JP2009056453A - Sea water desalting apparatus - Google Patents

Sea water desalting apparatus Download PDF

Info

Publication number
JP2009056453A
JP2009056453A JP2007260341A JP2007260341A JP2009056453A JP 2009056453 A JP2009056453 A JP 2009056453A JP 2007260341 A JP2007260341 A JP 2007260341A JP 2007260341 A JP2007260341 A JP 2007260341A JP 2009056453 A JP2009056453 A JP 2009056453A
Authority
JP
Japan
Prior art keywords
water
seawater
fresh water
chamber
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007260341A
Other languages
Japanese (ja)
Inventor
Nobuaki Debari
宣明 出張
Takayuki Endo
敞于 遠藤
Ryutaro Matsushima
龍太郎 松島
Hiroyasu Debari
浩康 出張
Noriaki Debari
法明 出張
Akiyoshi Debari
明美 出張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO GIJUTSU SOGO KENKYUSHO
KANKYO GIJUTSU SOGO KENKYUSHO KK
Original Assignee
KANKYO GIJUTSU SOGO KENKYUSHO
KANKYO GIJUTSU SOGO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO GIJUTSU SOGO KENKYUSHO, KANKYO GIJUTSU SOGO KENKYUSHO KK filed Critical KANKYO GIJUTSU SOGO KENKYUSHO
Priority to JP2007260341A priority Critical patent/JP2009056453A/en
Publication of JP2009056453A publication Critical patent/JP2009056453A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive sea water desalting apparatus which efficiently removes salts from sea water, keeps the charging amount of energy reduced for evaporating sea water to condense the same, and has a simple structure. <P>SOLUTION: A fresh water tank is connected to the lower part of a double pipe installed in a vertical direction in a vacuum atmosphere reduced in pressure to form a base stand, sea water is ejected in an oblique upward direction from the cylindrical jet header provided to the lower part of an evaporation chamber to produce revolving rising ultrafine mist, sea water is evaporated while separating salts by the centrifugal force of the produced revolving flow, steam is sucked in a condensing chamber by the suction force produced by scattering water from the water scattering nozzle of the water scattering vacuum pump connected to an introducing pipe of which the suction port is curved in an oblique downward direction, the remaining steam is perfectly condensed in a cooling pipe as water droplets while subjected to the gas-liquid contact with fresh water to obtain fresh water, the vacuum atmosphere in the evaporation chamber is accelerated by the suction force produced by the fresh water passed by the flowing water pump provided to a fresh water discharge pipe and a revolving flow is produced by ejecting the air obtained by air-water separation into the evaporation chamber in an oblique upward direction from the inside of the condensing chamber and circulated to desalt sea water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、減圧法と蒸発法を用い海水から真水を得るための海水淡水化に関し、特に、水中ポンプを利用して効率よく淡水化が行える海水淡水化装置に関するものである。  The present invention relates to seawater desalination for obtaining fresh water from seawater using a decompression method and an evaporation method, and more particularly to a seawater desalination apparatus that can efficiently desalinate using a submersible pump.

海水から淡水を得る海水淡水化方法としては、蒸発法、逆浸透膜法、冷凍法、透過気化法及び電気透析法などの様々な方法がある。海水を加熱して減圧雰囲気で蒸発させて水蒸気とし、冷やして凝縮し淡水を造水する海水淡水化装置が従来から多く用いられていた。  As seawater desalination methods for obtaining fresh water from seawater, there are various methods such as an evaporation method, a reverse osmosis membrane method, a freezing method, a pervaporation method, and an electrodialysis method. Conventionally, seawater desalination apparatuses that heat seawater and evaporate it in a reduced-pressure atmosphere to form water vapor, cool and condense, and produce fresh water have been widely used.

その処理方法の一つとして、減圧雰囲気で海水をスプレ−噴射して蒸発させ、冷却して凝縮し淡水を造水する海水淡水化装置が知られている(例えば、特許文献1参照。)。然し乍ら、この海水淡水化装置は、個々に設けた蒸発器や凝縮器とドレンセパレ−タ−などを複雑な配管によって接続しているため、熱損失も多く、装置製作費も高額となるため、低コストで淡水化させるための大幅な改良や技術改善が要求されていた。  As one of the processing methods, there is known a seawater desalination apparatus that sprays and evaporates seawater in a reduced-pressure atmosphere, cools and condenses to produce fresh water (see, for example, Patent Document 1). However, since this seawater desalination system connects the evaporator and condenser provided individually with a drain separator etc. through complicated piping, there is a lot of heat loss and the cost of manufacturing the equipment is high. Significant improvements and technical improvements for desalination at cost were required.

これを改良した提案として、片側の取水された海水を放熱手段に供給すると共に、他側の取水された海水を冷却手段に供給して冷却し、この冷却した海水と放熱手段から排出される海水とが凝縮手段に供給されて淡水を造水する装置が知られている(例えば、特許文献2参照。)。然し乍ら、この海水淡水化方法は装置の構造が複雑であり、エネルギ−効率も悪く、大量に海水を淡水化させることが困難であった。  As a proposal to improve this, the seawater taken on one side is supplied to the heat dissipating means, the seawater taken on the other side is supplied to the cooling means for cooling, and the cooled seawater and the seawater discharged from the heat dissipating means are supplied. Is known to supply fresh water to the condensing means (see, for example, Patent Document 2). However, this seawater desalination method has a complicated apparatus structure, poor energy efficiency, and it is difficult to desalinate a large amount of seawater.

又、中空円筒の中に塩水を満たし下部に封水した調整室を設けて減圧した内部に、海水をスプレ−フラッシュして蒸発させ凝集する海水淡水化装置が知られている(例えば、特許文献3参照。)。然し乍ら、この海水淡水化装置は、減圧効率が悪く、装置も複雑で熱損失も多く、低コストで海水を淡水化させることが困難であった。  Also, there is known a seawater desalination apparatus in which a regulation chamber filled with salt water in a hollow cylinder and sealed at the bottom is provided and the pressure is reduced and the seawater is sprayed and flashed to evaporate and condense. 3). However, this seawater desalination apparatus has poor decompression efficiency, the apparatus is complicated and heat loss is large, and it is difficult to desalinate seawater at low cost.

更に、真空ポンプを使用することなくエゼクタ−を用いた減圧雰囲気の中で海水を淡水化させる装置が知られている(例えば、特許文献4参照。)。然し乍ら、この海水淡水化装置は、夫々の蒸発装置、凝集器、抽水タンクをポンプを用いて配管で結ぶため装置も大型となりエネルギ−コストも悪く、大量に海水を淡水化させることが困難であった。  Furthermore, an apparatus for desalinating seawater in a reduced-pressure atmosphere using an ejector without using a vacuum pump is known (for example, see Patent Document 4). However, since this seawater desalination apparatus connects the respective evaporators, agglomerators, and extraction tanks with a pipe using a pump, the apparatus becomes large and the energy cost is low, and it is difficult to desalinate a large amount of seawater. It was.

複数の蒸発室を上下に積層状態で配置し、海水を下方から上方に加熱しながら最上部で海水を排出し、減圧雰囲気で上方から下方に流下させつつ海水を蒸発させ、熱交換により凝縮して海水を淡水化する縦型の装置が知られている(例えば、特許文献5参照。)。然し乍ら、この装置は構造が複雑で淡水化性能も悪くその大幅な改良が要求されていた。  A plurality of evaporation chambers are arranged one above the other in a stacked state, the seawater is discharged from the top while heating the seawater from below, the seawater is evaporated while flowing down from above in a reduced pressure atmosphere, and condensed by heat exchange. A vertical apparatus for desalinating seawater is known (see, for example, Patent Document 5). However, this apparatus has a complicated structure and poor desalination performance, and its drastic improvement has been demanded.

その他、超音波素子により海水から霧を発生させ、サイクロン機能をもった凝集室で液化するものが知られている(例えば、特許文献6参照。)。然し乍ら、この蒸留装置では熱交換効率が悪く、装置も複雑で製作費も高額となりその改善が求められていた。  In addition, there is known one in which mist is generated from seawater by an ultrasonic element and liquefied in a coagulation chamber having a cyclone function (for example, see Patent Document 6). However, in this distillation apparatus, the heat exchange efficiency is poor, the apparatus is complicated, the production cost is high, and the improvement has been demanded.

特許第2718972号公報 特許第2878296号公報Japanese Patent No. 2718972 Japanese Patent No. 2878296 特開2005−349369号公報JP 2005-349369 A 再公表特許WO2004/069370号公報Republished patent WO2004 / 069370 特開2002−254066号公報JP 2002-254066 A 特開2001−129534号公報JP 2001-129534 A 特開2005−131543号公報JP 2005-131543 A

以上述べた如く、減圧法による従来公知の海水淡水化装置では、減圧した蒸発室内に海水のみ供給して蒸発作用を行わせているため、減圧容器内の海水が蒸発潜熱により次第に冷やされるため、飽和水蒸気圧が次第に低下し真空ポンプの負荷が増え、併せて淡水化能力が低下するため造水効率が悪くその改善が要求されていた。  As described above, in the known seawater desalination apparatus using the decompression method, only seawater is supplied into the decompressed evaporation chamber to perform the evaporation action, so the seawater in the decompression vessel is gradually cooled by the latent heat of evaporation. Since the saturated water vapor pressure gradually decreased and the load on the vacuum pump increased, and the desalination capacity decreased at the same time, the water production efficiency was poor, and its improvement was required.

又、従来のスプレ−フラッシュによる淡水化方法は、船舶などに設置してタ−ビンなどの排熱を利用して淡水化する方法であり、蒸発に多大のエネルギ−を必要とする真空蒸発部と凝縮器が別個の構造が多く、接続管路が複雑なためエネルギ−ロスも多く、淡水化装置の製造価格と造水コストが大幅にアップするなどの様々な問題があるため、汎用品として単独に淡水化装置を設置することが困難であった。  Also, the conventional desalination method using spray flash is a method of desalination using exhaust heat from a turbine installed on a ship or the like, and a vacuum evaporation unit that requires a large amount of energy for evaporation. Since there are many separate structures for the condenser and the connection pipes, the energy loss is also large, and there are various problems such as drastic increase in the manufacturing cost and fresh water generation cost of the desalination equipment. It was difficult to install a desalinator alone.

逆浸透膜法による造水方法は装置自体も高価であり、水を選択的に通す逆浸透膜を用いて、海水を加圧して逆浸透膜の反対側から淡水を回収する方法であり、海水を浸透圧以上の圧力まで加圧するための動力費、目詰まりで交換する逆浸透膜の交換費が高額となり、更に、その汚染されて閉塞した逆浸透膜の産業廃棄物としての廃棄費も必要なことと、日産1000トン以上の淡水化装置でないと造水コストが大幅にアップするため、日産20トン前後の淡水化装置として使用することは不可能である。  The water production method using the reverse osmosis membrane method is also expensive in itself, and is a method of collecting fresh water from the opposite side of the reverse osmosis membrane by pressurizing seawater using a reverse osmosis membrane that selectively passes water. Power costs for pressurizing the osmotic pressure above the osmotic pressure, replacement costs for the reverse osmosis membrane to be replaced due to clogging are high, and the disposal cost of the contaminated and blocked reverse osmosis membrane as industrial waste is also necessary In addition, the desalination cost is significantly increased unless it is a desalination apparatus with a daily production of 1000 tons or more, so it cannot be used as a desalination apparatus with a daily production of about 20 tons.

