WO2010026953A1 - Energy-efficient method and device for manufacturing distilled water and/or concentrated water - Google Patents

Energy-efficient method and device for manufacturing distilled water and/or concentrated water Download PDF

Info

Publication number
WO2010026953A1
WO2010026953A1 PCT/JP2009/065229 JP2009065229W WO2010026953A1 WO 2010026953 A1 WO2010026953 A1 WO 2010026953A1 JP 2009065229 W JP2009065229 W JP 2009065229W WO 2010026953 A1 WO2010026953 A1 WO 2010026953A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
evaporator
concentrated
condenser
distilled water
Prior art date
Application number
PCT/JP2009/065229
Other languages
French (fr)
Japanese (ja)
Inventor
誠一 竹田
Original Assignee
Takeda Seiichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Seiichi filed Critical Takeda Seiichi
Priority to JP2010527781A priority Critical patent/JPWO2010026953A1/en
Publication of WO2010026953A1 publication Critical patent/WO2010026953A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/041Treatment of water, waste water, or sewage by heating by distillation or evaporation by means of vapour compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0088Cascade evaporators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates generally to the production of distilled water and / or concentrated water from raw water containing impurities such as salt, and more particularly to the production of distilled water from raw water using a heat exchanger to increase energy efficiency.
  • the present invention relates to a method and an apparatus thereof, and a method for obtaining concentrated water generated with distillation.
  • the latent heat of steam generation is about 540 cal / g at 98 ° C. and about 570 cal / g at 48 ° C., and only about 1/8 of hot water can be evaporated by the multistage flash method. For this reason, in order to increase energy efficiency, the concentrated water of about 40 to 50 ° C.
  • An object of this invention is to solve such a problem and to provide the distilled water manufacturing method and apparatus excellent in energy efficiency.
  • distilled water is produced, water concentration always occurs, so it is easy to think that the distilled water production apparatus is also a production apparatus for concentrated water.
  • the multi-stage flash method which is the mainstream of seawater desalination, has a low concentration rate of residual water remaining after distillation and is low for the purpose of salt production. There is little to be done.
  • salt water with a high concentration rate for the production of salt can be obtained as a by-product of seawater desalination, the energy usage rate for salt / salt production can be greatly reduced. Therefore, it is also an object of the present invention to provide a raw water concentration method and apparatus.
  • a method for producing distilled water and / or concentrated water from raw water is provided.
  • This manufacturing method is (I) supplying raw water having a temperature 5 ° C. lower than the boiling point or higher to the evaporator; (Ii) evaporating at least a portion of the raw water as water vapor in an evaporator; (Iii) discharging concentrated water; (Iv) pressurizing the steam so that the condensation temperature of the steam is higher than the boiling point of the raw water by 1.01 to 2.0 times higher than the pressure in the evaporator; (V) condensing the pressurized water vapor in a condenser to form distilled water.
  • the evaporator and the condenser are partitioned by a heat transfer plate, and the heat of condensation due to the condensation of water vapor in the condenser is transferred from the condenser to the evaporator through the heat transfer plate, thereby Bring the raw water to a boil.
  • the step (ii) may further include a step of separating raw water evaporated at least partially as water vapor into water vapor and concentrated water.
  • the method may further include (vi) cooling the condensed distilled water and / or (vii) cooling the discharged concentrated water.
  • the method may further include preheating the raw water supplied to the evaporator to a temperature lower than the boiling point by 5 ° C. or higher.
  • the steps of preheating raw water, cooling distilled water, and cooling concentrated water are performed in at least one counter-flow heat exchanger, and distilled water and / or concentration is performed.
  • the raw water can be preheated to a temperature 5 ° C. lower than the boiling point.
  • this heat exchanger can be a plate heat exchanger.
  • a part of the pressurized water vapor can be sent to the evaporator to become a boiling nucleus.
  • the water concentrated in the evaporator is used as raw water, and the steps (ii), (iii), (iv), and (v) are repeated in one or more cycles. it can.
  • the raw water can be seawater or saltwater lake water, in which case the pressurizing stage is 1.02 to 2. It is preferable to pressurize so that it becomes higher by 0 times.
  • the raw water can also be treated water containing heavy metals or treated water containing substances that are not volatile.
  • an apparatus for producing distilled water and / or concentrated water comprises: Raw water supply means for supplying the stock solution; An evaporator that evaporates at least a portion of the raw water supplied from the raw water supply means; A condenser that communicates with the evaporator and that condenses water vapor to produce distilled water; An apparatus for producing distilled water and concentrated water, comprising pressurizing means provided in a line leading from the evaporator to the condenser.
  • This pressurizing means pressurizes the water vapor in the condenser so that the condensation temperature of the water vapor is higher than the boiling point of the raw water, and the evaporator and the condenser are partitioned by a heat transfer plate.
  • the raw water is boiled in the evaporator by transmitting the heat of condensation due to the condensation of water vapor in the condenser through the heat transfer plate from the condenser to the evaporator.
  • the apparatus for producing distilled water and / or concentrated water further includes a gas-liquid separation device provided between the evaporator and the condenser for separating raw water into steam and concentrated water. Can be included.
  • the apparatus for producing distilled water and / or concentrated water further includes at least one plate heat exchanger provided between the raw water supply means and the evaporator, Concentrated water discharged from the gas-liquid separator and / or distilled water discharged from the condenser can be subjected to heat exchange with the raw water in the plate heat exchanger.
  • an apparatus for producing distilled water and / or concentrated water comprises at least one set of evaporators, pressurizing means communicating with the evaporators, condensing communicating with the pressurizing means.
  • Each set can be connected so that the concentrated water discharged from the previous set of condensers is introduced into the next set of evaporators as raw water.
  • the pressurizing means pressurizes the pressure in the condenser 0.01 to 1.0 atm higher than the pressure in the evaporator.
  • the pressurizing means preferably pressurizes the pressure in the condenser to be 0.02 to 1.0 atmosphere higher than the pressure in the evaporator.
  • Water containing a salt such as seawater has a boiling point increase corresponding to the concentration of the salt, and it is necessary to increase the minimum pressure with an increase in the concentration of the salt.
  • Distillation and concentration are a pair of actions, and this method can be advantageously used as a concentration means.
  • this method is a method for producing a salt using as a raw material concentrated water obtained by the method for producing distilled water and concentrated water.
  • wastewater and wastewater containing heavy metals and other substances that exceed the environmental standards discharged from factories, or wastewater containing pesticides that exceed environmental standards among wastewater from golf courses, farms, livestock facilities, or poultry farms can be used for concentration as a preliminary treatment for detoxifying or extracting valuable substances.
  • the figure showing the basic composition for dividing raw water into distilled water and concentrated water The figure which shows the structure of an example of the distilled water manufacturing apparatus which concerns on this invention. The figure which shows another structure of the distilled water manufacturing apparatus which concerns on this invention. The figure which shows the structure of an example of the multistage distilled water manufacturing apparatus which concerns on this invention. Schematic of the experimental device for confirming the performance of the evaporator / condenser.
  • One of the principles of the present invention is to directly use the heat of condensation of the generated water vapor for evaporation of raw water.
  • the condensing (liquefaction) temperature increases as the pressure increases. Therefore, if the water vapor pressure is increased to increase the condensing temperature, the raw water on the low pressure side can be boiled at this temperature.
  • P the pressure
  • V the volume
  • is said to be a specific heat ratio
  • the boiling point (condensation temperature) becomes 102.67 ° C. That is, the water vapor evaporated at 1 atm and 100 ° C. is raised to about 109 ° C. when the pressure is increased by 10% (if 1.1 atm), and is cooled to 102.67 ° C. when touching the heat transfer plate at 100 ° C. It is condensed into water while maintaining 102.67 ° C. The amount of heat released by water vapor while being cooled from 109 ° C. to 102.67 ° C. by 6.33 ° C.
  • the heat transfer coefficient at the heat transfer surface of the gas fluid is smaller than that of condensation heat transfer or boiling heat transfer, but since the amount of heat to be transferred is small, the heat transfer area up to the condensation temperature is small, and most heat transfer is performed.
  • the hot surface is used for condensation while transferring a large amount of heat during condensation to the evaporator.
  • the present invention uses this phenomenon to use the condensation of water vapor as a heat source for boiling raw water.
  • condensation and evaporation can occur simultaneously on the front and back of the metal heat transfer plate having high thermal conductivity.
  • the difference between the actual boiling temperature and boiling point is called the degree of heating, and it is desirable to make this degree of heating as small as possible and 0 to increase energy efficiency (the amount of water obtained divided by the required energy). .
  • boiling nuclei there is a method of leaving bubbles in the dents by roughening the boiling heat transfer surface or the like. As another means, it is also effective to inject gas into boiling nuclei. If pressurized steam is present as in this apparatus, this method is a very effective means, and it is preferable to employ this method. However, other boiling nuclei may be arranged or formed.
  • the evaporation / condensing device 2 that performs heat exchange between steam and high-temperature raw water is a kind of heat exchanger that includes an evaporator 10 and a condenser 11 and is partitioned by a heat transfer plate 4 therebetween.
  • a blower (turbine) 8 is provided at the uppermost part, and water vapor can be fed from the evaporator 10 to the condenser 11 while applying pressure.
  • the heat exchanger 20 described on the lower side of the evaporation / condensing device 2 in the figure is a counterflow heat exchanger for heating the raw water taken in and cooling the distilled water and the concentrated water. Distilled water and concentrated water (residual water) that have finished supplying heat are discharged.
  • the heated raw water is sent from the heat exchanger 20 to the evaporator 10.
  • the heater 30 is provided in the middle of the line which sends high temperature raw water. The heater 30 is necessary for increasing the heat in the initial operation of the apparatus.
  • the steam pipe may pass through the condenser as shown in FIG. 1 or through the outside of the condenser, but it goes without saying that heat insulation is necessary in the case of the outside.
  • the amount of steam for the boiling nuclei may be small if the water in the evaporation chamber reaches the boiling point, but if it is slightly lower than the boiling point, send more steam so that the vapor nuclei will not disappear due to condensation. Is desired.
  • FIG. 1 if a plurality of air inlets are installed so that the optimum air inlet can be selected, it is possible to select an air inlet having an appropriate temperature in the evaporator according to the operating conditions.
  • the piping valve leading to it can be opened to adjust the steam flow rate.
  • the water vapor whose energy has increased due to the compression has a heat quantity that evaporates the high-temperature water in the evaporator 10, and a portion of the water vapor is not condensed in the condenser 11 and is heated. It reaches the exchanger 20 and condenses. Distilled water and concentrated water can pass through the heat exchanger 20 to raise the raw water to a temperature near the boiling point (above 5 ° C. below the boiling point). If the heat insulation is increased so that heat does not escape to the outside, and the water vapor compression rate is increased, the heater 30 can be hardly heated when a steady state is reached after a certain period of time.
  • the pressure when the pressure is increased by 10% from 1 atm to 1.1 atm, the amount of heat of the water vapor increases by 2.99 cal / g as described above, so that water sufficient to supplement the condensate is continuously supplied from the boiling water side. If the water vapor pressure is increased by 0.1 atm, the heat retention is improved, and the overall heat loss including the loss of the heat exchanger is kept below the 3 ° C temperature drop of water, it will depend on the heater in the steady state. Distilled water can be continuously produced without heating.
  • the evaporation in the evaporator 10 and the condensation in the condenser 11 correspond to the evaporation end and the condensation end in the case of a heat pipe, and the temperature of the condensation end is higher than the temperature of the evaporation end.
  • a blower 8 such as a blower
  • the heat pipe is extremely excellent in heat transfer due to the high heat transfer between evaporation heat and condensation heat transfer, and the high speed of water vapor movement, but in the present invention, the thickness of the heat transfer plate is also reduced.
  • the material is titanium or highly corrosion-resistant stainless steel, and the thinner the thickness, the better.
  • 0.3 to 1.0 mm is generally used due to the problem of the strength of the apparatus. is there.
  • the boiling point rise due to concentration hardly changes at a concentration rate of several times.
  • the boiling point of seawater is about 0.5 ° C.
  • the boiling point of seawater concentrated twice is about 1 ° C. higher than that of pure water.
  • the condensation temperature is 111.6 ° C.
  • the water vapor condenses after the temperature has dropped by 28.2 ° C.
  • it raises to 2 atm it will rise to 170.6 degreeC and a volume will be 0.595 times.
  • the condensation temperature at this time is 120.4 ° C.
  • the water vapor will condense after the temperature drops by 50.2 ° C., and the amount of heat released at this time is calculated using a constant pressure specific heat of 1.95 J / g ⁇ ° C.
  • FIG. 2A shows an assembling configuration of an example of an apparatus for producing distilled water and concentrated water according to the present invention.
  • the apparatus for producing distilled water and concentrated water according to the present invention can be produced by combining commercially available heat exchangers, pipes, pumps and the like.
  • the actual device needs to be easy to operate and easy to maintain. Therefore, the blower 8 was disconnected from the evaporation / condensing device 2.
  • the configuration of the distilled water and concentrated water manufacturing apparatus 1 shown in FIG. 2A will be described according to the flow of raw water, distilled water, and water vapor.
  • the flow of cold water (including raw water and distilled water) is indicated by thin solid arrows
  • the flow of hot water (including raw water and distilled water) is indicated by thick solid arrows
  • the flow of water vapor is indicated by dashed arrows.
  • the structure of the manufacturing apparatus 1 of the shown distilled water and concentrated water is demonstrated according to the flow of raw
  • the flow of cold water (including raw water and distilled water) is indicated by thin solid arrows
  • the flow of hot water (including raw water and distilled water) is indicated by thick solid arrows
  • the flow of water vapor is indicated by dashed arrows.
  • the raw water 40 can be natural water such as fresh water such as river water, sea water, salt water such as salt water lake water, and the like.
  • concentration is not only to concentrate useful substances, such as obtaining concentrated seawater and salt lake water for salt production, but also to contain hazardous heavy metals or hazardous substances that exceed environmental standards.
  • the treatment load of treated water may be reduced.
  • Raw water 40 is fed into the apparatus by a supply means (not shown) such as a pump.
  • a supply means such as a pump.
  • the speed at which water vapor condenses varies greatly depending on whether or not non-condensable gas is contained in the water vapor. Therefore, it is desirable to remove (degas) in advance a non-condensable gas (air component) that lowers the condensation rate in order to efficiently condense.
  • the degassing device 22 a method for depressurizing low-temperature raw water with a vacuum pump to release dissolved gas has already been established. Therefore, it is convenient and preferable to use these devices, but other devices may be used. .
  • the heat exchangers 24 and 26 for raising the temperature of the raw water are arranged in two or more stages, and gas bubbles separated at an intermediate temperature are collected. A method may be adopted.
  • the raw water is divided into heat exchangers 24 and 26 and flows.
  • heat is exchanged with distilled water discharged from the condenser of the evaporation / condensing device 2, and the temperature of the raw water is heated to a temperature that is 5 ° C. lower than the boiling point.
  • the reason why the temperature is set to 5 ° C. is that a calorie of 5 cal / g is necessary to raise the temperature from this temperature to the boiling point, and a calorie of 10 cal / g is necessary for the produced water when the gas-liquid separation rate is 50%. This is because the energy efficiency is lowered when the temperature is lowered by 5 ° C. or more from the boiling point.
  • the compression corresponding to the calorie of 5 cal / g is pressurized from 1. atm to 1.172 atm, and from 0.5 atm to 0.586 atm.
  • heat exchanger 26 heat exchange is performed with the concentrated water (residual water) discharged from the gas-liquid separator 6, and the temperature of the raw water is heated to a temperature that is 5 ° C. lower than the boiling point of the raw water. .
  • heat exchangers 24 and 26 used for exchanging heat between raw water and high-temperature distilled water and concentrated water, counter-flow type heat exchangers are desirable, and plate type heat exchangers are particularly suitable.
  • the heat exchanger is not limited.
  • the temperature difference between the primary and secondary sides can be as low as 1 ° C, and operation is possible at a temperature difference of 2 to 3 ° C. .
  • the degassed raw water approaches the boiling temperature near the outlet of the heat exchanger, but when the pressure difference is large and the temperature on the condenser side is high, condensed water higher than the boiling temperature flows into the heat exchanger, It is also possible to start boiling before entering the evaporator.
  • Hot water for heat exchange includes concentrated water (residual water) and distilled water so that they are not mixed.
  • two plate-type heat exchangers are used, but three or more may be used, or a partition plate (a blind plate) that divides the flow path by one can be attached, Alternatively, other methods can be adopted.
  • the raw water heated by the heat exchangers 24 and 26 merges and passes through the heating heater 30 and enters the evaporation / condensing device 2 from the high-temperature raw water inflow line 12, but the heater 30 hardly works after the steady state. May be.
  • the heater 30 hardly works after the steady state. May be.
  • at least a part of the raw water is evaporated by being heated by the condensation heat of water vapor in the evaporator.
  • the water vapor generating heater 32 is used to generate water vapor at the time of start-up, this heater may be hardly operated when the steady state is reached.
  • the gas-liquid separator 6 separates the water vapor and the concentrated water, and the concentrated water is sent from the concentrated water discharge line 16 to the heat exchanger 26 for heat recovery and cooled.
  • the steam is pressurized by a turbine type blower (blower) 8 and sent to the condenser of the evaporator / condenser 2, and the produced distilled water is discharged from the distilled water discharge line 14 and sent to the heat exchanger 24. It is done.
  • the pressure of water vapor is preferably 1.01 to 2.0, depending on the type of raw water. If it is atmospheric pressure, it corresponds to a pressure of 0.01 to 1.0 atm. The reason for this is that if the pressure under atmospheric pressure is 0.01 atm or less, even if it is distillation of fresh water, the pressure is practically too low, and the temperature difference between the condenser and the evaporator is small, so the distilled water production capacity is low. Because.
  • the greater the pressurization the greater the temperature difference between the condenser and the evaporator, the faster the condensation rate and the evaporation rate, and the higher the production rate of distilled water, but at pressures where the pressure ratio of pressurization exceeds 2.0. This is because the energy to raise the water by 20 ° C. or more is supplied, and the energy cost increases.
  • the pressurization is reduced, and if the demand for water increases and the supply capacity is no longer sufficient, a flexible operation for increasing the pressurization is possible.
  • the plate heat exchanger can be easily disassembled and inspected, and the direction of the fluid can be easily changed. Therefore, it is preferable that the line (flow path) through which raw water flows and the line (flow path) through which distilled water or concentrated water flows can be exchanged. After the operation is stopped and cleaned, the scale attached to the raw water side dissolves in the hot water by flowing hot water through the flow path where the raw water flows, and then flowing the raw water through the flow path on the hot water side. There is no need, and maintenance becomes easy.
  • the boiling portion of the evaporator may be at atmospheric pressure or may be depressurized. At atmospheric pressure, there is an advantage that there are few problems of strength of the apparatus. However, since the boiling temperature is 100 ° C. at atmospheric pressure, heat loss is more likely to occur than in the case of reduced pressure, and when corrosive seawater is used as raw water, the corrosion resistance of the material constituting the heat exchanger is only high. However, the material cost is slightly increased. Lowering the pressure enables distillation at a low temperature, and the scale adhesion to the equipment is not strong, the amount is small, and there is an advantage of less heat loss, but the distillation rate is reduced, or a vacuum pump for decompression There is a problem that is necessary.
  • FIG. 2B shows an example in which two plate heat exchangers 3 as evaporation / condensation devices are connected, and pressurized steam as boiling nuclei can be blown into the connecting portion through the steam pipe 17.
  • the evaporation / condensing device 2 is a plate heat exchanger, a partition plate (a blind plate) that divides the flow path by a single unit can be attached.
  • FIG. 3 shows an example of an apparatus according to the present invention in which evaporation / condensing apparatuses are combined in multiple stages.
  • Each set includes an evaporating / condensing device 2, 2 ', 2 ", a gas-liquid separating device 6, 6', 6", a blower 8, 8 ', 8 “, and a distilled water discharge line 14, 14', 14".
  • the high-temperature raw water heated by the heat exchanger flows into the first stage evaporation / condensing device 2 from the high-temperature raw water inflow line 12, having the concentrated water discharge lines 16, 16 ′, 16 ′′.
  • the concentrated water discharged from the first-stage and second-stage gas-liquid separators 6 and 6 ' is introduced as raw water into the second-stage and third-stage evaporator / condenser 2, 2' and 2 ", respectively.
  • the concentrated water discharged from the third-stage gas-liquid separator 6 ′′ and the distilled water discharged from each stage of the evaporating / condensing devices 2, 2 ′, 2 ′′ are sent to a heat exchanger to preheat raw water. Heat exchange is performed.
  • the concentrated water discharged from the gas-liquid separators 6 and 6 ′ does not need to be preheated because of high temperature.
  • FIG. 3 the concentrated water discharged from the gas-liquid separators 6 and 6 ′ does not need to be preheated because of high temperature.
  • the evaporator / condenser is combined in three stages, but the combination may be two stages, or four or more stages.
  • the efficiency can be increased by introducing steam as boiling nuclei.
  • the concentrated water remaining after distillation such as seawater is concentrated to saturation, the boiling point rises by about 10 ° C., so that it becomes necessary to increase the applied pressure and the energy consumption increases.
  • the concentration rate should be about 2 to 8 times, considering that increasing the concentration of the concentrated water is disadvantageous in terms of energy, and recovering the heat of the concentrated water with a heat exchanger. It is.
  • the concentration rate can be increased 9 times even in 2 stages of about 3 times, and the efficiency is increased.
  • concentrated water remaining after distillation such as seawater
  • the concentration process is divided into two or more as shown in FIG. 3 is advantageous. .
  • the higher the degree of concentration and the higher the pressure required the smaller the amount of water, so a smaller heat exchanger is required, and the energy efficiency is increased by the multi-stage.
  • the degree of concentration increases, clogging due to salt precipitation is more likely to occur.
  • the cost of the apparatus, the cost of maintenance, and the like are reduced as a whole, such as taking measures for clogging only at the final stage.
  • distilled water and / or concentrated water With the apparatus and method for producing distilled water and / or concentrated water according to the present invention, it is possible to obtain distilled water with low energy use by an apparatus that is easy to maintain. Low-cost water can be obtained from use to use as industrial high-purity water. Compared with the reverse osmosis membrane method, energy efficiency can be increased and maintenance is easy. Concentrated water can be produced at a lower cost than ever for wide use such as production of concentrated seawater as a salt production raw material and pretreatment of various water treatments. Use of both distilled water production equipment and method and concentrated water production equipment and method is desirable from the viewpoint of energy efficiency, but it is sufficient to use either one according to the user's environment and necessity. Of course, only one of them can be used.
  • the evaporator 10 is a stainless steel cylinder having an outer diameter of 122 mm, an inner diameter of 121 mm, and a height of 400 mm. In order to secure a flow path width of about 5 mm inside, the upper part having a diameter of 111 mm and a height of 300 mm is rounded.
  • a stainless steel cylinder (inner cylinder) 5 was fixed at several points in a state where it was floated 5 mm from the bottom.
  • a blower 8 was attached to the evaporator outlet portion of about 100 mm above the cylindrical container 5 in the condenser. Water droplets contained in the steam were collected by a mist trap 9 installed at the top of the evaporator and returned to the evaporator wall.
  • a condenser 11 having an inner diameter of about 180 mm and a height of 430 mm was arranged on the outside so as to wrap the entire blower 8 and the evaporator, and a heat insulating material was arranged around the condenser 11 and necessary places on the piping.
  • reference numeral 35 denotes a pressure gauge
  • four steam pipes 17 are attached to the evaporator in the circumferential direction at a position about 1/5 from the bottom of the evaporator height.
  • the steam pipe 17 was provided with an adjustment valve and adjusted in advance so that a small amount of steam passed.
  • the heat exchanger 20 is not used, but instead, the raw water at a desired temperature can be supplied to the evaporator 4 from the raw water tank 27 with a temperature controller. .
  • Distilled water produced by the condenser was discharged from the outlet pipe, cooled by the cooler 29, led to the distilled water reservoir 39, and the amount of distilled water produced was measured by a weigh scale 47 '. Further, the raw water tank 27 with temperature controller and the raw water flow rate control valve 43 are connected by a soft silicone rubber hose so that the weight of the raw water including the tank can be measured. Regarding the pressure, the condensation side was set to atmospheric pressure, and the inside of the evaporator could be lowered to 0.8 atm by adjusting the input voltage of the blower (turbine) 8 and the raw water flow rate adjusting valve 43. In the test, the following results were obtained when the inside of the evaporator was 0.9 atm and the inside of the condenser was 1 atm.
  • thermometer 36 and the thermometer 36 in the condenser indicate 100 ° C, and water vapor comes out of the pressure relief valve 18.
  • the steam supply valve 32 is closed and the raw water weight is measured by the weigh scale 47.
  • the blower 8 is operated to adjust the voltage of the blower motor so that the evaporator internal pressure becomes 0.9 atm, and the flow rate adjusting valve 43 is opened little by little to supply 97 ° C. raw water into the evaporator.
  • the pressure in the evaporator slightly approaches 1 atm, but the raw water at 97 ° C.
  • the flow control valve 43 Thin until just before closing. Then, the pressure in the evaporator almost returns to 0.9 atm, and a flow 38 of distilled water can be observed. At this time, the distilled water flow rate adjusting valve 44 is opened so as not to disturb the flow of distilled water. (7) Thereafter, the flow rate adjustment valve 43 is adjusted so that the total weight of the raw water and the distilled water becomes equal. This is to keep the water level in the evaporator constant.
  • the heat transfer areas were about 0.05 m 2 and 0.1 m 2 , and about 1.6 liters / h and 3 liters / h with an energy input of 240 to 250 W / h for this heat transfer area. Distilled water was obtained. It was also found that even when water having a temperature lower by 1 to 2 ° C. than the boiling point was sent to the evaporator, it was heated to the boiling point by the heat from the condenser, and distilled water having the same level as that at the boiling point was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Provided are a method and a device for manufacturing distilled water and/or concentrated water from raw water.  The manufacturing method comprises (i) a step for supplying raw water at a temperature higher than or equal to a temperature five degrees lower than the boiling point to an evaporator, (ii) a step for evaporating at least part of the raw water as water vapor in the evaporator, (iii) a step for discharging concentrated water, (iv) a step for pressurizing the water vapor in such a manner that the pressure of the water vapor becomes 1.01 to 2 times as high as the pressure in the evaporator so that the condensation temperature of the water vapor becomes higher than the boiling point of the raw water, and (v) a step for condensing the pressurized water vapor in a condenser to turn the water vapor into distilled water.  The evaporator and the condenser are partitioned by a heat transfer plate, and the raw water is boiled in the evaporator by transferring condensation heat generated by the condensation of the water vapor in the condenser from the condenser to the evaporator via the heat transfer plate.

