, dye aqueous solution), beverage ( Fruit juice, milk, organic matter (sugar water) healthy drinking water, liquor), biological material aqueous solution (amino acids, fats, proteins, sugars, carbohydrates), vitamins, contaminated water,
In the case of a liquid hydrate containing water higher than the saturated vapor pressure of water, it is alcoholic water, and as a solid hydrate, it is a plant (tree, grass, vegetable, fruit), meat, seafood Claim 1, claim 2, claim 3, claim 4, claim 5, claim 6 dehydration method and fresh water recovery method and claim 7, claim 8 dehydration apparatus and Water-containing sample used in fresh water recovery equipment.
自然風(海風)を送風させる上下面及び左右両面で囲まれた筒型風洞構造体を海面上に配備させ、該筒型風洞構造体の下面である海水面を含水物試料容器と見立て、かつ、上面を航空機翼体形状物の上面(アツパーキャンバー)と見立て、更に、前記翼体形状物を双胴船に固定軸を介して取り付け、更に、該双胴船の両舷を該筒型風洞構造体の左右両壁面と見立て、海水から真水を得る際に、前記低圧部位を形成する第2機能が航空機翼体形状の上面(アッパーキャンバー)と下面(ローワーキャンパー)形状を反転させた形状物を翼体の重心部となる固定軸を介して可動可能な構造とし、海面上に間隙部を設けて該筒型風洞構造体内部に設置させ、海面と翼体上面(アッパーキャンバー)の間隙部を通過する自然風(海風)を受風することにより翼体上面(アッパーキャンバー)と海面間との間隙部に気圧降下域を生成させ、海水の蒸発により不飽和湿り空気を発生させる第2機能と、更に、該航空機翼体形状物により蒸発した水蒸気の凝縮雰囲気を大気圧まで昇圧し飽和湿り空気に転換させる前記第3機能及び第4機能としての真水製造室を設け、更に、該風洞(風道)構造体内部の末端部である風下には、飽和湿り空気の衝突角度を自在に調整可能とする結露面が親水性に処理された複数枚の結露板を真水製造室内に配備し、該結露板の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を回収容器に自重落下させて真水を回収する前記第4機能を有することを特徴とする請求項1及び請求項8記載の海水から真水の採取及び回収する方法。 A cylindrical wind tunnel structure surrounded by the upper and lower surfaces and the left and right surfaces for blowing natural wind (sea wind) is arranged on the sea surface, and the sea surface that is the lower surface of the cylindrical wind tunnel structure is regarded as a hydrated sample container, and The upper surface is regarded as the upper surface (upper camber) of the aircraft wing shape object, and further, the wing shape object is attached to the catamaran via a fixed shaft, and both the catamaran ships are connected to the cylindrical shape. Assuming that the wind tunnel structure is the left and right wall surfaces, when obtaining fresh water from seawater, the second function that forms the low-pressure part is the shape that reverses the upper (upper camber) and lower (lower camper) shapes of the aircraft wing shape. The structure is movable through a fixed shaft that is the center of gravity of the wing body, and a gap is provided on the sea surface to be installed inside the cylindrical wind tunnel structure, and the gap between the sea surface and the wing body upper surface (upper camber) By receiving natural wind (sea breeze) passing through the The second function of generating an atmospheric pressure drop in the gap between the upper camber and the sea surface and generating unsaturated moist air by evaporation of seawater, and a large condensation atmosphere of water vapor evaporated by the aircraft wing shape A fresh water production chamber is provided as the third function and the fourth function for increasing the pressure to atmospheric pressure and converting it into saturated humid air. Further, in the lee, which is the end of the wind tunnel (wind channel) structure, A plurality of dew condensation plates whose dew condensation surfaces that allow the collision angle to be freely adjusted are arranged in a fresh water manufacturing chamber, and dew condensation occurs on the dew condensation surface in a direction directly below according to the collision angle of the dew condensation plates. 