以上の課題を解決するため本発明はなされたものであり、減圧法とスプレ−フラッシュ法を用いて燃料費や消費電力を大幅に削減して、省エネルギ−化と造水効率の大幅な向上を図って低運転エネルギ−により、地球環境の保全と二酸化炭素の削減を配慮した、従来にない低造水コストの海水淡水化装置を低価格で提供することを目的とする。  The present invention has been made in order to solve the above-described problems. The fuel pressure and the power consumption are greatly reduced by using the decompression method and the spray flash method, and the energy saving and the water production efficiency are greatly improved. The purpose of the present invention is to provide an unprecedented seawater desalination apparatus with a low water production cost at a low price, taking into consideration the preservation of the global environment and the reduction of carbon dioxide by low operating energy.

本発明は上記の目的を達成するために、底板の上に円筒管を縦方向に接続して上部を水平隔壁で区画して造水した淡水を蓄える淡水貯留タンクとし、その上部に内筒管と外筒管を接続して上端部を上蓋板で塞いで密閉し、内筒管の中を真空雰囲気として海水を噴霧する蒸発室とし、外筒管と内筒管の間を加圧雰囲気として海水の水蒸気を液化する凝縮室とした3室に区画した円筒状の海水の淡水化装置を縦方向に設置したものである。  In order to achieve the above object, the present invention provides a fresh water storage tank for storing fresh water produced by connecting a cylindrical pipe in a vertical direction on a bottom plate and partitioning the upper part with a horizontal partition wall, and an inner cylinder pipe on the upper part. And the outer cylinder tube are connected, the upper end is closed and sealed with an upper cover plate, and the inner cylinder tube is used as a vacuum atmosphere to form an evaporation chamber for spraying seawater, and a pressurized atmosphere is provided between the outer tube and the inner tube A cylindrical seawater desalination apparatus partitioned into three chambers as a condensing chamber for liquefying the water vapor of seawater is installed in the vertical direction.

第2の課題解決手段は、蒸発室の下部中央部に設置した円筒噴射ヘッダ−の外周に斜め上方向に設置した整流放熱板の先端部に噴霧ノズルを装着して、加熱した海水を円筒噴射ヘッダ−に供給して蒸発室の内部を加熱し、噴霧ノズルから加熱した海水を噴射して超微霧を発生させ、整流放熱板により竜巻状に旋回させながら上昇させて発生した遠心力により海水に含まれた塩類を分離して蒸発を促進させたものである。  The second problem-solving means is that a spray nozzle is attached to the tip of a rectifying heat dissipating plate installed obliquely upward on the outer periphery of a cylindrical injection header installed in the lower center of the evaporation chamber, and heated seawater is injected cylindrically It is supplied to the header to heat the inside of the evaporation chamber, the heated seawater is injected from the spray nozzle to generate ultrafine mist, and the seawater is generated by the centrifugal force generated by turning it up in a tornado shape with a rectifying heat sink. Evaporation was promoted by separating the salts contained in the water.

第3の課題解決手段は、蒸発室内の最上部に吸引口を斜め下方向に湾曲させた水蒸気導入管を放射状に配置して凝縮室に配管し、夫々の水蒸気導入管の先端部に撒水真空ポンプを縦方向に接続させ、撒水真空ポンプに内装した撒水ノズルから淡水を撒水して発生した吸引力により、蒸発室内の水蒸気を吸引して旋回流を加速させながら真空雰囲気とし、噴射した海水に含まれた塩類を分離して蒸発を促進させたものである。  The third problem solving means is that a steam inlet pipe having a suction port bent obliquely downward is arranged radially at the top of the evaporation chamber and piped to the condensing chamber, and a water vapor vacuum is provided at the tip of each steam inlet pipe. The pump is connected in the vertical direction, and the suction force generated by irrigating fresh water from the irrigation nozzle built in the irrigation vacuum pump sucks the water vapor in the evaporation chamber and accelerates the swirl flow to create a vacuum atmosphere. Evaporation was promoted by separating the contained salts.

第4の課題解決手段は、凝縮室内の下部に噴出孔を斜め上方向に湾曲させた減圧排気管を逆L字型に配置して蒸発室に配管し、夫々の減圧排気管の吸引口に気水分離装置を内装させ、凝縮室から脱水した空気を蒸発室内で斜め上方向噴出孔から排出することで旋回上昇を発生させ、噴射した海水に含まれた塩類の分離を促進させたものである。  The fourth problem-solving means is that a reduced pressure exhaust pipe having an ejection hole curved obliquely upward is arranged in an inverted L shape at the lower part of the condensation chamber and is piped to the evaporation chamber, and is connected to the suction port of each reduced pressure exhaust pipe. A steam / water separation device is built in, and the air dehydrated from the condensing chamber is exhausted from the diagonally upward ejection holes in the evaporation chamber to generate a swirling rise and promote the separation of the salts contained in the injected seawater. is there.

第5の課題解決手段は、淡水貯留タンクの内部に、淡水を冷却する熱交換コイルを沈設し、冷却された淡水を内装した水中ポンプを用いて凝縮室の冷却管を介して頂部の撒水真空ポンプに内装した撒水ノズルから撒水し蒸発室内の空気を吸引して真空を促進し、凝縮室内部を加圧雰囲気とし、噴射した超微霧の蒸発と凝縮を促進させたものである。  A fifth problem-solving means is that a heat exchange coil for cooling fresh water is set inside a fresh water storage tank, and a submersible vacuum at the top is passed through a cooling pipe of a condensing chamber using a submersible pump with cooled fresh water. Water is submerged from a submerged nozzle provided in the pump to suck the air in the evaporation chamber to promote vacuum, and the inside of the condensing chamber is made a pressurized atmosphere to promote evaporation and condensation of the sprayed ultra fine mist.

第6の課題解決手段は、凝縮室から下部の水平隔壁を貫通して淡水貯留タンクに配管された落水管の中間部に落水真空ポンプを設置して、落水する淡水の通過により発生した吸引力により、蒸発室内部の空気を吸引して海水の蒸発を促進させたものである。  The sixth problem-solving means is to install a falling water vacuum pump in the middle of the falling water pipe that passes through the lower horizontal partition wall from the condensing chamber and is piped to the fresh water storage tank, and uses the suction force generated by the passing of falling fresh water. The air inside the evaporation chamber is sucked to promote the evaporation of seawater.

第7の課題解決手段は、淡水貯留タンク内に、紫外線波長が185nm又は254nmの紫外線ランプを防水構造の石英ガラス保護管に内装して淡水中に浸漬し、海水に混入した各種雑菌類や、海水に含まれる藻類やカビ臭などの臭気を紫外線処理したものである。  The seventh problem-solving means is that, in a fresh water storage tank, an ultraviolet lamp having an ultraviolet wavelength of 185 nm or 254 nm is embedded in a quartz glass protective tube having a waterproof structure, immersed in fresh water, various germs mixed in seawater, Odors such as algae and mold odor contained in seawater are treated with ultraviolet rays.

第1の解決手段による作用は次の通りである。即ち、コンクリ−ト基礎の上にアンカ−ボルトで締結する底板67の上に円筒管3を縦方向に接続して上部を水平隔壁65で隔てて冷却した淡水を蓄える淡水貯留タンク48とし、その上に内筒管6と外筒管5を接続して上端部を上蓋板68で塞いで密閉し、内筒管6の中を真空雰囲気として海水41を噴霧する蒸発室9とし、外筒管5と内筒管6の間を加圧雰囲気として蒸発した海水を液化する凝縮室8の3室に区画した、縦型に一体化したことで簡素化して配管の省略及び熱損失が削減されるため、海水を低コストで淡水化させることができる。  The operation of the first solving means is as follows. That is, a cylindrical water pipe 3 is vertically connected to a bottom plate 67 fastened with an anchor bolt on a concrete foundation, and a fresh water storage tank 48 for storing fresh water cooled by separating the upper portion by a horizontal partition wall 65, The inner cylinder pipe 6 and the outer cylinder pipe 5 are connected to each other, and the upper end portion is closed and sealed with an upper cover plate 68 to form an evaporation chamber 9 that sprays seawater 41 in a vacuum atmosphere in the inner cylinder pipe 6. The space between the pipe 5 and the inner cylinder pipe 6 is divided into three chambers, a condensing chamber 8 for liquefying the evaporated seawater as a pressurized atmosphere. Therefore, seawater can be desalinated at low cost.

第2の解決手段による作用は、蒸発室9の最下部に設置した円筒噴射ヘッダ−14の外周面に斜め上向に装着した整流放熱板16の先端部に噴霧ノズル20を設け、加熱した海水41を円筒噴射ヘッダ−14に供給した放出熱で蒸発室9の内部を加熱しながら噴霧ノズル20から超微霧44を噴射し、整流放熱板16で竜巻状に旋回しながら上昇させ、発生した遠心力により海水41に含まれた塩類を断熱材11の壁面へ圧着させて分離しながら上昇し、噴射した海水41の蒸発を促進させることができる。  The action of the second solution means that the spray nozzle 20 is provided at the tip of the rectifying heat sink 16 mounted obliquely upward on the outer peripheral surface of the cylindrical jet header 14 installed at the lowermost part of the evaporation chamber 9, and heated seawater 41 was generated by spraying ultrafine mist 44 from the spray nozzle 20 while heating the inside of the evaporation chamber 9 with the release heat supplied to the cylindrical spray header -14, and swirling in a tornado shape with the rectifying heat sink 16 The salt contained in the seawater 41 is pressed against the wall surface of the heat insulating material 11 by the centrifugal force and is lifted while being separated, and the evaporation of the injected seawater 41 can be promoted.

第3の解決手段による作用は、吸引口30を斜め下方向に湾曲させた水蒸気導入管36を蒸発室9から放射状に内筒管6を貫通させ凝縮室8に配管して縦方向に撒水真空ポンプ13を接続し、撒水真空ポンプ13に内装した撒水ノズル21から淡水を撒水すると、吐出する淡水43と吸引される水蒸気の速度に大きな差があるために発生した吸引力で、蒸発室9内の水蒸気を吸引することで旋回上昇流を加速させながら蒸発室9内を真空雰囲気とし、海水41の蒸発と気液接触による水蒸気の凝縮を促進させることができる。  The action of the third solution means that the water vapor introducing pipe 36 having the suction port 30 curved obliquely downward passes through the inner cylindrical pipe 6 radially from the evaporating chamber 9 and is piped to the condensing chamber 8 so that the water is vacuumed vertically. When the pump 13 is connected and fresh water is poured from the brine nozzle 21 built in the brine vacuum pump 13, the suction force generated due to a large difference in the speed of the fresh water 43 to be discharged and the water vapor to be sucked in the evaporation chamber 9. The inside of the evaporation chamber 9 can be made into a vacuum atmosphere while accelerating the swirling upward flow by sucking the water vapor, and the vaporization of the seawater 41 and condensation of the water vapor due to gas-liquid contact can be promoted.