Description

エネルギー効率の高い蒸留水及び/又は濃縮水の製造方法と装置Method and apparatus for producing energy-efficient distilled water and / or concentrated water
 本発明は、広く言えば、塩などの不純物を含む原水からの蒸留水及び/又は濃縮水の製造に関し、とりわけ、熱交換器を利用してエネルギー効率を高めた、原水からの蒸留水の製造方法及びその装置、並びに蒸留に伴って発生する濃縮水を得る方法に係るものである。 The present invention relates generally to the production of distilled water and / or concentrated water from raw water containing impurities such as salt, and more particularly to the production of distilled water from raw water using a heat exchanger to increase energy efficiency. The present invention relates to a method and an apparatus thereof, and a method for obtaining concentrated water generated with distillation.
 世界的に清浄な淡水が足りず、水不足問題として最近はクローズアップされてきている。他方、エネルギーの使用による環境への問題も深刻化しており、淡水の一般用途にエネルギーを多量に使用する蒸留水を使用することは大きな問題である。このため、逆浸透膜法などのエネルギー使用の少ない海水淡水化などが検討されているが、膜の寿命、メンテナンスなどの問題が残っており、十分実用化されているとは言いがたい。また、逆浸透膜法では加圧のためのエネルギーが必要であり、エネルギーを使用しないわけではない。他方、蒸留による方法としては多段フラッシュ法が普及している。この方法では100℃以上に加熱した水を減圧室に送り込んでフラッシュ蒸発(沸騰)させ、発生した水蒸気を凝縮させると共にその凝縮熱を原水の加熱に利用している。しかし、水蒸気発生の潜熱は98℃では約540cal/g、48℃では約570cal/gもあり、多段フラッシュ法では熱水の約1/8程度の量しか蒸発させることができない。このため、エネルギー効率を高めるために最終段の40~50℃程度の濃縮水を原水に混ぜ再利用せざるを得ず、多段フラッシュ法では1gの水を得るために、少なくとも30~40calの熱量が必要になり、逆浸透膜法に比べ、エネルギーの使用が1桁以上高くなってしまう。しかし、逆浸透膜法の膜の取り扱いの困難さ、膜の価格と寿命の問題があり、蒸留法において、エネルギー使用率を下げることができれば、トータルで逆浸透膜法に比べ有利となるので、エネルギー使用量の少ない蒸留法が種々検討されている(例えば、特許文献1)が、未だ十分ではない。 The world is lacking in clean fresh water and has recently been highlighted as a water shortage problem. On the other hand, environmental problems due to the use of energy are also becoming serious, and it is a big problem to use distilled water that uses a large amount of energy for general purposes of fresh water. For this reason, seawater desalination with low energy use such as reverse osmosis membrane method has been studied, but problems such as membrane life and maintenance remain, and it cannot be said that it is sufficiently put into practical use. Moreover, the reverse osmosis membrane method requires energy for pressurization, and does not mean that energy is not used. On the other hand, a multistage flash method is widely used as a distillation method. In this method, water heated to 100 ° C. or higher is sent to a decompression chamber and flash-evaporated (boiling) to condense the generated water vapor and use the heat of condensation for heating raw water. However, the latent heat of steam generation is about 540 cal / g at 98 ° C. and about 570 cal / g at 48 ° C., and only about 1/8 of hot water can be evaporated by the multistage flash method. For this reason, in order to increase energy efficiency, the concentrated water of about 40 to 50 ° C. in the final stage must be mixed with the raw water and reused, and in order to obtain 1 g of water in the multistage flash method, the calorific value of at least 30 to 40 cal And the use of energy is more than an order of magnitude higher than in the reverse osmosis membrane method. However, there are difficulties in handling the membrane of the reverse osmosis membrane method, there are problems with the price and life of the membrane, and if the energy usage rate can be reduced in the distillation method, it will be advantageous compared to the reverse osmosis membrane method in total, Various distillation methods with a small amount of energy consumption have been studied (for example, Patent Document 1), but it is still not sufficient.
国際公開第01/072638号パンフレットInternational Publication No. 01/072638 Pamphlet
 上記のように、従来、海水等を原水として蒸留水を製造する場合には、原水を加熱して蒸発させるために、多大のエネルギーを消費している。そのため、太陽熱やボイラーの廃熱などを使用したとしても、逆浸透法など他の淡水製造方法に比べエネルギーコストが高くなる問題があった。
 本発明は、このような問題を解決して、エネルギー効率の優れた蒸留水製造方法及び装置を提供することを目的とする。
 蒸留水を製造すると必ず水の濃縮が起こるので、蒸留水製造装置は濃縮水の製造装置でもあると考えがちである。しかし、海水淡水化の主流となっている多段フラッシュ法は蒸留後に残る残渣水の濃縮率が低く、塩の製造を目的とするには濃縮率が低いため、塩の製造目的の濃縮水として使用されることはほとんどない。海水淡水化の副産物として、塩の製造のための濃縮率の高い塩水を得られれば、塩・食塩製造のためのエネルギー使用率を大きく低下させることが可能である。したがって、原水の濃縮方法及び装置を提供することも本発明の目的である。
As described above, conventionally, when distilled water is produced using seawater or the like as raw water, much energy is consumed to heat and evaporate the raw water. Therefore, even if solar heat or boiler waste heat is used, there is a problem that the energy cost is higher than other fresh water production methods such as reverse osmosis.
An object of this invention is to solve such a problem and to provide the distilled water manufacturing method and apparatus excellent in energy efficiency.
When distilled water is produced, water concentration always occurs, so it is easy to think that the distilled water production apparatus is also a production apparatus for concentrated water. However, the multi-stage flash method, which is the mainstream of seawater desalination, has a low concentration rate of residual water remaining after distillation and is low for the purpose of salt production. There is little to be done. If salt water with a high concentration rate for the production of salt can be obtained as a by-product of seawater desalination, the energy usage rate for salt / salt production can be greatly reduced. Therefore, it is also an object of the present invention to provide a raw water concentration method and apparatus.
 本発明の第1の観点によれば、原水から蒸留水及び/又は濃縮水を製造する方法が提供される。この製造方法は、
 (i)沸点よりも5℃低い温度以上の原水を蒸発器に供給する段階と、
 (ii)蒸発器において、原水の少なくとも一部を水蒸気として蒸発させる段階と、
 (iii)濃縮水を排出する段階と、
 (iv)水蒸気を、水蒸気の凝縮温度が原水の沸点よりも高くなるように蒸発器内の圧力の1.01~2.0倍だけ高くなるように加圧する段階と、
 (v)加圧された水蒸気を凝縮器で凝縮させ、蒸留水にする段階と
を含む。この製造方法では、蒸発器と凝縮器が伝熱板で仕切られており、凝縮器内での水蒸気の凝縮による凝縮熱を、凝縮器から蒸発器へ伝熱板を通して伝えることにより、蒸発器内で原水を沸騰させる。
According to a first aspect of the present invention, a method for producing distilled water and / or concentrated water from raw water is provided. This manufacturing method is
(I) supplying raw water having a temperature 5 ° C. lower than the boiling point or higher to the evaporator;
(Ii) evaporating at least a portion of the raw water as water vapor in an evaporator;
(Iii) discharging concentrated water;
(Iv) pressurizing the steam so that the condensation temperature of the steam is higher than the boiling point of the raw water by 1.01 to 2.0 times higher than the pressure in the evaporator;
(V) condensing the pressurized water vapor in a condenser to form distilled water. In this manufacturing method, the evaporator and the condenser are partitioned by a heat transfer plate, and the heat of condensation due to the condensation of water vapor in the condenser is transferred from the condenser to the evaporator through the heat transfer plate, thereby Bring the raw water to a boil.
 本発明の具体例によれば、(ii)の段階が、少なくとも一部を水蒸気として蒸発させた原水を水蒸気と濃縮水とに分離する段階を更に含むことができる。 According to a specific example of the present invention, the step (ii) may further include a step of separating raw water evaporated at least partially as water vapor into water vapor and concentrated water.
 本発明の具体例によれば、(vi)凝縮された蒸留水を冷却する段階及び/又は
 (vii)排出された濃縮水を冷却する段階をさらに含むことができる。
According to an embodiment of the present invention, the method may further include (vi) cooling the condensed distilled water and / or (vii) cooling the discharged concentrated water.
 本発明の具体例によれば、蒸発器に供給される原水を沸点よりも5℃低い温度以上に予熱する段階を更に含むことができる。 According to an embodiment of the present invention, the method may further include preheating the raw water supplied to the evaporator to a temperature lower than the boiling point by 5 ° C. or higher.
 本発明の具体例によれば、原水を予熱する段階、蒸留水を冷却する段階、及び濃縮水を冷却する段階を、少なくとも1つの対向流式の熱交換器において行い、蒸留水及び/又は濃縮水から原水に熱を与えることにより原水を沸点より5℃低い温度以上に予熱することができる。 According to an embodiment of the present invention, the steps of preheating raw water, cooling distilled water, and cooling concentrated water are performed in at least one counter-flow heat exchanger, and distilled water and / or concentration is performed. By supplying heat from the water to the raw water, the raw water can be preheated to a temperature 5 ° C. lower than the boiling point.
 本発明の具体例によれば、この熱交換器はプレート式熱交換器であることができる。 According to an embodiment of the present invention, this heat exchanger can be a plate heat exchanger.
 本発明の具体例によれば、蒸発器における過熱度を小さくするため、加圧された水蒸気の一部を蒸発器に送り込み沸騰核とさせることができる。 According to the specific example of the present invention, in order to reduce the degree of superheat in the evaporator, a part of the pressurized water vapor can be sent to the evaporator to become a boiling nucleus.
 本発明の具体例によれば、蒸発器で濃縮された水を原水として、(ii)、(iii)、(iv)、(v)の各段階を1回又は複数回のサイクルで繰り返すことができる。 According to a specific example of the present invention, the water concentrated in the evaporator is used as raw water, and the steps (ii), (iii), (iv), and (v) are repeated in one or more cycles. it can.
 本発明の具体例によれば、原水は、海水又は塩水湖水とすることができ、その場合には、加圧する段階が、凝縮器内の圧力が蒸発器内の圧力の1.02~2.0倍だけ高くなるように加圧することが好ましい。また、原水は、重金属を含む要処理水、又は揮発性を有しない物質を含む要処理水にすることもできる。 According to an embodiment of the present invention, the raw water can be seawater or saltwater lake water, in which case the pressurizing stage is 1.02 to 2. It is preferable to pressurize so that it becomes higher by 0 times. The raw water can also be treated water containing heavy metals or treated water containing substances that are not volatile.
 本発明の更に別の観点によれば、蒸留水及び/又は濃縮水の製造装置が提供され、この蒸留水及び濃縮水の製造装置は、
 原液を供給する原水供給手段と、
 原水供給手段から供給された原水の少なくとも一部を蒸発させる蒸発器と、
 蒸発器と連通する、水蒸気を凝縮させて蒸留水を作る凝縮器と、
 蒸発器から凝縮器に通じるラインに設けられた加圧手段と
を備えた、蒸留水及び濃縮水の製造装置である。この加圧手段は、凝縮器内の水蒸気を、水蒸気の凝縮温度が原水の沸点よりも高くするように加圧するようになっていること、蒸発器と凝縮器が伝熱板で仕切られており、凝縮器内での水蒸気の凝縮による凝縮熱を、凝縮器から蒸発器へ伝熱板を通して伝えることにより、蒸発器内で原水を沸騰させるようになっている。
According to still another aspect of the present invention, an apparatus for producing distilled water and / or concentrated water is provided, and the apparatus for producing distilled water and concentrated water comprises:
Raw water supply means for supplying the stock solution;
An evaporator that evaporates at least a portion of the raw water supplied from the raw water supply means;
A condenser that communicates with the evaporator and that condenses water vapor to produce distilled water;
An apparatus for producing distilled water and concentrated water, comprising pressurizing means provided in a line leading from the evaporator to the condenser. This pressurizing means pressurizes the water vapor in the condenser so that the condensation temperature of the water vapor is higher than the boiling point of the raw water, and the evaporator and the condenser are partitioned by a heat transfer plate. The raw water is boiled in the evaporator by transmitting the heat of condensation due to the condensation of water vapor in the condenser through the heat transfer plate from the condenser to the evaporator.
 本発明の具体例によれば、この蒸留水及び/又は濃縮水の製造装置は、蒸発器と凝縮器との間に設けられた、原水を水蒸気と濃縮水に分離する気液分離装置を更に含むことができる。 According to a specific example of the present invention, the apparatus for producing distilled water and / or concentrated water further includes a gas-liquid separation device provided between the evaporator and the condenser for separating raw water into steam and concentrated water. Can be included.
 本発明の具体例によれば、この蒸留水及び/又は濃縮水の製造装置は、原水供給手段と蒸発器との間に設けられた少なくとも1つのプレート式熱交換器を更に含み、蒸発器又は気液分離装置から排出された濃縮水、及び/又は凝縮器から排出された蒸留水が、プレート式熱交換器において原水と熱交換を行うようにできる。 According to an embodiment of the present invention, the apparatus for producing distilled water and / or concentrated water further includes at least one plate heat exchanger provided between the raw water supply means and the evaporator, Concentrated water discharged from the gas-liquid separator and / or distilled water discharged from the condenser can be subjected to heat exchange with the raw water in the plate heat exchanger.
 本発明の具体例によれば、本発明の係る蒸留水及び/又は濃縮水の製造装置は、少なくとも1組の蒸発器、該蒸発器に連通する加圧手段、該加圧手段に連通する凝縮器を更に有し、前の組の凝縮器から排出された濃縮水を原水として次の組の蒸発器に導入するように、各組が連結できる。 According to an embodiment of the present invention, an apparatus for producing distilled water and / or concentrated water according to the present invention comprises at least one set of evaporators, pressurizing means communicating with the evaporators, condensing communicating with the pressurizing means. Each set can be connected so that the concentrated water discharged from the previous set of condensers is introduced into the next set of evaporators as raw water.
 本発明の具体例によれば、原水が淡水である場合には、加圧手段は、凝縮器内の圧力を蒸発器内の圧力よりも0.01~1.0気圧高く加圧するようになっていることができる。
 原水が海水又は塩水湖水である場合には、加圧手段は、凝縮器内の圧力を蒸発器内の圧力よりも0.02~1.0気圧高く加圧するようになっていることが好ましい。海水などの塩を含む水は、塩の濃度に応じた沸点上昇があり、最小加圧力を塩の濃度の高まりと共に大きくする必要が生じる。
According to the specific example of the present invention, when the raw water is fresh water, the pressurizing means pressurizes the pressure in the condenser 0.01 to 1.0 atm higher than the pressure in the evaporator. Can be.
When the raw water is seawater or saltwater lake water, the pressurizing means preferably pressurizes the pressure in the condenser to be 0.02 to 1.0 atmosphere higher than the pressure in the evaporator. Water containing a salt such as seawater has a boiling point increase corresponding to the concentration of the salt, and it is necessary to increase the minimum pressure with an increase in the concentration of the salt.