9. A method for collecting and collecting fresh water from seawater according to claim 1 and claim 8, wherein the fourth function of collecting fresh water by dropping condensed water into a collection container by its own weight is provided. 自然風(海風)を送風させる上面及び左右両面で囲む筒型風洞構造体を海面上に配備させるに、該筒型風洞構造体の下面の海水面を含水物試料容器と見立て、かつ、対向する位置に双胴船上に垂直に配備した2翼の航空機翼体形状物の上面(アッパーキャンバー)同士の左右両面を該筒型構造体の両壁面と見立て、海水から真水を得る際に、前記低圧部位を形成する第2機能が、曲面形状を有する該2翼の航空機翼体形状物上面(アッパーキャンバー)同士の間隙に受風される自然風(海風)により気圧降下域を生成させ、海水の蒸発により不飽和湿り空気を発生させ、更に、該2翼の航空機翼体形状物間隙により蒸発した水蒸気の凝縮雰囲気を大気圧まで昇圧して飽和湿り空気に転換させる前記第3機能及び前記第4機能としての真水製造室を設け、該風洞(風道)構造体内部の末端部である風下には、飽和湿り空気の衝突角度を自在に調整可能とする結露面が親水性に処理された複数枚の結露板を筒型風洞構造体真水回収室内に配備し、該結露板の衝突角度に応じた垂直真下方向に該結露面に結露した結露水を回収容器に自重落下させて真水を回収することを特徴とする請求項1、請求項8及び請求項11記載の海水から真水を採取及び回収する装置。 In order to deploy a cylindrical wind tunnel structure surrounded by the upper surface and the left and right surfaces for blowing natural wind (sea wind) on the sea surface, the sea surface on the lower surface of the cylindrical wind tunnel structure is regarded as a hydrated sample container, and is opposed to it. When obtaining fresh water from seawater, the left and right sides of the upper surface (upper camber) of two aircraft wings that are vertically arranged on the catamaran are positioned as both wall surfaces of the cylindrical structure. The second function of forming the part is to generate a pressure drop area by the natural wind (sea breeze) received by the gap between the upper surfaces (upper cambers) of the two wing aircraft wings having a curved shape. The third function and the fourth function of generating unsaturated moist air by evaporation, and further increasing the pressure of the condensed atmosphere of water vapor evaporated by the gap between the two wing-shaped aircraft wings to atmospheric pressure to convert to saturated moist air. A fresh water production room as a function (Windway) In the leeward, which is the end part inside the structure, a plurality of dew condensation plates with a dew condensation surface that is hydrophilic to allow adjustment of the collision angle of saturated humid air can be freely adjusted. 2. The fresh water is collected by dropping the condensed water condensed on the condensation surface in a vertically downward direction according to a collision angle of the condensation plate into a collection container by placing it in a collection container. An apparatus for collecting and collecting fresh water from seawater according to claim 8 and claim 11. 請求項1記載の第1機能を得る手段が、自然風及び/又は圧縮空気を送風させる風洞(風道)構造体の内部に設置された該含水物試料容器内試料の静置影響域である該風洞(風道)の両端部を一時的に弁で閉塞させ、封じ切った空気の状態にし、該封じ切った空気を断熱膨張により減圧し、含水物試料から不飽和湿り空気を発生させる第2機能と、該不飽和湿り空気を昇圧、断熱圧縮し、飽和湿り空気に転換する第3機能と、該飽和湿り気空気を更に圧縮、液化させ、ドレン容器に真水を回収する第4機能を得る手段が、ピストン式レシプロ圧縮機、多段式ターボ圧縮機又はベーン式圧縮機により順次断熱膨張と断熱圧縮を繰り返し行い、圧縮されて生じた飽和湿り気を更に圧縮、液化を誘起させることを特徴とする請求項1、請求項2、請求項4、請求項5、請求項9及び請求項10記載の不飽和湿り空気を昇圧して飽和湿り空気に転換させることにより含水物試料から真水を得る方法。 The means for obtaining the first function according to claim 1 is a stationary influence area of the sample in the hydrated sample container installed inside the wind tunnel (airway) structure for blowing natural wind and / or compressed air Both ends of the wind tunnel (wind passage) are temporarily blocked with a valve to form a sealed air state, and the sealed air is decompressed by adiabatic expansion to generate unsaturated humid air from the water-containing sample. 