第4の解決手段による作用は、噴出孔31を斜め上方向に湾曲させた減圧排気管37を蒸発室9から放射状に内筒管6を貫通させ凝縮室8に配管して縦方向に気水分離装置17を接続し、凝縮室8内の加圧された空気を減圧排気管37の気水分離装置17で減圧脱水して、蒸発室9内の噴出孔31から斜め上方向に噴出して旋回上昇流を発生させることにより、噴射した海水41に含まれた塩類を発生した遠心力により分離させることと水蒸気の蒸発を促進させることができる。  The action of the fourth solution means that the decompression exhaust pipe 37 having the ejection hole 31 curved obliquely upward is radially pierced from the evaporation chamber 9 through the inner tube 6 and piped to the condensation chamber 8 to vertically The separator 17 is connected, and the pressurized air in the condensing chamber 8 is dehydrated under reduced pressure by the steam / water separator 17 of the decompression exhaust pipe 37 and ejected obliquely upward from the ejection hole 31 in the evaporation chamber 9. By generating the swirl upward flow, it is possible to promote the separation of the salts contained in the injected seawater 41 by the generated centrifugal force and the evaporation of water vapor.

第5の解決手段による作用は、淡水貯留タンク48の内部に冷却用の海水41を循環させる熱交換コイル28を沈設して淡水43を冷却し、内装した水中ポンプ63で冷却した淡水43を凝縮室8の冷却管25を介して頂部の撒水真空ポンプ13の撒水ノズル21に供給し、撒水ノズル21から撒水54することで凝縮室8の内部を加圧雰囲気にしながら吸引した水蒸気と気液接触させて淡水とし、残りの水蒸気は下部の冷却管25で完全に凝縮して淡水化することで、水蒸気の凝縮を促進させることができる。  The action of the fifth solution means that the heat exchange coil 28 for circulating the cooling seawater 41 is laid in the freshwater storage tank 48 to cool the freshwater 43, and the freshwater 43 cooled by the built-in submersible pump 63 is condensed. The water vapor is supplied to the irrigation nozzle 21 of the irrigation vacuum pump 13 at the top through the cooling pipe 25 of the chamber 8 and is in contact with water vapor that is sucked while making the inside of the condensation chamber 8 into a pressurized atmosphere by irrigating 54 from the irrigation nozzle 21. Thus, the water vapor is converted into fresh water, and the remaining water vapor is completely condensed in the lower cooling pipe 25 to become fresh water, whereby the condensation of water vapor can be promoted.

第6の解決手段による作用は、凝縮室8から下部の水平隔壁65を貫通して淡水貯留タンク48に配管された落水管45の中間部に落水真空ポンプ22を設置して、落水する淡水と吸引される蒸発室9内の空気の速度に大きな差があるために発生した吸引力で、蒸発室9内の空気を吸引管39を介して吸引することで真空雰囲気とし、噴霧ノズル20から噴射した海水41の水蒸気(超微霧)の蒸発を促進させることができる。  The action of the sixth solving means is that the falling water vacuum pump 22 is installed in the middle of the falling water pipe 45 that passes through the lower horizontal partition wall 65 from the condensing chamber 8 and is piped to the fresh water storage tank 48, so The air in the evaporation chamber 9 is sucked through the suction pipe 39 by the suction force generated due to the large difference in the speed of the air in the evaporation chamber 9 to be a vacuum atmosphere, and sprayed from the spray nozzle 20 The evaporation of the water vapor (super fine mist) of the seawater 41 can be promoted.

第7の解決手段による作用は、淡水貯留タンク48の水面下位置の円筒管3側面を貫通した取付フランジ72に、紫外線波長が185nm又は254nmの紫外線ランプ75を紫外線の透過が良い防水構造の石英ガラス保護管73に内装して淡水中に浸漬して設置し、海水41に混入した病原性大腸菌O−157やレジオネラ菌などの雑菌類の他、海水に含まれる藻類やカビ臭などの臭気を紫外線照射により殺菌脱臭処理することができる。  The action of the seventh solving means is that a waterproof structure quartz having a good ultraviolet light transmission is applied to a mounting flange 72 penetrating the side surface of the cylindrical tube 3 at the lower surface of the fresh water storage tank 48 with an ultraviolet wavelength of 185 nm or 254 nm. It is installed in a glass protective tube 73 and immersed in fresh water. In addition to various germs such as pathogenic Escherichia coli O-157 and Legionella mixed in seawater 41, odors such as algae and mold odor contained in seawater are removed. It can be sterilized and deodorized by ultraviolet irradiation.

上述したように本発明による海水の淡水化処理装置は、縦方向に設置した二重管の内側を真空雰囲気の蒸発室、外側を加圧雰囲気の凝縮室とし、凝縮室の撒水真空ポンプで撒水により発生した吸引力で蒸発室の水蒸気を吸引して真空雰囲気とし、凝縮室に流入した水蒸気は気液接触されて液化し、残りの水蒸気は冷却管で冷却して完全に淡水にするため、高価な真空ポンプを必要とせず、低価格化と淡水化装置の構造が簡素化できる。  As described above, the seawater desalination apparatus according to the present invention uses a double pipe installed in the vertical direction as an evaporation chamber in a vacuum atmosphere on the inside and a condensation chamber in a pressurized atmosphere on the outside, Since the water vapor in the evaporation chamber is sucked into the vacuum atmosphere with the suction force generated by the above, the water vapor flowing into the condensing chamber is liquefied by gas-liquid contact, and the remaining water vapor is cooled by a cooling pipe to be completely fresh water. An expensive vacuum pump is not required, and the price can be reduced and the structure of the desalination apparatus can be simplified.

真空雰囲気の蒸発室下部から、海水を加圧して多数個の噴霧ノズルを用いて50μm前後の超微霧を斜め上方向に旋回させながら噴射して、旋回上昇する過程で発生した遠心力で塩類を分離しながら海水を蒸発させて加圧雰囲気の凝縮室に吸引し、撒水による気液接触と冷却管との接触による凝縮で完全に淡水化し、蒸発・凝縮に係わるエネルギ−消費量を最小限に抑えたことにより、低コストで大量の海水を淡水化することができる。  From the lower part of the evaporation chamber in a vacuum atmosphere, salt is generated by the centrifugal force generated in the process of ascending and swirling by spraying while turning seawater into a super fine mist of around 50 μm obliquely upward using a number of spray nozzles. The seawater is evaporated while being separated and sucked into a condensing chamber in a pressurized atmosphere, and the water is completely desalinated by condensing by gas-liquid contact with brine and contact with the cooling pipe, minimizing energy consumption related to evaporation and condensation. By suppressing to a large amount, a large amount of seawater can be desalinated at low cost.

淡水化する動力源としては家庭用の100V電源だけで淡水化できる淡水化装置で、機械装置として可動する物は、汎用品の水中ポンプと加圧ポンプだけのため機械的な信頼性も高く、破損した場合でもポンプ単体の交換だけで対応ができることと、濾過膜やフイルタ−などの消耗品や廃棄物が発生しないためメンテナンス費用も安価で、淡水化作業に特別な技術者が必要ない自動淡水化装置のため、維持管理コストが大幅に削減できる。  As a power source for desalination, it is a desalination device that can be desalinated with only a household 100V power supply, and the movable items as mechanical devices are only general-purpose submersible pumps and pressure pumps, so mechanical reliability is also high, Automatic fresh water that can be dealt with by replacing the pump alone even if it is damaged, and that there are no consumables such as filtration membranes and filters, and no waste, so maintenance costs are low and no special technician is required for desalination work. The maintenance cost can be greatly reduced due to the conversion device.

100Vの電源設備が無い離島や辺鄙地に海水淡水化装置を設置するには、太陽電池で発電した電力を蓄電池に貯えて交流に変換して対応、小型のエンジン発電機を設置して対応できることと、減圧した真空雰囲気で縦方向に設置した二重管の内側を蒸発室、外側を凝縮室としたことで機密性が図れて構造が簡素化できたことで、低コストで大量の海水を淡水化できる装置が、場所を選ばずどこにでも設置することができる。  In order to install a seawater desalination device on a remote island or remote area where there is no 100V power supply facility, the power generated by the solar cell can be stored in a storage battery and converted to AC, and a small engine generator can be installed. In addition, the inside of the double pipe installed in the vertical direction in a decompressed vacuum atmosphere is an evaporation chamber and the outside is a condensing chamber. Desalinated equipment can be installed anywhere, regardless of location.

紫外線波長が254nmの紫外線殺菌ランプを淡水貯留タンクに浸漬したことで、海水より流入した各種の雑菌や細菌類の繁殖を防ぐ他、病原性大腸菌O−157やレジオネラ菌などが殺菌処理できる。又、海水の汚濁状況により紫外線波長が185nmのオゾンを発生する紫外線ランプを選定して浸漬することで、殺菌処理と消臭処理したことにより水道水質基準に適合した衛生的で安全な飲料水を大量に供給することができる。  By immersing an ultraviolet sterilization lamp having an ultraviolet wavelength of 254 nm in a fresh water storage tank, it is possible to prevent the propagation of various germs and bacteria that have flowed in from seawater and to sterilize pathogenic Escherichia coli O-157 and Legionella. In addition, by selecting and immersing an ultraviolet lamp that generates ozone with an ultraviolet wavelength of 185 nm depending on the pollution of seawater, sanitary and safe drinking water that meets the standards for tap water quality can be obtained by sterilizing and deodorizing. Large quantities can be supplied.

二重管で構成された蒸発室と凝縮室の下側に、二重管の外径と同一径の淡水貯留タンクを接合したことで各種の配管が簡素化できたことと、併せて淡水貯留タンクの底板を基盤としコンクリ−ト基礎にアンカ−ボルトで締結することで淡水化装置を自立させることができるため、設置場所に運搬して立設するだけで淡水化装置はただちに稼動するため、工事費や諸経費の大幅な削減により、低価格で淡水化装置を提供することができる。  Various pipes have been simplified by joining a fresh water storage tank with the same diameter as the outer diameter of the double pipe to the lower side of the evaporation chamber and condensing chamber composed of double pipes. Since the desalination unit can be made independent by fastening the anchor plate to the concrete foundation with the bottom plate of the tank as the base, the desalination unit can be operated immediately just by transporting it to the installation site and standing up. By drastically reducing construction costs and various expenses, a desalination device can be provided at a low price.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の海水の淡水化方法の実施例を図面に基づいて詳細に説明する。本発明はこれに限定されるものでなく、淡水化される水質の状況や設置する場所の状況に応じて、適宜自由に変更できるものである。  Embodiments of the seawater desalination method of the present invention will be described below in detail with reference to the drawings. This invention is not limited to this, It can change suitably freely according to the condition of the quality of the water desalinated, and the condition of the place to install.