 蒸留と濃縮は対になる行為であり、本方法は濃縮手段としても有利に利用できる。例えば上記蒸留水及び濃縮水の製造方法により得られた濃縮水を原料とする塩を製造する方法である。また、工場から排出される環境基準を超える重金属、その他の物質を含む排水・廃水あるいはゴルフ場、農場、畜産施設又は養鶏場からの排水のうち、環境基準以上の農薬を含む排水(要処理水と称す)を無害化するあるいは有価物質を抽出するための予備処理としての濃縮に利用できる。 Distillation and concentration are a pair of actions, and this method can be advantageously used as a concentration means. For example, it is a method for producing a salt using as a raw material concentrated water obtained by the method for producing distilled water and concentrated water. Also, wastewater and wastewater containing heavy metals and other substances that exceed the environmental standards discharged from factories, or wastewater containing pesticides that exceed environmental standards among wastewater from golf courses, farms, livestock facilities, or poultry farms Can be used for concentration as a preliminary treatment for detoxifying or extracting valuable substances.
原水を蒸留水と濃縮水に分けるための基本的な構成を表す図。The figure showing the basic composition for dividing raw water into distilled water and concentrated water. 本発明に係る蒸留水製造装置の一例の構成を示す図。The figure which shows the structure of an example of the distilled water manufacturing apparatus which concerns on this invention. 本発明に係る蒸留水製造装置の別の構成を示す図。The figure which shows another structure of the distilled water manufacturing apparatus which concerns on this invention. 本発明に係る多段蒸留水製造装置の一例の構成を示す図。The figure which shows the structure of an example of the multistage distilled water manufacturing apparatus which concerns on this invention. 蒸発器・凝縮器の性能確認のための実験装置の概略図。Schematic of the experimental device for confirming the performance of the evaporator / condenser.
 以下では、概略図面を参照して、本発明をより詳細に説明する。 In the following, the present invention will be described in more detail with reference to the schematic drawings.
 本発明の原理の1つは、発生した水蒸気の凝縮熱をそのまま原水の蒸発に利用することである。良く知られているように、圧力が高くなると凝縮(液化)温度は高くなるので、水蒸気圧力を高くして凝縮温度を高くすれば、この温度で低圧側の原水を沸騰させることができる。
 断熱的に気体の圧力を変化させた時の体積変化はポアッソン(Poisson)の式
 PVγ=const
により求めることができる。ここで、Pは圧力Vは体積であり、γは比熱比と言われ、水蒸気ではγ=1.333333なので
 PV1.333333=const
となる。
 また、理想気体の状態方程式により、PV/T=nR=constなので、これらの式により、断熱膨張・圧縮による体積変化と温度変化を計算することができる。
 例えば、100℃の水蒸気を1atm(気圧)から1.1atmに加圧した場合には体積は0.931倍となり、温度は108.99℃になると計算できる。
 沸点(凝縮温度)の上昇程度は、温度により異なるが、10%の圧力増加の場合1.5~3.0℃高くなる。例えば、1atm(気圧)から10%(=0.1atm)だけ圧力を高めると沸点(凝縮温度)は102.67℃となる。すなわち、1atm、100℃で蒸発した水蒸気は10%だけ圧力を高めると(1.1atmにすると)約109℃に昇温し、100℃の伝熱板に触れると102.67℃まで冷却され、102.67℃を保ちながら凝縮して水になるのである。
 109℃から102.67℃まで6.33℃だけ冷やされる間に水蒸気が放出する熱量は水蒸気の定圧比熱1.95J/g・℃を使って計算すると6.33×1.95=12.3J/g=2.95cal/gであり、一方、102.67℃における凝縮潜熱は537cal/である。気体流体の伝熱面での熱伝達率は凝縮熱伝達あるいは沸騰熱伝達に比べ小さいが、伝達すべき熱量は僅かであるために凝縮温度までの伝熱面積は小さくてすみ、大部分の伝熱面は凝縮時の大量の熱量を蒸発器側に伝熱しながらの凝縮のために使われることになる。
 本発明は、この現象を利用して、水蒸気の凝縮を、原水を沸騰させる熱源として使う。そのためには、発生する凝縮熱を効率よく蒸発熱として使うことを可能とする装置が必要である。そこで、本発明では、凝縮と蒸発が熱伝導率の高い金属製伝熱板の表と裏で同時に起こることを可能にした。
 なお、蒸発に際しては沸騰核がないと、沸騰点よりも高くならないと沸騰しない。実際の沸騰温度と沸騰点との差を加熱度と言い、この加熱度をできるだけ小さく、0とすることがエネルギー効率(得られる水の量を必要なエネルギーで割った値)を高めるために望ましい。このために蒸発装置内に沸騰核を形成することが好ましい。一例としては、沸騰伝熱面の粗面化等により凹み部に気泡を残す方法がある。他の手段として気体を吹き込んでこれを沸騰核とさせることも有効である。本装置のように加圧水蒸気が存在すればこの方法は極めて効果的手段であり、この方法を採用することが好ましい。ただし、その他の沸騰核を配置又は形成してもよい。
One of the principles of the present invention is to directly use the heat of condensation of the generated water vapor for evaporation of raw water. As is well known, the condensing (liquefaction) temperature increases as the pressure increases. Therefore, if the water vapor pressure is increased to increase the condensing temperature, the raw water on the low pressure side can be boiled at this temperature.
The volume change when the gas pressure is changed adiabatically is expressed by Poisson's equation PV γ = const
It can ask for. Here, P is the pressure V is the volume, γ is said to be a specific heat ratio, and γ = 1.333333 in the case of water vapor, so PV 1.333333 = const
It becomes.
Moreover, since PV / T = nR = const according to the equation of state of the ideal gas, the volume change and the temperature change due to adiabatic expansion / compression can be calculated from these equations.
For example, when 100 ° C. water vapor is pressurized from 1 atm (atmospheric pressure) to 1.1 atm, the volume is 0.931 times and the temperature can be calculated to be 109.99 ° C.
The degree of increase in boiling point (condensation temperature) varies depending on the temperature, but increases by 1.5 to 3.0 ° C. when the pressure increases by 10%. For example, when the pressure is increased from 1 atm (atmospheric pressure) to 10% (= 0.1 atm), the boiling point (condensation temperature) becomes 102.67 ° C. That is, the water vapor evaporated at 1 atm and 100 ° C. is raised to about 109 ° C. when the pressure is increased by 10% (if 1.1 atm), and is cooled to 102.67 ° C. when touching the heat transfer plate at 100 ° C. It is condensed into water while maintaining 102.67 ° C.
The amount of heat released by water vapor while being cooled from 109 ° C. to 102.67 ° C. by 6.33 ° C. is calculated using the constant-pressure specific heat of water vapor of 1.95 J / g · ° C. 6.33 × 1.95 = 12.3 J /G=2.95 cal / g, while the latent heat of condensation at 102.67 ° C. is 537 cal /. The heat transfer coefficient at the heat transfer surface of the gas fluid is smaller than that of condensation heat transfer or boiling heat transfer, but since the amount of heat to be transferred is small, the heat transfer area up to the condensation temperature is small, and most heat transfer is performed. The hot surface is used for condensation while transferring a large amount of heat during condensation to the evaporator.
The present invention uses this phenomenon to use the condensation of water vapor as a heat source for boiling raw water. For this purpose, an apparatus that enables the generated condensation heat to be efficiently used as the evaporation heat is required. Therefore, in the present invention, condensation and evaporation can occur simultaneously on the front and back of the metal heat transfer plate having high thermal conductivity.
In the case of evaporation, if there is no boiling nucleus, it will not boil unless it is higher than the boiling point. The difference between the actual boiling temperature and boiling point is called the degree of heating, and it is desirable to make this degree of heating as small as possible and 0 to increase energy efficiency (the amount of water obtained divided by the required energy). . For this purpose, it is preferable to form boiling nuclei in the evaporator. As an example, there is a method of leaving bubbles in the dents by roughening the boiling heat transfer surface or the like. As another means, it is also effective to inject gas into boiling nuclei. If pressurized steam is present as in this apparatus, this method is a very effective means, and it is preferable to employ this method. However, other boiling nuclei may be arranged or formed.
 図1により、原水を蒸留水と濃縮水(蒸発残水、残渣水)に分けるための基本的な構成を説明する。水蒸気と高温原水との間で熱交換を行う蒸発・凝縮装置2は、蒸発器10及び凝縮器11を有し、その間を伝熱板4で仕切られた一種の熱交換器である。その最上部には送風機(タービン)8が設けられており、蒸発器10から凝縮器11へ圧力を加えながら水蒸気を送り込むことができる。図中の蒸発・凝縮装置2の下側に記載された熱交換器20は、取り込んだ原水を加熱し、かつ、蒸留水及び濃縮水を冷却するための対向流式熱交換器であり、原水に熱を供給し終わった蒸留水と濃縮水(残渣水)が排出される。加熱された原水は熱交換器20から蒸発器10に送られる。高温原水を送るラインの途中にヒータ30が設けられている。このヒータ30は、装置の運転初期には熱上げのために必要である。ただし、蒸発器10及び凝縮器11の保温性を高め、外部に熱が逃げないようにし、また、熱交換器20の効率を高め、原水に十分な熱を伝えることができるようにすれば、運転開始後一定の時間経過の後定常状態になれば概ね送風機の持つエネルギーだけで蒸留水を製造することが可能である。しかし、外部への熱の飛散が多い場合や、熱交換器20の性能が低い場合には原水に熱を供給するためにヒータ30を継続して使う必要がある。
 送風機8により加圧された蒸気の一部を蒸気配管17を通して蒸発器内に吹き込み沸騰核とすることにより沸騰に必要な加熱度を低めることができる。蒸気配管は図1のように凝縮器内を通しても良く、凝縮器の外部を通しても良いが、外部の場合は保温が必要なことは言うまでもない。沸騰核のための蒸気量は蒸発室の水が沸点に達している箇所であれば、僅かで良いが、沸点よりも僅かに低い場合は凝縮により蒸気核がなくならないよう多めに蒸気を送ることが望まれる。最適な吹き込み口の選択を行えるよう、図1に示すように複数の吹き込み口を設置しておけば、運転条件に合わせ蒸発器内の温度が適切な位置の吹き込み口を選択することができ、そこに通じる配管設けバルブを開き、蒸気流量の調整を行うことができる。
A basic configuration for dividing raw water into distilled water and concentrated water (evaporation residual water, residual water) will be described with reference to FIG. The evaporation / condensing device 2 that performs heat exchange between steam and high-temperature raw water is a kind of heat exchanger that includes an evaporator 10 and a condenser 11 and is partitioned by a heat transfer plate 4 therebetween. A blower (turbine) 8 is provided at the uppermost part, and water vapor can be fed from the evaporator 10 to the condenser 11 while applying pressure. The heat exchanger 20 described on the lower side of the evaporation / condensing device 2 in the figure is a counterflow heat exchanger for heating the raw water taken in and cooling the distilled water and the concentrated water. Distilled water and concentrated water (residual water) that have finished supplying heat are discharged. The heated raw water is sent from the heat exchanger 20 to the evaporator 10. The heater 30 is provided in the middle of the line which sends high temperature raw water. The heater 30 is necessary for increasing the heat in the initial operation of the apparatus. However, if the heat retaining properties of the evaporator 10 and the condenser 11 are increased, heat is not escaped to the outside, the efficiency of the heat exchanger 20 is increased, and sufficient heat can be transmitted to the raw water, If it becomes a steady state after a certain period of time after the start of operation, it is possible to produce distilled water with only the energy of the blower. However, when there is a lot of heat scattering to the outside or when the performance of the heat exchanger 20 is low, it is necessary to continue using the heater 30 to supply heat to the raw water.
A part of the steam pressurized by the blower 8 is blown into the evaporator through the steam pipe 17 to form a boiling core, whereby the degree of heating necessary for boiling can be lowered. The steam pipe may pass through the condenser as shown in FIG. 1 or through the outside of the condenser, but it goes without saying that heat insulation is necessary in the case of the outside. The amount of steam for the boiling nuclei may be small if the water in the evaporation chamber reaches the boiling point, but if it is slightly lower than the boiling point, send more steam so that the vapor nuclei will not disappear due to condensation. Is desired. As shown in FIG. 1, if a plurality of air inlets are installed so that the optimum air inlet can be selected, it is possible to select an air inlet having an appropriate temperature in the evaporator according to the operating conditions. The piping valve leading to it can be opened to adjust the steam flow rate.
 図1の例では、ヒータ30を作動させながら原水及び濃縮水のラインのバルブを少しずつ開きながら水を通すと、時間の経過と共に熱交換器20の働きにより蒸発器10に入る原水の温度が高くなり、ついにはヒータ30の位置から水蒸気が発生するようになる。蒸発が始まったら、送風機8により圧力を高めながら水蒸気を凝縮器11に送り込むと沸点(凝縮温度)が高くなった水蒸気は伝熱板4の表面で凝縮し、蒸留水となる。凝縮熱は凝縮器11の凝縮面から蒸発器10の蒸発面に伝熱板4を通して効率よく伝熱される。水蒸気の圧縮度を高めて行くと、圧縮によりエネルギーの増えた水蒸気は蒸発器10の高温水を蒸発させる以上の熱量を有するようになり、一部の水蒸気は凝縮器11で凝縮しきれずに熱交換器20に達し、凝縮する。蒸留水と濃縮水は熱交換器20を通り、原水をほぼ沸点近くの(沸点より5℃低い温度以上の)温度まで高めることができる。外部に熱が逃げないように断熱性を高くし、また、水蒸気の圧縮率を高くすれば、ある程度時間が経ち定常状態になれば、ヒータ30の加熱をほとんどなくすことも可能である。例えば、圧力を1atmから1.1atmまで10%高めた場合には前述のように水蒸気の持つ熱量が2.99cal/gだけ増加するので、凝縮分を補うだけの水蒸気を沸騰水側から連続して送り込み0.1atmだけ水蒸気の圧力を高くし、保温を良くして、熱交換器のロスも含めて全体の熱ロスを水の3℃の温度低下以下に抑えれば、定常状態ではヒータによる加熱なしに蒸留水が連続生産できる。 In the example of FIG. 1, when water is passed while opening the valves of the raw water and concentrated water little by little while operating the heater 30, the temperature of the raw water entering the evaporator 10 is increased by the action of the heat exchanger 20 over time. The water vapor becomes higher and eventually water vapor is generated from the position of the heater 30. When evaporation starts, when steam is sent to the condenser 11 while increasing the pressure by the blower 8, the steam having a higher boiling point (condensation temperature) is condensed on the surface of the heat transfer plate 4 and becomes distilled water. The heat of condensation is efficiently transferred from the condensation surface of the condenser 11 to the evaporation surface of the evaporator 10 through the heat transfer plate 4. As the degree of compression of the water vapor increases, the water vapor whose energy has increased due to the compression has a heat quantity that evaporates the high-temperature water in the evaporator 10, and a portion of the water vapor is not condensed in the condenser 11 and is heated. It reaches the exchanger 20 and condenses. Distilled water and concentrated water can pass through the heat exchanger 20 to raise the raw water to a temperature near the boiling point (above 5 ° C. below the boiling point). If the heat insulation is increased so that heat does not escape to the outside, and the water vapor compression rate is increased, the heater 30 can be hardly heated when a steady state is reached after a certain period of time. For example, when the pressure is increased by 10% from 1 atm to 1.1 atm, the amount of heat of the water vapor increases by 2.99 cal / g as described above, so that water sufficient to supplement the condensate is continuously supplied from the boiling water side. If the water vapor pressure is increased by 0.1 atm, the heat retention is improved, and the overall heat loss including the loss of the heat exchanger is kept below the 3 ° C temperature drop of water, it will depend on the heater in the steady state. Distilled water can be continuously produced without heating.