2 functions, a 3rd function which pressurizes and adiabatically compresses the unsaturated humid air, converts it into saturated humid air, and a 4th function which further compresses and liquefies the saturated humid air and collects fresh water in a drain container The means repeats adiabatic expansion and adiabatic compression sequentially with a piston-type reciprocating compressor, a multi-stage turbo compressor, or a vane-type compressor, and further compresses saturated moisture generated and induces liquefaction. Claim 1, Claim 2, Claim 4, Contract A method for obtaining fresh water from a water-containing sample by pressurizing the unsaturated moist air according to claim 5, claim 9 and claim 10 and converting it into saturated moist air. 請求項5及び請求項9記載のピストン式レシプロ圧縮機が、シリンダー内を往復運動するに際し、ピストンの圧縮行程で空気孔の弁が開き、シリンダー底部に設置された含水物試料容器とシリンダーを結ぶ開閉弁が閉じ、シリンダー内に該含水物試料容器周辺の空気を混入させる第1機能の手段と、ピストンの膨張行程で含水物試料容器とシリンダーを結ぶ開閉弁が開いて該含水物容器周辺の空気を減圧させると同時にシリンダー底部に設置された該含水物試料容器から蒸発した不飽和湿り空気を断熱膨張させ飽和湿り空気とし、上死点からピストンの圧縮行程で該開閉弁が閉じ、断熱圧縮により、圧縮されて生じた飽和湿り空気を更に圧縮、液化を誘起させ、シリンダー内のピストンで加圧された飽和湿り空気の受圧面が親水性部材からなる結露板の結露面に結露した結露水はリリーフ弁により圧縮された空気とドレン容器に回収し、同時に該リリーフ弁に併設、連動された空気孔弁が開き、該シリンダー底部に設置された該含水物試料容器周辺に空気が満たされる機能を有することにより、断熱膨張と断熱圧縮を繰り返し行うことを特徴とする請求項1、請求項5及び請求項9記載のピストン式レシプロ圧縮機により含水物試料から真水を得る装置。 When the piston-type reciprocating compressor according to claim 5 and claim 9 reciprocates in the cylinder, the valve of the air hole is opened during the compression stroke of the piston, and the hydrated sample container installed at the bottom of the cylinder is connected to the cylinder. The on-off valve is closed and the first function means for mixing the air around the hydrated sample container into the cylinder and the on-off valve connecting the hydrated sample container and the cylinder in the expansion stroke of the piston are opened to At the same time as decompressing the air, the unsaturated wet air evaporated from the water-containing sample container installed at the bottom of the cylinder is adiabatically expanded to become saturated humid air, and the on-off valve is closed by the compression stroke of the piston from the top dead center. The saturated humid air generated by the compression is further compressed and induced to liquefy, and the pressure receiving surface of the saturated humid air pressurized by the piston in the cylinder is made of a hydrophilic member. Condensed water condensed on the dew condensation surface of the dew plate is collected in the air compressed by the relief valve and the drain container, and at the same time, the interlocked air hole valve is opened, and the water-containing water installed at the bottom of the cylinder The water-containing sample is obtained by the piston-type reciprocating compressor according to claim 1, wherein the adiabatic expansion and the adiabatic compression are repeatedly performed by having a function of filling the periphery of the object sample container with air. A device that obtains fresh water from water. 請求項5、請求項9及び請求項13記載のベーン式圧縮機が、円筒式シリンダーの中心軸とベーンを固定するローターの回転軸とが同一軸である構造を有し、該円筒式シリンダー底部には該含水物試料容器を設置し、該ベーン式圧縮機の回転軸であるローターには3枚の蝶番式ベーンを設け、かつ、3枚の蝶番式ベーンの夫々のベーンが時間差により作動するシーケンス制御を持たせて一方向にのみ順次回転させるようにローター軸に取り付けられる機構を有し、隣り合わせた夫々2枚の蝶番式ベーンを一組とした回転により形成される容積変化により、空気を封じ切る第1機能の手段と、該封じ切った空気を断熱膨張により不飽和湿り空気を生成させる第2機能の手段と、更に、該不飽和湿り空気を断熱圧縮により飽和湿り空気に転換させる第3機能を有する手段と、該飽和湿り空気を更に圧縮して液化させる第4機能を有する手段とを独立的に順次連動して回転運動を行う手段が、該円筒式シリンダー底部に取り付け自在とした含水物試料容器内の含水物と前記封じ切る空気とを1枚目及び2枚目のベーンで封じ切る第1機能の手段と、1枚目及び2枚目のベーンにより断熱膨張させて不飽和湿り空気を得る第2機能の手段と、1枚目及び2枚目のベーンにより断熱膨張させて得られた不飽和湿り空気を断熱圧縮して飽和湿り空気に転換させる第3機能の手段と、更に圧縮、液化を誘起させ、ローターの1回転により、1枚目のベーンが空気孔弁の手前の位置での場所に設けたドレンから該円筒式シリンダー外にリリーフ弁(結露弁)から真水を排出させ、かつ、3枚の蝶番式ベーンの夫々の回転方向の裏面に飽和湿り空気の受圧面が親水性部材からなる第4機能の手段であり、該3枚の蝶番式ベーンの夫々のベーンの1枚目と2枚目、2枚目と3枚目、及び3枚目と1目とが協働作動を繰り返すことにより、シリンダー、ローター及びベーンで囲まれた容積変化により前記第1機能、第2機能、第3機能及び第4機能を連続的に繰り返し行うことを特徴とする請求項1、請求項5及び請求項9記載のベーン式圧縮により含水物試料から真水を得る装置。 