実施例1
海水淡水化装置1の骨格となる構造は図1の如く、板厚25mmの鋼板の周囲をアンカ−ボルト71を用いてコンクリ−ト基礎の上に締結させる底板67の上に、淡水貯留タンク48となる(例えば、板厚22mmの鋼板で直径120cm・高さ240cmなど。)円筒管3を縦方向に溶接することで淡水貯留タンク48の外郭となり、上部を水平隔壁65で区画することで、内容積が約2m前後とし約半分の1mの淡水を貯えられる淡水貯留タンク48となり、上部に接続して設ける蒸発室9と凝縮室8の架台を兼ねたものである。
Example 1
As shown in FIG. 1, the structure serving as the skeleton of the seawater desalination apparatus 1 is a freshwater storage tank 48 on a bottom plate 67 that fastens a periphery of a steel plate having a thickness of 25 mm on a concrete foundation using anchor bolts 71. (For example, a steel plate having a thickness of 22 mm and a diameter of 120 cm, a height of 240 cm, etc.) The cylindrical tube 3 is welded in the vertical direction to form an outer shell of the fresh water storage tank 48, and the upper portion is partitioned by a horizontal partition wall 65. The fresh water storage tank 48 has an internal volume of about 2 m 3 and can store about half of 1 m 3 of fresh water. The fresh water storage tank 48 serves as a base for the evaporation chamber 9 and the condensation chamber 8 connected to the upper part.

水平隔壁の上に内筒管6(例えば、板厚19mmの鋼板で直径70cm・高さ1000cmなど。)を縦方向に溶接して蒸発室9とし、内筒管6の外側に鍔水平隔壁66を介して外筒管5(例えば、板厚2mmのSUS鋼板で直径120cm・高さ1000cmなど。)で覆うことで内径が70cmで外径が120cmのド−ナツ型の筒状で高さ1000cmの凝縮室8となり、内筒管6と外筒管5上端部は上蓋板68で塞いで密閉されている。  The inner tube 6 (for example, a steel plate having a thickness of 19 mm and a diameter of 70 cm and a height of 1000 cm) is welded in the vertical direction on the horizontal partition to form the evaporation chamber 9, and the horizontal partition 66 is disposed outside the inner tube 6. Is covered with an outer tube 5 (for example, a SUS steel plate having a thickness of 2 mm and a diameter of 120 cm and a height of 1000 cm). A donut-shaped cylinder having an inner diameter of 70 cm and an outer diameter of 120 cm and a height of 1000 cm And the upper ends of the inner tube 6 and the outer tube 5 are closed and sealed with an upper cover plate 68.

下部の淡水貯留タンク48の底板67と円筒管3の内側を吸水しない断熱材11(例えば、ポリエチレン発泡材など。)で内側断熱することで、外気による冷却熱の放出を防ぐことができる。内筒管6の内側を断熱材11で内断熱することで、加温された蒸発室9の熱を外側の冷却された凝縮室8からの熱伝導により吸収されることを防ぐことができる。外筒管5の内側を断熱材11で内側断熱することで、冷却された凝縮室8の内部を太陽光線による加熱から防ぐことができるため、大幅なエネルギ−損失を防ぐことができる。  By heat-insulating the bottom plate 67 of the lower fresh water storage tank 48 and the inside of the cylindrical tube 3 with the heat insulating material 11 (for example, polyethylene foam), it is possible to prevent the release of cooling heat due to the outside air. By heat-insulating the inner side of the inner tube 6 with the heat insulating material 11, it is possible to prevent the heat of the heated evaporation chamber 9 from being absorbed by heat conduction from the outer cooled condensation chamber 8. By heat-insulating the inner side of the outer tube 5 with the heat insulating material 11, the inside of the cooled condensation chamber 8 can be prevented from being heated by sunlight, so that significant energy loss can be prevented.

淡水貯留タンク48の内部は通気管40により大気に開放された構造であり、蒸発室9の内部は、噴射した超微霧44の蒸発を促進させるために減圧された真空雰囲気に維持されている。反面、蒸発室9外側の凝縮室8は蒸発した海水の水蒸気の凝縮を促進させるため加圧雰囲気に維持されている、夫々3室に区画して密閉して自立させた鋼製の円柱構造で、防錆処理の方法は、亜鉛と鉄では亜鉛が陽極的な挙動をとり耐久性があるため、電気亜鉛メッキを施した後、更にクロメ−ト処理により耐蝕性を増したものである。  The inside of the fresh water storage tank 48 has a structure opened to the atmosphere by the vent pipe 40, and the inside of the evaporation chamber 9 is maintained in a vacuum atmosphere reduced in pressure to promote evaporation of the injected ultrafine mist 44. . On the other hand, the condensing chamber 8 outside the evaporating chamber 9 is maintained in a pressurized atmosphere in order to promote the condensation of water vapor of the evaporated seawater, and is a steel cylindrical structure that is partitioned into three chambers and sealed and self-supported. As for the method of rust prevention treatment, in zinc and iron, since zinc has an anodic behavior and is durable, the corrosion resistance is further increased by chromate treatment after electrogalvanizing.

蒸発室9の最下部に設置した円筒噴射ヘッダ−14の外周面に斜め上向に装着した整流放熱板16の先端部に噴霧ノズル20を設け、加熱した海水41を円筒噴射ヘッダ−14に供給した放出熱で蒸発室9の内部を加熱しながら整流放熱板16先端の噴霧ノズル20から超微霧44を噴射し、凝縮室8内の加圧された空気を減圧排気管37の気水分離装置17で減圧脱水して、蒸発室9内の噴出孔31から斜め上方向に噴出して旋回上昇流を発生させることで、海水41を円筒噴射ヘッダ−14の噴霧ノズル20から噴射した超微霧44の蒸発を促進させて発生した遠心力により塩類を断熱材11の壁面へ圧着させて分離しながら、噴射した海水の水蒸気は蒸発室9の頂部まで上昇する。  A spray nozzle 20 is provided at the tip of the rectifying heat sink 16 mounted obliquely upward on the outer peripheral surface of the cylindrical jet header 14 installed at the bottom of the evaporation chamber 9, and heated seawater 41 is supplied to the cylindrical jet header 14. While the inside of the evaporation chamber 9 is heated with the emitted heat, the super fine mist 44 is ejected from the spray nozzle 20 at the tip of the rectifying heat radiating plate 16, and the pressurized air in the condensing chamber 8 is separated into the steam and water in the decompression exhaust pipe 37 Ultra-fine water jetted from the spray nozzle 20 of the cylindrical jet header 14 by dehydrating under reduced pressure in the device 17 and jetting obliquely upward from the jet hole 31 in the evaporation chamber 9 to generate a swirling upward flow. The water vapor of the injected seawater rises to the top of the evaporation chamber 9 while the salt is pressed against the wall surface of the heat insulating material 11 and separated by the centrifugal force generated by promoting the evaporation of the mist 44.

蒸発室9の頂部には、吸引口30を斜め下方向に湾曲させた水蒸気導入管36を蒸発室9から放射状に内筒管6を貫通させ凝縮室8に配管し、水蒸気導入管36端部で縦方向に撒水真空ポンプ13を接続して内装された撒水ノズル21から淡水を撒水すると、吐出する淡水43と吸引される水蒸気の速度に大きな差があるため発生した吸引力で、蒸発室9内の水蒸気を吸引することで旋回上昇流を加速させながら蒸発室9内を真空雰囲気とし、超微霧44の蒸発と気液接触による水蒸気の凝縮を促進させながら凝縮室8の内部を流下しながら淡水化される。  At the top of the evaporation chamber 9, a water vapor introduction pipe 36 with a suction port 30 curved obliquely downward is piped radially from the evaporation chamber 9 through the inner tube 6 to the condensation chamber 8, and the end of the water vapor introduction pipe 36. When fresh water is sprayed from the self-filled nozzle 21 connected to the vertical vacuum pump 13 in the vertical direction, there is a large difference between the speed of the fresh water 43 to be discharged and the speed of the water vapor to be sucked. The inside of the evaporation chamber 9 is made into a vacuum atmosphere while accelerating the swirling upward flow by sucking the water vapor in the inside, and flows down inside the condensation chamber 8 while promoting evaporation of the ultrafine mist 44 and condensation of water vapor by gas-liquid contact. While being desalinated.

貯水量が1m前後の淡水貯留タンク48内の貯留水面18以下で貯留された淡水43の中に、冷却用の熱交換コイル28と交互運転する2台の水中ポンプ63と殺菌消毒用の紫外線ランプ75を沈設し、熱交換コイル28に約15℃前後の冷却水53を循環させて淡水43を冷却して貯留させる。冷却された淡水43を水中ポンプ63で揚水管24を介して分水リングヘッダ−77まで一旦揚程され、凝縮室8内に管長が15m前後でU字型に配置された多数本の冷却管25に分水されて下降しながら蒸発した水蒸気を冷却することで淡水43にしながら上昇して集水リングヘッダ−78で集水され、接続管26を介して撒水真空ポンプ13に内装された撒水ノズル21に供給される。Two submersible pumps 63 that operate alternately with a cooling heat exchange coil 28 and ultraviolet light for sterilization and disinfection in fresh water 43 stored below the stored water surface 18 in a fresh water storage tank 48 having a water storage amount of about 1 m 3. The lamp 75 is set, and the cooling water 53 of about 15 ° C. is circulated through the heat exchange coil 28 to cool and store the fresh water 43. The cooled fresh water 43 is once lifted by the submersible pump 63 through the pumping pipe 24 to the diversion ring header-77, and a plurality of cooling pipes 25 arranged in a U-shape with a pipe length of about 15 m in the condensing chamber 8. The water vapor that has been separated and then lowered and cooled is evaporated while cooling to fresh water 43 and then collected and collected by the water collection ring header 78, and is installed in the water irrigation vacuum pump 13 through the connection pipe 26. 21.

撒水ノズル21から淡水43を0,3mm前後の水滴になるようにして撒水54すると、0,3mm前後の水滴を核として水蒸気が付着(気液接触)することで1mm前後の水滴となることと、撒水54されたことによる圧縮作用により凝縮室8内部の凝縮能力が促進され、水滴にならなかった残りの水蒸気は15m前後のU字型に配置された冷却管25の表面に接触することで完全に凝縮されて淡水となり、凝縮室8内部を流下して水平隔壁65に接管した落水管45に接続した落水真空ポンプ22を介して淡水貯留タンク48に落水して貯留され、貯留水面18より溢れた淡水43が淡水排出管38から排出される。  When the fresh water 43 is made into water droplets of about 0.3 mm from the water nozzle 21, the water droplets of about 1 mm are formed by attaching water vapor (gas-liquid contact) with water droplets of about 0.3 mm as the core. The condensing capacity inside the condensing chamber 8 is promoted by the compression action caused by the submerged water 54, and the remaining water vapor that has not become water droplets comes into contact with the surface of the cooling pipe 25 arranged in a U-shape of about 15 m. The water is completely condensed to become fresh water. The water falls into the fresh water storage tank 48 through the falling water vacuum pump 22 connected to the falling water pipe 45 connected to the horizontal partition wall 65 through the inside of the condensing chamber 8, and overflows the stored water surface 18. The fresh water 43 is discharged from the fresh water discharge pipe 38.