 蒸発器10での蒸発と凝縮器11での凝縮はヒートパイプで言えば蒸発端と凝縮端に相当し、凝縮端の温度が蒸発端の温度よりも高いため、通常であれば熱の移動は起こらないが、ブロワ等の送風機8により凝縮端の圧力を高めることにより、水蒸気温度が上昇するので、熱の移動が可能になる。ヒートパイプは蒸発伝熱と凝縮伝熱の熱伝達が高いことと、水蒸気の移動速度が速いことから熱移動が極めて優れているのであるが、本発明でも、伝熱板の厚さを薄くして、蒸発熱伝達率及び凝縮熱伝達率を高めることにより、極めて生産性が高くエネルギー使用量の極めて少ない蒸留水の製造が可能になる。このような伝熱板としては、原水にもよるが、例えば材質はチタン又は高耐食ステンレス、厚さは薄いほど好ましいが、装置の強度上の問題から0.3~1.0mmが一般的である。 The evaporation in the evaporator 10 and the condensation in the condenser 11 correspond to the evaporation end and the condensation end in the case of a heat pipe, and the temperature of the condensation end is higher than the temperature of the evaporation end. Although it does not occur, by increasing the pressure at the condensing end by a blower 8 such as a blower, the water vapor temperature rises, so heat can be transferred. The heat pipe is extremely excellent in heat transfer due to the high heat transfer between evaporation heat and condensation heat transfer, and the high speed of water vapor movement, but in the present invention, the thickness of the heat transfer plate is also reduced. Thus, by increasing the evaporation heat transfer coefficient and the condensation heat transfer coefficient, it becomes possible to produce distilled water with extremely high productivity and extremely low energy consumption. As such a heat transfer plate, although depending on raw water, for example, the material is titanium or highly corrosion-resistant stainless steel, and the thinner the thickness, the better. However, 0.3 to 1.0 mm is generally used due to the problem of the strength of the apparatus. is there.
 原水が淡水又はそれに近いものであれば、濃縮による沸点の上昇は濃縮率が数倍程度では沸点はほとんど変化しない。しかし、海水を原水とする場合、純粋な水の沸点に対し、海水の沸点は約0.5℃、2倍に濃縮された海水の沸点は約1℃高い。また、水の沸点の100℃では水の蒸気圧は1気圧(1atm)=760mmHgであり、1℃の温度変化で0.03~0.04atmだけ蒸気圧が変化する。この値から計算すると、濃縮率を2倍(蒸留水と濃縮水が等量)になるようにした場合、凝縮側の圧力を1atmから0.02atm弱(13mmHg程度)まで高くすると原水を海水とした場合の原水側と水蒸気の凝縮側の温度が等しくなる。したがって、海水からの蒸留水製造のためには少なくとも大気圧運転の場合には0.02atm以上の圧力差が必要である。
 水蒸気の圧力を1atmから1.5atmに高めると、ポアッソンの式
 PVγ=const
から水蒸気の温度は139.8℃まで高まり、体積は0.738倍になる。この時凝縮温度は111.6℃なので、水蒸気は28.2℃温度が降下してから凝縮することになり、この時に放出する熱量は定圧比熱1.95J/g・℃を使って計算すると28.2×1.95=54.99J/g=13.16cal/gである。また、2atmまで高めると170.6℃まで高まり、体積は0.595倍になる。この時凝縮温度は120.4℃なので、水蒸気は50.2℃温度が降下してから凝縮することになり、この時に放出する熱量は定圧比熱1.95J/g・℃を使って計算すると
 50.2×1.95=97.89J/g=23.42cal/g
である。
 これはかなりの熱量であり、送風機(タービン)の効率を考慮すると、圧力比を2.0以上に大きくすることはエネルギー効率からは得策ではなく、エネルギー効率が低下しても造水速度を高めたい緊急時以外は圧力比を1.5以下で使用することが望ましい。また、蒸発器と凝縮器の圧力差を大きく取ることは頑丈な装置としなければならず、装置の価格が上昇する。低価格化のため、差圧を小さくした場合には、その差圧以下で運転することになる。
If the raw water is fresh water or close to it, the boiling point rise due to concentration hardly changes at a concentration rate of several times. However, when seawater is used as raw water, the boiling point of seawater is about 0.5 ° C., and the boiling point of seawater concentrated twice is about 1 ° C. higher than that of pure water. At a boiling point of 100 ° C., the water vapor pressure is 1 atm (1 atm) = 760 mmHg, and the vapor pressure changes by 0.03 to 0.04 atm with a temperature change of 1 ° C. Calculated from this value, when the concentration rate is doubled (equivalent amounts of distilled water and concentrated water), increasing the pressure on the condensation side from 1 atm to a little less than 0.02 atm (about 13 mmHg) will change the raw water into seawater. In this case, the temperatures of the raw water side and the water vapor condensation side become equal. Therefore, in order to produce distilled water from seawater, a pressure difference of 0.02 atm or more is required at least in the case of atmospheric pressure operation.
When the water vapor pressure is increased from 1 atm to 1.5 atm, Poisson's equation PV γ = const
The water vapor temperature rises to 139.8 ° C. and the volume is 0.738 times. At this time, since the condensation temperature is 111.6 ° C., the water vapor condenses after the temperature has dropped by 28.2 ° C. The amount of heat released at this time is 28 when calculated using a constant pressure specific heat of 1.95 J / g · ° C. 2 × 1.95 = 54.99 J / g = 13.16 cal / g. Moreover, if it raises to 2 atm, it will rise to 170.6 degreeC and a volume will be 0.595 times. Since the condensation temperature at this time is 120.4 ° C., the water vapor will condense after the temperature drops by 50.2 ° C., and the amount of heat released at this time is calculated using a constant pressure specific heat of 1.95 J / g · ° C. 50 .2 × 1.95 = 97.89 J / g = 23.42 cal / g
It is.
This is a considerable amount of heat, and considering the efficiency of the blower (turbine), increasing the pressure ratio to 2.0 or higher is not a good idea from the viewpoint of energy efficiency. It is desirable to use a pressure ratio of 1.5 or less except in emergency situations. In addition, a large pressure difference between the evaporator and the condenser must be a sturdy device, which increases the price of the device. In order to reduce the price, when the differential pressure is reduced, operation is performed below the differential pressure.
 図2Aに、本発明に係る蒸留水及び濃縮水の製造装置の一例の組み立ての構成を示す。本発明による蒸留水及び濃縮水の製造装置は市販の熱交換器、配管、ポンプなどを組み合わせることで製造できる。実際の装置は運転しやすく、メンテナンスが容易であることが必要である。そのため、送風機8は、蒸発・凝縮装置2から切り離した。 FIG. 2A shows an assembling configuration of an example of an apparatus for producing distilled water and concentrated water according to the present invention. The apparatus for producing distilled water and concentrated water according to the present invention can be produced by combining commercially available heat exchangers, pipes, pumps and the like. The actual device needs to be easy to operate and easy to maintain. Therefore, the blower 8 was disconnected from the evaporation / condensing device 2.
 図2Aに示された蒸留水及び濃縮水の製造装置1の構成を原水、蒸留水及び水蒸気の流れに従って説明する。図2Aでは、冷水(原水、蒸留水を含む)の流れは細実線の矢印、熱水(原水、蒸留水を含む)の流れは太実線の矢印、水蒸気の流れは破線の矢印により、それぞれ示している。
 示された蒸留水及び濃縮水の製造装置1の構成を原水、蒸留水及び水蒸気の流れに従って説明する。図2Aでは、冷水(原水、蒸留水を含む)の流れは細実線の矢印、熱水(原水、蒸留水を含む)の流れは太実線の矢印、水蒸気の流れは破線の矢印により、それぞれ示している。
 蒸留水を得る目的に対しては、原水40は、河川水などの淡水、海水、塩水湖水などの塩分を含む水などの自然水が使用できる。また、濃縮の目的は、塩の製造に必要な海水、塩水湖水の濃縮水を得るなど、有用物の濃化であることの他、有害な重金属あるいは環境基準以上に含まれる有害物質を含む要処理水の処理負荷を軽減することもある。
The configuration of the distilled water and concentrated water manufacturing apparatus 1 shown in FIG. 2A will be described according to the flow of raw water, distilled water, and water vapor. In FIG. 2A, the flow of cold water (including raw water and distilled water) is indicated by thin solid arrows, the flow of hot water (including raw water and distilled water) is indicated by thick solid arrows, and the flow of water vapor is indicated by dashed arrows. ing.
The structure of the manufacturing apparatus 1 of the shown distilled water and concentrated water is demonstrated according to the flow of raw | natural water, distilled water, and water vapor | steam. In FIG. 2A, the flow of cold water (including raw water and distilled water) is indicated by thin solid arrows, the flow of hot water (including raw water and distilled water) is indicated by thick solid arrows, and the flow of water vapor is indicated by dashed arrows. ing.
For the purpose of obtaining distilled water, the raw water 40 can be natural water such as fresh water such as river water, sea water, salt water such as salt water lake water, and the like. The purpose of concentration is not only to concentrate useful substances, such as obtaining concentrated seawater and salt lake water for salt production, but also to contain hazardous heavy metals or hazardous substances that exceed environmental standards. The treatment load of treated water may be reduced.
 原水40は、ポンプ等の供給手段(図示せず)により装置に送り込まれる。まず、原水は脱気装置22に入り、脱ガスを行う。水蒸気が凝縮する速度(凝縮熱伝達率)は水蒸気中に非凝縮性ガスが含まれるか否かで大きく異なる。そのため、効率よく凝縮させるために凝縮速度を低下させる非凝縮性ガス(空気成分)をあらかじめ除去(脱ガス)することが望ましい。脱気装置22としては、低温の原水を真空ポンプで減圧して溶存ガスを放出させる方法が既に確立されているので、これらの装置を利用することが簡便であり好ましいが、その他のものでも良い。また、大気と平衡している自然水中には大気成分とほぼ同程度の比率で窒素、酸素、アルゴン、炭酸ガスなどが存在し、これらは温度が高くなるほど溶解度が低くなるため昇温過程で気泡として分離されるので、脱気装置22を用いないで、或いは併用して、原水を昇温させる熱交換器24、26を2段以上とし、途中の温度で分離されたガス気泡を捕集する方法を採用してもよい。 Raw water 40 is fed into the apparatus by a supply means (not shown) such as a pump. First, raw water enters the deaeration device 22 and degass it. The speed at which water vapor condenses (condensation heat transfer coefficient) varies greatly depending on whether or not non-condensable gas is contained in the water vapor. Therefore, it is desirable to remove (degas) in advance a non-condensable gas (air component) that lowers the condensation rate in order to efficiently condense. As the degassing device 22, a method for depressurizing low-temperature raw water with a vacuum pump to release dissolved gas has already been established. Therefore, it is convenient and preferable to use these devices, but other devices may be used. . In addition, natural water that is in equilibrium with the atmosphere contains nitrogen, oxygen, argon, carbon dioxide gas, etc. at a ratio that is almost the same as the atmospheric components, and the higher the temperature, the lower the solubility. Therefore, without using the deaerator 22 or in combination, the heat exchangers 24 and 26 for raising the temperature of the raw water are arranged in two or more stages, and gas bubbles separated at an intermediate temperature are collected. A method may be adopted.
 次に原水は、熱交換器24、26に分かれて流れる。熱交換器24では、蒸発・凝縮装置2の凝縮器から排出された蒸留水との間で熱交換を行い、原水の温度を沸点よりも5℃低い温度以上に加熱する。ここで5℃とした理由は、この温度から沸点まで上昇させるためには5cal/gの熱量が必要であり、気液分離率を50%とすると生成水には10cal/gの熱量が必要となってしまい、沸点よりも5℃以上低下するとエネルギー効率が低くなるからである。なお、5cal/gの熱量に相当する圧縮は1atmからであれば1.172atmまで、0.5atmからであれば0.586気圧まで加圧することになる。同様に、熱交換器26では、気液分離器6から排出された濃縮水(残渣水)との間で熱交換を行い、原水の温度を原水の沸点よりも5℃低い温度以上に加熱する。 Next, the raw water is divided into heat exchangers 24 and 26 and flows. In the heat exchanger 24, heat is exchanged with distilled water discharged from the condenser of the evaporation / condensing device 2, and the temperature of the raw water is heated to a temperature that is 5 ° C. lower than the boiling point. The reason why the temperature is set to 5 ° C. is that a calorie of 5 cal / g is necessary to raise the temperature from this temperature to the boiling point, and a calorie of 10 cal / g is necessary for the produced water when the gas-liquid separation rate is 50%. This is because the energy efficiency is lowered when the temperature is lowered by 5 ° C. or more from the boiling point. The compression corresponding to the calorie of 5 cal / g is pressurized from 1. atm to 1.172 atm, and from 0.5 atm to 0.586 atm. Similarly, in the heat exchanger 26, heat exchange is performed with the concentrated water (residual water) discharged from the gas-liquid separator 6, and the temperature of the raw water is heated to a temperature that is 5 ° C. lower than the boiling point of the raw water. .
 原水と高温の蒸留水及び濃縮水とを熱交換するために使用する熱交換器24、26としては対向流式熱交換器が望ましく、とりわけプレート式熱交換器が適しているが、かならずしもプレート式熱交換器には限定されない。効率の良いプレート式熱交換器を対向流式で使用した場合、一次側と二次側の温度差をわずか1℃にすることも可能であり、2~3℃の温度差で運転可能である。これにより、脱ガスされた原水は熱交換器の出口付近で沸騰温度に近づくが、圧力差を大きくとり凝縮器側の温度が高い時には、熱交換器に沸騰温度よりも高い凝縮水が流れ込み、蒸発器に入る前に沸騰を開始するようにすることもできる。熱交換のための熱水は濃縮水(残渣水)と蒸留水があるので、これらが混じらないようにする。図2Aの例では、プレート式熱交換器を2台使用しているが、3台以上を使用してもよく、あるいは1台で流路を仕切る仕切り板(めくら板)を取り付けこともでき、或いはその他の方法を採ることもできる。 As the heat exchangers 24 and 26 used for exchanging heat between raw water and high-temperature distilled water and concentrated water, counter-flow type heat exchangers are desirable, and plate type heat exchangers are particularly suitable. The heat exchanger is not limited. When an efficient plate heat exchanger is used in the counterflow type, the temperature difference between the primary and secondary sides can be as low as 1 ° C, and operation is possible at a temperature difference of 2 to 3 ° C. . Thereby, the degassed raw water approaches the boiling temperature near the outlet of the heat exchanger, but when the pressure difference is large and the temperature on the condenser side is high, condensed water higher than the boiling temperature flows into the heat exchanger, It is also possible to start boiling before entering the evaporator. Hot water for heat exchange includes concentrated water (residual water) and distilled water so that they are not mixed. In the example of FIG. 2A, two plate-type heat exchangers are used, but three or more may be used, or a partition plate (a blind plate) that divides the flow path by one can be attached, Alternatively, other methods can be adopted.