The vane compressor according to any one of claims 5, 9, and 13 has a structure in which a central axis of a cylindrical cylinder and a rotation axis of a rotor for fixing the vane are the same axis, and the bottom of the cylindrical cylinder Is provided with the hydrated sample container, and the rotor, which is the rotating shaft of the vane compressor, is provided with three hinge vanes, and each of the three hinge vanes operates according to a time difference. It has a mechanism that is attached to the rotor shaft so as to rotate sequentially only in one direction with sequence control, and the air is changed by the volume change formed by the rotation of two hinge vanes adjacent to each other. A first function means for sealing, a second function means for generating unsaturated moist air by adiabatic expansion of the sealed air, and a second function for converting the unsaturated moist air to saturated moist air by adiabatic compression. 3 A means for performing a rotational movement independently and sequentially with a means having a function and a means having a fourth function for further compressing and liquefying the saturated humid air; The first function means to seal off the hydrated material in the sample container and the air to be sealed off by the first and second vanes, and the first and second vanes adiabatically expands to unsaturated moisture. A second function means for obtaining air; a third function means for adiabatically compressing unsaturated humid air obtained by adiabatic expansion by the first and second vanes to convert to saturated humid air; and Inducing compression and liquefaction, the fresh water is discharged from the relief valve (condensation valve) to the outside of the cylindrical cylinder from the drain where the first vane is located in front of the air hole valve by one rotation of the rotor And each of the three hinge vanes The pressure-receiving surface of saturated moist air on the back surface in the rolling direction is a fourth function means comprising a hydrophilic member, and the first and second, second and third of each of the three hinge vanes. The first function, the second function, the third function, and the fourth function are continuously performed by the volume change surrounded by the cylinder, the rotor, and the vane by repeating the cooperative operation of the first sheet and the third sheet and the first sheet. 10. An apparatus for obtaining fresh water from a hydrated material sample by vane compression according to claim 1, 5, and 9, characterized by being repeated repeatedly. 前記ベーン式圧縮機が、シリンダー内に偏芯して取り付けられたローターの偏芯軸に対して120度間隔で取り付けられた3枚の抜け差し自在ベーンの夫々がシリンダー内を偏芯回転することにより順次独立的に空気孔からの空気を取り入れる前記第1機能と、該円筒式シリンダー底部に設置した該含水物試料容器内の含水物から蒸発した水分と前記第1機能による空気と混合させた雰囲気の容積をローターの偏芯回転により逐次断熱膨張させる前記第2機能により不飽和湿り空気を形成させ、該不飽和湿り空気の容積を圧縮し断熱圧縮する第3機能により飽和湿り空気を形成させ、更に該飽和湿り空気をローターとシリンダー内で点接触させ密閉かつ、圧縮、液化を誘起させる弾力性機能を有する遮蔽板を空気孔を遮断する箇所に配備させ容積を減少させて断熱圧縮をさせると同時に、該遮蔽板は親水性部材からなる結露板の機能も有し、該結露板に結露した真水をドレン容器に回収する第4機能と、前記第1機能から第4機能を得る手段をローターの回転に従って3枚の抜け差し自在ベーンの夫々のベーンによりシリンダー内で回転させ、シリンダー、ローター、ベーン及び該遮蔽板で囲まれた容積変化を順次繰り返しながら不飽和湿り空気を昇圧、断熱圧縮して飽和湿り空気に転換させることを特徴とする請求項1、請求項5、請求項9及び請求項13記載のベーン式圧縮機による含水物試料から真水を得る装置。 