実施例2
海水淡水化装置の蒸発室下部から加熱した海水を超微霧として噴射する円筒噴射ヘッダ−14の詳細な構造の説明は、図2の側面図と図3平面図の如く、蒸発室9の中心位置の水平隔壁65の上にガスケット35を介してボルト71で締結する接続フランジ33(例えば100A、板厚16mmで外径20cm・内径10cmなど。)に100Aの鋼管(例えば、板厚2mmので直径10cm・高さ150cmなど。)を溶接して、加圧した海水41を斜め上方向60°の角度に噴射して旋回上昇させる超微霧44を噴射する円筒噴射ヘッダ−14の本体15としたものである。
Example 2
The detailed structure of the cylindrical injection header 14 for injecting seawater heated from the lower part of the evaporation chamber of the seawater desalination apparatus as an ultrafine mist is shown in the center of the evaporation chamber 9 as shown in the side view of FIG. 2 and the plan view of FIG. A steel pipe of 100A (for example, 2 mm in thickness and a diameter of 2 mm) is connected to a connecting flange 33 (for example, 100 A, a plate thickness of 16 mm and an outer diameter of 20 cm, an inner diameter of 10 cm, etc.) fastened with a bolt 71 via a gasket 35 on the horizontal partition wall 65 at the position. 10 cm, height 150 cm, etc.) is welded, and the main body 15 of the cylindrical injection header 14 for injecting the ultrafine mist 44 that injects the pressurized seawater 41 at an angle of 60 ° obliquely upward and turns up is formed. Is.

円筒噴射ヘッダ−14の外周面には、エルボ74(例えば、90°螺子込み管継手。)の中心線62を60度の角度で6分割した水平位置で、上下の隣り合うエルボ74の中心線62の上下間隔を1cmづつ右下がりに開けて、円筒噴射ヘッダ−14の本体15への溶接と、エルボ74の曲がり部と本体15とは整流放熱板16(例えば、板厚5mmで外径140mm・長さ30mmなど。)を溶接して加熱した海水による熱を放出させて蒸発室9の内部を加熱させることと、エルボ74の螺子込み管継手に挿入したセラミック製の噴霧ノズル20から噴射された海水41の超微霧44を斜め上方向60°に噴射して、整流放熱板16により竜巻状に旋回させることで発生した遠心力により塩類を分離しながら、噴射した超微霧44の蒸発を促進させることができる。  On the outer peripheral surface of the cylindrical injection header-14, the center line of the elbow 74 adjacent to each other at the horizontal position obtained by dividing the center line 62 of the elbow 74 (for example, 90 ° screw-in pipe joint) into six at an angle of 60 degrees. The vertical gap of 62 is opened to the right by 1 cm, the welding of the cylindrical injection header 14 to the main body 15, the bent portion of the elbow 74 and the main body 15 are connected to the rectifying heat sink 16 (for example, a plate thickness of 5 mm and an outer diameter of 140 mm). The length of 30 mm, etc.) is heated to release the heat from the seawater heated to heat the inside of the evaporation chamber 9 and is sprayed from the ceramic spray nozzle 20 inserted into the threaded pipe joint of the elbow 74. The superfine mist 44 of the seawater 41 is jetted obliquely upward 60 °, and the salt is separated by the centrifugal force generated by turning the rectifying heat sink 16 in a tornado shape, while evaporating the injected superfine mist 44. Prompt Can be advanced.

海水淡水化装置の主要構成部品である円筒噴射ヘッダ−14の製作方法と防錆処理は、海水41や分離した濃縮塩水に含まれる塩素やナトリウムによる腐食を防ぐために、鋼管(例えば、瓦斯管100A)に鋳鉄製90度のねじ込み管継手を溶接した後、酸洗いと脱脂処理をして電気亜鉛メッキとクロメ−ト処理を施した後に噴霧ノズル20の螺子込み部をタップにより螺子切して、錆や耐磨耗に強いセラミック製の噴霧ノズル20をシ−ルテ−プを併用して螺子込んで装着したものである。  The manufacturing method and rust prevention treatment of the cylindrical jet header -14 which is a main component of the seawater desalination apparatus are performed in order to prevent corrosion caused by chlorine or sodium contained in the seawater 41 or the separated concentrated salt water. ) Welded cast iron 90 degree threaded pipe joint, then pickled and degreased, electrogalvanized and chromated, and then screwed the screwed portion of spray nozzle 20 with a tap, A ceramic spray nozzle 20 that is resistant to rust and abrasion is screwed together with a seal tape.

異物通過径0.3mmの噴霧ノズル20(例えば、株式会社池内のアルミナセラミックスプレ−ノズル、スプレ−イングシステム・ジャパン株式会社のフルコ−ンノズル、有限会社香取組製作所のセラミックノズルなど。)で海水41を噴射すると、蒸発室9内部の温度が20℃で湿度が50%では1MPaに加圧したときに噴射された海水41の超微霧44の外径は50μm乃至80μm前後であり、噴射して3秒前後で蒸発させることができるため、直線距離にして約90cm前後で完全に蒸発する。  Seawater 41 with a spray nozzle 20 having a foreign substance passage diameter of 0.3 mm (for example, an alumina ceramic spray nozzle in a pond, a full cone nozzle from Spraying System Japan, a ceramic nozzle from Katori Gumi Co., Ltd.). When the temperature inside the evaporation chamber 9 is 20 ° C. and the humidity is 50%, the outer diameter of the ultrafine mist 44 of the seawater 41 injected when pressurized to 1 MPa is around 50 μm to 80 μm. Since it can be evaporated in about 3 seconds, it is completely evaporated in about 90 cm as a linear distance.

異物通過径0.3mmの噴霧ノズル20から1MPaに加圧した海水を供給すると一個の噴霧ノズル20で1時間当たり約4l前後の海水41が噴射できる。2MPaに昇圧した海水を供給すると一個の噴霧ノズル20で1時間当たり約6l前後の海水41が噴射できるため、円筒噴射ヘッダ−14の外周部に150個前後の噴霧ノズル20を装着し、供給圧力を1MPaに加圧して噴射すると1日に約12トンの海水41が噴射できる。供給圧力を2MPaに昇圧して噴射すると1日に約20トンの海水41が噴射できる。  When seawater pressurized to 1 MPa is supplied from the spray nozzle 20 having a foreign substance passage diameter of 0.3 mm, the seawater 41 of about 4 l per hour can be jetted by one spray nozzle 20. When seawater pressurized to 2 MPa is supplied, about 6 l of seawater 41 per hour can be ejected by one spray nozzle 20, so about 150 spray nozzles 20 are mounted on the outer periphery of the cylindrical spray header 14, and the supply pressure When pressurized to 1 MPa and injected, about 12 tons of seawater 41 can be injected per day. When the supply pressure is increased to 2 MPa for injection, about 20 tons of seawater 41 can be injected per day.

噴霧ノズル20から噴射された、外径が50μm前後の海水41の超微霧44は、整流放熱板16により竜巻状に旋回させることで発生した遠心力により、海水中に約3%前後含まれる塩類は比重が重いため遠心力により内筒管6の断熱材11に付着して分離され、最上部の撒水真空ポンプ13に達するまでに次々と付着することで塩類が濃縮されながら断熱材11の表面を流下し、下部の水平隔壁65に接管した濃縮塩水排出管27の逆止弁34で外気の進入を阻止することで蒸発室9の真空を保ちながら外部に排出される。  The ultra fine mist 44 of the seawater 41 having an outer diameter of about 50 μm, which is injected from the spray nozzle 20, is included in the seawater by about 3% due to the centrifugal force generated by swirling in a tornado shape by the rectifying heat sink 16. Since the salt has a high specific gravity, the salt adheres to and is separated from the heat insulating material 11 of the inner tube 6 by centrifugal force, and adheres one after another before reaching the uppermost submerged vacuum pump 13 to concentrate the heat of the heat insulating material 11 while the salt is concentrated. It flows down to the outside while maintaining the vacuum of the evaporation chamber 9 by blocking the outside air by the check valve 34 of the concentrated salt water discharge pipe 27 that flows down the surface and is connected to the lower horizontal partition wall 65.

更に、蒸発室9の内部を高い真空雰囲気にして、大量に噴射した海水41の沸点を下げて蒸発させるためには、濃縮塩水排出管27の先端部に別途設置した真空ポンプ(図示せず)に接続して、蒸発室9内の濃縮塩水を排出すると同時に蒸発室9内の空気を吸引することで、内部が高真空雰囲気となり噴射された海水41の超微霧44は沸点が更に下がるため、超微霧44の蒸発を促進させることができるが、凝縮するにも噴射した海水41に見合う別途の冷却装置(例えば、冷水チラ−など。)の付帯設備が必要であり、淡水の緊急的な要求以外では、ランニングコストを勘案して適宜対応する。  Furthermore, in order to lower the boiling point of the seawater 41 jetted in large quantities and evaporate the inside of the evaporation chamber 9 in a high vacuum atmosphere, a vacuum pump (not shown) separately installed at the tip of the concentrated saltwater discharge pipe 27 Since the concentrated salt water in the evaporation chamber 9 is discharged and the air in the evaporation chamber 9 is sucked at the same time, the inside of the ultrafine mist 44 of the seawater 41 jetted becomes a high vacuum atmosphere, and the boiling point is further lowered. Although the evaporation of the superfine mist 44 can be promoted, an additional facility of a separate cooling device (for example, a cold water chiller, etc.) suitable for the seawater 41 that is jetted even if it is condensed is necessary, and the emergency of fresh water Except for unneeded requirements, take appropriate measures in consideration of running costs.

実施例3
蒸発室9の内部を真空雰囲気にする撒水真空ポンプ13の構造は図4断面図と図5の平面図で詳細に説明する如く、蒸発室9内部の撒水真空ポンプ13の吸引口30は蒸発室9側から水蒸気導入管36が内筒管6を貫通して凝縮室8側に放射状に配置され、旋回しながら上昇する水蒸気の旋回上昇を促進させるため、中央部に空間を開けて斜め下方向に湾曲させた吸入口30が保持されている。蒸発室9の下部から噴射された海水41の水蒸気に含まれる約3%前後の塩類は、旋回上昇する過程で発生した遠心力により断熱材11に付着することで効率よく分離されながら上昇した海水41の水蒸気は、蒸発室9最上部の撒水真空ポンプ13の吸引口30まで旋回が途切れることなく上昇する。
Example 3
The structure of the submersible vacuum pump 13 that makes the inside of the evaporation chamber 9 a vacuum atmosphere will be described in detail with reference to the sectional view of FIG. 4 and the plan view of FIG. In order to promote the swirling rise of the water vapor that rises while swirling, the water vapor introducing pipe 36 passes through the inner tube 6 from the 9 side and is radially arranged on the condensing chamber 8 side. A suction port 30 that is curved in a straight line is held. About 3% of the salt contained in the water vapor of the seawater 41 sprayed from the lower part of the evaporation chamber 9 is attached to the heat insulating material 11 by the centrifugal force generated during the swirling and rising process, and the seawater that rises while being efficiently separated. The water vapor 41 rises without interruption to the suction port 30 of the submerged vacuum pump 13 at the top of the evaporation chamber 9.