 それぞれの熱交換器24、26により加熱された原水は、合流して熱上げヒータ30を通って高温原水流入ライン12から蒸発・凝縮装置2に入るが、定常状態以降はほとんどヒータ30を働かせなくても良い。図1に説明したように、蒸発器内で、水蒸気の凝縮熱により加熱されて原水の少なくとも一部が蒸発する。立ち上げ時には水蒸気を発生させるために水蒸気発生ヒータ32を用いるが、定常状態になれば、このヒータもほとんど働かせなくても良い。気液分離器6にて、水蒸気と濃縮水に分離されて、濃縮水は、濃縮水排出ライン16から熱の回収のための熱交換器26に送られて冷却される。 The raw water heated by the heat exchangers 24 and 26 merges and passes through the heating heater 30 and enters the evaporation / condensing device 2 from the high-temperature raw water inflow line 12, but the heater 30 hardly works after the steady state. May be. As described in FIG. 1, at least a part of the raw water is evaporated by being heated by the condensation heat of water vapor in the evaporator. Although the water vapor generating heater 32 is used to generate water vapor at the time of start-up, this heater may be hardly operated when the steady state is reached. The gas-liquid separator 6 separates the water vapor and the concentrated water, and the concentrated water is sent from the concentrated water discharge line 16 to the heat exchanger 26 for heat recovery and cooled.
 水蒸気は、タービン式などの送風機(ブロア)8により加圧されて蒸発・凝縮装置2の凝縮器に送られ、生成された蒸留水は蒸留水排出ライン14から排出されて熱交換器24に送られる。
 水蒸気の加圧は、原水の種類にもよるが圧力比を1.01~2.0にすることが好ましい。大気圧であれば0.01~1.0atmの加圧に相当する。その理由は、大気圧下の加圧が0.01atm以下では淡水の蒸留であっても実用的には圧力が低すぎ、凝縮器と蒸発器の温度差が小さいため、蒸留水製造能力が低いからである。加圧が大きいほど凝縮器と蒸発器の温度差が大きくなり、凝縮速度と蒸発速度が速くなり、蒸留水の生成速度は高まるが、加圧の圧力比が2.0を超えるような圧力では水を20℃以上も上昇させるほどのエネルギーを供給することになり、エネルギーコストが高くなるからである。装置の運転に際しては供給能力に余裕があれば、加圧を低め、水の需要が増えて供給能力の余裕がなくなったら、加圧を高めるフレキシビリティのある運転が可能である。
The steam is pressurized by a turbine type blower (blower) 8 and sent to the condenser of the evaporator / condenser 2, and the produced distilled water is discharged from the distilled water discharge line 14 and sent to the heat exchanger 24. It is done.
The pressure of water vapor is preferably 1.01 to 2.0, depending on the type of raw water. If it is atmospheric pressure, it corresponds to a pressure of 0.01 to 1.0 atm. The reason for this is that if the pressure under atmospheric pressure is 0.01 atm or less, even if it is distillation of fresh water, the pressure is practically too low, and the temperature difference between the condenser and the evaporator is small, so the distilled water production capacity is low. Because. The greater the pressurization, the greater the temperature difference between the condenser and the evaporator, the faster the condensation rate and the evaporation rate, and the higher the production rate of distilled water, but at pressures where the pressure ratio of pressurization exceeds 2.0. This is because the energy to raise the water by 20 ° C. or more is supplied, and the energy cost increases. When the apparatus is operated, if the supply capacity is sufficient, the pressurization is reduced, and if the demand for water increases and the supply capacity is no longer sufficient, a flexible operation for increasing the pressurization is possible.
 プレート式熱交換器は分解点検が容易であり、流体の方向の入れ替えも容易にできる。そのため、原水の流れるライン(流路)と、蒸留水又は濃縮水の流れるライン(流路)が交換できるようになっていることが好ましい。運転停止・清掃後、原水の流れていた流路に熱水を流し、熱水側流路に原水を流すことにより、原水側に付着したスケールが熱水に溶け出すので、スケール除去が完全でなくても良く、メンテナンスが容易となる。 The plate heat exchanger can be easily disassembled and inspected, and the direction of the fluid can be easily changed. Therefore, it is preferable that the line (flow path) through which raw water flows and the line (flow path) through which distilled water or concentrated water flows can be exchanged. After the operation is stopped and cleaned, the scale attached to the raw water side dissolves in the hot water by flowing hot water through the flow path where the raw water flows, and then flowing the raw water through the flow path on the hot water side. There is no need, and maintenance becomes easy.
 蒸発器の沸騰部は大気圧でも良く、また、減圧していても良い。大気圧であれば装置の強度の問題が少ない利点がある。しかし、大気圧では100℃の沸騰温度となるため、減圧の場合よりも熱ロスが生じやすく、腐食性の海水を原水とする場合には温度が高いだけに熱交換器を構成する材料の耐食性も高くする必要があり、材料費が若干嵩むことになる。圧力を低めると、低温で蒸留が可能となり、また、装置へのスケール付着は強固ではなく、量も少なくなる、熱損失も少ない利点があるが、蒸留速度が低下する、あるいは減圧用に真空ポンプが必要となるなどの問題がある。
 一方、圧力を高めると、装置の耐圧強度を高めるためコスト的問題が生じるほか、沸騰温度が高くなり、原水又は濃縮水の腐食性が高まるため、高価な材料が必要となる他、装置へのスケール付着が強固となり、量も多くなり、スケール除去の手間が増える。しかし、蒸留速度が高まるので、用途によっては圧力を高めることも有効である。
The boiling portion of the evaporator may be at atmospheric pressure or may be depressurized. At atmospheric pressure, there is an advantage that there are few problems of strength of the apparatus. However, since the boiling temperature is 100 ° C. at atmospheric pressure, heat loss is more likely to occur than in the case of reduced pressure, and when corrosive seawater is used as raw water, the corrosion resistance of the material constituting the heat exchanger is only high. However, the material cost is slightly increased. Lowering the pressure enables distillation at a low temperature, and the scale adhesion to the equipment is not strong, the amount is small, and there is an advantage of less heat loss, but the distillation rate is reduced, or a vacuum pump for decompression There is a problem that is necessary.
On the other hand, when the pressure is increased, the pressure strength of the device is increased, resulting in cost problems, the boiling temperature is increased, and the corrosiveness of the raw water or the concentrated water is increased. Scale adhesion becomes stronger, the amount increases, and the time and effort for removing the scale increases. However, since the distillation rate increases, it is also effective to increase the pressure depending on the application.
 図2Bには、蒸発・凝縮装置としてのプレート式熱交換器3を2台連結し、連結部に蒸気配管17を通じて沸騰核となる加圧蒸気を吹き込めるようにした例を示す。蒸発・凝縮装置2はプレート式熱交換器であれば、1台で流路を仕切る仕切り板(めくら板)を取り付けることもできる。 FIG. 2B shows an example in which two plate heat exchangers 3 as evaporation / condensation devices are connected, and pressurized steam as boiling nuclei can be blown into the connecting portion through the steam pipe 17. If the evaporation / condensing device 2 is a plate heat exchanger, a partition plate (a blind plate) that divides the flow path by a single unit can be attached.
 図3に蒸発・凝縮装置を多段に組み合わせた本発明に係る装置の1例を示す。各組は、それぞれ、蒸発・凝縮装置2、2′、2″、気液分離装置6、6′、6″、送風機8、8′、8″、蒸留水排出ライン14、14′、14″、濃縮水排出ライン16、16′、16″を有し、1段目の蒸発・凝縮装置2に熱交換器(図示せず)で加熱された高温原水が高温原水流入ライン12から流入するが、2段目及び3段目の蒸発・凝縮装置2、2′、2″には、それぞれ1段目及び2段目の気液分離器6、6′から排出された濃縮水を原水として導入する。3段目の気液分離装置6″から排出された濃縮水及び各段の蒸発・凝縮装置2、2′、2″から排出された蒸留水は熱交換器に送られて原水の予熱のために熱交換が行われる。図3の例では、気液分離器6、6′から排出された濃縮水は、高温のため予熱の必要はない。図3の例は、蒸発・凝縮装置を3段に組み合わせているが、組み合わせは2段でもよく、4段以上にすることも可能である。この例でも沸騰核となる蒸気導入を行うことにより効率は高めることができる。
 海水などの蒸留後に残る濃縮水を飽和まで濃縮すると沸点が10℃程度上昇するので、加圧力を高める必要が出てくる事になりエネルギーの消費が大きくなる。海水淡水化の場合には濃縮水の濃縮度を高くするとエネルギー的に不利となること、及び濃縮水の熱を熱交換器により回収することを考慮すると、濃縮率は2~8倍程度が適切である。しかし、大型の設備では図3に示すように多段に蒸発・凝縮器を組み合わせれば、濃縮率を3倍程度の2段でも9倍に濃縮できることになり、効率が高まる。一方、海水などの蒸留後に残る濃縮水を製塩用として有効利用することも可能であり、この場合には濃縮する濃度は高いほど良い。しかし、10倍以上の高濃度の製塩用濃縮塩水を一挙に製造するとエネルギー的に不利となることから、図3に示すように濃縮工程を2回あるいはそれ以上に分割した多段蒸留が有利である。濃縮度が高く、より高い加圧力を必要とする段になるほど水量が少なくなるので小型の熱交換器で済み、多段化によりエネルギー効率が高まるのである。また、濃縮度が高くなるほど、塩の析出による閉塞を起こしやすくなるが、閉塞防止対策は最終段にだけ施せば良いなど、装置の価格、メンテナンスの費用などが全体として安くなる。
FIG. 3 shows an example of an apparatus according to the present invention in which evaporation / condensing apparatuses are combined in multiple stages. Each set includes an evaporating / condensing device 2, 2 ', 2 ", a gas- liquid separating device 6, 6', 6", a blower 8, 8 ', 8 ", and a distilled water discharge line 14, 14', 14". The high-temperature raw water heated by the heat exchanger (not shown) flows into the first stage evaporation / condensing device 2 from the high-temperature raw water inflow line 12, having the concentrated water discharge lines 16, 16 ′, 16 ″. The concentrated water discharged from the first-stage and second-stage gas-liquid separators 6 and 6 'is introduced as raw water into the second-stage and third-stage evaporator / condenser 2, 2' and 2 ", respectively. To do. The concentrated water discharged from the third-stage gas-liquid separator 6 ″ and the distilled water discharged from each stage of the evaporating / condensing devices 2, 2 ′, 2 ″ are sent to a heat exchanger to preheat raw water. Heat exchange is performed. In the example of FIG. 3, the concentrated water discharged from the gas- liquid separators 6 and 6 ′ does not need to be preheated because of high temperature. In the example of FIG. 3, the evaporator / condenser is combined in three stages, but the combination may be two stages, or four or more stages. In this example as well, the efficiency can be increased by introducing steam as boiling nuclei.
When the concentrated water remaining after distillation such as seawater is concentrated to saturation, the boiling point rises by about 10 ° C., so that it becomes necessary to increase the applied pressure and the energy consumption increases. In the case of seawater desalination, the concentration rate should be about 2 to 8 times, considering that increasing the concentration of the concentrated water is disadvantageous in terms of energy, and recovering the heat of the concentrated water with a heat exchanger. It is. However, in a large facility, as shown in FIG. 3, if the evaporator / condenser is combined in multiple stages, the concentration rate can be increased 9 times even in 2 stages of about 3 times, and the efficiency is increased. On the other hand, concentrated water remaining after distillation, such as seawater, can be effectively used for salt production. In this case, the higher the concentration, the better. However, since it is disadvantageous in terms of energy to produce concentrated salt water for salt production at a concentration of 10 times or more at once, multistage distillation in which the concentration process is divided into two or more as shown in FIG. 3 is advantageous. . The higher the degree of concentration and the higher the pressure required, the smaller the amount of water, so a smaller heat exchanger is required, and the energy efficiency is increased by the multi-stage. In addition, as the degree of concentration increases, clogging due to salt precipitation is more likely to occur. However, the cost of the apparatus, the cost of maintenance, and the like are reduced as a whole, such as taking measures for clogging only at the final stage.
 本発明による蒸留水及び/又は濃縮水の製造装置と方法により、メンテナンスの容易な装置により、エネルギーの使用が少ない状態で蒸留水を得ることができ、淡水の得にくい離島、乾燥地帯などでの利用から、工業用高純度水としての利用まで低コストの水を得られるようになる。逆浸透膜法と比較してもエネルギー効率を高めることが可能であり、しかもメンテナンスが容易である。
 また、濃縮水の製造は食塩製造原料としての濃縮海水の製造、各種水処理の前処理など広い利用に対し、これまでより安価に行うことができるようになる。
 なお、蒸留水の製造装置と方法ならびに濃縮水の製造装置と方法は、両方を使うことはエネルギー効率の観点から望ましいが、使用者の環境と必要性に応じてどちらか一方のみの使用で事足りるのであれば、どちらかだけを使用できることは当然である。
With the apparatus and method for producing distilled water and / or concentrated water according to the present invention, it is possible to obtain distilled water with low energy use by an apparatus that is easy to maintain. Low-cost water can be obtained from use to use as industrial high-purity water. Compared with the reverse osmosis membrane method, energy efficiency can be increased and maintenance is easy.
Concentrated water can be produced at a lower cost than ever for wide use such as production of concentrated seawater as a salt production raw material and pretreatment of various water treatments.
Use of both distilled water production equipment and method and concentrated water production equipment and method is desirable from the viewpoint of energy efficiency, but it is sufficient to use either one according to the user's environment and necessity. Of course, only one of them can be used.
実験例
 上記のとおり、伝熱板で仕切られた蒸発器と凝縮器とに送風機により圧力差を形成することにより、蒸発器と凝縮器との間で熱伝達が起こり、それにより凝縮器での蒸気の凝縮熱を蒸発器での蒸発に使用できる。このことを実証する実験装置の概略図を図4に示す。この実験装置では蒸発器10は外径122mm、内径121mm、高さ400mmのステンレス製円筒とし、その内部に5mm程度の流路幅を確保するため直径111mm、高さ300mmの上部に丸みを持たせたステンレス製円筒(内筒)5を下から5mm浮かせた状態で数点で固定した。凝縮器内円筒容器5の上部約100mmの蒸発器出口部分には送風機8を取り付けた。蒸気中に含まれる水滴は蒸発器上部に設置したミストトラップ9で捕集し、蒸発器壁に戻るようにした。次に、送風機8及び蒸発器全体を包みこむよう、その外側に内径約180mm、高さ430mmの凝縮器11を配し、凝縮器11の周囲および配管の必要箇所に保温材を配置した。図中の符号35は圧力計、36、36′、36″、36″′は温度計をそれぞれ示す。凝縮器11内の蒸気の一部を沸騰核として蒸発器に導入するために蒸気配管17が蒸発器高さの下から約1/5の位置で蒸発器に周方向に4箇所取り付け、それぞれの蒸気配管17には調整弁を設けて予め微量の蒸気が通るように調整した。供給する原水の温度を正確なものとするために、熱交換器20は使用せずに、その代わりに温度調節器付き原水槽27から望みの温度の原水を蒸発器4に供給できるようにした。凝縮器で生成した蒸留水は出口配管を出た後に冷却器29により冷却後、蒸留水溜め水槽39に導き、蒸留水の生成量を重量計47′により測定した。また、温度調節器付き原水槽27と原水流量調節弁43との間は軟らかなシリコンゴムホースで繋ぎ、槽も含めた原水重量を測定できるようにした。
 圧力については、凝縮側を大気圧とし、送風機(タービン)8の入力電圧調整と原水流量調節弁43により蒸発器内を0.8atmまで下げることができるようにした。試験は、蒸発器内を0.9atm、凝縮器内を1atmとした時に次の結果が得られた。
 (1) 実験前に原水流量調節弁43より上部の配管と蒸発器内に保持される水の重量(約1.2kg)をあらかじめ測定する。