Each of the three removable vanes attached to the vane type compressor at an interval of 120 degrees with respect to the eccentric shaft of the rotor attached eccentrically in the cylinder rotates eccentrically in the cylinder. The first function of taking in air from the air holes sequentially and independently, the water evaporated from the hydrated material in the hydrated sample container installed at the bottom of the cylindrical cylinder, and the air by the first function were mixed. Unsaturated humid air is formed by the second function of adiabatically expanding the volume of the atmosphere sequentially by eccentric rotation of the rotor, and saturated humid air is formed by the third function of compressing and adiabatically compressing the volume of the unsaturated humid air. In addition, a shield plate having an elastic function that induces compression and liquefaction by causing the saturated humid air to come into point contact in the rotor and cylinder is provided at a location where the air hole is blocked. At the same time as reducing the product and adiabatic compression, the shielding plate also has a function of a condensation plate made of a hydrophilic member, and a fourth function of collecting fresh water condensed on the condensation plate in a drain container; The means for obtaining the fourth function from the function is rotated in the cylinder by each of the three removable vanes according to the rotation of the rotor, and the volume change surrounded by the cylinder, the rotor, the vane and the shielding plate is sequentially repeated. The fresh water is obtained from the water-containing material sample by the vane compressor according to claim 1, wherein the unsaturated humid air is pressurized, adiabatically compressed and converted into saturated humid air. Equipment to get. 草木類を袋(ビニールシート)で密封させ、該袋上部付近にホース(ビニールパイプ)をモータ駆動によりピストンが往復運動をするピストン式レシプロ圧縮機である脱水装置に接続し、ピストンがシリンダー内を往復運動することにより、同一シリンダー内でピストンの往復運動に連動されて2分割された夫々の室で、独立的に交互に断熱膨張及び断熱圧縮を繰り返す機能を有し、断熱膨張時は、減圧行程により不飽和湿り空気が空気入気弁の開閉作動により流入、断熱膨張し、かつ、圧縮行程で断熱圧縮域から飽和湿り空気がシリンダー内の上死点部位及び下死点部位に嵌合させた飽和湿り空気の受圧面が親水性部材からなる結露板に結露した結露水を、リリーフ弁(結露弁)からドレン容器に真水が採取されることを特徴とする請求項1、請求項5、請求項9及び請求項10記載の草木類からの脱水装置及び真水を回収する装置。



Plants and plants are sealed with a bag (vinyl sheet), and a hose (vinyl pipe) is connected near the top of the bag to a dehydrator that is a piston-type reciprocating compressor whose piston reciprocates by motor drive. By reciprocating, each chamber divided into two in conjunction with the reciprocating motion of the piston within the same cylinder has the function of repeating adiabatic expansion and adiabatic compression independently and alternately. Unsaturated humid air flows in by the opening / closing operation of the air inlet valve by the stroke, adiabatically expands, and saturated humid air from the adiabatic compression zone fits into the top dead center and bottom dead center in the cylinder during the compression stroke. Claims 1 and 5 are characterized in that fresh water is collected from a relief valve (condensation valve) into a drain container with condensed water condensed on a dew condensation plate made of a hydrophilic member on a pressure-sensitive surface of saturated humid air. Dehydrating apparatus and apparatus for recovering fresh water from plants such claim 9 and claim 10, wherein.