凝縮室8側の水蒸気導入管36の先端部に撒水真空ポンプ13を縦方向に接続し、撒水ノズル21から淡水43を噴射すると水蒸気導入管36から水蒸気を吸い込みながら排出する。撒水ノズル21から噴射する撒水54の速度と吸引される水蒸気との速度差により発生した吸引力(ベルヌ−イ効果)により、蒸発室9内の水蒸気を吸引することで真空雰囲気にすることと、吸引により旋回流が加速されて下側から上昇する旋回流と合流することで、蒸発室9の下部から頂部まで旋回流は途切れることなく高速度で上昇するため、発生した遠心力により海水41中に含まれる比重の重い塩類などは遠心力により外側に押し出されて断熱材11の表面に付着することで効率良く塩類を分離させたものである。  When the brine vacuum pump 13 is connected in the vertical direction to the tip of the water vapor introduction pipe 36 on the condensing chamber 8 side and fresh water 43 is ejected from the water nozzle 21, the water vapor is sucked and discharged from the water vapor introduction pipe 36. Creating a vacuum atmosphere by sucking water vapor in the evaporation chamber 9 by the suction force (Bernoulli effect) generated by the speed difference between the water 54 sprayed from the water nozzle 21 and the water vapor sucked; Since the swirl flow is accelerated by suction and merged with the swirl flow rising from the lower side, the swirl flow rises at a high speed from the lower part to the top of the evaporation chamber 9. The salt having a high specific gravity contained in the water is pushed out to the outside by a centrifugal force and adheres to the surface of the heat insulating material 11 to efficiently separate the salts.

撒水真空ポンプ13に内装した撒水ノズル21に、淡水貯留タンク48の中に沈設した交互運転する二台の水中ポンプ63を用いて、冷却された淡水43を逆止弁34と冷却管25を介して接続管26により最上部の撒水真空ポンプ13に揚程して撒水ノズル21から撒水54する、凝縮室8に24個の撒水真空ポンプを設置し、一か所の撒水ノズル21から1分間に約2lを撒水し合計約50l撒水すると、蒸発室9の内部ではベルヌ−イ効果により150l前後の吸引力が発生して減圧され最大真空度−93kPaの真空雰囲気に維持されるため、海水41を噴射した水蒸気の蒸発する沸点温度が下がることと、旋回上昇中の遠心力が増強したことにより塩類の分離を促進させることができる。  The fresh water 43 is cooled via the check valve 34 and the cooling pipe 25 using the two submersible pumps 63 that are alternately operated and set in the fresh water storage tank 48 in the fresh water nozzle 21 built in the fresh water vacuum pump 13. Then, 24 drainage vacuum pumps are installed in the condensing chamber 8 and are pumped up to the uppermost submersible vacuum pump 13 by the connecting pipe 26, and submerged 54 from the submerged nozzle 21, and about one minute from one submerged nozzle 21. When 2 l is submerged and about 50 l is submerged in total, a suction force of about 150 l is generated inside the evaporation chamber 9 due to the Bernoulli effect, and the pressure is reduced and maintained in a vacuum atmosphere with a maximum vacuum degree of −93 kPa. Separation of salts can be promoted by lowering of the boiling point temperature at which the water vapor evaporates and the increased centrifugal force during swirling rise.

蒸発室9で塩類を分離して上昇した海水の水蒸気は水蒸気導入管36(例えば24個)を介して撒水真空ポンプ13の中に吸引され、撒水真空ポンプ13に内装した撒水ノズル21から一分間に約2lの冷却された淡水43を、0,3mm前後の水滴となるように撒水すると、撒水された0,3mm前後の水滴を核として蒸発室9から導入された水蒸気が付着(気液接触)することで1mm前後の大粒の水滴となり撒水真空ポンプ13からシャワ−状に撒水54される。凝縮室8内に一分間に50l前後の冷却された淡水43が撒水54されることで発生した圧縮作用で凝縮能力は促進され、蒸発室9から撒水真空ポンプ13に導入されて気液接触により水滴とならなかった残りの水蒸気は、撒水54に随行されながら降下して冷却管25の表面に接触することで完全に凝縮されて淡水となる。  The water vapor of the seawater that has risen after separating the salts in the evaporation chamber 9 is sucked into the brine vacuum pump 13 through the water vapor introduction pipe 36 (for example, 24 pieces), and is supplied from the brine nozzle 21 built in the brine vacuum pump 13 for one minute. When about 2 liters of cooled fresh water 43 is submerged into water droplets of about 0.3 mm, water vapor introduced from the evaporation chamber 9 with the submerged water droplets of about 0.3 mm adhering to the core adheres (gas-liquid contact). ) To form large water droplets of about 1 mm, and the water is drained 54 from the submerged vacuum pump 13 into a shower. The condensing capacity is promoted by the compression action generated when the cooled fresh water 43 of about 50 liters per minute is poured into the condensing chamber 8, and is introduced into the submerged vacuum pump 13 from the evaporation chamber 9 by gas-liquid contact. The remaining water vapor that has not become water droplets descends while following the brine 54 and comes into contact with the surface of the cooling pipe 25 to be completely condensed and become fresh water.

実施例4
蒸発室9の内部を真空を維持しながら旋回流を発生させる減圧排気管37の構造は図6の断面図と図7の平面図で詳細に説明する如く、蒸発室9の下部に噴出孔31を斜め上方向45度に湾曲させた減圧排気管37を内筒管6を貫通させて放射状(図示では12本)に設置し、凝縮室8側には縦方向に気水分離装置17に接続した吸引口30が減圧排気管37に溶接されている。凝縮室8の加圧された空気を循環させるため、逆碗形状の下側吸引口30から吸い込み減圧排気管37の気水分離装置17で減圧した空気を、蒸発室9内で斜め上方向に設置した噴出孔31から噴出することで、旋回流を発生させながら上昇するため、噴射した海水41の蒸発を促進させることができる。
Example 4
The structure of the decompression exhaust pipe 37 for generating a swirling flow while maintaining the vacuum inside the evaporation chamber 9 will be described in detail with reference to the sectional view of FIG. 6 and the plan view of FIG. The vacuum exhaust pipe 37, which is bent at an angle of 45 degrees diagonally upward, is installed radially (12 in the figure) through the inner tube 6 and is connected to the steam separator 17 in the vertical direction on the condensing chamber 8 side. The suction port 30 is welded to the vacuum exhaust pipe 37. In order to circulate the pressurized air in the condensing chamber 8, the air sucked from the lower suction port 30 of the inverted saddle shape and decompressed by the steam / water separator 17 of the decompression exhaust pipe 37 is obliquely upward in the evaporation chamber 9. By ejecting from the installed ejection hole 31, it rises while generating a swirling flow, so that evaporation of the injected seawater 41 can be promoted.

噴霧ノズル20から竜巻状に噴射されて旋回上昇する超微霧44と、減圧排気管37から減圧して脱水された空気が噴出孔31から斜め上方向に噴出する空気と合流することにより増速された遠心力により、海水中に約3%前後含まれる塩類などは比重が重いために、遠心力により蒸発室9の断熱材11の表面に付着することで効率良く分離され、最上部の撒水真空ポンプ13の吸引口30に達するまでに次々と塩類などが付着して濃縮された濃縮塩水となり断熱材11の表面を流下して、蒸発室9最下部の濃縮塩水排出管27に外気流入防止のために設けた逆止弁34を介して外部に排出される。  The speed is increased by the super fine mist 44 that is swirled and raised from the spray nozzle 20 in a tornado form and the air depressurized and dehydrated from the decompression exhaust pipe 37 joins the air ejected obliquely upward from the ejection hole 31. Due to the centrifugal force, the salt contained in about 3% of the seawater has a high specific gravity, so that it is efficiently separated by adhering to the surface of the heat insulating material 11 of the evaporation chamber 9 by the centrifugal force. Before reaching the suction port 30 of the vacuum pump 13, salt or the like adheres to the concentrated salt water one after another and flows down the surface of the heat insulating material 11 to prevent the outside air from flowing into the concentrated salt water discharge pipe 27 at the bottom of the evaporation chamber 9. It is discharged to the outside through a check valve 34 provided for the purpose.

実施例5
淡水貯留タンクに冷却用の熱交換コイルと交互運転する2台の水中ポンプと紫外線殺菌ランプを沈設した海水淡水化装置の基台を兼ねる構造は図8で詳細に説明する。淡水貯留タンク48の円筒管3の内壁面を吸水しない断熱材11で内側断熱して外気による冷却熱の放出を防いだ貯水量が1m前後の淡水中に、15℃前後の冷却用の海水41を循環させる熱交換コイル28を設置したことで淡水43は冷却され、水中ポンプ63を用いて凝縮室8の冷却管25を介して頂部の撒水真空ポンプ13に内装した撒水ノズル21からの撒水54と蒸発した水蒸気とが気液接触して大粒の水滴となりシャワ−状に降水し、残りの水蒸気は下部の冷却管25に接触して完全に冷却されて淡水化される。
Example 5
The structure that serves as the base of the seawater desalination apparatus in which two submersible pumps that operate alternately with the heat exchange coils for cooling in the freshwater storage tank and the ultraviolet sterilization lamps will be described in detail with reference to FIG. During storage volume which prevented the release of cooling heat generated by the outside air to the inner wall surface of the cylindrical tube 3 and the inner insulated with insulation material 11 which is not water of fresh water storage tank 48 is 1 m 3 before and after fresh water, of about 15 ℃ seawater for cooling The fresh water 43 is cooled by installing the heat exchange coil 28 that circulates 41, and the submerged water is supplied from the submerged nozzle 21 installed in the submerged vacuum pump 13 through the cooling pipe 25 of the condensing chamber 8 using the submersible pump 63. 54 and vaporized water vapor come into gas-liquid contact to form large water droplets and precipitate in a shower shape, and the remaining water vapor contacts the lower cooling pipe 25 to be completely cooled and desalinated.

冷却用の海水41が確保出来ない場合や、渇水のため淡水化を急ぐ場合には、外部に冷却チラ−(図示せず。)を設置して冷却水の水温を7℃前後に冷却し、循環ポンプで熱交換コイル28に循環して淡水を冷却することで、淡水の造水コストは多少アップするが、大量の海水41を蒸発室9に噴射して蒸発した水蒸気が大量に凝縮室8に流入しても、冷却されたことで凝縮能力が大幅に向上するため大量の海水を淡水化することができる。  When the seawater 41 for cooling cannot be secured or when desalination is urgent due to drought, a cooling chiller (not shown) is installed outside to cool the water temperature of the cooling water to around 7 ° C. Although the fresh water is cooled by circulating through the heat exchange coil 28 with a circulation pump, the fresh water production cost is slightly increased. However, a large amount of water vapor that is evaporated by injecting a large amount of seawater 41 into the evaporation chamber 9 is condensed in the condensation chamber 8. Even if it flows into the seawater, it is possible to desalinate a large amount of seawater because the condensation capacity is greatly improved by cooling.