 (2) 温度調節付き原水加熱ヒータ37により、原水槽27の水を一旦沸騰させる。沸騰による水蒸気はフレキシブルカバー28により遮られ、圧力逃がし弁19を通って溶存空気と共に排出され、その後の原水への空気溶け込みはフレキシブルカバー28により防止された。この状態で原水を97℃の一定温度に保たせた。
 (3) これとは別に水蒸気発生ヒータ31により、水蒸気供給器33を加熱して水蒸気を発生させ、これを水蒸気供給弁32を通して蒸発器10に蒸気を十分に供給してやると蒸発器内の温度計36′及び凝縮器内の温度計36が100℃を示し、圧力逃がし弁18から水蒸気が出てくるようになる。
 (4) 水蒸気供給器付属弁32を閉じ、原水重量を重量計47により測定する。
 (5) 送風機8を運転し蒸発器内圧力が0.9atmになるように送風機モーターの電圧を調整し、流量調整弁43を少しずつ開き蒸発器内に97℃の原水を供給する。
 (6) この時蒸発器内の圧力が1atmに少し近づくが、そのまま97℃の原水を供給し、重量からみて蒸発器内の水の高さが130mmまで上がったと判断した後、流量調整弁43を閉じる直前まで細くする。そうすると蒸発器内圧力は0.9atmにほぼ戻り、蒸留水の流れ38が観察されるようになる。この時、蒸留水流量調節弁44は蒸留水の流れを阻害しないように開けておく。
 (7) これ以降、原水重量と蒸留水の重量の合計が等しくなるよう流量調整弁43を調整する。このことは、蒸発器内の水の高さを一定に保つことである。
 (8) 2分ほど経過すると蒸発器内下部の温度はほぼ97℃であるが、送風機から出てくる水蒸気の温度を温度計36で測定したところ、106℃程度に高まり、圧力逃がし弁18から漏れる水蒸気量がほぼ一定になる。
 (9) この状態で蒸発器内圧力が一定になるよう送風機モーター供給電圧を微調整したところ約49V、4.9Aと約240Wとなった。また、安定状態の10分間に約270mlの蒸留水が得られた。この時の伝熱面積は約0.05mと計算される。
 (10)次に流量調整弁43を開き、原水の重量から蒸発器内の水の高さが260mmまで上がったと判断できたところで流量調整弁43を調整し、その高さを維持するようにした。
 (11)これにより圧力逃がし弁18から漏れる水蒸気量は目視では増え、また、蒸留水の流れは多くなった。
 (12)安定状態になってからの10分間の蒸留水生成量は約500mlとなった。この時、0.9atmを維持するに必要な送風機電力は約250Wであり、伝熱面積は約0.1mと計算される。
 (13)次に蒸発器に入る原水温度の影響を見るため、送風機の運転をそのまま継続しながら、原水槽27の設定温度を97℃から96℃に下げた。約3分後原水の温度が96℃に達した。また、蒸発器内下部の温度も96℃となった。一方、送風機から出てくる水蒸気の温度は106℃と変化がなかったが、圧力逃がし弁18から吹き出す水蒸気量は徐々に減り、吹き出し量は目視で半減した。しかし蒸留水の流れの様子は変化が見られなかった。また、0.9atmを維持するに必要な送風機電力は250Wのままであった。
 (14)この状態で10分間運転したところ、蒸留水生成量はほとんど同じで、やはり10分間に約500mlが得られた。
 (15)さらに蒸発器に入る原水温度を95℃まで徐々に低下させたところ、圧力逃がし弁18から吹き出す水蒸気量は徐々に減ったが、蒸留水生成速度はほとんど変化しなかった。さらに原水温度を下げたところ、95℃を僅かに下回ったところで圧力逃がし弁18から吹き出す水蒸気が停止した。それと共に蒸留水の流れ18もなくなったので、流量調整弁43を閉じた。
 (16)送風機モーターに供給する電圧を上げ、電力を800Wにしたところ、蒸発器内の圧力は約0.8atmとなり、この瞬間圧力逃がし弁18から蒸気が吹き出たが、すぐに吹き出しは停止した。0.8atmにしたことで沸点が下がり水蒸気は一時的に発生したが、蒸留水の流れ出しは回復しなかった。凝縮器と大気とを完全にシールしていない構造のため、凝縮器内に空気が入って凝縮速度が低下し、十分な熱量が蒸発室に伝えられなくなったことが理由として考えられる。
 今回の実験では伝熱面積が約0.05mと0.1mで、この伝熱面積に対し、240~250W/hのエネルギー投入で、約1.6リットル/hおよび3リットル/hの蒸留水が得られた。また、沸点より1~2℃低い温度の水を蒸発器に送り込んでも凝縮器からの熱により沸点まで加熱され、沸点で送り込む時と同程度の蒸留水が得られることが判明した。
Experimental Example As described above, by forming a pressure difference between the evaporator and the condenser partitioned by the heat transfer plate by the blower, heat transfer occurs between the evaporator and the condenser, thereby The heat of vapor condensation can be used for evaporation in the evaporator. A schematic diagram of an experimental apparatus demonstrating this is shown in FIG. In this experimental apparatus, the evaporator 10 is a stainless steel cylinder having an outer diameter of 122 mm, an inner diameter of 121 mm, and a height of 400 mm. In order to secure a flow path width of about 5 mm inside, the upper part having a diameter of 111 mm and a height of 300 mm is rounded. A stainless steel cylinder (inner cylinder) 5 was fixed at several points in a state where it was floated 5 mm from the bottom. A blower 8 was attached to the evaporator outlet portion of about 100 mm above the cylindrical container 5 in the condenser. Water droplets contained in the steam were collected by a mist trap 9 installed at the top of the evaporator and returned to the evaporator wall. Next, a condenser 11 having an inner diameter of about 180 mm and a height of 430 mm was arranged on the outside so as to wrap the entire blower 8 and the evaporator, and a heat insulating material was arranged around the condenser 11 and necessary places on the piping. In the drawing, reference numeral 35 denotes a pressure gauge, and 36, 36 ', 36 ", 36""denote thermometers, respectively. In order to introduce a part of the steam in the condenser 11 into the evaporator as boiling nuclei, four steam pipes 17 are attached to the evaporator in the circumferential direction at a position about 1/5 from the bottom of the evaporator height. The steam pipe 17 was provided with an adjustment valve and adjusted in advance so that a small amount of steam passed. In order to make the temperature of the supplied raw water accurate, the heat exchanger 20 is not used, but instead, the raw water at a desired temperature can be supplied to the evaporator 4 from the raw water tank 27 with a temperature controller. . Distilled water produced by the condenser was discharged from the outlet pipe, cooled by the cooler 29, led to the distilled water reservoir 39, and the amount of distilled water produced was measured by a weigh scale 47 '. Further, the raw water tank 27 with temperature controller and the raw water flow rate control valve 43 are connected by a soft silicone rubber hose so that the weight of the raw water including the tank can be measured.
Regarding the pressure, the condensation side was set to atmospheric pressure, and the inside of the evaporator could be lowered to 0.8 atm by adjusting the input voltage of the blower (turbine) 8 and the raw water flow rate adjusting valve 43. In the test, the following results were obtained when the inside of the evaporator was 0.9 atm and the inside of the condenser was 1 atm.
(1) Prior to the experiment, the weight of water (about 1.2 kg) retained in the pipe and the evaporator above the raw water flow rate control valve 43 is measured in advance.
(2) The raw water tank 27 is once boiled by the raw water heater 37 with temperature control. Water vapor due to boiling was blocked by the flexible cover 28 and discharged together with the dissolved air through the pressure relief valve 19, and the subsequent air dissolution into the raw water was prevented by the flexible cover 28. In this state, the raw water was kept at a constant temperature of 97 ° C.
(3) Separately from this, when the steam supply heater 33 is heated by the steam generation heater 31 to generate steam and the steam is sufficiently supplied to the evaporator 10 through the steam supply valve 32, a thermometer in the evaporator is provided. 36 'and the thermometer 36 in the condenser indicate 100 ° C, and water vapor comes out of the pressure relief valve 18.
(4) The steam supply valve 32 is closed and the raw water weight is measured by the weigh scale 47.
(5) The blower 8 is operated to adjust the voltage of the blower motor so that the evaporator internal pressure becomes 0.9 atm, and the flow rate adjusting valve 43 is opened little by little to supply 97 ° C. raw water into the evaporator.
(6) At this time, the pressure in the evaporator slightly approaches 1 atm, but the raw water at 97 ° C. is supplied as it is, and after judging that the height of the water in the evaporator has increased to 130 mm as seen from the weight, the flow control valve 43 Thin until just before closing. Then, the pressure in the evaporator almost returns to 0.9 atm, and a flow 38 of distilled water can be observed. At this time, the distilled water flow rate adjusting valve 44 is opened so as not to disturb the flow of distilled water.
(7) Thereafter, the flow rate adjustment valve 43 is adjusted so that the total weight of the raw water and the distilled water becomes equal. This is to keep the water level in the evaporator constant.
(8) After about 2 minutes, the temperature in the lower part of the evaporator is about 97 ° C, but when the temperature of the water vapor coming out of the blower is measured with the thermometer 36, the temperature rises to about 106 ° C, and the pressure relief valve 18 The amount of water vapor leaking is almost constant.
(9) When the blower motor supply voltage was finely adjusted so that the internal pressure of the evaporator was constant in this state, it was about 49 V, 4.9 A and about 240 W. In addition, about 270 ml of distilled water was obtained in 10 minutes in a stable state. The heat transfer area at this time is calculated to be about 0.05 m 2 .
(10) Next, the flow rate adjusting valve 43 is opened, and the flow rate adjusting valve 43 is adjusted when the height of the water in the evaporator is judged to have increased to 260 mm from the weight of the raw water, and the height is maintained. .
(11) As a result, the amount of water vapor leaking from the pressure relief valve 18 increased visually, and the flow of distilled water increased.
(12) The amount of distilled water produced for 10 minutes after becoming stable was about 500 ml. At this time, the fan power required to maintain 0.9 atm is about 250 W, and the heat transfer area is calculated to be about 0.1 m 2 .
(13) Next, in order to see the influence of the raw water temperature entering the evaporator, the set temperature of the raw water tank 27 was lowered from 97 ° C. to 96 ° C. while continuing the operation of the blower. After about 3 minutes, the temperature of the raw water reached 96 ° C. The temperature in the lower part of the evaporator was 96 ° C. On the other hand, although the temperature of the water vapor coming out of the blower was unchanged at 106 ° C., the amount of water vapor blown out from the pressure relief valve 18 was gradually reduced, and the amount of air blown out was visually halved. However, there was no change in the flow of distilled water. Moreover, the fan electric power required to maintain 0.9 atm remained at 250 W.
(14) When operated for 10 minutes in this state, the amount of distilled water produced was almost the same, and about 500 ml was obtained in 10 minutes.
(15) Further, when the temperature of the raw water entering the evaporator was gradually lowered to 95 ° C., the amount of water vapor blown from the pressure relief valve 18 gradually decreased, but the production rate of distilled water hardly changed. When the raw water temperature was further lowered, the water vapor blown out from the pressure relief valve 18 was stopped when the temperature was slightly below 95 ° C. At the same time, the flow 18 of distilled water disappeared, so the flow rate adjustment valve 43 was closed.
(16) When the voltage supplied to the blower motor was increased and the power was set to 800 W, the pressure in the evaporator was about 0.8 atm, and the steam was blown out from the pressure relief valve 18 at this moment, but the blowing stopped immediately. . Although the boiling point decreased and water vapor was temporarily generated by setting the pressure at 0.8 atm, the flow of distilled water did not recover. The reason is that the condenser and the atmosphere are not completely sealed, so that air enters the condenser and the condensation rate decreases, so that a sufficient amount of heat cannot be transferred to the evaporation chamber.
In this experiment, the heat transfer areas were about 0.05 m 2 and 0.1 m 2 , and about 1.6 liters / h and 3 liters / h with an energy input of 240 to 250 W / h for this heat transfer area. Distilled water was obtained. It was also found that even when water having a temperature lower by 1 to 2 ° C. than the boiling point was sent to the evaporator, it was heated to the boiling point by the heat from the condenser, and distilled water having the same level as that at the boiling point was obtained.
 以上述べたように、本発明による蒸留水及び/又は濃縮水の製造方法及び装置の構成を一例として説明したが、この構成に限定されるものではなく、請求の範囲から離脱することなく種々の変更が可能であることは言うまでもない。 As described above, the configuration of the method and apparatus for producing distilled water and / or concentrated water according to the present invention has been described as an example. However, the present invention is not limited to this configuration, and various methods can be used without departing from the scope of the claims. It goes without saying that changes are possible.
 1 蒸留水及び/又は濃縮水製造装置
 2、2′、2″ 蒸発・凝縮装置
 3 蒸発・凝縮装置
 4 伝熱板
 6、6′、6″ 気液分離機
 8、8′、8″ 送風機
 9 ミストトラップ
 10 蒸発器
 11 凝縮器
 12 高温原水流入ライン
 14、14′、14″ 蒸留水排出ライン
 16、16′、16″ 濃縮水排出ライン
 17 蒸気配管
 18 圧力逃がし弁(凝縮器用)
 19 圧力逃がし弁(原水槽用)
 20 熱交換器
 22 脱気装置
 24、26 プレート式熱交換器
 27 温度調節器付き原水槽
 28 フレキシブルカバー
 29 冷却器
 30 熱上げヒータ
 31 水蒸気発生ヒータ
 32 水蒸気供給弁
 33 水蒸気供給器
 35 圧力計
 36、36′、36″、36″′ 温度計
 37 原水加熱ヒータ
 38 蒸留水流
 39 蒸留水溜め水槽
 40 原水
 43 原水流量調節弁
 44 蒸留水流量調節弁
 47 47′ 重量計(秤)
DESCRIPTION OF SYMBOLS 1 Distilled water and / or concentrated water production apparatus 2, 2 ', 2 "evaporation / condensing apparatus 3 Evaporation / condensing apparatus 4 Heat- transfer plate 6, 6', 6" Gas- liquid separator 8, 8 ', 8 "Blower 9 Mist trap 10 Evaporator 11 Condenser 12 High temperature raw water inflow line 14, 14 ', 14 "Distilled water discharge line 16, 16', 16" Concentrated water discharge line 17 Steam pipe 18 Pressure relief valve (for condenser)
19 Pressure relief valve (for raw water tank)
DESCRIPTION OF SYMBOLS 20 Heat exchanger 22 Deaerator 24, 26 Plate type heat exchanger 27 Raw water tank with temperature controller 28 Flexible cover 29 Cooler 30 Heating heater 31 Steam generating heater 32 Steam supplying valve 33 Steam supplying device 35 Pressure gauge 36, 36 ', 36 ", 36"' Thermometer 37 Raw water heater 38 Distilled water flow 39 Distilled water reservoir 40 Raw water 43 Raw water flow control valve 44 Distilled water flow control valve 47 47 'Weigh scale (balance)