JP2011066989A 2011-03-25 2011-03-25 Fresh water recovery method and fresh water recovery device using pressure difference Active JP5699407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011066989A JP5699407B2 (en) 2011-03-25 2011-03-25 Fresh water recovery method and fresh water recovery device using pressure difference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011066989A JP5699407B2 (en) 2011-03-25 2011-03-25 Fresh water recovery method and fresh water recovery device using pressure difference

Publications (2)

Publication Number Publication Date
JP2012200661A true JP2012200661A (en) 2012-10-22
JP5699407B2 JP5699407B2 (en) 2015-04-08

Family

ID=47182189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011066989A Active JP5699407B2 (en) 2011-03-25 2011-03-25 Fresh water recovery method and fresh water recovery device using pressure difference

Country Status (1)

Country Link
JP (1) JP5699407B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109224496A (en) * 2018-10-30 2019-01-18 临安派祺空气净化科技有限公司 A kind of compressed air makes water filtering device
JP2019130517A (en) * 2018-01-29 2019-08-08 株式会社タムラ製作所 Gas purification device, gas purification method, and transportation heating device
CN111747465A (en) * 2020-06-24 2020-10-09 武汉润德工程技术有限公司 Natural force driven efficient waste heat seawater desalination device and method
CN112255067A (en) * 2020-11-18 2021-01-22 天津城建大学 Water taking device from ambient air
CN113945422A (en) * 2021-09-30 2022-01-18 自然资源部第一海洋研究所 Ocean columnar mud sampler and mud sampling method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565102A (en) * 1979-06-28 1981-01-20 Shin Gijutsu Kigyo Kk Water collecting method and apparatus
JPS61141901A (en) * 1984-12-17 1986-06-28 Mitsuo Sohgoh Kenkyusho Kk Variable pressure treatment of substance
JPH10156339A (en) * 1996-12-04 1998-06-16 Nippon Telegr & Teleph Corp <Ntt> Fresh water producing device
JP2008264748A (en) * 2007-04-16 2008-11-06 Nobuaki Debari Seawater desalination device
JP2009056453A (en) * 2007-09-03 2009-03-19 Nobuaki Debari Sea water desalting apparatus
WO2010026953A1 (en) * 2008-09-04 2010-03-11 Takeda Seiichi Energy-efficient method and device for manufacturing distilled water and/or concentrated water
JP2012040454A (en) * 2010-08-12 2012-03-01 M Hikari Energy Kaihatsu Kenkyusho:Kk Apparatus for desalinating seawater, and method for dehydrating water-containing substance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565102A (en) * 1979-06-28 1981-01-20 Shin Gijutsu Kigyo Kk Water collecting method and apparatus
JPS61141901A (en) * 1984-12-17 1986-06-28 Mitsuo Sohgoh Kenkyusho Kk Variable pressure treatment of substance
JPH10156339A (en) * 1996-12-04 1998-06-16 Nippon Telegr & Teleph Corp <Ntt> Fresh water producing device
JP2008264748A (en) * 2007-04-16 2008-11-06 Nobuaki Debari Seawater desalination device
JP2009056453A (en) * 2007-09-03 2009-03-19 Nobuaki Debari Sea water desalting apparatus
WO2010026953A1 (en) * 2008-09-04 2010-03-11 Takeda Seiichi Energy-efficient method and device for manufacturing distilled water and/or concentrated water
JP2012040454A (en) * 2010-08-12 2012-03-01 M Hikari Energy Kaihatsu Kenkyusho:Kk Apparatus for desalinating seawater, and method for dehydrating water-containing substance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019130517A (en) * 2018-01-29 2019-08-08 株式会社タムラ製作所 Gas purification device, gas purification method, and transportation heating device