実施例6
水平隔壁を貫通した淡水排出管に落水真空ポンプを設置した構造は図8の中段部で詳細に説明する。淡水貯留タンク48の淡水43を水中ポンプ63を用いて凝縮室8の最上部に揚程し、凝縮室8から一分間に約60lの冷却した淡水が撒水54され、蒸発した海水の水蒸気を凝縮させて造水された淡水と合流して約70l前後の水量となった淡水43は、水平隔壁65に接管した落水管45に排水され、途中に設けた落水真空ポンプ22を介して淡水貯留タンク48に排出されて貯留水面18まで貯留して排出される。
Example 6
The structure in which the falling water vacuum pump is installed in the fresh water discharge pipe penetrating the horizontal partition will be described in detail in the middle part of FIG. The fresh water 43 in the fresh water storage tank 48 is lifted to the top of the condensing chamber 8 using the submersible pump 63, and about 60 liters of cooled fresh water is poured from the condensing chamber 8 in one minute to condense the water vapor of the evaporated seawater. The fresh water 43, which is combined with the fresh water produced in this way and has a volume of about 70 liters, is drained to the water pipe 45 connected to the horizontal partition wall 65, and is supplied to the fresh water storage tank 48 via the water vacuum pump 22 provided in the middle. It is discharged and stored up to the stored water surface 18 and discharged.

凝縮室8から落水管45を介して淡水貯留タンク48に落下する淡水43を利用して、落水管45の中間部に設置した落水真空ポンプ22のオリフィス部で、淡水43の落下速度と吸引される蒸発室9内の空気との速度差により発生した吸引力(ベルヌ−イ効果)により、蒸発室9内の空気を逆止弁34を内装した吸引管39を介して吸引することで、蒸発室9内は最大真空度が−93kPa前後の真空雰囲気に維持されるため、海水41から遠心力により塩類を分離した後の水蒸気の蒸発温度(沸点)が下がるため、20℃前後の低温度の海水41の水蒸気でも効率良く蒸発させて淡水化することができる。  Using the fresh water 43 falling from the condensing chamber 8 to the fresh water storage tank 48 through the water pipe 45, the falling speed of the fresh water 43 and the evaporation sucked in the orifice part of the water vacuum pump 22 installed in the middle part of the water pipe 45. By evaporating the air in the evaporation chamber 9 through the suction pipe 39 having the check valve 34, by the suction force (Bernoulli effect) generated by the speed difference with the air in the chamber 9, the evaporation chamber 9 Since the inside is maintained in a vacuum atmosphere having a maximum degree of vacuum of about −93 kPa, the evaporation temperature (boiling point) of water vapor after the salt is separated from the seawater 41 by centrifugal force is lowered, so the seawater 41 at a low temperature of about 20 ° C. Even water vapor can be efficiently evaporated and desalted.

実施例7
淡水貯留タンクの中に紫外線ランプを沈設した殺菌方法の構造は図8の下部の右側で詳細に説明する。淡水貯留タンク48の貯留水面18より下部位置の側面に、紫外線ランプ75(例えば、岩崎電気株式会社の浸漬式殺菌装置など。)を挿入して固定する取付フランジ72(例えば、80A)を溶接し、取付フランジ72の中から貯留された淡水43の中に紫外線波長が254nm又は185nmの紫外線ランプ75を、淡水化する海水の汚濁状況に応じて適宜選定して、透過効率が良い防水構造の石英ガラス保護管73に内装して固定し、貯留した淡水中に浸漬しているため殺菌効率が良いことと、低い位置に設置したことにより紫外線ランプ75の保守点検や交換が容易にできる。
Example 7
The structure of the sterilization method in which an ultraviolet lamp is set in the fresh water storage tank will be described in detail on the right side at the bottom of FIG. A mounting flange 72 (for example, 80A) for inserting and fixing an ultraviolet lamp 75 (for example, an immersion sterilizer of Iwasaki Electric Co., Ltd.) is welded to the side surface of the freshwater storage tank 48 below the stored water surface 18 to be fixed. In addition, a waterproof structure quartz with good transmission efficiency is selected by appropriately selecting an ultraviolet lamp 75 having an ultraviolet wavelength of 254 nm or 185 nm in the fresh water 43 stored from the mounting flange 72 according to the pollution status of seawater to be desalinated. The UV lamp 75 can be easily maintained and inspected and replaced by being installed and fixed at a low position because it is mounted and fixed in the glass protective tube 73 and immersed in the stored fresh water.

淡水貯留タンク48に貯留された淡水43の中に紫外線波長が254nmの紫外線ランプ75に浸漬したことにより、殺菌処理された淡水43が水中ポンプ63により凝縮室8の最上部に揚程され循環するため、海水41に混入した病原性大腸菌O−157やレジオネラ菌などの細菌類は淡水化装置1の内部において繁殖が防がれ完全に殺菌処理される。その他、海水に混入した藻類やカビ臭などの消臭処理は紫外線波長が185nmのオゾンを発生する紫外線ランプを照射することで殺菌処理や消臭処理が簡単にできるため、淡水化装置1で造水した淡水43は、水道水質基準の健康に関する項目に対応した飲料水として供給することができる。又、食品の調理や加工においてHACCP(危害分析重要管理方式)を導入する食品工場の洗浄水や原料用水に、低コストの淡水を大量に使用することができる。  Since the fresh water 43 stored in the fresh water storage tank 48 is immersed in the ultraviolet lamp 75 having an ultraviolet wavelength of 254 nm, the sterilized fresh water 43 is lifted and circulated by the submersible pump 63 to the top of the condensing chamber 8. Bacteria such as pathogenic E. coli O-157 and Legionella mixed in the seawater 41 are prevented from breeding inside the desalination apparatus 1 and are completely sterilized. In addition, deodorization treatment of algae and mold odor mixed in sea water can be easily performed by sterilization treatment and deodorization treatment by irradiating an ultraviolet lamp that generates ozone with an ultraviolet wavelength of 185 nm. The drained fresh water 43 can be supplied as drinking water corresponding to health-related items of the tap water quality standard. In addition, a large amount of low-cost fresh water can be used for washing water and raw material water in food factories that introduce HACCP (hazard analysis important control system) in food preparation and processing.

本発明の淡水化装置の実施例を示す縦断面詳細図である。  It is a longitudinal cross-sectional detail figure which shows the Example of the desalination apparatus of this invention. 本発明の円筒噴射ヘッダ−の断面図である。  It is sectional drawing of the cylindrical injection header of this invention. 同円筒噴射ヘッダ−の平面詳細図である。  It is a plane detailed drawing of the same cylindrical injection header. 本発明の撒水真空ポンプの縦断面詳細図である。  It is a longitudinal cross-sectional detail drawing of the brine vacuum pump of this invention. 同撒水真空ポンプの平面詳細図である。  It is a plane detailed drawing of the same water vacuum pump. 本発明の減圧排気管の断面図である。  It is sectional drawing of the pressure reduction exhaust pipe of this invention. 同減圧排気管の平面詳細図である。  FIG. 3 is a detailed plan view of the vacuum exhaust pipe. 本発明の淡水化装置の下部の縦断面詳細図である。  It is a longitudinal cross-sectional detailed view of the lower part of the desalination apparatus of this invention.

符号の説明Explanation of symbols

9 蒸発室
13 撒水真空ポンプ
14 円筒噴射ヘッダ−
17 気水分離装置
21 撒水ノズル
22 落水真空ポンプ
28 熱交換コイル
37 減圧排気管
75 紫外線ランプ
9 Evaporating chamber 13 Flooded vacuum pump 14 Cylindrical jet header
17 Gas / Water Separator 21 Flooding Nozzle 22 Falling Water Vacuum Pump 28 Heat Exchange Coil 37 Depressurized Exhaust Pipe 75 Ultraviolet Lamp

Claims (7)