Claims (17)

  1.  原水から蒸留水及び/又は濃縮水を製造する方法において、該方法が、
     (i)沸点よりも5℃低い温度以上の原水を蒸発器に供給する段階と、
     (ii)前記蒸発器において、前記原水の少なくとも一部を水蒸気として蒸発させる段階と、
     (iii)濃縮水を排出する段階と、
     (iv)前記水蒸気を、前記水蒸気の凝縮温度が前記原水の沸点よりも高くなるように蒸発器内の圧力の1.01~2.0倍だけ高くなるように加圧する段階と、
     (v)加圧された前記水蒸気を凝縮器で凝縮させ、蒸留水にする段階と
    を含み、
     前記蒸発器と前記凝縮器とが伝熱板により仕切られており、前記凝縮器内での前記水蒸気の凝縮による凝縮熱を、前記凝縮器から前記蒸発器へ前記伝熱板を通して伝えることにより、前記蒸発器内で前記原水を沸騰させる、蒸留水及び/又は濃縮水の製造方法。
    In a method for producing distilled water and / or concentrated water from raw water, the method comprises:
    (I) supplying raw water having a temperature 5 ° C. lower than the boiling point or higher to the evaporator;
    (Ii) evaporating at least a part of the raw water as water vapor in the evaporator;
    (Iii) discharging concentrated water;
    (Iv) pressurizing the water vapor so as to be higher by 1.01 to 2.0 times the pressure in the evaporator so that the condensation temperature of the water vapor is higher than the boiling point of the raw water;
    (V) condensing the pressurized water vapor with a condenser to form distilled water,
    The evaporator and the condenser are partitioned by a heat transfer plate, and the heat of condensation due to the condensation of the water vapor in the condenser is transferred from the condenser to the evaporator through the heat transfer plate, A method for producing distilled water and / or concentrated water, wherein the raw water is boiled in the evaporator.
  2.  前記(ii)の段階が、少なくとも一部を水蒸気として蒸発させた前記原水を水蒸気と濃縮水とに分離する段階を更に含む、請求項1に記載された蒸留水及び/又は濃縮水の製造方法。 2. The method for producing distilled water and / or concentrated water according to claim 1, wherein the step (ii) further comprises a step of separating the raw water evaporated at least partially as water vapor into water vapor and concentrated water. .
  3.  (vi)凝縮された前記蒸留水を冷却する段階及び/又は
     (vii)排出された前記濃縮水を冷却する段階
    をさらに含む、請求項1又は請求項2に記載された蒸留水及び/又は濃縮水の製造方法。
    The method further comprises (vi) cooling the condensed distilled water and / or (vii) cooling the discharged concentrated water. Water production method.
  4.  前記蒸発器に供給される前記原水を沸点よりも5℃低い温度以上に予熱する段階を更に含む、請求項1から請求項3までのいずれか1項に記載された蒸留水及び/又は濃縮水の製造方法。 The distilled water and / or concentrated water according to any one of claims 1 to 3, further comprising a step of preheating the raw water supplied to the evaporator to a temperature not lower than 5 ° C lower than a boiling point. Manufacturing method.
  5.  前記原水を予熱する段階、前記蒸留水を冷却する段階、及び前記濃縮水を冷却する段階を、少なくとも1つの対向流式の熱交換器において行い、前記蒸留水及び/又は前記濃縮水から前記原水に熱を与えることにより前記原水を沸点より5℃低い温度以上に予熱する、請求項4に記載された蒸留水及び/又は濃縮水の製造方法。 The step of preheating the raw water, the step of cooling the distilled water, and the step of cooling the concentrated water are performed in at least one counter-flow heat exchanger, and the raw water is converted from the distilled water and / or the concentrated water. The method for producing distilled water and / or concentrated water according to claim 4, wherein the raw water is preheated to a temperature 5 ° C. lower than the boiling point by applying heat to the water.
  6.  前記熱交換器がプレート式熱交換器である、請求項5に記載された蒸留水及び/又は濃縮水の製造方法。 The method for producing distilled water and / or concentrated water according to claim 5, wherein the heat exchanger is a plate heat exchanger.
  7.  加圧された前記水蒸気の一部を蒸発器に戻して、沸騰の加熱度を小さくするための水蒸気核を形成する、請求項1から請求項6までのいずれか1項に記載された蒸留水及び/又は濃縮水の製造方法。 The distilled water according to any one of claims 1 to 6, wherein a part of the pressurized water vapor is returned to an evaporator to form a water vapor nucleus for reducing the heating degree of boiling. And / or a method for producing concentrated water.
  8.  前記蒸発器で濃縮された水を原水として、前記(ii)、(iii)、(iv)、(v)の各段階を1回又は複数回のサイクルで繰り返す、請求項1から請求項7までのいずれか1項に記載された蒸留水及び/又は濃縮水の製造方法。 The steps (ii), (iii), (iv), and (v) are repeated in one or a plurality of cycles using the water concentrated in the evaporator as raw water. The manufacturing method of distilled water and / or concentrated water as described in any one of these.
  9.  前記原水が海水又は塩水湖水であり、前記加圧する段階が、前記凝縮器内の圧力が前記蒸発器内の圧力の1.02~2.0倍だけ高くなるように加圧する、請求項1から請求項8までのいずれか1項に記載された蒸留水及び/又は濃縮水の製造方法。 The raw water is seawater or saline lake water, and the pressurizing step pressurizes so that the pressure in the condenser is higher by 1.02 to 2.0 times the pressure in the evaporator. The method for producing distilled water and / or concentrated water according to claim 1.
  10.  前記原水が、重金属を含む要処理水、又は揮発性を有しない物質を含む要処理水である請求項1から請求項9までのいずれか1項に記載された蒸留水及び/又は濃縮水の製造方法。 The distilled water and / or concentrated water according to any one of claims 1 to 9, wherein the raw water is treated water containing heavy metal or treated water containing a substance that is not volatile. Production method.
  11.  原水から蒸留水及び/又は濃縮水を製造する蒸留水及び/又は濃縮水製造装置において、該蒸留水及び/又は濃縮水製造装置が、
     原液を供給する原水供給手段と、
     前記原水供給手段から供給された前記原水の少なくとも一部を蒸発させる蒸発器と、
     前記蒸発器と連通する、水蒸気を凝縮させて蒸留水を作る凝縮器と、
     前記蒸発器から前記凝縮器に通じるラインに設けられた加圧手段と
    を備え、
     前記加圧手段は、前記凝縮器内の水蒸気を、前記水蒸気の凝縮温度が前記原水の沸点よりも高くするように加圧するようになっており、
     前記蒸発器と前記凝縮器が伝熱板で仕切られており、前記凝縮器内での水蒸気の凝縮による凝縮熱を、前記凝縮器から前記蒸発器へ前記伝熱板を通して伝えることにより、前記蒸発器内で前記原水を沸騰させるようになっている、蒸留水及び/又は濃縮水の製造装置。
    In a distilled water and / or concentrated water production apparatus for producing distilled water and / or concentrated water from raw water, the distilled water and / or concentrated water production apparatus comprises:
    Raw water supply means for supplying the stock solution;
    An evaporator for evaporating at least a part of the raw water supplied from the raw water supply means;
    A condenser in communication with the evaporator for condensing water vapor to produce distilled water;
    Pressure means provided in a line leading from the evaporator to the condenser,
    The pressurizing means pressurizes the water vapor in the condenser so that the condensation temperature of the water vapor is higher than the boiling point of the raw water,
    The evaporator and the condenser are partitioned by a heat transfer plate, and the evaporation heat due to condensation of water vapor in the condenser is transferred from the condenser to the evaporator through the heat transfer plate. A device for producing distilled water and / or concentrated water, wherein the raw water is boiled in a vessel.
  12.  前記蒸発器と前記凝縮器との間に設けられた、前記原水を水蒸気と濃縮水に分離する気液分離装置を更に含む、請求項11に記載された蒸留水及び/又は濃縮水の製造装置。 The apparatus for producing distilled water and / or concentrated water according to claim 11, further comprising a gas-liquid separation device provided between the evaporator and the condenser for separating the raw water into water vapor and concentrated water. .
  13.  前記原水供給手段と前記蒸発器との間に設けられた少なくとも1つのプレート式熱交換器を更に含み、
     前記蒸発器又は前記気液分離装置から排出された濃縮水、及び/又は前記凝縮器から排出された前記蒸留水が、前記プレート式熱交換器において前記原水と熱交換を行うようになっている、請求項11または請求項12に記載された蒸留水及び/又は濃縮水の製造装置。
    And further comprising at least one plate heat exchanger provided between the raw water supply means and the evaporator,
    Concentrated water discharged from the evaporator or the gas-liquid separator and / or the distilled water discharged from the condenser exchange heat with the raw water in the plate heat exchanger. The apparatus for producing distilled water and / or concentrated water according to claim 11 or 12.
  14.  加圧された水蒸気の一部を蒸発器内に戻すための配管を更に有する、請求項11から請求項13までのいずれか1項に記載された蒸留水及び/又は濃縮水の製造装置。 The apparatus for producing distilled water and / or concentrated water according to any one of claims 11 to 13, further comprising a pipe for returning a part of the pressurized water vapor into the evaporator.
  15.  少なくとも1組の蒸発器、該蒸発器に連通する加圧手段、該加圧手段に連通する凝縮器を更に有し、前の組の凝縮器から排出された濃縮水を原水として次の組の蒸発器に導入するように、各組が連結されている、請求項11から請求項14までのいずれか1項に記載された蒸留水及び/又は濃縮水の製造装置。 The apparatus further comprises at least one set of evaporators, a pressurizing means communicating with the evaporator, and a condenser communicating with the pressurizing means. The concentrated water discharged from the previous set of condensers is used as raw water for the next set of evaporators. The apparatus for producing distilled water and / or concentrated water according to any one of claims 11 to 14, wherein each set is connected to be introduced into an evaporator.
  16.  前記原水が海水又は塩水湖水であり、前記加圧手段が、前記凝縮器内の圧力が前記蒸発器内の圧力の1.02~2.0倍だけ高くなるように加圧する、請求項11から請求項15までのいずれか1項に記載された蒸留水及び/又は濃縮水の製造装置。 The raw water is seawater or saltwater lake water, and the pressurizing means pressurizes so that the pressure in the condenser is higher by 1.02 to 2.0 times the pressure in the evaporator. The apparatus for producing distilled water and / or concentrated water according to any one of claims 15 to 15.
  17.  前記プレート式熱交換器は、原水の流れるラインと、蒸留水又は濃縮水の流れるラインが交換できるようになっている、請求項11から請求項16までのいずれか1項に記載された蒸留水及び/又は濃縮水の製造装置。 The distilled water according to any one of claims 11 to 16, wherein the plate-type heat exchanger can exchange a line through which raw water flows and a line through which distilled water or concentrated water flows. And / or concentrated water production equipment.
PCT/JP2009/065229 2008-09-04 2009-09-01 Energy-efficient method and device for manufacturing distilled water and/or concentrated water WO2010026953A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010527781A JPWO2010026953A1 (en) 2008-09-04 2009-09-01 Method and apparatus for producing energy-efficient distilled water and / or concentrated water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008227249 2008-09-04
JP2008-227249 2008-09-04