US11266925B2 (en) 2018-01-29 2022-03-08 Tamura Corporation Gas purifying apparatus, gas purifying method and conveying heating apparatus
CN109224496A (en) * 2018-10-30 2019-01-18 临安派祺空气净化科技有限公司 A kind of compressed air makes water filtering device
CN111747465A (en) * 2020-06-24 2020-10-09 武汉润德工程技术有限公司 Natural force driven efficient waste heat seawater desalination device and method
CN111747465B (en) * 2020-06-24 2022-04-05 武汉润德工程技术有限公司 Natural force driven efficient waste heat seawater desalination device and method
CN112255067A (en) * 2020-11-18 2021-01-22 天津城建大学 Water taking device from ambient air
CN112255067B (en) * 2020-11-18 2022-07-08 天津城建大学 Water taking device from ambient air
CN113945422A (en) * 2021-09-30 2022-01-18 自然资源部第一海洋研究所 Ocean columnar mud sampler and mud sampling method
CN113945422B (en) * 2021-09-30 2024-02-27 自然资源部第一海洋研究所 Marine columnar mud sampler and mud sampling method

Also Published As

Publication number Publication date
JP5699407B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
Salehi et al. A review on the water-energy nexus for drinking water production from humid air
Sharon et al. A review of solar energy driven desalination technologies
JP5699407B2 (en) Fresh water recovery method and fresh water recovery device using pressure difference
CN102674490B (en) Self-sufficient water supply disc type solar sea water desalting device
JP2012040454A (en) Apparatus for desalinating seawater, and method for dehydrating water-containing substance
CN102285701B (en) Method for preparing freshwater by applying solar seawater desalination plant arranged on sea
Pourkiaei et al. Status of direct and indirect solar desalination methods: comprehensive review
CN101880069A (en) Negative pressure strengthened multi-stage laminated disc type solar energy distillation system for desalination
CN202072502U (en) Solar desalination unit arranged on sea
CN102086048A (en) Method for desalting seawater and increasing water level by utilizing natural energy
CN105753084B (en) A kind of photo-thermal sea water by distillation desalting plant
CN202671244U (en) Disk type solar seawater desalting plant with self water feeding and replenishing functions
Bundschuh et al. Coupling geothermal direct heat with agriculture
WO2017181309A1 (en) Method for lowering global temperature
CN102464104A (en) Offshore solar sea water desalting plant
CN203625073U (en) Seawater desalination system
CN103225330B (en) Method for getting water from air through phase change caused by light and using water for cultivation
CN107986360B (en) Simple device for producing distilled water
CN209161540U (en) Refrigerating method seawater desalination system
Daneshmand et al. Investigation and design seawater desalination with solar energy
CN208054957U (en) A kind of solar energy sea water desalination apparatus
Raveesh et al. Atmospheric Water Generation: Concepts and Challenges
CN207046895U (en) Marine solar seawater desalination system
RU2786416C1 (en) Method for obtaining drinking water in the black sea
CN1117702C (en) Process and equipment for extracting fresh water from sea water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150129

R150 Certificate of patent or registration of utility model

Ref document number: 5699407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250