3室の区画
底板67の上に円筒管3を縦方向に接続して上部を水平隔壁65で隔てて冷却した淡水を蓄える淡水貯留タンク48とし、その上に内筒管6と外筒管5を接続して上端部を上蓋板68で塞いで密閉し、内筒管6の中を真空雰囲気として海水41を噴霧する蒸発室9とし、外筒管5と内筒管6の間を加圧雰囲気として蒸発した海水を液化する凝縮室8の3室に区画したことを特徴とする海水の淡水化装置。
Partition of three chambers A cylindrical pipe 3 is connected to the bottom plate 67 in the vertical direction, and a fresh water storage tank 48 for storing fresh water cooled by separating the upper part by a horizontal partition wall 65 is provided, and an inner cylinder pipe 6 and an outer cylinder pipe 5 are provided thereon. And the upper end is closed and sealed with an upper cover plate 68 to form an evaporation chamber 9 in which seawater 41 is sprayed in a vacuum atmosphere in the inner tube 6, and the space between the outer tube 5 and the inner tube 6 is added. A seawater desalination apparatus, which is partitioned into three chambers, a condensing chamber 8 for liquefying seawater evaporated as a pressure atmosphere.
噴霧加熱噴射
蒸発室9の最下部に設置した円筒噴射ヘッダ−14の外周面に斜め上向に装着した整流放熱板16の先端部に噴霧ノズル20を設け、加熱した海水41を円筒噴射ヘッダ−14に供給した放出熱で蒸発室9の内部を加熱しながら噴霧ノズル20から超微霧44を噴射し、整流放熱板16で竜巻状に旋回しながら上昇させ、発生した遠心力により海水41に含まれた塩類を断熱材11壁面へ圧着させて分離したことを特徴とする海水の淡水化装置。
Spray heating spray The spray nozzle 20 is provided at the tip of the rectifying heat sink 16 mounted obliquely upward on the outer peripheral surface of the cylindrical spray header 14 installed at the bottom of the evaporation chamber 9, and the heated seawater 41 is supplied to the cylindrical spray header − 14, while the inside of the evaporation chamber 9 is heated by the discharge heat supplied to 14, the superfine mist 44 is jetted from the spray nozzle 20, and is swirled in a tornado shape by the rectifying and radiating plate 16. A seawater desalination apparatus, characterized in that the contained salts are separated by pressure bonding to the wall surface of the heat insulating material 11.
撒水真空ポンプ
吸引口30を斜め下方向に湾曲させた水蒸気導入管36を蒸発室9から放射状に内筒管6を貫通させ凝縮室8に配管して縦方向に撒水真空ポンプ13を接続し、撒水真空ポンプ13に内装した撒水ノズル21から淡水を撒水すると、吐出する淡水43と吸引される水蒸気の速度に大きな差があるために発生した吸引力で、蒸発室9内の水蒸気を吸引することで旋回上昇流を加速させながら蒸発室9内を真空雰囲気とし、海水41の蒸発と気液接触による水蒸気の凝縮を促進させたことを特徴とする海水の淡水化装置。
Submerged vacuum pump A water vapor introducing pipe 36 whose suction port 30 is bent obliquely downward passes through the inner tube 6 radially from the evaporation chamber 9 and is connected to the condensing chamber 8 to connect the submerged vacuum pump 13 in the vertical direction. When fresh water is flooded from the flood nozzle 21 built in the flood vacuum pump 13, the steam in the evaporation chamber 9 is sucked by the suction force generated because there is a large difference between the speed of the fresh water 43 to be discharged and the speed of the sucked steam. A seawater desalination apparatus characterized in that the inside of the evaporation chamber 9 is made a vacuum atmosphere while accelerating the swirling upward flow, and the evaporation of the seawater 41 and the condensation of water vapor by gas-liquid contact are promoted.
減圧排気管
噴出孔31を斜め上方向に湾曲させた減圧排気管37を蒸発室9から放射状に内筒管6を貫通させ凝縮室8に配管して縦方向に気水分離装置17を接続し、凝縮室8内の加圧された空気を減圧排気管37の気水分離装置17で減圧脱水して、蒸発室9内の噴出孔31から斜め上方向に噴出して旋回しながら上昇させ、発生した遠心力により海水41に含まれた塩類を断熱材11壁面へ圧着させて分離したことを特徴とする海水の淡水化装置。
Depressurized exhaust pipe Depressurized exhaust pipe 37 having an ejection hole 31 curved obliquely upward is radially penetrated from the evaporation chamber 9 through the inner tube 6 and connected to the condensing chamber 8 to connect the steam-water separator 17 in the vertical direction. The pressurized air in the condensing chamber 8 is dehydrated under reduced pressure by the steam / water separator 17 of the decompression exhaust pipe 37, and is ejected obliquely upward from the ejection hole 31 in the evaporation chamber 9 to be raised while turning, A seawater desalination apparatus, wherein the salt contained in the seawater 41 is pressed against the wall surface of the heat insulating material 11 and separated by the generated centrifugal force.
淡水の冷却と揚程
淡水貯留タンク48の内部に冷却用の海水41を循環させる熱交換コイル28を沈設して淡水43を冷却し、内装した水中ポンプ63で冷却した淡水43を凝縮室8の冷却管25を介して頂部の撒水真空ポンプ13の撒水ノズル21に供給し、撒水ノズル21から撒水54することで凝縮室8の内部を加圧雰囲気にしながら吸引した水蒸気と気液接触させて淡水とし、残りの水蒸気は下部の冷却管25で完全に凝縮して淡水化することで、水蒸気の凝縮を促進させたことを特徴とする海水の淡水化装置。
Cooling and lifting height of fresh water The heat exchange coil 28 for circulating the cooling seawater 41 is laid in the fresh water storage tank 48 to cool the fresh water 43, and the fresh water 43 cooled by the built-in submersible pump 63 is cooled in the condensation chamber 8. The water is supplied to the irrigation nozzle 21 of the irrigation vacuum pump 13 through the pipe 25 and is irrigated 54 from the irrigation nozzle 21 to bring the condensed chamber 8 into gas-liquid contact with the sucked water vapor in a pressurized atmosphere to obtain fresh water. The seawater desalination apparatus is characterized in that the remaining water vapor is completely condensed and desalinated in the lower cooling pipe 25 to promote condensation of water vapor.
落水真空ポンプ
凝縮室8から下部の水平隔壁65を貫通して淡水貯留タンク48に配管された落水管45の中間部に落水真空ポンプ22を設置して、落水する淡水と吸引される蒸発室9内の空気の速度に大きな差があるために発生した吸引力で、蒸発室9内の空気を吸引管39を介して吸引することで真空雰囲気とし、噴射した海水41の蒸発を促進させたことを特徴とする海水の淡水化装置。
Falling water vacuum pump A falling water vacuum pump 22 is installed in the middle part of the falling water pipe 45 that passes through the lower horizontal partition wall 65 from the condensing chamber 8 and is piped to the fresh water storage tank 48, and the inside of the evaporation chamber 9 that is sucked into the falling fresh water. The suction force generated because there is a large difference in the speed of the air in the vacuum chamber 9 by sucking the air in the evaporation chamber 9 through the suction pipe 39 and promoting the evaporation of the injected seawater 41. Features a seawater desalination system.
淡水貯留タンクの殺菌
淡水貯留タンク48の水面下部位置の円筒管3側面を貫通した取付フランジ72から、紫外線波長が185nm又は254nmの紫外線ランプ75を紫外線の透過が良い防水構造の石英ガラス保護管73に内装して淡水中に浸漬して設置し、海水41に混入した病原性大腸菌O−157やレジオネラ菌などの雑菌類の他、海水に含まれる藻類やカビ臭などの臭気を紫外線照射により殺菌脱臭処理したことを特徴とする海水の淡水化装置。
Sterilization of a fresh water storage tank A quartz glass protective tube 73 having a waterproof structure with good UV transmission from a mounting flange 72 penetrating the side surface of the cylindrical tube 3 at the lower surface of the fresh water storage tank 48 with a UV wavelength of 185 nm or 254 nm. It is installed inside and immersed in fresh water, and in addition to germs such as pathogenic Escherichia coli O-157 and Legionella mixed in seawater 41, odors such as algae and mold odor contained in seawater are sterilized by ultraviolet irradiation. A seawater desalination apparatus characterized by deodorizing treatment.
JP2007260341A 2007-09-03 2007-09-03 Sea water desalting apparatus Withdrawn JP2009056453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007260341A JP2009056453A (en) 2007-09-03 2007-09-03 Sea water desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007260341A JP2009056453A (en) 2007-09-03 2007-09-03 Sea water desalting apparatus

Publications (1)

Publication Number Publication Date
JP2009056453A true JP2009056453A (en) 2009-03-19

Family

ID=40552689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007260341A Withdrawn JP2009056453A (en) 2007-09-03 2007-09-03 Sea water desalting apparatus

Country Status (1)

Country Link
JP (1) JP2009056453A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200661A (en) * 2011-03-25 2012-10-22 M Hikari Energy Kaihatsu Kenkyusho:Kk Dehydration method using atmospheric pressure difference, and recovery apparatus for fresh water
CN104150548A (en) * 2013-12-24 2014-11-19 北京大学工学院包头研究院 Sea water desalination system
CN106554044A (en) * 2017-01-17 2017-04-05 北京今大禹环境技术股份有限公司 A kind of tapered shower nozzle of big flow rectangle
CN110841324A (en) * 2019-11-21 2020-02-28 无锡西塘核设备有限公司 Horizontal cylinder structure of scraper condenser
CN113428922A (en) * 2021-06-07 2021-09-24 淮南联合大学 Seawater desalination device based on solar energy transduction and atomization
CN114793522A (en) * 2022-03-31 2022-07-29 江苏大学 Soil saline-washing water recycling system and method based on electro-adsorption combined evaporation condensation method
CN115259263A (en) * 2022-08-02 2022-11-01 东和恩泰热能技术(江苏)有限公司 Efficient and energy-saving new energy sea water desalination device
CN115449876A (en) * 2022-11-11 2022-12-09 中国科学院宁波材料技术与工程研究所 Gradient wetting copper-nickel multilayer composite material and preparation method and application thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200661A (en) * 2011-03-25 2012-10-22 M Hikari Energy Kaihatsu Kenkyusho:Kk Dehydration method using atmospheric pressure difference, and recovery apparatus for fresh water
CN104150548A (en) * 2013-12-24 2014-11-19 北京大学工学院包头研究院 Sea water desalination system
CN106554044A (en) * 2017-01-17 2017-04-05 北京今大禹环境技术股份有限公司 A kind of tapered shower nozzle of big flow rectangle
CN110841324A (en) * 2019-11-21 2020-02-28 无锡西塘核设备有限公司 Horizontal cylinder structure of scraper condenser
CN110841324B (en) * 2019-11-21 2021-07-20 无锡西塘核设备有限公司 Horizontal cylinder structure of scraper condenser
CN113428922A (en) * 2021-06-07 2021-09-24 淮南联合大学 Seawater desalination device based on solar energy transduction and atomization
CN113428922B (en) * 2021-06-07 2022-11-11 淮南联合大学 Based on solar energy transduction atomizing sea water desalination device
CN114793522A (en) * 2022-03-31 2022-07-29 江苏大学 Soil saline-washing water recycling system and method based on electro-adsorption combined evaporation condensation method
CN114793522B (en) * 2022-03-31 2023-09-22 江苏大学 Soil brine-washing cyclic utilization system and method by combining electro-adsorption with condensation method
CN115259263A (en) * 2022-08-02 2022-11-01 东和恩泰热能技术(江苏)有限公司 Efficient and energy-saving new energy sea water desalination device
CN115449876A (en) * 2022-11-11 2022-12-09 中国科学院宁波材料技术与工程研究所 Gradient wetting copper-nickel multilayer composite material and preparation method and application thereof
CN115449876B (en) * 2022-11-11 2023-02-28 中国科学院宁波材料技术与工程研究所 Gradient wetting copper-nickel multilayer composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2009056453A (en) Sea water desalting apparatus
CN101838079B (en) Ultrasonic atomization and vaporization seawater desalination desalting device and method
JP2008264748A (en) Seawater desalination device
CN103449548B (en) Marine heat pipe type seawater desalination device
US8273156B2 (en) Method and apparatus for water distillation and recovery
US10144655B2 (en) Systems and methods for distillation of water from seawater, brackish water, waste waters, and effluent waters
JPH0141107B2 (en)
CN102557176B (en) Sea water desalinating device of cooling tower of coastal and island thermal power plants
JP2008264749A (en) Seawater desalination device
US20170233264A1 (en) Desalination system for the production of potable water
JP2011167628A (en) Hollow fiber membrane module, membrane distillation type fresh water generator, and membrane distillation type desalination apparatus
CN104310687B (en) Efficient MVR integrated seawater desalination device and seawater desalination method
CN201587871U (en) Multi-stage vacuum distillation sea water desalinating device
JP2012091108A (en) Vacuum distillation apparatus using solar heat
JP2008229424A (en) Vacuum distillation apparatus
CN103663589A (en) Seawater desalinization method and seawater desalinization device
Chandwankar et al. Thermal Processes for Seawater Desalination: Multi-effect Distillation, Thermal Vapor Compression, Mechanical Vapor Compression, and Multistage Flash
KR101394517B1 (en) Apparatus for desalinating the seawater
CN102234144A (en) Membrane distillation water purifying device and method
CN102583857A (en) Electrical fresh water co-production device for coastal thermal power plant and island thermal power plant
US10414670B2 (en) Systems and methods for distillation of water from seawater, brackish water, waste waters, and effluent waters
CN209635926U (en) Falling film evaporation couples absorption refrigeration high-salt sewage processing equipment
JPS58156391A (en) Apparatus for desalinating sea water
US20050115878A1 (en) System for desalinating and purifying seawater and devices for the system
RU2553880C2 (en) Sea water desalination unit and process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207