Publications (1)

Publication Number Publication Date
WO2010026953A1 true WO2010026953A1 (en) 2010-03-11

Family

ID=41797121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065229 WO2010026953A1 (en) 2008-09-04 2009-09-01 Energy-efficient method and device for manufacturing distilled water and/or concentrated water

Country Status (2)

Country Link
JP (1) JPWO2010026953A1 (en)
WO (1) WO2010026953A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200661A (en) * 2011-03-25 2012-10-22 M Hikari Energy Kaihatsu Kenkyusho:Kk Dehydration method using atmospheric pressure difference, and recovery apparatus for fresh water
JP2014516780A (en) * 2011-05-16 2014-07-17 ピエール、マルヴィン Hydraulic desalination apparatus and method
JP2014188399A (en) * 2013-03-26 2014-10-06 Ihi Corp Seawater desalination system and method
KR20140133517A (en) * 2012-01-11 2014-11-19 후이 멍 창 Methods and apparatuses for water purification
CN104709953A (en) * 2014-12-15 2015-06-17 北京理工大学 Multistage back-heating humidification dehumidifying seawater desalination device with thermal energy gradient utilization
JPWO2014196611A1 (en) * 2013-06-05 2017-02-23 大川原化工機株式会社 Concentration apparatus and concentration method
JPWO2014196610A1 (en) * 2013-06-05 2017-02-23 大川原化工機株式会社 Seawater desalination apparatus and seawater desalination method
JP2018122266A (en) * 2017-02-02 2018-08-09 鹿島環境エンジニアリング株式会社 Concentration system and concentration method
EP3351512A3 (en) * 2011-09-09 2018-10-17 Sylvan Source, Inc. Industrial water purification and desalination
WO2019086979A1 (en) * 2017-10-30 2019-05-09 Chandan Kumar Mechanical vapor compression evaporator with no boiler
WO2020045662A1 (en) * 2018-08-30 2020-03-05 国立大学法人佐賀大学 Heat exchanger
JP2021505370A (en) * 2017-12-05 2021-02-18 ダブリュージーエイ ウォーター グローバル アクセス ソシエダッド デ レスポンサビリダッド リミターダ Mechanical vapor compressor with low compression ratio

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125601A (en) * 1984-07-14 1986-02-04 Hitachi Kiden Kogyo Ltd Process and device for recovering organic solvent
JPH0263592A (en) * 1988-08-31 1990-03-02 Hitachi Ltd Distillation device
JP2005205337A (en) * 2004-01-23 2005-08-04 Taikisha Ltd Wastewater treatment equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125601A (en) * 1984-07-14 1986-02-04 Hitachi Kiden Kogyo Ltd Process and device for recovering organic solvent
JPH0263592A (en) * 1988-08-31 1990-03-02 Hitachi Ltd Distillation device
JP2005205337A (en) * 2004-01-23 2005-08-04 Taikisha Ltd Wastewater treatment equipment

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200661A (en) * 2011-03-25 2012-10-22 M Hikari Energy Kaihatsu Kenkyusho:Kk Dehydration method using atmospheric pressure difference, and recovery apparatus for fresh water
JP2014516780A (en) * 2011-05-16 2014-07-17 ピエール、マルヴィン Hydraulic desalination apparatus and method
EP3351512A3 (en) * 2011-09-09 2018-10-17 Sylvan Source, Inc. Industrial water purification and desalination
KR102212070B1 (en) * 2012-01-11 2021-02-05 후이 멍 창 Methods and apparatuses for water purification
KR20140133517A (en) * 2012-01-11 2014-11-19 후이 멍 창 Methods and apparatuses for water purification
JP2015518412A (en) * 2012-01-11 2015-07-02 チャン, フエイメンCHANG, Huei Meng Water purification method and apparatus
JP2014188399A (en) * 2013-03-26 2014-10-06 Ihi Corp Seawater desalination system and method
JPWO2014196611A1 (en) * 2013-06-05 2017-02-23 大川原化工機株式会社 Concentration apparatus and concentration method
JPWO2014196610A1 (en) * 2013-06-05 2017-02-23 大川原化工機株式会社 Seawater desalination apparatus and seawater desalination method
US10294122B2 (en) 2013-06-05 2019-05-21 Ohkawara Kakohki Co., Ltd. Seawater desalination device and seawater desalination method
CN104709953A (en) * 2014-12-15 2015-06-17 北京理工大学 Multistage back-heating humidification dehumidifying seawater desalination device with thermal energy gradient utilization
CN104709953B (en) * 2014-12-15 2023-03-21 北京理工大学 Multistage backheating, humidifying and dehumidifying seawater desalting device with gradient utilization of heat energy
JP2018122266A (en) * 2017-02-02 2018-08-09 鹿島環境エンジニアリング株式会社 Concentration system and concentration method
WO2019086979A1 (en) * 2017-10-30 2019-05-09 Chandan Kumar Mechanical vapor compression evaporator with no boiler
JP2021505370A (en) * 2017-12-05 2021-02-18 ダブリュージーエイ ウォーター グローバル アクセス ソシエダッド デ レスポンサビリダッド リミターダ Mechanical vapor compressor with low compression ratio
JP7333522B2 (en) 2017-12-05 2023-08-25 ダブリュージーエイ ウォーター グローバル アクセス ソシエダッド デ レスポンサビリダッド リミターダ Mechanical vapor compression device with low compression ratio
WO2020045662A1 (en) * 2018-08-30 2020-03-05 国立大学法人佐賀大学 Heat exchanger

Also Published As

Publication number Publication date
JPWO2010026953A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
WO2010026953A1 (en) Energy-efficient method and device for manufacturing distilled water and/or concentrated water
El-Dessouky et al. Plastic/compact heat exchangers for single-effect desalination systems
WO2011027787A1 (en) Method for dewatering water-containing organic substance
WO2011085669A1 (en) Low-temperature heat-driven distillation separation apparatus for evaporating aqueous solution under negative pressure and method for obtaining distilled water
CN201587871U (en) Multi-stage vacuum distillation sea water desalinating device
US7811420B2 (en) Isothermal gas-free water distillation
KR101402482B1 (en) A Seawater Desalination System for Small Craft
JP2013523439A (en) Vapor absorption system
WO2011135724A1 (en) Pure liquid production device
AU2005284554A1 (en) Seawater desalination plant
CN201834781U (en) Single-stage vacuum distillation seawater desalination device
US9345986B2 (en) Method for evaporation and possible distillation of fluids using a heat pump
CN203090492U (en) Low-temperature normal pressure evaporation equipment
US3300392A (en) Vacuum distillation including predegasification of distilland
JP5975208B2 (en) Seawater desalination apparatus and seawater desalination method using the same
JP6199428B2 (en) Superheated steam generator
US11465068B2 (en) Multi-stage flash (MSF) reversal system and method
US9441279B2 (en) Maple or birch water evaporator system
CN102115221B (en) Low-temperature multi-effect seawater desalination device capable of achieving on-line water yield adjustment
CN206108947U (en) High -efficiency seawater desalination plant
CN215946814U (en) Seawater desalination system
TW201315687A (en) Desalinization apparatus
JPS6142390A (en) Method for making pure water for boiler
CN201952319U (en) Low-temperature multiple-effect seawater desalination device with online adjustable water yield
CN207324110U (en) Falling film evaporation system and its vacuum plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527781

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811479

Country of ref document: EP

Kind code of ref document: A1